578
8/10/2019 6224569 http://slidepdf.com/reader/full/6224569 1/578 UCRL-52863 Rev. 1 Distribution Category UC-38 UCRL—52863-Rev.l DE87 012387 Conduction Heat Transfer Solutions James H. VanSant Manuscript date: August 1983 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees.^ makes, any warranty, express ox impUed, <w assumes any legal liability os responsi bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, iecom- mendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United Slates Government or any agency thereof. LAWRENCE LIVERMORE NATIONAL LABORATORY University of California • Livermore, California • 94550 I, Available from: National Technical Information Service • U.S. Department of Commerce 5285 Port Roval Road Springfield. VA 22161 • Ml.50 per copy • (Microfiche M .50 )

6224569

Embed Size (px)

Citation preview

Page 1: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 1/578

UCRL-52863 Rev. 1Distribution Category UC-38

UCRL—52863-Rev.lDE87 012387

Conduction Heat TransferSolutions

James H. VanSant

M anu scrip t date: Au gust 1983

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United StatesGovernment. Neith er the United States Government nor any agency thereof, nor any of theiremployees.^ makes, any warranty, express ox impUed, <w ass um es any legal liability os responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, orprocess disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,manufacturer, or otherwise does not necessarily constitute or imply its endorsement, iecom-mendation, or favoring by the United States Government or any agency thereof. The viewsand opinions of authors expressed herein do not necessarily state or reflect those of theUnited Slates Government or any agency thereof.

LAWRENCE LIVERMORE NATIONAL LABORATORYUniversity of California • Livermore, California • 94550I,Available from: National Technical Information Service • U.S. Department of Commerce5285 Port Roval Ro ad • Springfield. VA 22161 • M l. 50 per copy • (Microfiche M .50 )

Page 2: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 2/578

CONTENTS

Pre face v

Nomenclature vxi

I n t r o d u c t i o n 1

S t e a d y - S t a t e S o l u t i o n s

1. Plan e Su rface - S teady S ta te

1.1 S o lid s Bounded by Pla ne Su rfac es 1-1

1.2 S o lid s Bounded by Pla ne Surf ace s

—W ith In te rn al He at ing 1-27

2. C y l i n d r i c a l S u rf ac e - S t e a d y S t a t e

2 .1 So l id s Bounded by C y l i n d r i ca l Surfa ces—No In te r na l Hea t ing 2 - i

2 .2 S ol id s Bounded by C y l i n d r i ca l Surfac es—With In te rn a l Hea t ing 2 -333 . Sp he r i ca l Sur face - S teady S ta te

3 .1 S ol id s Bounded by S ph er ic a l Surfaces—No In te rn a l Hea t ing 3 -1

3.2 So l id s Bounded by S ph er ic a l Surfaces—W ith In te rn al Hea t ing 3-10

4 . Tr ave l ing Heat Sources

4. 1 Tr av el in g Heat Sources 4-1

5 . Extended Surface - S teady S ta te5 .1 Extended Surfaces—No I n te rn a l Heat ing 5-1

5 .2 Ex tended Sur faces—W ith In te rn a l Hea t ing 5 -31

Tr a n s i e n t S o l u t i o n s

6 . I n f i n i t e S o l i d s - Tr a n s i e n t

6 . 1 I n f i n i t e S o li ds — N o I n t e r n a l H e a ti n g 6 - 1

6 . 2 I n f i n i t e S o l id s — Wi t h I n t e r n a l H e a t in g 6 -2 2

7 . S e m i - I n f i n i t e S o l i d s - Tr a n s i e n t

7 . 1 S e m i - I n f i n i t e S o l id s — N o I n t e r n a l H e a t i n g 7 - 17.2 - i m i - I n f in i t e S olid s— W ith I n te r n a l H ea tin g . . . . 7-22

8 . P lane Sur fac e - Tra ns ie n t

8.1 S ol id s Bounded by Pl an e Su rfa ce s—No In te rn a l Hea t ing 8 -1

8.2 S o li ds Bounded by Pla ne Su rfa ces—With In te rn a l Hea t ing 8 -52

Page 3: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 3/578

9 . C y l i n d r i c a l S u rf ac e - Tr a n s i e n t9 .1 So l id s Bounded by C y l i n d r i ca l Surfa ces

—No In te rn a l Hea t ing 9 -19.2 S ol id s Bounded by C y l i n d r i ca l Surfac es

—With In te rn a l Hea t ing 9 -24

10. Sp he r i ca l Sur face - Tr an s ie n t

10 .1 So l id s Bounded by S ph er ic a l S urfaces—No In te rn al Heat ing 10-1

10.2 So l id s Bounded by S ph er ica l S urfaces—W ith In te rn a l Hea t ing 10-19

11 . Change of Ph ase

11 .1 Change of Phase— Plane In te r f ac e 11-1

11. 2 Change of Phase— Nonplanar In te rf ac e 11-13

12. Tra ve l in g Boundar ie s

12 .1 Tra ve l in g Boundar ie s 12-1

F igures and Tab les fo r So lu t ions F - l

Misce l l aneous Da ta

13 . M athemat i ca l Func t ions 13-1

14. Roo ts o f Some C h ar ac te r i s t i c Equa t ions 14-1

1 5 . Co ns tan t s and Convers ion Fa c to r s 15-1

16 . Convec t ion Co eff i c i en t s 16-1

17 . C o n t a c t C o e f f i c i e n t s 1 7 - 1

18. Thermal P ro pe r t i e s 18-1

References R- l

i v

Page 4: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 4/578

PREFACE

This text is a collection of solutions to a variety of heat conductionproblems found in numerous publications, such as textbooks, handboo ks,

journals, reports, etc. Its purpose is to assemble these solutions into one

source that can facilitate the search for a particular problem solution.

Generally, it is intended to be a handbook on the subject of heat conduction.

Engineers, scientist s, technologists, and designers of all disciplines

should find this material useful, particularly those who design thermal sys

tems or estimate temperatures and heat transfer rates in stru ctu res. More

than 500 problem solutions and relevant data are tabulated for easy retrieval.Having this kind of material available can save time and effort in reaching

design decisions.

There are twelve sections of solutions which correspond with the class of

problems found in each. Geometry, state, boundary conditions, and other cate

gories are used to classify the problems . A case number is assigned to each

problem for cross-referencing, and also for future reference. Each problem

is concisely described by geometry and condition statements , and many times a

descriptive sketch is also included. At least one source reference is given

so that the user can review the methods used to derive the solutions . Problem

solutions are given in the form of equati ons, graphs, and tables of data, all

of which are also identified by problem case numbers and source references.

The introduction presents a synopsis on the theory, differential equa

tions, and boundary conditions for conduction heat transfer. Some discussion

is given on the use and interpretation of solutions. Als o, some example prob

lem solutions are included. This material may give the user a review, or even

some insight, on the phenomenology of heat conduction and its applicability to

specific problem s.

Supplementary da ta such as mathematical functions, convection correla

tions, and thermal properties are included for aiding the user in computing

numerical values from the solutions. Property data were taken from some of

the latest publications relating to the particular properties listed. Only

the international system of units (SI) is used.

v

Page 5: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 5/578

Consistency in nomenclature and terminology is used thr oughout, making t his

text more readable than a collection of different reference s. Also, dimension-

less parameters are frequently used to generalize the applicability of the

solutions and to permit easier evaluation of the effects of problem conditions.

Even though some of the equational solutions are lengthy and include

several different mathematical funct ions, this should not pose a formidable

task for most use rs. Modern computers can make complicated calculations easy

to perform. Even many electronic calculators can be used to compute complex

functions. If, howeve r, these tools are not available, one can resort to hand

computing meth ods. The table of mathematical functions and constants would be

useful in Chat cas e.

Heat conduction has been studied extensively, and the number of published

solutions is larg e. In fact, there are man y solutions that are not included

in this text. For example, some solutions are found by a specific computa

tional process that cannot be described briefly. More over, new solutions are

constantly appearing in technical journals and reports. Never thele ss, this

collection contains most of the published solutions.

The differential equations and boundary-condition e quations for heat flow

are identical in form to those for other phenomena such as electrical fields,

fluid flow, and mass diffusion. This similarity gives additional utility to

the heat conduction solutions. The user needs only identify equivalence of

conditions and terms when selecting a proper solution. Thi s practice is pre

scribed in many texts on applied mathe mati cs, electrical the ory, heat transfer,

and mass transfer.

A search for particular solutions has frequently been a tedious and dif

ficult task. Too ofte n, countless hours have been spent in searching for a

problem solution. Locating and obtainin g a proper reference can require con

siderable effort. Al so , it is frequently necessary to study a theoretical

development in order to find the applicable solution. In so doing, thsre are

sometimes misinterpretations which lead to erroneous results . This text

should help alleviate some of these prob lems .

Science gives us information for reaching new frontiers in technology.

It is, thus, appropriate to give something back. I hope this text is at least

a small contribution.

James H. VanSant

vi

Page 6: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 6/578

NOMENCLATURE

2A = Area, m

b = Time constant, s

c = Specific heat , J/kg' C

C = Circumference, m

d, D = Diameter, depth, m, 2 o

h = Heat transfer coefficient, W/m * C

k = Thermal conductivity, W/m- C-1m = V hC/kA, m

I, L = Length, m2

q = Heat flux rate, W/m

q = Heat flux in x, y, z directi ons, W/m'3q " ' = Volumetric heating rate, W/m'

Q = Heat transfer rate, W

r, R = Radius, mo

t, T = Temperature, C, K

V = Velocity, m/s

w = W id th , m

x , y, z , = C a r t e s i a n c o o r d i n a t e s , m

2a = T h e rm a l d i f f u s i v i t y , k / p c , m / sS = Te m p e ra t u re c o e f f i c i e n t , c

Y = H e a t o f e v a p o r a t i o n , J / k g

y = L a t e n t h e a t o f f u s i o n , J / k g

A = D i f f e r e n c e

e = E m i s s i v i t y f o r t h e r m a l r a d i a t i o n

„ ,_. ( a c t u a l h e a t t r a n s f e r r e d )H = F i n e f f e c t i v e n e s s , -*r— r—r 2 3—TTC—T~ci— T

( h e a t t r a n s f e r r e d w i t h o u t f i n s )

( a c t u a l h e a t t r a n s f e r r e d> = F i n e f f e c t i v e n e s s ,3

p = D e n s i t y, k g / m

a = 2Vox, m—2 —4a = S t e f a n - B o l t z r a a n n c o n s t a n t , W/m "K

T = Time , s

dT = Radiation configuration—emissivity factor

(he^t transferred from infinite conductivity fins)

vii

Page 7: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 7/578

DIMENSIONLESS GROUPS

B i j , B i = B io t mo du lu s = h8 ,/k

Bf „ , Bf = B i Fo = hi /p cS ,2

F o „ , F o = F o u r i e r m o d u l u s = CIT/S.

F o „ , F o = M o d i f i e d F o u r i e r m o d u l u s = 1 / ( 2 V Fo)3 2G r „ , Gr = G ra sh of number = gBAt£ /V

K i „ , K i = K i r p i c h e v n u m be r = q J l / k A t

N u , , Nu = N u s s e l t number = hd /kd 2

Pd„, Pd = P re dv od ite le v modulus = hi. /a

P o . , Po = Pomerantsev modulus = q ' ' ' J . /kAt

Pr = P ra nd tl number = v/ a

R = Rad ius r a t i o = r / ro

Re,, Re = Reynol ds number = vd/v

X = Length ratio = x/l

Y = Width ratio = y/w

Z = Length ratio = z/2.MATHEMATICAL FUNCTIONS

exp = Exponential function

Ei = Exponential integral

erf = Error function

erfc = Complem entary error function

i erfc = Comple menta ry error function integral

I = Modified Bess el function of the first kindnJ = Bessel function of the first kind

nK = Modified Bes sel function of the second kindn&n = Natural log

Y = Bessel function of the second kindn

P = Legendre polynomial of the first kind

T = Gamma function

viii

Page 8: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 8/578

INTRODUCTION

1 . HEAT CONDUCTION

Energy in th e form of he at h as been used by man ever s in ce he began

walk ing on th i s ea r th . Moreover, t he t r an s f e r o f hea t i s e s s en t i a l t o our ve ry

ex is te n c e . Not only do our own ph ys io lo gi ca l fun ct ion s re qu ire some form of

hea t t r an s f e r , bu t so do mos t l i f e - s u s t a i n in g p roce sses o f na tu re and many man-

c o n t r o l l e d a c t i v i t i e s . The i m po rt an c e o f t h e t h er m a l s c i e n c e s i n t h e t o t a lsph ere o f sc i en ce can , th u s , ha rd ly be d i s pu ted .

