40
1 1 5 th & 6 th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Kevin Bonine & Kevin Oh 1. Finish Solutes + Water 2. Neurons Neurons Chapter 11 2 Housekeeping, 26 January 2009 Readings Today: Chapters 4 & 11 Wed 28 Jan: Chapter 11 LAB Wed 28 Jan: Bisbal & Specker 1991 (see website for links to papers) Fri 30 Jan: Chs 11 & 12 Mon 02 Feb: Ch12, Slowinski Article Lab discussion leaders: 04 Feb 1pm – Dan, Michelle 3pm – Maria, Jay Lab discussion leaders: 28 Jan 1pm – Steve, Ami 3pm – Ty, George

437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

1

1

5th & 6th LecturesMon 26 & Wed 28

Jan 2009

Vertebrate PhysiologyECOL 437 (MCB/VetSci 437)Univ. of Arizona, spring 2009

Kevin Bonine & Kevin Oh

1. FinishSolutes + Water

2. Neurons

NeuronsChapter 11

2

Housekeeping, 26 January 2009

Readings

Today: Chapters 4 & 11Wed 28 Jan: Chapter 11LAB Wed 28 Jan: Bisbal & Specker 1991

(see website for links to papers)Fri 30 Jan: Chs 11 & 12Mon 02 Feb: Ch12, Slowinski Article

Lab discussion leaders: 04 Feb1pm – Dan, Michelle3pm – Maria, Jay

Lab discussion leaders: 28 Jan1pm – Steve, Ami3pm – Ty, George

Page 2: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

2

3

p. 214, Silverthorn2001. 2nd ed. Human Physiology. Prentice Hall

Nervous SystemNeuronsMembranesIons

4

What are neurons for?

How do they work?

Page 3: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

3

5

Figure 11.1 Neuronal and hormonal signaling both convey information over long distances

Integration& Control

Nervous vs. Endocrine

6

Nervous System

- Neurons / Nerve Cells- Glial Cells (support)

- Signalling via combinationof Electrical and Chemical

- Integrate informationAFFERENT

Comprises

- Coordinate ResponseEFFERENT

5-2 Randall et al. 2002

Page 4: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

4

7

“Squid axons are important to physiologists, and to the squid.”Hill et al. 2004, p.281

Sir Alan Hodgkin, Nobel Prize 1963

8

Figure 11.7 Recording the resting membrane potential of a squid giant axon

Page 5: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

5

9

Neurons:

Hill et al. 2004, Fig 11.1

10Hill et al. 2004, Fig 11.2

1. PNS2. CNS

3. Metabolic support

4. Phagocytes/immune

4 types of Glial Cells

Outnumber neurons 10:1 in mammalian brain

Glial Cells Support Function of NS

Page 6: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

6

11

Osmotic Properties of Cells and Relative Ion Concentrations

Na+Na+ K+K+

Cl-Cl-

4-12 Randall et al. 2002

Ca+

Ca+To understand how the NS works we need to return to

Membrane Details

12

Movement Across Membranes

Electrochemical Gradient

Concentration gradient

Electrical gradient

Electrochemical equilibrium

Equilibrium potential (Ex in mV)

Na+Na+

--

--

-

-

-

-

-

-

-

++

+

+

+

+

+

+

++

++

K+K+

--

--

-

-

-

-

-

-

-

++

+

+

+

+

+

+

++

++

when [X] gradient = electrical gradient

Page 7: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

7

13

Equilibrium potential (Ex in mV)

“Every ion’s goal in life is to make the membrane potential equal its own equilibrium potential (Ex in mV)”

14

1. To change Vm:A Small Number of Ions actually moverelative to the number present both inside and outside the cell

2. Concentration gradients…(previously established by ATPase pumps) are not abolished when the channels for an ion species open

[Gradients allow for ‘work’ to be done, e.g., action potential sends signal along axon]

Membrane Potential

Page 8: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

8

15

Figure 11.11 The membrane potential results from relatively few charges sitting on the membrane

16

Membrane Potential

3. Driven by ions that are permeable to the membrane (and have different [ ]in as compared to [ ]out a.k.a. gradient created with ATP)

5. emf determines which direction a given ion (X) will move when the membrane potential is known

4. Equilibrium Potential (Ex in mV):~The equilibrium potentials of all the permeableions (a function of their established gradients) will determine the membrane potential of a cell

emfx = Vm - Ex

- K+ for example

Page 9: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

9

17

Membrane Potential

6. Resting Membrane Potential driven by K+ efflux and,to a lesser extent, Na+ influx

7. Na+/K+ ATPase pump generates gradients that, for these permeable ions, determinemembrane potential

18Hill et al. 2004, Fig 11.4

How do we measure membrane potential?

Page 10: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

10

19

Osmotic Properties of Cells and Relative Ion Concentrations

Na+Na+ K+K+

Cl-Cl-

4-12 Randall et al. 2002

Ca+

Ca+How do we calculate the

value of an individual equilibrium potential, or the resting potential of a

cell?