Conduct ion i s one of the thr ee p r i n c ip a l heat t ran sfe r modes , the o t he rs

be ing convec t ion and ra d ia t i o n . I t i s cus tom ar i ly d i s t ing u i s he d as be ing an

energy d i ffus ion p roc ess in m a te r i a l s which do no t con ta in molecu la r convec t ion .K in e t i c energy i s exchanged between molecu les r e su l t i ng in a ne t t r a ns fe r

between regio ns of d i f fe re n t energy l e v e l s , th es e energy le v e ls ar e commonly

c a l l e d t e m p e r a t u r e . P a r t i c u l a r l y , h ea t c o n d u c t i o n i n m e t a l s i s m a i n l y a t t r i

bu ted to the mot ion o f f r ee e l ec t ron s and in so l i d e l e c t r i c a l in su la to r s to the

l o n g i t u d i n a l o s c i l l a t i o n s of a to m s . I n f l u i d s , t h e e l a s t i c i m p ac t o f m o l e cu l es

i s cons ide red as the hea t conduc t ion p rocess .

The pro cess of he at t r an sf er in m a te r i a l s has been s tu die d for many

c en tu r i e s . Even ea r ly Greek ph i los op he rs , such as Lu cre t iu s ( c . 98 -55 B . C . ) ,

m ed i t a t ed on the su b j ec t and recorded th e i r co nc l us ion s . Much l a t e r , t he

famous mathem at ica l p h y s ic is t , Joseph B. J . F ou r ier (1768-1830) , developed a

mathem at i ca l exp ress ion th a t became the ba s i s of p ra c t i ca l l y a l l hea t conduc

t i o n s o l u t i o n s . He p o s t u l a t e d t h a t a l o c a l h e a t f l u x r a t e i n a m a t e r i a l i s

p r op or t io na l to the lo ca l t empera tu re g r ad ie n t in the d i r ec t io n o f hea t flow:

where a i s the hea t f low in the x - d i re c t io n pe r un i t a rea a s i l l u s t r a t e d in

F i g . l a . M a t e r i a l p r o p e r t i e s a r e a c c ou n t ed f o r by i n c l u d i n g a p r o p o r t i o n a l i t y

c o n s t a n t :

V - k S ' ( 2 )

1

Page 9: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 9/578

t ,

J3t

* q x

t

• 3x .. X

Q

(a)

*«-Ax-»x

(b)

FIG. 1. Illustration of heat flow and temperature grad ient.

where the constant k is called thermal conductiv ity. (The minus sign must be

included to satisfy the second law of thermodynamics.) This equat ion is

called Fourier's law for heterogeneous isotropic continua.

A simpler form of Fourier's law is for homogeneous isotropic continua.

For example , consider a plate of this type mate rial having isothermal surfaces

and insulated edges as shown in Fig. 1. The plate has a width Ax, surface

area A, and thermal conductivit y k. The heat flow in the plate is expressed as

<t.-kA

VAx

(3)

Th is expr essio n becomes Eq. (2) when Ax di mini sh es t o z er o .

fx lim At _ . a tA " \ " ~ K Ax+0 Ax " " K 3x

(4)

The heat f lux q i s presumed t o have bot h magnitude and d i r e c t i o n . Thus,

i t can be given as a ve ct o r , q which is normal to an iso th er mal su r f ac e . For

example, in Carte sian coo rdi nat es

q = V + V + q

zk (5)

2

Page 10: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 10/578

where i , j , k a re un i t ve c to r s in une x - , y -r and z - d i r e c t i o n s , r e s p e c t i v e l y.

Since Eq. (4) defines qx = - k 3 t / 3 x , and s i m i l a r l y qy = - k 3 t / 3 y , qz = - k 3 t / 3 z ,

we can s ta te

q = -k ( i3 t /3 x + j 3 t / 3 y + k3t /3z) (6)

q = -kV t . (7)

In anisotropic continua t he direction o f the heat flux vector i s not

necessari ly normal to an isothermal surface. Example materials a r e c rys ta ls ,

l ami na t e s , an d oriented fiber composites. I n such materials w e m a y assume

each component of the heat flux vector to be l inearly dependent o n a l l com

ponen t s o f the temperature gradient at a po in t . T h e vector form o f Four ier ' s

law fo r heterogeneous anisotr opic continua becom es

i = -K • Vt , (8)

where K i s t he conduc t iv i ty ten so r ; the components of th is tens or a re ca l le d

t h e c o n d u c t i v i ty c o e f f i c i e n t s .

In C ar te si an form, Eq. (8) is

"^11 3x + k ^ + k ^12 3y K13 3z,

S = "(k21 M + k22 U + k23 ft ) ( 9 )

_ _/. at at 3 t \q z ~ ^ 3 1 3x + k 3 2 3y + k3 3 3z / '

To compute heat f low by Fo ur ier ' s law, a thermal con du ctiv ity v alu e i s

needed. I t can be es t im ated from th eo re t ic a l pre dic t ion s for some id ea l

m at er ia ls , but m ostly , i t i s determined by measurement and F ou ri er 's law,Eq. (2 ) . As i l lu s t ra te d in Fig . 2 , thermal con du ct iv i ty can have a larg e

ran ge, which depends on m at er ia ls and tem pera ture. For example, copper a t

20 K has a thermal c on d u ct iv ity of app roxim ately 1000 W/m'K and diatom aceous

ea rt h at 200 K has a co n d u ct iv it y of 0.05 W/m*K. Co nseq uen tly, h ea t flow i n

m at er ia ls can have a very lar ge range, depending on a combined ef f e c t of

temperature grad ient and m ate ria l prop erty.

Thermal pr op ert ies of some se lec te d ma te ria ls are given i n Sec t ion 18 .

3

Page 11: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 11/578

"i 1 r -] r

0 .01 ' I i L200 400

-Tef lon

Copper

LeadIron

. Fused qu ar u

• Diatomaceous earth

±

J i_600 800

Temperature — K

1000 1200 1400

FIG. 2. Thermal conductivity of some selected soli ds.

4

Page 12: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 12/578

2. DIFFERENTIAL EQUATIONS OF HEAT CONDUCTION

Solutions to heat conduction problems are usually found by so me mathe

matical technique which begins with a differential equation of the temperature

field. The appropriate equation should include all energy sources and sinks

pertinent to a particular problem. Also, the equation should be expressed in

terms of a convenient coordinate system such as rectangular, cylindrical, or

spher ical. Then analytica l or differencing method s can be used to solve for

temperature or heat flow.

A common method for deriving the generalized differential equation for

heat conduction is to apply the first law of thermodynamics (conservation of

ener gy) to a volume element in a selected coordinate system. By accounting

for all the thermal energy transferred through the element faces, the change

of internal energy and thermal sources or sinks in the element, and by letting

the element dimensions approach zero, the differential equation can be derived.

This procedure is typified by the following heat energy accounting of the

rectangular solid element shown in Fig. 3. The net heat flow though its six

faces is

netQ . + Q*x+Ax *y Q . + Q*y+Ay z •^z+Az

(10)

FIG. 3. Coordinate systems for heat conduction equations: (a) rectan gular ,

(b) cylindrical, (c) spherical.

5

Page 13: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 13/578

w h e r e t y p i c a l l y

Q = -AyAzx ML

Q =-AxAZ(k g ) ,

Q = - A x Ay

and k , k , and k a r e d i r e c t i o n a l c o n d u c t i v i t i e s .x' y ' zAn in c r ea se in in t e rn a l ene rgy of the e lement i s t ep res en ted by

A I = AxAyAzpc | ^ , (11)

where t i s th e mean temp erature of the e lemen t , p i s th e m a te r i a l d en s i ty ,

and c i s i t s s p e c i f i c h e a t .In te rn a l ene rgy sources can be express ed as

Q U I _ q i i i A x A y A z f ( 1 2 )

where q " ' i s the un i t volume source r a t e . Examples o f in t e rn a l hea t ing in

m a t e r i a l s a r e j o u l e , n u c l e a r, o r r a d i a t i o n h e a t i n g . Summing t h e s e e n e rg i e s i n

accordance wi th the ene rgy conse rva t ion l aw y ie lds

A- W. ^ ^ ^ + ^ y ^ + ^ ^ + * ' " - C 1 3 ,

For the l i m it s A x, Ay, Az + 0, we o b ta in

at , , , B qx i 3 q «

6

Page 14: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 14/578

where

*x =

"k

x 8 i >

q y ~ " k y 3y '

q = - k •5— .^Z Z d z

Using Bq. (14) as a gen era l d i f fe re n t i a l eq ua t ion , we can der ive the

f o l l o w i n g s p e c i f i c e q u a t i o n s .

2.1 Re ctan gula r Coo rdinate System

For i so t ropic heterogeneous media

„ at a /.. a t\ . 3 /,. 3 t\ . 3 A, a t\p c 3? " 3x" \ k 37) + 37 \ k 3y"j + 37 [k 37j + q" (15)

For i s o tr o p ic homogeneous media th i s becomes

J L t _ k _3 T ~ pc

3 2 t + 3 2 t + 3 2 t

3 x 2 3 y 2 3 z 2

J 1 * * 2+ - 1 T — - aV t +c pc (16)

When q " ' = 0 , Eq. (16) becomes F o u r i e r ' s eq ua t io n .

In s te ad y -s ta te co nd i t io ns , 3 t /3 x = 0 and Eq. (16) becomes the Po isson

equa t ion .When q " ' = 3t / 3x • 0, Eq. (16) redu ces to the Lap lace equa t ion .

N o n i s o t r o p i c m a t e r i a l s , s u ch a s l a m i n a t e s , ca n h av e d i r e c t i o n a l l ys e n s i t i v e p r o p e r t i e s . F or s u ch m a t e r i a l s t h e c o n d u c ti o n d i f f e r e n t i a l e q u a t i o nin two dime nsions i s expressed i n the fol low ing form:

pc | | = ( kc cos 2B + kn s i n 2 a ) ^ - f + (k? s i n 2 B + k.) c o s 2 B ) ~

2

(17)

7

Page 15: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 15/578

FIG. 4. Coordinate sys tem for a no ni so t ro pi c medium.

where k r and k are d i r e c t i o n a l t he rm a l c o n d u c t i v i t i e s , and B is the ang le

o f l a m i n a t i o n s as i n d i c a t e d in F i g . 4. When the geo me t r i ca l axes of then o n i s o t r o p i c m a t e r i a l are o r i e n t e d w i th t h e p r i n c i p a l a x es of the t he rm al

c o n d u c t i v i t i e s , t h en E q. (17) s i m p l i f ie s to the form of Eq. (14)

p c f i = k $ | + k & + q >3T X . . . 2 y g y 2ax'

(18)

2 .2 C y l in dr i c a l Coord ina te System

Rec tangu la r coord ina tes can be t ra n s fo r m e d i n t o c y l i n d r i c a l c o o r d i n a t e s

by t h e r e l a t i o n s x = r cos 9, y = r sin 9, and z = z. The p a r t i a l d i f f e r e n t i a l

e q u a t i o n s (15) and (16) tran sfo rm ed to c y l i n d r i c a l c o o r d i n a t e s a r e t h u s

at . i a_ f rk a t\ i s_ / at\ a_/ at\ ,3x r 3r \ I K 3r ) r 89 \* 38 ^ + 3z \ K Zz ) + q (19)

2 t „ a / l t i a t + j L 3 t + l t \ a i i i* W r 8 r r 2 3 9 2 3 z 2 / ' C

(20)

F o r n o n i s o t r o p i c m a t e r i a l s w i t h the cond ucc iv i ty and geomet ry axes a l ig ne d as

in Eq. (18) the d i f f e r e n t i a l e q u a t io n is

3 t r 3 / 3 t \ ^ k 8 3 t , 3 tp c a T = T a7 r 17 + T 73 + k

z 77+ q

r 38 3z

(21)

8

Page 16: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 16/578

2.3 Spherical Coor dinat e System

A transformation from rectangular to spherical coordinates can be accom

plished by substituting the relations x = r sin \ \ > cos if), y = r sin I)J sin $ and

z = cos \|) into Eqs . (15) and (16), which yield the partial differential

equations for isotropic heterogeneous and homogeneous mat eri als, respectively.

3 t 1 3 / 2 . 3 t \ x 1 3 / . 3 t \

1 32 • ir s i n i|)

h (k s i n* f t ) +< J " " <2 2>

at _„/i t 2 3t i aft i i t \ + al A ( 2 3 )

\ 3 r r si n i|) 36 r tan \ \ i T /

The d i f f e r e n t i a l e q u a ti o n f o r n o n i s o t r o p i c m a t e r i a l s w i t h a l i g n e d

con du c t iv i ty and geom et r i c axes i s

„ 3 t k r 3 2 t , *& 82 t , *S|) 3 , l h 3t . „ , , , , , . ,p c a 7 = Trr + 2 : 2 , 7 7 + 2 . . 1+ 8 l n * i * + * • ( 2 4 )

3 r r s i n ip 3ij) r s i n V

3 . SPECIAL DIFFERENTIAL EQUATIONS

Some de fin in g e qu ati on s can have im plie d assum ptions and boundary

co nd i t io ns . They a re usua l ly employed in spe c ia l cases to s im pl i fy th e me thod

of so lu t io n . However, F ou r i e r ' s law i s the ba s i s fo r de r iv in g thes e spe c ia l

e q u a t i o n s .

3. 1 Combined Co ndu ction-C onv ection

T h in m a t e r i a l s h a v in g r e l a t i v e l y h i g h t h er m a l c o n d u c t i v i t y h a ve v e ry

s m a l l l a t e r a l t e m p e r a t u r e g r a d i e n t s . I f t h e s u r f a c e s a r e c o n v e c t i v e l y h e a t e d

or coo led , the co nve ct ion co nd i t ion becomes pa r t of a he at acc oun t ing on a

d i f fe re n t i a l e l em en t . Refe r r ing t o F i g . 3 , l e t Az be the th i ck ne ss b o f a

th in so l i d . On the s urf ace z and z + Az, the so l i d has a con vec t ion boundary

des cr ib ed by q = h ( t - t ) , where t . i s the convect ion f l u id tem pe ra tu re .

Page 17: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 17/578

Applying the s ame p r inc ip les used to develop th e g e n e r a l e q u a t i o n s for

r e c t a n g u l a r c o o r d i n a t e s y s t e m s s h o u l d r e s u l t in

p c f f + 2 ^ t - t f , = q " - + f c ( k f i ) + f 7 ( k g ) . ,25,

I f the geometry i s a t h i n rod of c i r cumference C, the a p p r o p r i a t e

e q u a t i o n is

pof7 + i r (t " t £ ) - q ' " + t b ( k f f ) - (26)t j c3T A

3.2 Moving he at sou rce s

The ge ne ra l he at conduct ion Eq. (15) can a l s o be used for moving heats o u r c e s , but a si m p le r q u a s i - s t e a d y - s t a t e e q u a ti o n can be de r ived by

c o o r d i n a t e t r a n s f o r m a t i o n . If the c o o r d i n a t e s are r e l a t i v e to the t r a v e l i n g

s o u r c e , the te m p e r a t u re d i s t r i b u t i o n s a p pe ar to be s t a t i o n a r y . For example ,

i f a po in t sou rce of s t r e n g t h Q i s moving at a v e l o c i t y U p a r a l l e l to the

x - a x i s , th e t r ans fo rmat ion would be x = x' + UT, where x' is the x - d i r e c t i o n

dis tance f rom the s o u r c e . By s u b s t i t u t i o n in Eq. (16) we can ob ta in

f c - ( f e - ) * f e ( - e ) * f e ( » e ) * « - £ • • > • • • - • •The app l i cab le equa t ion for a moving source in a t h i n rod t h a t i s

convec t ive ly coo led i s

M k H O * * " ? ? + * • • • - * £ ( t - v • ( 2 8 )

T he m o v in g s o u r c e s t r e n g t h i s a c c o u n t e d for in the b o u n d a r y c o n d i t i o n s

f o r a p a r t i c u l a r p ro b l em s o l u t i o n .

4 . BOUNDARY COND ITIONS

S o l u t i o n s t o h e a t c o n d u c t i o n p r o b l e m s r e q u i r e s t a t e m e n t s of c o n d i t i o n s .

F o r g e n e r a l s o l u t i o n s t h e r e m u s t be ; i v e n a t l e a s t a d e f i n i t i o n of the s o l u

t i o n r e g i o n , s u ch a s i n f i n i t e , s e m i - i n f i n i t e , q u a r t e r - i n f i n i t e , f i n i t e , e t c .

A d d i t i o n a l l y , l i m i t s can be s p e c i f i e d f o r any of t h e s e r e g i o n s .

10

Page 18: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 18/578

If specific solutions are needed, then complete conditions must be

defined. They could include , for example, i n i t i a l , in t e r na l, and surface

con dit io ns. Other conditio ns might include proper ty de f in it io ns . Whether

der iving a so lut io n or searching for e xi st in g so lu t io ns, one must decide which

co ndi ti on s are a pp li ca bl e t o the problem and how they can be s ui t ab ly

expressed.

4.1 Initial Condition

Unsteady-state problems must have an initial condition defined. Mostly,

this implies a temperature distribution at T = 0 but, also, internal or

surface conditions could have initial values. A problem solution for T > 0

depends, of course, on whatever is specified at T = 0.

4.2 Surface Conditions

The most commonly employed surface conditions in heat conduction problems

are prescribed surface convection, temperature, heat flux, or radiation. It is

even acceptable to prescribe two of these for the same s urfa ce, such as com

bined radiation and convection. Other surface conditions could include phase

change, ablation, chemical reactions, or mas s transfer from a porous solid.

4.2.1 Convectio n boundary

Conduction and convection heat transfer rates on a surface are equated to

satisfy continuity of heat flux according to Newton's law:

3t G'H T)-k ^ — = h [ t ( x b , T) - t f ] , (29)

3x

where t is the temperature of the convection fluid, and x. is the boundary

location. The convectio n coefficient h must be determined from suitable

sources that give predicted values satisfying the conditions of the fluid.

(Some correlations of convection coefficie nts are given in Section 16.) The

method for defining h can vary depending on the type of convection or the

methods prescribed by those researchers who have supplied valu es for the

coefficient. However, h is usually define d as

11

Page 19: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 19/578

TABLE 1. Sample co nv ect ion co ef fi c ie n t v a lu e s .

F lu id Condi t ion h, W/nT-K

Air F ree convec t ion on v e r t i c a l p l a t e s

Air Forced conv ect ion on p la te s

Air Forced f low in tu be sSteam Forc ed flow in tu be s

Oil Forced f low in tub es

Water Forced f low in tu be s

Water Nu clea te bo i l in g

Liquid helium Nu cleate bo i l in g

Steam Film con den sation

Liquid me ta l Forced f low in tu be s

Steam Dropwise con den sati onWater Forced convect ion b o i l in g

10

100

200300

500

2,000

5,000

8 ,000

10,000

20,000

50,000100,000

h = t ( x b , x) - t f ' (30)

where t can be giv en as

t f = e[t (V T, - t j + t m ( (31)

and where 3 £ 1, and t^ is the temperature outside the the rmal boundary layer

of the fluid. In this respect, one mu st take care to use the proper fluid

temperature and convection coefficient.

Some typical order-of-magnitude values for the convection coefficient h

are given in Table 1.

4.2.2 Surface temperature

Of all boundary conditions, this is probably the simplest in a

mathematical sen se. It can be variable or constant with respect to position

and time. In the real sense, it is very difficult to achieve a prescribed

surface temperature, but it can be closely approached by imposing a relatively

high convection r ate.

12

Page 20: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 20/578

4. 2 . 3 Heat f lux

Four ier ' s law def ines the f lux on a boundary by

3 t ( x , T )

q = -k — ^ • (32)

An ad ia ba t ic su rfa ce can be def ined by e i t h e r se t t in g q in Eq. (32) or h in

Eq . (29) to ze r o . In ve r s e ly , if t he s o l i d ' s t empera tu re d i s t r ib u t i o n has been

so lve d, then Eq. (32) can be used to determ ine the sur fac e he at f l ux .

Un ders t andab ly, hea t f lux can be , in p a r t i c u la r c ase s , t ime and pos i t io n

dependen t .

4 .2 .4 Thermal r a d i a t io n

Heat t ra ns fe r f rom an opaque su rfa ce by ra di a t io n can be expre ssed a s

r , .- l 3 t ( X . , T )

a j r [ r \ v T ) - T J = - k — ^ , (33)

where a i s the Stefan-Bol tzmann r a d ia t i o n co n st an t , <#"is the combined

c o n f i g u r a t i o n - e m i s s i v i t y f a c t o r fo r m u i l t i p l e - s u r f a c e r a d i a t i o n e x ch a ng e , and

T is the s ink or sou rce temp era ture for ra d ia t i o n . Because Eq. (33) i s a

n o n l i n e a r e x p r e s s i o n , i t i s f r e q u e n t l y d i f f i c u l t t o f i n d e x a c t s o l u t i o n s t o

problems wi th th i s co nd i t io n .

A common method for dea l ing wi th r ad ia t i o n problems is to t r e a t the

ra d ia t i o n boundary as a convec t ion bou ndary . According to Eq. (29) we can

w r i t e

3 t( x , T)

~k

— 3 * = h

r [t (

V * ~ fc

s] • ( 3 4

>where

h r = OJT[-T{xb, x ) + T ] [ r2 ( x b , T) + T^J

Using th is method means th a t T(x . , T) must f i r s t be es t im ate d in order to

compute a va lue of h . After a va lu e fo r T(x. , T) has been computed from

the problem s o lu t i o n , then the es t im ate d value for h can be improved.

T h i s , o f c o u r s e , b eco me s an i t e r a t i v e p r o c e s s .

13

Page 21: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 21/578

4 . 3 I n t e r f a c e C o n d i t i o n s

4 .3 .1 Con tac t

Two contacting soli ds, either similar of dissimilar, will almost always

have some interface thermal resistance to heat flow between the m. Themagnitude of this resistance can depend greatly on the condition of the two

contacting surf aces . Properties that can effect the surface condition include

cleanliness, roughn ess, waviness, yield strengt h, contact pres sure, and the

thermal conductivities of the solids and interstitual fluid. Since there

are so many influences on the contact thermal.resistance, it is difficult to

theoretically pred ict its value. Consequ ently, experimental results are

frequently used. Som e representative valu es of the inverse thermal contact

resistance, commonly referred to as the thermal contact coeff icient, are givenin Section 17.

The generally accepted definition of the contact coefficient is

h c = A E . ' i 3 5 )

w he re q i s t h e s t e a d y h e a t f l u x c o r r e s p o n d i n g t o a f i c t i t i o u s i n t e r f a c e

tempera tu re d rop o f At . de f ined by ex t r ap o l a t in g the v i r tu a l l i ne a r

t e m p e r a tu r e g r a d i e n t i n e ac h s o l i d t o t h e c o n t a c t c e n t e r l i n e . T h i s t e m p e r a tu r e

drop , which i s i l l u s t r a t e d in F ig . 5 , wou ld d imin i sh to ze ro i f t he in t e r fac es

were in pe r fe c t co n t ac t .

4. 3. 2 Phase change

Other in t e r f ac e c ond i t ions inc lud e tho se caused by endo the rmic r ea c t io ns

s u c h a s m e l t i n g , s o l i d i f i c a t i o n , s u b l i m a t i o n , v a p o r i z a t i o n , an d c h em i ca l

d i s s o c i a t i o n .A s t a t eme nt o f an in t e r f ac e r e ac t io n con d i t io n de f in es th e d i ff e r enc e o f

hea t f lux ac ross the in te r f ac e . I f t he in t e r f ac e which se pa ra te s two phases

o t n m at er ia l i s lo ca te d a t x = x . , the h ea t ba lance for a pha se change

react ion i s g iven in the form

k 2 3x " k l 3x " 2 dx * t 3 6 ]

14

Page 22: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 22/578

FIG. 5. Illustration of interface contact between solid s.

where y is the latent heat or chemical heat ca pacity, and subscripts 1 and 2

refer to the two phas es.

5.0 Solutions

5.1 Extending solutions

A solution can be retrieved after identifying a problem by boundary

conditions, geometry, and other pertinent data. Usually, a temperature

solution is given, but heat flow can be derived from the temperature

15

Page 23: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 23/578

d i s t r i b u t i o n by u s i n g F o u r i e r ' s l aw, i . e . E q . ( 2 ) . I f c u m u l a t i v e h e a t flo w i s

req u i r ed , a t ime and su r fa ce in te g r a t io n o f loc a l hea t f lux i s nec essa ry.

- / . £ * & * « - •where n i s the d i r e c t i o n normal to the sur fa ce s .

S t e a d y - s t a t e s o l u t i o n s c an be c o n s i d e r e d a s t h e i n f i n i t e - t i m e c o n d i t i o n f o r

un s te ad y- s t a t e s o lu t i o n s . Tha t i s , p rob lems which have a t ime -asy mp to t i c

s o l u t i o n e x h i b i t s t e a d y - s t a t e s o l u t i o n s f o r x •> °°. T h u s, s t e a d y - s t a t e s o l u t i o n s

can be de r ived from t r an s i en t so lu t io ns .

A s teady su rfa ce temp era ture c on di t ion can be impl ied from a conv ect ion

boundary co nd i t io n . For h + °°, the su rfa ce tem pera tu re appro ache s the f l u i d

tem pera tu re . Th ere fo r e , a so lu t io n which inc lud es a convec t ion boundary can bet rans fo rmed in t o a co ns tan t t empera tu re boundary so lu t io n by so lv in g fo r the

i m p l i e d l i m i t i n g c a s e .