20

Figure 11.12 Ion pumps help maintain the concentration of major ions in intracellular and

extracellular fluids

Page 11: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

11

21

Equilibrium potential (Ex in mV)

“Every ion’s goal in life is to make the membrane potential equal its own equilibrium potential (Ex in mV)”

22

Osmotic Properties of Cells and Relative Ion Concentrations

Na+Na+ K+K+

Cl-Cl-

Permeabilities

K+ >> Na+ ; Cl-

A- (includes proteins, phosphate groups, etc.)

4-12 Randall et al. 2002

Ca+

Ca+

Page 12: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

12

23

Randall et al. 2002

24

- outside is zero by convention

Membrane Potential (Vm in volts or mV)

K+, Na+- Vrestabout -60 mV

Measurement At Rest

5-7 Randall et al. 2002

Page 13: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

13

25

Figure 11.10 Selective permeability of a membrane gives rise to a membrane potential

26

Nernst equation: E = lnRTzF

CoutCin

whereE = equilibrium membrane potentialR = gas constantT = absolute temperaturez = valenceF = Faraday’s constant

Page 14: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

14

27

Equilibrium Potential

- Calculate for a given type of ion using thesimplified Nernst Equation:

0.058 [X]outEx = log z [X]in

0.058 [Na+]outENa= log z [Na+]in

0.058 120 mMENa= log1 10 mM

= 63 mV (or 0.063 V)

remember Equilibrium potential (Ex in mV)when [X] gradient = electrical gradient

See p. 282 in Hill

2nd edition

28

Membrane PotentialTo calculate:

- Nernst for single ion

- Goldman equation for multiple ions

Vm = Ex if only one ion ‘driving’

5-14 Randall et al. 2002

Page 15: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

15

29

Nernst Question

Calculate EK if[K+]inside = 140 mM[K+]outside = 2.5 mM

If the resting membrane potential is –60 mV, which way will K+ ‘want’ to move (in or out of the cell)?

Which way will Na+ want to move?

Which way will K+ want to move if membrane potential is -110 mV? 30 mV?

OUT

IN

IN

-101 mV

OUT

30

Osmotic Properties of Cells and Relative Ion Concentrations

Na+Na+ K+K+

Cl-Cl-

4-12 Randall et al. 2002

Ca+

Ca+ Goldman Equation?

Donnan Equilibrium?-eg. Cl- is a permeating anionVs.non-permeating anions

A- (includes proteins, phosphate groups, etc.)

Page 16: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

16

31

Figure 11.13 The Goldman equation and the “voltage thermometer”

Importance of PERMEABILITY

32

channels

membrane bilayer

Hill et al. 2004, Fig 11.5c

Page 17: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

17

33

conductance = reciprocal of resistance

Membrane Potentials and Electricity

vs.capacitance

5-10 Randall et al. 2002deltaV = IRChange in Voltage = current x resistance

34

Hill et al. 2004, Fig 11.5a,b

Current from + to –(follow cations)

Tau = time constant(2 - 20 ms)(time to reach 63% max)

Page 18: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

18

35

Hill et al. 2004, Fig 11.6a,b

36Hill et al. 2004, Fig 11.6c

Lambda = length constant(distance at which 37% voltage change)

Page 19: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

19

37

channels

membrane bilayer

Hill et al. 2004, Fig 11.5c

Want to learn more about tau and lambda?

Check out CABLE THEORY (you will even

see some familiar names pop up in the

history of this scientific idea)

http://en.wikipedia.org/wiki/Cable_theory

38

Action Potentials

5-2 Randall et al. 2002

Page 20: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

20

39

Nervous System

- Presynaptic- Postsynaptic

2 Interneuronsentirely in CNS

Synapse

- Presynaptic- Postsynaptic

3 Motor Neurons effector organsincl. muscle, gland

1 Sensory Neuronsreceive stimuli

graded

all-or-

none

5-2 Randall et al. 2002

40

Action Potential

- Changes in ion permeability…- Changes in membrane potential

-Voltage-gated ion channelsvs. ligand-gated

All-or-None fromspike-initiating zone

- Na+, K+, (Ca2+)

graded

all-or-

none

5-2 Randall et al. 2002

Page 21: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

21

41Silverthorn 2001. 2nd ed. Human Physiology. Prentice Hall

Frequency and number!

How does a given neuron convey urgency?

42

-Moves information; high-speed communication

Action Potentials

-Thoughts, Sensations, Memories, Movements etc.

-Moves SIGNAL without decrement

-AP possible because:

1 Ionic gradients across membrane

2 Creates electrochemical gradient and therefore source of potential energy

3 When ion channels open, ions move down their electrochemical gradients and rapidly change the membrane potential (Vm)

- Na+ and K+ responsible for AP character…

Page 22: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

22

43

-Threshold

-Many channelsfor Na+

-Then manychannels for K+

+60 vs. -100

emf

-Voltage gated

5-20 Randall et al. 2002

current

44

Fig 11.24 Cardiac muscle fiber action potential

?