5 .2 Dimens ion less pa ram ete r s

Group ing p a r t i c u la r v a r i ab les y ie l ds d im ens ion less numbers th a t can be

u se fu l . Sy mb ol ica l ly, they can sho r t en an eq ua t io na l ex pre ss i on . Bu t , t hey can

a l s o g ive ins igh t to the behav io r o f hea t t r ans f . e r in a p a r t i c u la r p rob lem.One very us ef ul p aram eter is th e B io t number, Bi = hj , /k, which re s u lt s from

conv ec t ion boundary co nd i t i on s . Th i s pa ram ete r i s p r op or t io na l to the r a t i o o f

the conduc t ion re s i s t an ce to the convec t ion re s i s t a n c e . Thus , we cou ld say th a t

for

Bi > 1, conduction is highest resistance to heat transfer ,

Bi < 1, convection is highest resistance to heat transfe r,

Bi « 1, the solid behaves like k = ™.2

Another dimensionless parameter is the Fourier number, Fo = ai/l , which

is found in cransient solutions. This number is a dimensionless time value,

but it is also considered an indicator of the degree of thermal penetration2

into a solid. Since ax/SI = (kxAt/U)/(pc£At) , it is proportional to the

ratio of conduction heat transferred to thermal capacity. Thus , an increasing

Fo value implies approaching thermal equilibrium.

16

Page 24: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 24/578

The product of Bi and Fo numbers yields the parameter Bf « hx/pdf. which

occurs in transient problems having a convection boundary. This is also a

dimensionless time parameter, but it is based on convection heat transfer

instead of conduction ?s in the Fourier number.

Solutions to problems having an internal heat source q ' " usually have a

dimensionless heating parameter called the Pomerantsev modulus

Po = q"''2, 2/kAt. This number is a ratio of internal heating to heat

conduct ion rates. Large values of Pr> imply large temperature differences will

occur in the solid.

The parameter Fo = X,/2 rr is a form of the reciprocal of the Fourier

number and occurs in many solutions for transient temperatures in

semi-infinite solids.

When time dependent boundary conditions have a time constant, the

solution will frequently include a dimensionless group called the

Predvoditelev modulus , Pd = bi /d, where b is the inverse time constant.

Sma ll values of Pd imply a slow changing cond ition . It signifies the ratio of

the change rate of the boundary condition to the change rate of the solid

temperature.

5.3 Example Problems

5.3.1 Steady heat-transfer in a pipe wall

Hot water flows at 0.5 m/s in a 2.5 cm i.d., 2.66 cm o.d. smooth copper

pipe . The pipe is horizontal in still air and covered with a 1-cm layer of

polystyrene foam insula tion. For a 65°C water temperature and 20°C air

temperature, estimate the heat loss rate per unit length. The solution given

in case 2.1.2 is

2n (t^ - t 2 )q =

1 „ r 2 . 1 . r 3 ^ 1 _, 1r— In — + 7 — An — + — r - + — r -k l E l k 2 r 2 r l n l r 3 h 3

17

Page 25: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 25/578

From t h e p r o b le m d e s c r i p t i o n

fclfc4

o= 65 C

= 20°C

r 1 = 1. 25 cm

r

2= 1 .33 cm

*-> = 2 .33 cm

k = 400 W/m" C ( f rom T a b le 18 .1)

k 2 = 0 .0 38 W/m-°C ( f rom Ta b l e 1 8 .2 )

h d / k = 0 . 0 1 55 P r ° "5 R e ° " 9 ( fr o m S e c t . 1 6 . 1 )

h l = ( k w a t e r /2 r l > ( ° - 0 1 5 5 ^ ° ' 5 ^ ° ' 9 )k u = 0 . 65 9 W/m-°C (a t 65°C)

w a t e r v

Pr = 2 .73

R e = 2 p v r l / ] ip = 980 kg/m

v = 0 .5 m /s

U = 4 . 3 x 10 kg /m "s

2 ( 9 8 0 ) ( 0 . 5 ) ( 0 . 0 1 2 5 )e =4.3 x 10

- 4= 28 488

( 0 . 6 5 9 / 0 . 0 2 5 ) ( 0 . 0 1 5 5 ) ( 2 . 7 3 ) ° "5 ( 2 8 4 8 8 )0 , 9 = 6895 W/(m'2 o,'Oh3 " ' W 2 ^ 1 C ( G r d P r >k

a i r = Q

"0 2 5 w

/m

" °c

P r = 0 . 7 1

G r = g B ( t ,

( fr om S e c t . 1 6 . 8 )

t 3 ) ( 2 r 3 ) 3 / \ ) 2

g - 9 . 8 V s

B = 1 /T4 = 1 /293 K- 1

V = 1 6 . 5 5 x l O- 6 m 2 / s

= ( 9 . 8 ) ( 0 . 0 4 6 6 ) ( 0 . 7 1 ) = ^ ( _ (

( 29 3) ( 1 6 . 5 5 x 1 0 "b r 4

C = 1 . 14 , m = 1 /7 ( f rom Ta b l e 1 6 .3 )

h 3 = ( 0 . 0 2 5 /0 . 0 4 6 6 ) ( 1 . 1 4 ) ( 8 7 7 4 )1 / 7 = 2 . 2 4 W / m2 ' °C

1°C)

q =400 i n IS) 0 . 0 3 8 In

2ir (65-20

( 0 . 0 1 2 5 ) ( 6 8 9 5 ) ( 0 . 2 3 3 ) ( 2 . 2 4 )

2w(45)

1 .5 5 x 10 + 14 .76 + 0 . 01 2 + 19 .16= 8 .3 3 W/m

18

Page 26: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 26/578

2 i r r 3 h 3

8 .33271(0.0233) (2 .24)

= 25 .4"C

U s i n g t h i s new e s t i m a t e o f ( t - t ) , we c a n r e c a l c u l a t e h .

h 3 = 2 .2 4 ( 2 5 . 4 )1 / 7 = 3 . 5 6 W / m2 ' ° C ,

q = 10 .5 4 W/m.

Additional i terat ions on h would little improv e this result.

Note that the copper tube and water film have a small effect on the

results because they present little resistance t o heat transfer b y comparison

to t h e insulation and ai r film.

5.3.2 Transient heat conduct ion in a slab

A billet of 304 s tainless steel measuring 2 x 2 x 0.1 m thick and

having a uniform temperature of 30 C is heated by sudden immer sion into a

45 0 C molten salt bath. T h e mean convection coeff icien t i s 350 W/ m " C .

Determine the time required for the center tempera ture of the b i l le t to reach

4 0 0 ° C . T h e solution is found in Section 8.1 (case 8.1.7 and F ig . 8 .4a):

400 450t.

l

30 450 0.119

From Table 18.1

k = 21 W/m*° C #

-6 2 ,a = 7 x 10 m / s ,

k_ = 21hi, (350) (0.05 )

1.2 .

-h.t.

From Fig. 8.4a

„2QLT/i, 3.4,

3.4Jt 2 _ ( 3 . 4 H 0 . 0 5 ) 2

7 x 10 61214 s

19

Page 27: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 27/578

5.3.3 Trans ient heat conduction in a semi-infinite plate

For the conditions given in 5.3.2, find the billet center temperature at

0.05 m from the edges and sides of the billet.

The solution is found in case 7.1.21 and Fig. 9.4a for a semi-infinite

plate and expressed as T = (P)(Fo)'S(X). Values of P(Fo) are given in Fig. 8.4

and values of S(X) are given in Fig. 7.2.

hVaxBiVfo

Fo

o\l -6.350\(7 x 10 ) (1214)

21 1.54V V

2Vaf r

0 05

2V(7 x 10 6 ) (1214)

0.27

If (T = (t - t £ ) / ( t . - t f ) ,

S(X) = 1 - 0.45 = 0.55 (from Fig. 7.2).

The P(Fo) value is given in 5.3.2. Thus , the solution is

I

t ~ t £ P(Fo) S(X) = (0.119)(0.55) = 0.066

t = (0.066)(30 - 450) + 450 = 423°C

5.3.4 Extended surface steady-state heat transfer

A 160 °C uniform-temperature copper plate has a long rectangular rib

brazed to it. All surfaces are convectively cooled by 30 C air having a

convection coefficient of 53 W/(m • C ) . The rib is yell ow brass extending

4 cm from the flat surface and 2 cm wid e. Estimate the additional heat loss

from the flat surface caused by the rib.

The solution for temperature distribution in the rib is given in

Case 1.1.17 for f(x) = t., w = t and 1 = a.

V \ T

20

Page 28: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 28/578

* - * £~ Bi cos (Xn X ) xn c o s h [ Xn ( B - Y ) l + B i s i n h [ Xn ( B - Y) l I

1 " tf £-\ co s (X ) ( B i2 + X2 + B i) fx co sh (X B) + Bi s in h (X B) ln= l n n L n n n J

X t a n (X ) = B i ( c h a r a c t e r i s t i c e q u a t i o n )

B = b /a = 4 /1 = 4X = x / a , Y = y / a

B i = -r2- = (5 3 > ( Q -0 1 ) = o .o o4 (k va lu e f rom Ta b le 1 8 . 1 )k 130

From Ta b le 1 4 .1

\ x = 0 . 0 6 3 2 , X2 = 3 . 1 4 2 9 , X3 = 6 . 2 8 3 8 , X4 = 9 . 4 2 5 2 , X5 = 1 2 . 5 6 6 7 .

H e a t l o s s f or m t h e c o n v e c t i v e l y c o o l e d s u r f a c e s i s d e t e r m i n e d b y E q . 3 2

ap p l i ed to th e boundary y = 0 .

_ , . f 3 t ( x , o )q = 2k / — dxo 3y

°° Bi ta n (X )[X si n h (X B) + B i co sh (X B )]= 4k (t . - tf ) £ " " S «—

n= l (B i + X'' + B i) [X c os h (X B)+ Bi s in h (X B) ]n n n n

= 666 W/m

Heat loss with out the rib attached w ould be

q = hA (t± - t f ) = 53 (0.02)(160 - 30) = 138 W/m .

The additional heat loss is thus

Aq = 666 - 138 = 528 W/m ,

5.3.5 Rectang ular fin heat transfer

Use the straight rectangular fin solution to estimate heat loss from the

rib described in 5.3.4.

The solution is found in Case 5.1.4 and Fig. 5.2.

/ —Vka / 5 3

= 6 .385 m 1/ —Vka V ( 1 3 0 ) ( 0 . 0 1 ) = 6 .385 m

1 =c

0.1 54 + 0 .0 1 = 0 .0 5m

mAc = 0 3193

21

Page 29: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 29/578

5 . 3 . 6 S e m i - i n f i n i t e p l a t e h e a t t r a n s f e r

Find an eq ua t ion for the hea t t r an sf er ra te throu gh the edge of the sem i-

in f i n i t e p la t e d esc r ibed in case 1 .1 .5 wi th f (x ) = t .

Using the give n temp eratu re s o lu ti o n and Eqs. (2) and (37) we can f in d

the heat t r an sf er in the fo l low ing m anner :

S = ~k I ? = I ( t

2 V S ' w h e r e T = T7=\

H | Y = 0 = -2 ]£ s in (m tX )[l - cos (nit)]

n=l

00

Q

Y | Y = 0 = l l q

Y | Y = 0 ^ = 2 k ( t 2 ~ V / S S i n ^ ^ C

1 _ c o s (

n 1 ,

) ]d x

n=l

GO 00

= 2 k ( t2 - t x ) 2L E l - c o s ( m r ) 32 = f * ( t2 - t > 2 , i , n = 1, 3, 5,n=l mr n= l

22

Page 30: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 30/578

Ifin»a.

R E P R O D U C E D F R O MBEST AVAILABLE COPY

Page 31: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 31/578

Section 1.1. Solids Bounded by Plane Surfa ces— No Internal Heat ing.

Case No. References Description Solution

1.1.1 19, Convectively heated andp. 3-103 cooled plate.

W Jy t 2

q =" i ( t i - V

Bi x + 1 + i\/^ 2)

t - t. B ^ + 1

fc 2 " *1 ~ i l 1 + ( W

^ 1.1.2 19 , The composite p late,p. 3-103

( t 0 " Vn

£ (W./ki + 1/h^ + l /h Q

k , h_4 h n- 2 h n-1

V h H

l /»<«*^>v">^

k- U-\-* n

i-1

Temp in the j th la ye r:

j - lS (S,./k i + 1/ IK ) + (Xj/kj) + ( l/ h 0 )

^ («,./k i + 1/h.) + (l /h Q )

i=l

, J > 1

Page 32: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 32/578

Section 1.1. Solids Bounded by Plane Sur fac es— No Internal Heating.

Case No. References Description S o l u t i o n

1 .1 .3 1 , p . 138 P la te wi th tem pera tu red e p e n d e n t c o n d u c t i v i t y,k = k^ + S ( t - tx).

M

q = Kfci - to

1 v 2m J,

t - t1 B \ 1+ 2 e k

m( t

2 - V f - X

k = (k. + k_) /2in 1 2

i H . 4 2, p . 221 Porous plate with internalfluid flow,t = t x , x = 0.

t = t_ , x = 6.

P a P o r o s i t y.

u . t 0 , k , , p , . c

P = porosity

V P ~-*2

t ~ t,

tt

r - ^ - = expl"- E 5 (1 - x/6)"l , 0 < x < 62 "O

t - t 0 e x p ( 5f x )

t 2 - t l exppp6 - 1]

Mean temp:

, -<*> < x < 0

^S— = ^ [1 - e*P< V ] ' ° 1 X i 6

c„ =p f u c

' 5- =p f u c

' p k p ( l - P) ' •'f k f (1 - P)

(See P ig . 1.1)

Page 33: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 33/578

Section 1.1. Solids Bounded by Plane Sur fac es— No Internal Heating.

Case No . References Description Solution

1.1.5 2, p. 122 Semi-Infinite plate.9 , p . 164 t = t x , x = 0 , A, y >. 0.

t - f (x ), 0 > x > A, y - 0. t - t = 2 2^ exp (-im Y) s i n (rarX)

n=l

ix J l"f (X) - t i " | s i n (mrX) dX

For f (x ) = t 2 :

V t = f<x)- — = — / — exp (-m rY) si n (mr X)f l - co s (nir)"]t a — t 1 IT fc-» n — -1

n= l

1 . 1 . 6 3 , p . 2 50 R e c t a n g u l a r s e m i - i n f i n i t e r o d .t = t , x « 0.t = t _ on o t h e r s u r f a c e s .

2 "1 "2 - 2 2on co m+n

(-1) exp • ( x n x / w )2 + am x / f c 2

n*0 m=0X Xn m

x co s (X ) co s (X )n m

X = (2n + \) \ , \ = (2m + l ) fn 2 m *•

Page 34: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 34/578

Section 1.1. Solids Bounded by Plane Surf ace s—N o Internal Heating.

Case No . References Description S o l u t i o n

1 . 1 . 7 2, p . 130 R e c t a n g u l a r i n f i n i t e r o d .t = F ( x ) , 0 < x < I, y =

t = F ( x ) , 0 < x < I, y = w.

i

t m h + fc n + 'in + fciv

t = G ( x ) , x = I, 0 < y < w

c = r- \x.) , u •> x *,, y = w. ^t » G (x ) , x = 0 , 0 < y < w. fc I = 2 Z

1 n=l

^ . sinh [ ^ ( l - Y)l

s lS S/ff s i n <n X L> f *t W s i n <n 7 r x>d x

t = G 1 W > -

t = F, ( x )

1

t F 2(x)

s i n h ( m r / L ) s i n ( r f l , X L > / F 2 ( X > s i n ( m r X ) d X

n = l

- t G 2W) n = l

= 2 J^j2_LniLii_z_xLL s i n ( f f l r y ) , G < i ( y ) s i n ( n i r y ) d y

"IV " ^ s i n h (niTL)n = l

L = %/M

ii

) f G l (

J0

*-h ,f"4f(i--)1 . (m ix ) ,2 1 nc o sh I

F x ( x ) = F 2 ( x ) = t 2 , G 2 ( y ) = G x ( y ) = t

Page 35: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 35/578

Section 1.1. Solids Bounded by Plane Sur fac es— No Internal Heating.

Case No . References Description S o l u t i o n

1 . 1 . 8 2 , p . 1 47 T h i n r e c t a n g u l a r p l a t e .

t = t Q , x = 0, 0 < y < x .

t « t , 0 < x < 4 , y = 0 .

t » t , 0 < x < %, y = w.

t - G (y ), x - A, 0 < y < w.

h i r t 0 a t z « 6.

h 2 , t 0 a t z » 0 .

y h v t 0 to

im

t = G(y)

*o h 2 ' *o «•

t - t Q = 2 ISn= l

nh U + n W ) * x J s . n m

s i nh |_(Bi + n IT L ) \ |

f [G<Y) - tQ ] sin (MTY) dY

Bi - (h + h2 ) i / k 6 , L = l/v

1 . 1 . 9 4 , p . 4 1 I n f i n i t e r e c t a n g u l a r r o d i na s e m i - i n f i n i t e s o l i d .

/7777W77777777777777777777777

h- fco

n 1 „i L r 3 . S ( d + K / h ) 1R ~ k ( 5 . 7 + f _ ) ta[.0.25b0.75 J

Page 36: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 36/578

Section 1.1. Solids Bounded by Plane Surfa ces —No Internal Heating.

Case No. References Description Solution

1.1.10 4, p. 41 Infinitely long thin plate Vertical plate :in a semi-infinite solid. , ,. . .

k ( t i - V d

n t

Q * 7 - — T O T ' o .5 < - < u

' ° 0.42/4/777777^77777777777777S(777777d k. | Horizontal pl at e:

t1

Tnis-kf

, k ( t - t >

1.1.11 4, p. 43 Thin rectangular plate on the kwn(t - t )surface of a semi-infinite Q =solid. *(%)

Page 37: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 37/578

Section 1.1. Solids Bounded by Plane Sur fac es— No Internal Heating.

Case No. References Description Solution

1.1.12 4, p . 44 Thin rectangular plate in an 2irwk(t. - t_)infinite solid . Q «- —

In (1)

V 1.1.13 5, p. 54 Rectangular parallelpiped*"* with wall thickn ess of 6. Q t = [ $ ( d w + db + wb) + 2.16{d + w + b) + 1.261 (t - t

= total heat flow through six walls

Page 38: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 38/578

Section 1.1. Solids Bounded by Plane Surfa ces —No Internal Heating.

Case No. References Description Solution

1.1.14 4, p. 37 Infinite hollow square rod.

T lW I

q »2TTk(t 2 - t x)

J S _ + i n i^>8w + J k _h l C 0 2 r 0 2 h 2 W

, — h 2 , t 2

1.1.15 9, p. 166 Rectangular infinite rod.t - f ( x ) , 0 < x < a, y = 0.

t - t = V A n s in (mrx) si nh [{1 - Y) ( ^f ) 1 cose ch 0 ^ \

n=l

1

A = 2 J [f(X) - O s i n (miX)dX , L = Jt/w

Fo r: f(X) = t 2"

t - t

tprr = J 2 K s i n <n irx) s i n h [( 1 Y) ft)] o s e c h ft)'n=l n = 1. 3, 5, 7

Page 39: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 39/578

Section 1.1. Solids Bounded by Plane Sur fac es— No Internal Heating.

Case No. References Description Solution

1.1.16 9, p. 167 Rectangular infinite rod.t = f ( x ) , 0 < x < H, y = 0.

q = 0, 0 < x < H, y = w.

a = 0, x = 0, 0 < y < w.

~n- n , t f

t = f(x)

^ , M a i2 + X 2 J c o s {X X) c o s h ["(1 - Y)WX 1

^ 2 n = l [ (B i 2 + Xn ) + B i] c o s h (V"

x / Tf(X ) - tf ] cos (XnX)dX

X ta n (X ) = Bi , Bi = hSL/k , W = w/X.n n

F o r : f ( x ) = t

fc- *ffcl" fcf

= 2 Bi 1n = l

co s ( XnX) cosh [ ( 1 - 5 f )wXn]

K * >i) B l co s (X ) co sh (X W)n n

Page 40: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 40/578

Section 1.1. Solids Bounded by Plane Surf aces —No Internal Heat ing.

Case No. References Description Solution

1.1.17 9, p. 168 Case 1.1.16 with q = 0,

y = w, 0 < x < fc i s re pl ac e dby convection boundary h , t - .

J v ( B i 2 + X 2 ) co s (X X){X co sh Tx (W - y)~| + Bi s inh Tx (W - Y)1}. _ . - T > \ , " ' n n L n J *- n ^_

f , i f B i 2 + X 2 J+ Bil{ X cosh (X W) + Bi s in h (X W)}n=l L\ n / J n n n

JL • • '0a

I [f(X) - t f~j cos (XnX)<

X tan (X ) = Bi , Bi = hA/k , W = w/X.n n

For: f(x) = t , :

t - t_ J . Bi cos (XX) {X cos h fX (W - y) ] + Bi si nh [\ (W - Y )l }t _ _ x n n *- n _ *- n -*fcl ~ fc f , cos (X )| ( B i 2 + X 2 J + Bi lr X cosh (X W) + Bi si nh (X W)l

n= l n LA n / j L n n n J

Page 41: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 41/578

Section 1.1. Solids Bounded by Plane Su rfa ce s—N o Internal Heating.

Case No. References Description Solution

1.1.18 9, p. 168 Case 1.1.16 with t = t f ,

y = w, 0 < x < it.

J , ( B i 2 + X 2 ) co s (X X) s in h fX (W - Y)"| /-1

t - t . = 2 > ^ 1-7 - ^ =i — ~ x I Tf (X) - t . 1 co s (X X)dX

' n=l L (B i + Xn ) + B i] S i n h < V > l l ^X tan (X ) = Bi , Bi = hA /k, W = v/ln n

For : f (x ) = t :

i

M t - t . __ co s (X X) s in h TX (W - Yf|t__ __ . X n L n J: x. = 2 B i y n L n

fcl " fcf ^ Y B i2 + \ 2 \ + B i l c os (X ) s in= l LV n / J n

nh (X W)n

1.1.19 9, p. 169 Case 1.1.16 witht = t x , y = 0, 0 < x < % .

t = t , y = w, 0 < x < A.

t - t

i^k »lcos (XnX ) { s i n h [ *n (W - Y) ] - s i n h (XnY ) ( t 2 - t f ) / ( t x - t f ) }

j f B i + X2 j + Bi co s (X ) s i nh (X Wf . | [ B i + X_ ) + B i ] c o s (X_) s in h (X_W)

X ta n (X ) = Bi , W = w/SL

Page 42: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 42/578

Section 1.1. Solids Bounded by Plane Sur fa ces —N o Internal Heating.

Case No. References Description Solution

t - t„1.1.20 9, p. 178 Rectangular parallelpiped.

t = t r x = 0 r 0 < y < w , " " U0 _ 1 6 V V [s in h (L - LX) + T si nh (LX)] sin (CTY ) s in (nnrZ). . ^ , t , - t„ = _ 2 Z - Z , (nm) si nh (L)

n=l m=l

n = 1, 3, 5,

0 < z < d "0 TT

t = t 2 , x = i , 0 < y < w ,

0 < z < d .

Remaining surfaces at t n .

(run) sinh (L)

, m = 1, 3, 5,

L 2 = ( rnrVw) 2 + ( imrVd) 2 , z = z/d

i - 1

i

*S 1

c—-r^c—-r^0 / \ X

h e

T = ( t2 - t 0 ) / ( t l - t 0 )

Page 43: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 43/578

Section 1.1. Solids Bounded by Plane Sur fa ces —No Internal Heating.

Case No. References Description Solution

1.1.21 9, p. 179 Rectangular parallelpiped.t = t y , x = 0 ,

-w < y < +w , -d < z < +d .

t = t 2 , x = i. ,

-w < y < +w f -d < z < +d .

Remaining surfaces convection boundary with h,t, .

00 COt - -fc. - , * — * - > Tsinh (L - X) + T sinh (LX)] cos (X Y) cos (B Z)

— = 4 Bl D > > j--= 5 =y-z = z rc l ' f , . c os (X ) co s (B ) U + B i + Bi [B + Bi D + Bi D ls in h (L)

n = i m=± n m |_ n Jv in /

X ta n (X ) = B i , B ta n (B ) = Bi D, Bi = hw/kn n m m

L 2 = x V / w 2 + Bm J l 2 / d 2 , D = d/w , X = x/SL, Y = y/ w

Z = z /d , T = ( t - t ) / ( t - t )

Page 44: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 44/578

Section 1.1. solids Bounded by Plane Surfaces—N o Internal Heating.

Case No . References Description Solution

1.1.22 9, p. 180 Case 1.1.21 except t = t ,x = 0 , - w < y < + w ,-c < z < +c .Remaining faces arecorrection boundarieswith h,t_.

t - t _ „ [AB i sinh (L - LX) + L cosh (L - LX Q cos (X Y) cos (6 Z)

t x - t f ~ B l D 2-> 2* ~ [A Bi sinh (L) + L cosh (L)] NM cos (X ) cos (f$ m)

n*l m=l

A = l/v , N = X 2 + B i 2 + Bi , M " S 2 + Bi 2 C 2 + BiC.n m

X , fi , L , D , X , Y , Z, and Bi are defined inn in

case 1.1.21 .

1.1.23 2, p. 175 Infinite plate with Case 2.2.10cylindrical heat source.

Page 45: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 45/578

Section 1.1. Solids Bounded by Plane Sur fac es— No Internal Heating.