Page 23: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

23

45

Membrane Potential

-Hyperpolarization1 and 2

Terms:

-Depolarization3 and 4

-Repolarization3 and 4

-Threshold Potentialsee 4 (50% time get AP)

5-9 Randall et al. 2002

46Hill et al. 2004, Fig. 11.11

Page 24: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

24

47

Randall et al. 2002

48

Silverthorn 2001. 2nd ed. Human Physiology. Prentice Hall

Page 25: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

25

49

Hill et al. 2004, Fig. 11.12

Action Potential

Changes in Permeabilitiesas Channels Open/Close

50

local current flow causes Vm change

Voltage-gated Na+ channels

AP is regenerative

6-4 Randall et al. 2002

Page 26: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

26

51

Figure 11.16 The Hodgkin cycle produces the rising phase of the action potential

Hodgkin Cycle (~Feed Forward)

52

Figure 11.20 The molecular structure of voltage-gated Na+ channels

How does depolarization open these?

Page 27: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

27

53

-Refractory Periods

-Absolute

-Relative

OPENINACTIVECLOSED

CLOSED

Voltage-gatedNa+ channels

~ Toilet Analogy…

5-17 Randall et al. 2002

54

closedopen inactive closed

Current- bottom

Voltage -top 5-22 Randall et al. 2002

Page 28: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

28

55

Figure 11.17 Patch-clamp recording of single-channel currents

56

How would you make the membrane in the axon hillock/spike initiation zone

more, or less, likely to send an AP?

In less than a second…

In three months…

Across evolutionary time…

Page 29: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

29

57

Silverthorn 2001. 2nd ed. Human Physiology. Prentice Hall

58

Hill et al. 2004, Fig. 11.11

Page 30: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

30

59

Figure 11.23

What are each of these red traces representing?

60

Figure 11.23

What are each of these red traces representing?

Page 31: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

31

61Silverthorn 2001. 2nd ed. Human Physiology. Prentice Hall

graded

62

Silverthorn 2001. 2nd ed. Human Physiology. Prentice Hall

Page 32: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

32

63

-Role of local current flow

(no APs past here)

-But can see local graded potential diminishing

p.161 Randall et al. 2002

64

-Receptor potential isgraded and decremental

-Magnitude of graded receptor potentialdetermines frequency of APs (~all of the same size)

-Alternate between graded psps and all-or-none APs

psp = postsynaptic potential

-Neurotransmitter Release

6-1 Randall et al. 2002

Page 33: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

33

65

Silverthorn 2001. 2nd ed. Human Physiology. Prentice Hall

66

EPSP and IPSP

Excitatory or Inhibitory Postsynaptic Potentials

Na+

Ca2+

K+

Cl-

EPSP IPSP

psc

psc

psp

Graded currentcausing graded

potential:

6-19 Randall et al. 2002

Page 34: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

34

67Hill et al. 2004, Fig 12.5

Integration

SUMMATION-Temporal-Spatial (and Temporal)

68

Silverthorn 2001. 2nd ed. Human Physiology. Prentice Hall

How can you have IPSP where Ex greater (more +) than Vrest?

Page 35: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

35

69

In conjunction with 2 or 3 students around you, explain how a change in the postsynaptic membrane potential from -70 to -65 could actually be inhibitory.

(Assume that -70 is resting and that -50 is threshold for an AP.)

e.g., reversal potential (Erev; = Ex) for a given ion whose permeability across the membrane has just increased.

70

Reversal PotentialOpening channel for a given ion species X means Vm will move toward Ex

Erev is the reversal potential

Use Nernst to calculate for one ion speciesGoldman equation for multiple ions

Can’t change membrane potential beyond Erev for a given ion(s) and its channels

ACh opens for K+ and Na+, so Erev between EK and ENa

EPSP and IPSP

Page 36: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

36

71

Synaptic Efficacy

Presynapticinhibition

e.g., Cl-, K+

or alter Ca2+

IPSP

NT release via exocytosis: the role of Ca2+

6-22 Randall et al. 2002

72Silverthorn 2001. 2nd ed. Human Physiology. Prentice Hall

Page 37: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

37

73Hill et al. 2004 pg. 330

Presynapticinhibition

Substance P – facilitates pain sensation

Enkephalin – endorphin (opiod) that minimizes pain sensation

74

-How increase AP conduction velocity?

1 –Diameter

2 -Insulation

-Long axons requireinsulation (support cells)

-glial cells for myelination(fatty tissue) aka:

-Schwann cells in peripheral nerves-Oligodendrocytes in CNS

6-6 Randall et al. 2002

Page 38: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

38

75

Silverthorn 2001. 2nd ed. Human Physiology. Prentice Hall

GLIAL:-Schwann cells in

peripheral nerves-Oligodendrocytes in CNS

76

Nodes of Ranvier & Saltatory Conduction

6-7 Randall et al. 2002

Page 39: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

39

77Silverthorn 2001. 2nd ed. Human Physiology. Prentice Hall

longitudinal currentvs. cross membrane

78

Multiple sclerosis caused by demyelination

Randall et al. 2002

Page 40: 437Lect5 Neurons-CH5 sp2009eebweb.arizona.edu/courses/ecol437/437Lect5_Neurons-CH5... · 2009-01-26 · 1 1 5th & 6th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL

40

79

A given nerve bundle can have multiple axons, each with different conductionvelocities.

6-8 Randall et al. 2002