Case No. References Description Solution

1.1.24 9, p. 428 Infinite strip withstepped temp boundary,t - t 0 . y « 0 .-oo < x < + 0 0 .

t = t l f y = w , x > 0 .t = t 2 , y = w , x < 0 .

k " k 1 , 0 < y < w , x < 0

k » k _ , 0 < y < w , x > 0

s in*2

L X iV ^

fc- fco= y 2 [<V V - l]k2 f (-1)"

* ( k l + V n=l n '

t _iiio_ T l 21>- <yy>i y (-n°t 2 - t x II ( k r + k 2 ) ^ n

s i n (mtY)exp(-mrX ) , X > 0

s i n (mnf)exp(nirX) , X < 0

X = x/w , Y = y/w

Page 46: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 46/578

Section 1.1. Solids Bounded by Plane Sur fac es— No Internal Heating.

Case No. References Description Solution

1.1.25 9, p. 452 Heated planes on asemi-infinite medium.t = t , x < - & , y = 0 .

t = t 2 , x ^ + A , y = 0 .

q = 0 , -i. < x < +1 ,

y - 0 .

Q = — cosh *Gk t 2 ) , -x x < x < -i.

x i • y l 2

i+e

1.1.26 9, p. 453 Heated parallel planes inan infinite medium.t » t , x > _ 0 , y « s .

t - t, , -<*• < x + « .

Y

Heat flow from bottom side of semi-infinite pla ne:

Q = k Rxj/s ) + U A ) ] ( t L - t 2 ) , 0 < x < x x .

Heat flow from to p sid e of sem i- in fi ni te plant

Q = £ Jin[(xrxj/s) + l j i ^ - t 2 ) , 0 < x < x x .

H 1 h—

Page 47: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 47/578

Section 1.1. Solids Bounded by Plane Surfaces —No Internal Heating.

Case No. References Description Solution

1.1.27 9, p. 454 Infinite right-angle corner.t « t j , x > 0 , y = 0 .

t « t 1 , x = 0 , y > 0 .

t = t 2 , x > v 1 , y = w 2 .

t • t 2 , x • w x , y > w .

Q = k w 2 W ; L T T W2 \ « J T, \ 4 W l w 2 /

f ^ ' t a n _ 1 ( ^ ) j ( t i " V ' ° * x * x i ' ° K Y * y iX I * 1

I r

w 2 I *y

. w l 4-

J4

For w x = w 2 = w , x 1 = yj = x:

i * 0 0 Q = k{2(I<x/w) - 1 ] + 0.559} ( t x - t 2 )

1.1.28 9, p . 462 A wedge with s tepped surfacetemp. t - t x ± x ./*" sin X[i,n(r 0/r)] cc

t 2 - t L

= I + it J Q A cosh (A6 Q )cosh(X6)dX

Page 48: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 48/578

Section 1.1. Solids Bounded by Plane S urf aces —No internal Heating.

Case No. References Description Solution

1.1.29 15 Semi-infinite strip withconvection boundary.t = t , x « 0 , w , y =

Convection boundary at

y = 0 .y

exp(-mrY) s in (mrx)2 2rnr + (n it /Bi)

1, 3, 5,f 1 n=l

Heat transfer into strip at y - 0:

CO

ki t - t 1 = F " 2 ' n = 1 ' 3 ' 5 ' " *M r l V " n=l n + (n^ir/Bi)

See Tables 1.2a and 1.2b.

1.1.30 8827

Periodic strip heatedpla te q^Wjy) = 0 ,

on 2b wide strips.t(w ,y) •» t , on (2a - b) wide

strips spaced 2a on centers.

t f ,h-

See Fig. 1.6a and b for values of maximum differenceson y = 0 surface, i.e. Ct(0,a)and heat transfer.

t<0,0)] = A t m ,

Page 49: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 49/578

Section 1.1. Solids Bounded by Plane Sur face s—No Internal Heating.

Case No. References Description Solution

1.1.31 28 Case 1.1.30 exceptQ = surface heat fluxon (2a - b) wide stripsspaced 2a on centers.

tfx, y) - t

QaH - = | j - (1 + BiX) + 2

%_T

Bisin (mrB) cos (mry) cosh (nirx) + — sinh (mrX)J

n=l .»[,inh (mrw) + - ^ cosh (mrW)

B = b/a , Bi = ha/k , W = w/a , X = x/a , Y = y/a .See Fig. 1.7 for values of T = t(0 , a) - t(0 , 0) .

1.1.32 29 Spot insulated infiniteplate with constant tempon one face and convectionboundary with an insulatingspot on the other.

See Fig. 1.9 for values of 6(r/w,z/w) =

Tt(r , z) - t f J/rt(» , w) - t f"j at r = 0 , z = w .

M«MZLW/A I

\* T

"7"w

Page 50: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 50/578

Section 1.1. Solids Bounded by Plane Surf ace s—N o Internal Heating.

Case No . References Descr iption Solution

1.1.33 32 Infinite plate containingan insulating strip.t « t 1 , - a > < x < ° 0 , y = w .

t - t f l , -«" < x < «> , y - -w

0 f 0 < x < S , r y = 0 .sm

IO

t ( x ' y» - fto 1 1 - i— rr. — - 1 + w c o s

{[p2

+ G 2

+ l + V ( F2 F

+ G 2

+ l , 2 - 4 F 2 j 4f V

2yv p99WW9v9 • •

2 ( l + c o sh 1> (2X - L)H c o s r 2Tr Y) ]}1 + co s h (TTL)

2 s i n h [ i t (2X - L) ] s in (27TY)1 + co sh (TIL)

F o r L •*• < • :

F = 2 c o s (2mf)exp(-2TTX) - 1 , G = 2 s i n ( 2 l tY ) e xp< -2 l tX ) - l ,

X • x/w , Y - y /w , L - «,/wI n f i n i t e t h i n p l a t e w i t h t - t^, K0(Br/<S).1 .34 1 9 ,

p . 3 - 11 0 h e a t e d c i r c u l a r h o l e .t " fcl ' c " c l

fc3 " «*» VB r l / 6 ) , r > r ,

" r ' l

cf

B = V B i j + B i j , t r o = ( t x + H t 2 ) / ( 1 + H ) , H = B i ^ B i j

h 2 , t 2

• h

Page 51: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 51/578

Sec t ion 1 .1 . So l id s Bounded by Plane Surfaces—No In tern a l Heat ing .

Case No. R eferen ces Desc r ip t i on So l u t i o n

1 .1 . 35 19 ,p . 3-110

Case 1.1 .34 with treplaced by a heatsource of strength q.

k 6 ( t - t j K0(Br /6)q = 2Tr{Bri/ (5) K^ Brj /6 ) ' r > r

x

B and t defined in case 1.1.34 .

1.1.36 1 9 ,p . 3-111

Case 1.1.34 with h = 0. t - t. I„ (Br/6)t 3 - t x 1^8^/6) ' t > r 1

B given in case 1.1.34 .

1.1.37 60 Infinite plate with wall19 , cuts as shown. Heat flowp . 3-123 normal to cuts,

q

See Table 1.3 for conductance data K/K

K ,. = ka/X.uncut

Q = K t l - t 2

uncut

Page 52: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 52/578

Section 1.1. Solids Bounded by Plane Sur fac es— No Internal Heating.

Case No. References Description Solution

1.1.37.1 84 Infinite medium withsingle and multipleinsulating cuts.

See Ref. 84 for temperature and heat flow solutions.

1.1.38 61

19.p. 3-124

Case 1.1.37, cut (c),

with only one cut.

Conductance:

[<«, - d)/a ] + (d/b) + ( 4 / T I ) Sin {sec (it/2) CI - <b/a)]f

Q = K t.

1.1.39 6219,

Infinite rib on aninfinite plate with

p . 3-126 convectio n.t - t w , x - ±6/2 , y > i .

t = t w , x > |6/2 | , y - H .

Con vection boundary at y = 0

±

8IA/WI

y

Tvn

See F ig . 1.10 for temp at x = 0 , y > 0

Page 53: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 53/578

Sect ion 1. 1. Sol ids Bounded by Plane Surfaces—No In te rn al Heating.

Case No. References Description Solution

1.1.40 79 Finite plate withcentered ho le. Mt. V

TTd

2w + S,nl

2TTM

C 4 } _ J ZgiT«

F1 . 1 . 4 1 79 Tube centered in a

finite plate.

4

1f e d 2 r

| 1 t 1

2itk(t.

q = VX-n (i) r < 10

w/d1.00 0.16581.25 0.07931.50 0.03562.00 0.0075

2.50 0.00163.004.00

0.00031.4 x 10~

CD 0

Page 54: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 54/578

Secti on 1. 1. So li ds Bounded by Plane Surfaces—No Internal Heating.

Case No. References Description Solution

1.1.42 79 Tube in a raulti-sidedinfinite solid.

2 1 1 , 5 ( t l " V

l n ^ - C ( n ,

n = No. sidesr l < r 2 y ' 1 0 f o r n = 3

n3456

789

10

C(n)0.56960.27080.16060.1067

0.07610.05700.04420.0354

0

1.1.43 79 Infinite square pipe.

Tw

1

2TTk(t i - t 2 )

0.93 In (w/d) - 0.0502

2ttk(t.

, w/d > 1.4

V0.785 An (w/d) w/d < 1.4

1.1.44 87 Partially adiabaticrectangular rod with

an isothermal hole.

q = Sk( t x - t Q )

See Fig . 1.11 for values of S.

/"'""'

*-J&.2b

T2a

1

I

^r77777777~ 2 b

Page 55: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 55/578

Section 1.1. Solids Bounded by Plane Sur fac es— No Internal Heating.

Case No. References Description Solution

i

m

Page 56: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 56/578

Sect ion 1.1. Sol ids Bounded by Plane Sur fac es— No Internal Heat ing.

Case No . References Description Solution

Page 57: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 57/578

Section 1.2. Solid s Bounded by Plane Surfac es— Wit h Internal Heating.

Case No. References Description Solution

1.2.1 1, Infinite plate,p. 169 t = t , x = 0 .

t = t 2 , x = A .fc 2~ fc l

X + Po X U - X) /2

h-H1.2.2 4, p. 50 Infinite plate with

convection boundaries.

V h i —-h,.t,

tj _ - t 2 1 + B i 2 + H + B i 2

2 U * '

B i ^ l + Po( l /Bi 2 + 1/2)1(1 - X)

1 + Bi, + H

H = h 2 / h 1

Page 58: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 58/578

Section 1.2. Solids Bounded by Plane Surf aces— With Internal Heating.

Case No. References Description Solution

1.2.3 3,p . 130

k

Infinite plate withtemperature dependentconductivity.k = Jc f + 6( t - t f ) .

(t - t,)k c r • — T . ,

^ = f[-l + Vl + 2 B ( l - X2 ) ]q " 1 .

t f . h _k(t)

B = 6 q ' " L 2 / 2 ^

See Fig. 1.2.

-h,t.

1.2.4p . 215

Inf in i te p la te wi thtemperature dependentinternal heating.

(t - t Q ) k

t = t Q , x ±9 . . % ••I 2 ^B

cos CVPo Q X)

cos (VPO£)

q , , . „ q „ . + B ( t - t ( J ) P o e - 3*Vk

h—

q'"(t)

k I

Mean temp:

< t m - y k

% l 2 Po372 t a n l V F 5 3 )

Page 59: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 59/578

Section 1.2. Solids Bounded by Plane Surfaces—With Internal Heating.

Case No. References Description Solution

1.2.5 2, Infinite plate with

ito

p . 217 r ad i a t i on hea t i ng .= 0= t Q , x = 0 ,

q ' " • qyeg <* radiation energy flux.Y " mean radiationabsorption coeff.

H«H

(t - t 0)Jqr= 1 - yxe -Y*- _ e - Y *

Page 60: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 60/578

Section 1.2. Solids Bounded by Plane Surface s—Wi th Internal Heating.

Case No. References Description Solution

1.2.6 2,p . 223

Porous plate withinternal fluid flow.P = Porosity.

u.x 0.k.p f.c

q'".k p ,P

—I

t - t- = | - [_1 - e p J + X , 0 < _ X < 1

C I

(See F ig 1 .3 )

fc " fc0 1 ( 1P) Vc e,

Mean temp:

X < 0

t m - fc0 l / F + "V| + l

^p k p ( l - P) ' ^f K £ ( 1 - P) ' ^ " p f u c

Page 61: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 61/578

Section 1.2. Solids Bounded by Plane Surf aces —With Internal Heating.

Case No. References Description So l u t i o n

1 .2 .7 2 , p . 227 Porous p la te wi th in t e rn a l D Xf l u id f low and temperature S t + 1 _ e 1 ( 6 t l + 1 D 2dependent in t e rn a l h ea t in g .t = t 2 , x = I,

q ' " = q j " < l + B t ) ,P = Po ros i t y.

B t . + 1 E \ B t , + 1

* °2 D l

E = e - e

e - 1

D 2X

U - V k f « r - C

q*"(t)

D i - V 2 + [ ( V 2 ) 2 P OB ]

['„ /2 - | ( ? „ / 2 )2 - POgl'5

B t x =( D 1 - D2> ( B t 2 + 1 } - ^ p - E

*E - EC

* D D p uci.E = D l e - D2e , Sp - k ( 1 . p ) . *° = q»'Bl-A p

2

1.2.8 3, p . 220 Rectangular rod.

I t - t - j K i 2t = t n , x = ±b , - a < y < + a. ^ = r- (1 - O - 20 - I ' l ' a ^ '

t = t , - b < x < +b, y = ±a.q ' - ' a

V I b

\ q'" a• • r

X

• * —

X

^ ( - 1 ) " c o sh | ( 2 n + l ) j x | c o s | ( 2 n + 1 ) | Y |

n=0 | (2n + l ) j j cosh | (2n + 1 ) ?B1

See Fi g . 1 .4 , Table 1 . 1 .Y = y / a , X = x /a , B = b /a

Page 62: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 62/578

Section 1.2 . Solids Bounded by Plane Sur faces —With Internal Heating.

Case No . References Description S o l u t i o n

1 . 2 . 9 3 , p . 469 In f in i te t r ian gular bar.t = t Q , x = ±y.t - t 0 , x = «..

- ° - - fe < *2 - W * )< •>t 2

y/l

Page 63: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 63/578

Section 1.2. Solids Bounded by Plane Surf aces —Wit h Internal Heating.

Case No. References Description Solution

1.2.10 2, p. 197 Infinite rectangular rodwith temperature dependentinternal heating.

q ' " = q ^ " ( l + S t ) .

t = t , x = ±b, -a < y < +at = t Q, -b < x < +b, y = ±a

Vt b

oo oo n+m(t - t Q) %-* •%- (-1) cos U n X ) cos (X mY)

4Po„ 2 , Z/B + t n 6 n=l m=l X X [ x 2 A + ( X 2 / A \ - PoJn m|_ n \ m / 3J

Nf

iu>

q ' ( t )

X = 27T{2n - 1) , X = 2Tl(2ni - 1 )n in

X = x / b , Y = y / a , P o & = q^ • • a b 6 / k , A = a / b

S e e F i g 1 . 5 .

a

*• x

^1.2.11 9, p. 171 Infinite rectangular rod (t - t^Jk

with convectionq

tangular rod (t - t )k , ^ion boundary. — = ^~ - + ±-(1 x) - 4 £ivity in x-dir. q' a / 1 n=l= conductivity

k = conductivity in y-dir. s i n (X ) c o s (X X) co sh (X AY)n n n

X n [ 2 X n + sin (2X)] [ ( ^ ) sinh (AXJ + c o s h ( A Xn ) ]

X n tan ( A [ ] ) = B i r B i x = h i a / k x , B i 2 = h 2 a / k x

A = r-t f , h .

| V iT/ iT" , X = x / b , Y = y / a , B = b / a

Page 64: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 64/578

Section 1.2. Solids Bounded by Plane Surfaces—With Internal Heating.

Case No. References Description Solution

1.2.12 9, p. 423 Infinite plate with pointsource.t = t Q , z = 0 , «,.

Source of strength Q islocated at r. , 9 , b.

(t - t 0 ) W

Q

R

n=lsin (nirz) sin (rnrB)K fl (nitR)

Ja[r 2*'rJ - 2 ^ 0 0 . (8-8^]

i

w

•HB = b/i, , Z = z/l

1.2.13 29 Spot insulated infiniteplate.Insulated on one side andan insulating spot withconvection boundary on the

other.

M f

mkrm \r J

////////////A'/////////////

i Z

Solutions of |"t(r

at r » 0 , z = 0 ,' Z ) " t f ] /[ t ( °° ' W ) " fcf] = e ( r / w ' Z / W )

w are given in Fig . 1. 8.

Page 65: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 65/578

S e c t i o n 1 . 2 . S o l i d s B o un d ed b y P l a n e S u r f a c e s — Wi t h I n t e r n a l H e a t i n g .

C a s e N o . R e f e r e n c e s D e s c r i p t i o n S o l u t i o n

i<J1

Page 66: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 66/578

« « 1... — — » « - « - — « • * • — B " " " a -

Case No. References Description Solution

Page 67: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 67/578

t J

t/5

I

R E P R O D U C E D F R O MBEST AVAILABLE CO PY

Page 68: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 68/578

Section 2.1. Solids Bounded by Cylindrical Sur fac es—N o Internal Heating.

Case No . References Description Solution

2.1.1 4, p. 37 Infinite hollow cylinder. 2Trk(t Q - t ±)

In ( r Q / r i ) + (1/fci^ + (l/Bi Q )

t - t„ An ( r /r Q )

t. - t Q In ( r . / r 0 ) + (l /Bi Q + ( i / fey

B i . = h. r. /k , Bi Q = h Q r 0 / k

2.1.2 19,p . 3-107

The composite cylinder. 2TT{t - t . )n 1__

n- 1 . . n

Temp in the j t h la ye r :

^n-Vj - 1

Ii=l

k i \ r i / r i h i

n^l

k. I r. I r. h.3 \ 3 / 3 3

- . J > 1

£ * i \ ' i ; 4 ^

Page 69: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 69/578

Section 2.1. Solids Bounded by Cylindrical Su rfa ces —No Internal Heating

Case No. References Description Solution

2.1.3 3, p. 121 Insulated tubes. 2irk(t. V

teRn

See Fig. 2.1

Max heat loss occurs when r n = k/h.

ww 2.1.4 1 , p. 138 Infinite cylinder with

temperature dependent. thermal cond uct ivit y,

k = k fl + B(t - t 0 ) .

k = k Q at r Q .

k = k. a t r . .l I

^ y t j - vIn ( r ( J / r i )

( t ~ V g

= ^ , 2 B km fc t l< V ^k

0 l n

< VE

i »k m = (k Q + k.,/2

Page 70: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 70/578

Page 71: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 71/578

Section 2,1. Solids Bounded by Cylindrical Su rfa ces —N o Internal Heating.

Case No . References Description S o l u t i o n

2 . 1 . 7 3 , p . 2 28 I n f i n i t e c y l i n d e r w i t hs p e c i f i e d s u r f a c e h e a tf l u x ,q = f (<f>) , r = rn .

q = f (0)

I

fc " fc0 = a 0 + 7_ R a co s (rap) + b s i n (nd>)n = l L n n J

2m= i f e / f l * ) d * ' a n = TThd + n/ Bi ) /

27T

—1 f(1 + n/Bi) J

f(ip) cos (n(p)dip

b n = n h f(<p) si n (nip)dip

For q =q Q s i n (cp) , 0 < tp < n

0 , u < (p < 2ir

(t - t0 ) h 1 R s i n (tt>) 2 V 2n co s (2mr)

" * 2 C 1 + {1/Bi)1

' * £ (4n2

- l)[l + ( 2 n / S i) ]

Page 72: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 72/578

Section 2.1. Solids Bounded by Cylindrical Surf ace s—N o Internal Heating.

Case No. References Description Solution

2.1.8 2, p. 133 Infinite half-cylinderwith specified surfacetemperature,t = t n , <ji = 0 and iu

ao -IT

- t = - A R n si n (n<>) I ff m - t I s i n (n<>)d<>0 *• £ 1 J o

t = f m , r - r 0"For f(<>) f t ,

t = mr

fc - fc 0 4 y i nt, - t„ TT * - n

sin (n(())-1 "0 " n=l

For f (40 = t x , s i n (4>)

it * ^ n— ? _ = R s i n <*) - 7 L tR" sin < " * >fcl " fc 0 * n=l

2.1. 9 3, p. 230 Cyli ndr ical sh el l sect ionwith spe cif ie d surface heatflux and temperature.t = t . , r = r . .

I I

q = f(<>) , r - r n .

q = f(0>

- t . - a 0 An (R) + £ a ^ j ^ " - R 0

n j cos (X n *)

n=l

I \ -X \ 2 r n A

X n = rni/$ 0 , R = c/r i

Page 73: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 73/578

Section 7..1. Solids Bounded by Cylindrical Sur fac es— No Internal Heating.

Case No . References Description S o l u t i o n

2 . 1 . 1 0 2 , p . 148 I n f i n i t e q u a r t e r c y l i n d e r ,t = t , <> = 0 an d i t / 2 .

t = f (<t>) , r = r n .

t = f<0)

<" Tl /2

t ~ c o £ 2 R 2 n s i n ( Z n ^ / tf ' ~ ' o J s i n (2n<1' )<

n=l JQF o r f(<ji) = t :

fc ' fc0 2 , - 1— = — t a n

fcl " fc0 *

2 R 2 s i n ( 2* )

1 - R *

2.1.11 2, p. 133 Finite cylinder with twosurface temperatures,t = t x , z = 0.

t - t t , c - c„.

t = t 2 , z = A.

t - t,. . „ sinh (X Z)J (X R)1 = 9 \ n 0 n

t, - t. L X sinh (XL)J (X n)2 1 , n n l nn=l

J o ( V = ° ' z = z / r o ' R = r / r o ' L = £ / r oFo r t 2 = f (r )

s i n h (X Z )J (X R), ^ s i n h (A Z ) j (A R) f

~ ^ * * ~7t^Jt7 \ R^ (R ) ^ o ' V *r n . s i nh (X L) J , ( X_ ) J n

r „ , s i nh (X ^ ,u , i„ ,0 n = l n I n

Page 74: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 74/578

Section 2.1. Solids Bounded by Cylindrical Surf ace s—N o Internal Heating.

Case No. References Description Solution

2.1.12 3, p. 253 Case 2.1.11 witht = t , r = O r r = Z .

t = t Q , r = r Q , n < <t> < 2n.

t - t„-_~_-0_ _ 2 V W * s i n ( V >t, - t„ ~ Ti Z n I n ( A „ R n )

n=l

„ _ T- fcJ) i n

tX

„z

) i n

W>o_ x x m n n2 Z Z mnl (XE.n=l m=l

A = nrr , R = r/JL , z = z/in

n l n 0'

2.1.13 3, p. 234 Semi-infinite rod withvariable end temperature,t = f (r) , z = 0.fc " fco ' r " V

t = f(r)

n= l

fc " fc0 = 2 Vo ( X n R ) eXp (-V>= 1

1

2 [apm -t o p o (X n R) SB.

A =n J i < V

Z = Z / r Q , J 0 ( X n ) = 0 , Xn > 0

I f f ( r ) = t ,

exp ( -Xn Z ) J Q ( X n R )fci - fcn Z X J (X )

1 0 __ . n 1 nn = l

Page 75: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 75/578

Section 2.1. Solids Bounded by Cylindrical Su rfac es—N o Internal Heat ing.

Case No. References Description Solution

2.1.14 3, p. 234 Case 2.1.13 witht = t , 2 = 0 , and

convection boundary h , t c

at r = r„

t , - t f

" Bi J 0 f t n R) exp <-X nZ)

n=l K + * i2> WX n W = B i W

2.1.15 3, p. 238 Infinite rod with a travelingboundary between twotemperature zon es,t = t L , r = r Q , z < 0.

toI

CD

t = t 2 , r V z °Velocity of boundary(z- = 0) = v.

t, - t„ x Z-n=l

[l + ( X n /P ) 2 ] 1/2W>Vl'V

exp[( l + [l + ( V P ) 2 ] 1 / 2 ) P * ] ' Z < °

3 l

fc - c 2 _ Vt, - t, Z

n=l

1 +[1 + ( A / o , 2 ] 1 ^

x exp [| l - [ l + ^ n / P ) 2 ] 1 / 2 ) p z ] , Z > 0

Z = z / V P = v r Q / a r J 0 ( X n ) = 0

Page 76: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 76/578

Section 2.1. Solids Bounded by Cylindrical Su rf ac es— No Internal Heating.

Case No. References Description Solution

2.1.16 3, p. 238 Finite rod with band heating.q = 0, z = + b.^z —Convection boundary at r = r ,

-b < z < +b.Surface heati

-a < z < +1 .

Surface heating (q ) at r = r ,

-2b-

Ih-2\Z- {

r r

n =izri

Heating band

t - t

q,

s i n (X L )I (X pR) c o s (X Z)

r . / k Bi Z X J" Bi I (X p) + (X p ) I (X p)" |0 _ nl_ i) n n x n Jn= l

X = rm , Bi = h rr t / l c , L = l/b, Z = z / bn u

R = r / r Q , p = r Q / b

2 . 1 . 1 7 4 , p . 3 7 E c c e n t r i c h o l l o w c y l i n d e r ,

t = t 2 , r = r 2 .

t = V r = r r

2TTk( t2 - t x )

D 2 -In

R

V(R + l )2 - S 2 + V(R - D 2 - - s 2

In

R

_V(R + l )2 - S 2 - V(R -

= r 2/r 1> S = s/r.^

D 2 - - s 2

See Ref. 80 for other solutions to eccentric cylinder.

Page 77: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 77/578

Section 2.1. Solids Bounded by Cylindrical S urfa ces— No Internal Heating.

Case No. References Description Solution

2.1.18 4, p. 39 Pipe in semi-infinite solid.

d > 4 r r

2 l T k l < t 2 - t l )

,x i \ r i / K L B i 2 ji

h a . t j

innii)ii>MHin>»>»»i)»»»i»>iiHi

i

h i r i h 2 d k 2 dB i l = T f ' B i 2 = ^ K = k7' D = r7

2.1.19 4, p. 40 Row of pi pes in semi-infini te solid.

2TT k( t2 - tj_)

rr- + «-n .^«-H°^])], for one pipe,

/Z>?zmz7zzpmz?zmzm7777??77d

1k „ . V l „. h 2 d

n dB l i = T - ' B l 2 • — ' D " I

^;v viV vi-v<H

Page 78: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 78/578

Section 2.1. Solids Bounded by Cylindrical Surf ace s—N o Internal Heating.

Case No . References Description Solution

2.1.20 4, p. 40 Row of pipes in a wal l .

yyT7777777T77777777Ty777777777

q =4 i r k ( t 2 - t x )

l i L i V L B l :

• h

lr

l h

2d

dB 1 i = — • B 1 2 = - r - D = i

, f o r e a c h p i p e ,

yyyyyyyyyyyyyyyyy/y/yyyyyyyyy/

2.1.21 4, p. 38 Two pipes in a semi-infinite solid. q l =

2 i r k ( t 1 - t Q ) z±

d' J k1 r 2 / 6 1 C 0 ^ + ( d x - d 2 ) Z

/2d \ 2d , / s2 + (d + a. ) \ 2

For q_, interchange indices 1 and 2

Page 79: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 79/578

Section 2.1. Solids Bounded by Cylindrical Sur fac es— No Internal Heating.

Case No. References Description Solution

2.1.22 4, p. 43 Circular disk on the q = 4 r 0 M t 2 - c^)9, p. 215 surface of a semi-infinite

solid.t = t L , 2 t - t,

t 2 - t j L 7T

2 . - i f= — sin ;i [ ( R - l ,

2

+ Z

2

]1 / 2

+ [(R + l )2

+ Z

2

]1 / 2

.

'W/////MWW 'k

zT.Z = z/r„

2.1.23 4, p. 44 Circular disk in aninfinite solid.t = t , z + ± < > .

q = 8r QK ( t 2 - 4 )

r2I 1

l

*1 1k

2.1.24 4, p. 42 Circular ring in a semi-infinite solid.

M0

t k i1- 2 r „ V

4Tf r 2 ( t

In (^j + Jin

I " V" 4 r 2 "

4Tf r 2 ( t

In (^j + Jin

A - 4, r x « d « r 2

Page 80: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 80/578

Section 2.1. Solids Bounded by Cylindr' "\1 Sur fac es— No Internal Heating.

Case No. References Description Solution

2.1.25 4, p. 42 Vertical cylinder in aserai-infinite s olid.

h , t n

q =2D B l ,

\ln

//////////JWA

d

1k

M"tf.+ T K k | t i - V

k D = d/r„

<*> 2.1.26 9, p. 216 Two semi-infinite regionsof different conductivities

t - t„ 2k „

c o n n e c t e d b y a c i r c u l a r d i s k . fcl ~ fc0 ^ l + k 2 }

t = t , z + +» .

t = t 1 # z -»• -<=.

q z = 0, r > cQ, z = 0.x s in

| [ ( R - D :+ Z Z ] l / 2

+ [(R + l , 2

+ Z

2 ] 1 / 2, Z < 0

'1'///////nsm mm*//////

t - t„fcl " fc0

2k,= 1 -

T T l ^ + k 2 )

x s i n1 ( R - l ) 2

+ Z 2 ] 1 / 2

+ [(R + l ) 2

+ Z 2 ] 1 / 2

q = [ 4 r 0 k l V ( k l + k 2 ' ] ( t 0 - V ' * = 2 / r 0

, Z < 0

Page 81: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 81/578

Section 2.1. Solids Bounded by Cylindrical Su rfaces—No Internal Heating.

Case No. References Description Solution

2.1.27 9, p. 218, F in it e cyli nder with69 J n (R XJ sin h ([ 1 - ZjLX n)t = £ ( r ) , z = 0, 0 < r < r . - V r ° n

on- - r ~ 0 ~ <£ n sinh (LX )t = t Q, z - a, 0 < r < r Q. ^ n

Convection boundary atr V °with h, t.

r = r Q , 0 < z < &,2X 2

nn ( B i 2 + X 2 ) J 2 ' (X )

D 0 n

T R[f(R) - t 0 ] j Q ( RX n )dR

Jo

I

L = J.A 0 , Bi = h r n A , X n J- (X n) + Bi J Q (X n ) = 0, X n > 0

For f( r) = t 1"

t - t J 0 (RX n ) sinh ([_ - Z]LX n)

t . ° - 2 B I y 7-2— 1\1

° n=l (B i +

VW s i n h

<L

V2.1.28 9, p. 219 Case 2.1.27 with t = f ( r ) ,

z = 0, 0 < r < r Q . t - t Q - J V o ( 1 VRemaining surfaces convectionboundaries h, t..

n=l

X cosh (£1 - z ]LX ) + Bi s in h (LI - Z3U )n n nX. cosh (LX ) + Bi s in h (LX )n n n

C , X , L, and Bi are def ined in cas e 2 .1 .2 7.n n

Page 82: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 82/578

Section 2 d . Solids Bounded by Cylindrical Surfac es—N o Internal Heating.

Case No . References Description Solution

2.1.29 9, p. 220 Case 2.1.27 with t = f ( z ) . °° x ( m

r = r , 0 < z < H. t - t Q = 2

t = t Q , z = 0, I, 0 < r < r Q . n=l

_ I Q (mrR) r

2 USE) s i n < ™z ) / [ f z ) " co] i n (n1 ,Z)dz

R = r/S.

2.1.30 9, p. 221 Case 2.1.27 with t = f(z ),K C O S a n 2 ) * BH Si " ( XnZ ) I 0( XnR )]

r = r Q , 0 < z < I. t - tQ = 2 ^ p- 2 2 ,

Remainin g surfaces convection n=l (, BlA + X n + 2 B l l J I 0 { X n R 0 >

boundaries h, t .1

/f(Z)["X cos (\ nZ) + Bi^ sin (X nZ)] dz

•'o

tan (X ) = (2X Bi„ )/( X 2 + B i 2 ) , X > 0, R = i/%n n Jo n v, n

Page 83: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 83/578

Section 2.1. Solids Bounded by Cylindrical Sur fac es— No Internal Heating.

Case No. References Description S o l u t i o n

2 . 1 . 3 1 9 , p . 2 20 F i n i t e c y l i n d e r w i t h s t r i ph e a t i n g a n d c o o l i n g .

q f = - q ^ r = r f l I 5, > z > «, - b .

q = 0 , r = r „ , S, - b > z > - £ + b .T: 0q = +q , c = C , -8, + b > z > - 8 , .

q z = 0 , z = ±i., r = r Q .

t = t Q , z = 0 , 0 < r < r Q .

( t - t n ) k D ^ ( - l ) " l0 ( m i T R )V " _ 8_ V,5- ~ 2 Z,

s i n (imrb/J,) s i n (nmZ)TT- n = Q m i ^ i r n i R ^

m = 2n + 1 , R = r /2 « , , Z = z /2« . , B = b /2J ,

q

t ///////////// ////////q

j I^ ro I1 t1 hf/}///////)T

X "

2 . 1 . 3 2 9 , p . 2 20 F i n i t e h o l l o w c y l i n d e r w i t h :

t - t Q = 2 ^ ^ s in (nnz) / [ f (Z ) - tQ ] s in (mrZ)dZ

n = l

F Q = I0(nTTR) K0 ( m r R 0 ) - K0(n i rR} I0 ( m t R 0 )

P l = I i ( n 1 T R i ) K

1 ( n l r R

0 ) " ^ ( m r R ^ I ^ m r R )

R = l/l

Page 84: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 84/578

Section 2.1. Solids Bounded by Cylindrical Sur fac es— No Internal Heating.

Case No . References Description Solution

2.1.33 9, p. 221 Case 2.1.32 with q = f (z), <» „ r l

t - t Q = - ||- V -—- sin (mrz) / f (Z) sin (nirZ)dZ= r., 0 < z < l .

Remaining surfaces at t . n=l 0

F defined in case 2.1.32

P x = i^ni rR ^ K 0 (wiR 0 ) + K 1 (mrR i ) i 0 (miR 0 )

For f (z ) = q , w < z < (£ - w)

i = o , 0 < < w and (I - w) < z < l :

(t - t n ) k ^ F,

qV k v Fo

TS = > —5— cos (rnrw) s in (nuz) , n = 1,3, 5 ,1 ~ n F,=l 1

W = w/Jl

Page 85: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 85/578

Section 2.1. Solids Bounded by Cylindrical Su rf ace s—N o Internal Heating.

Case No . References Description Solution

2.1.34 9, p. 222 Case 2.1.32 with t = f( r) ,

z = 0, i t < t < t Q .

Remaining surfaces at t

z = 0 , r . < r < rQ . t - t Q

__.y ^ 'V W s i n h [ ( 1 - z ) U n ]2 n=l [ J 0 ( V - J0(Vo>] S i n h ( L V

1x f [Rf (R) - tQ ] O 0 (R Xn )dR

J0

U„(X ) = 0 , X > 0 , R = r / r . , Z = _ /« . , L = l/i.O n n l l

r U 0 ( R V • J0 (R An> V X n V ~ W V Y 0 ( R Vi-"CO — — — — — — — — — — — — - — — - — - — — _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ — _ _ _ — _ _ ^ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

2.1.35 9, p. 222 Cas e 2.1.32 with t = f ( z ) , ™ - - . I - / . ,A COS (A Z) + Bl Sin (A Z)IG(R,n)

• • _• , | X 2 + B i 0 + 2Bi„|G{r.,n)Rema inin g surf aces conve ction n=l |_ n x. S.J 0boundary with h, . . .

= r i , 0 < z < «.. t - tf = 2 Yn=]

x j [t (Z) - tfJj"X_ cos (XnZ) + B i£ s i n (AnZ)]-X)

tan (XJ = 2X^1^1 - B iJ ) . X_ > 0

G(H,n> = V ^ n ' t W W -B 1 l K O f Vo ' ]

dZ

+ I f l < t t n ) [ V l ( W + B i VW]

Page 86: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 86/578

Section 2.1. Solids Bounded by Cylindrical Sur face s—No Internal Heating.

Case No. References Description Solution

2.1.36 9, p. 223 Sem i-in fini te cylinder with:Jn^J

t = f ( z > , r = V z > 0. t - t Q = ^ — j - 5 - / [ f(Z) - t Q ] exp (-X^ + X^)

t = t n , z = 0, 0 < r < r . n=l J0

i

exp (-X Z + X Z)dZv

n nJ n (X ) = 0, X > 0, Z = z/ r

u n n u

2. 1.3 7 9, p. 223 Case 2. 1. 36 with

t = f ( z ) , r = r 0 , z > 0.

Convection cooling at

z =» 0 with h, t f .

t - exp (-X Z + X Z)n n„ J n R A J r _ ,

n=l 1 n J 0

J 0 ( X J = 0, X n > 0

Page 87: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 87/578

Section 2.1. Solids Bounded by Cylindrical Surfa ces— No Internal Heating.

Case No. References Description Solution

2.1.38 9, p. 223 Finite cylinder with heateddisks on (t „ - t_ .)k I, (mm..)

q z = +9 , z = 0, Jl, 0 < r < r L < V IT 2 n ^ d W H , , ) L l u A

- K^mrRg) i^mrR^] , n = l, 3, 5,Remaining surfaces insulated

i i

^

-— Tr i lro

io £-

R = z/l

t . = itm,0

t „ = mean temp, over region 0 < r < r.. , z = £•

t . = mean t emp, ove r region 0 < r < r,, z = 0m, 0 1

2.1.39 9 , p . 2 24 Case 2.1.32 with t = t ^

z = 0 and l, t . < r < r Q .

t = f ( z ) , r = r Q , 0 < z < A.

q = 0, r = r. r 0 < z < l .

/-t=Hz) z = I

* i.

r1 >;/////;///;/;//;/;/ , r ot v//////////////////,

t „ ^ " ^ - t n

t - t 0 = 2

°°2 * ^ s i n (n'flZ) / f"f(Z) - t0"l sin (mrZ)dZ

n = l 2 -T)

F l = I i < n 7 r R i J K 0 ( n 1 T R ) + ^( ff lT R^ IQ(n7TR)

F 2 = I 1 ( m r R . ) K0(n7TR0) + K ^ m r R ^ I n (n7TR 0)

R = r / fc , Z = z / d

Page 88: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 88/578

Section 2.1. Solids Bounded by Cylindrical Su rfaces—N o Internal Heating.

Case No. References Description Solution

2.1.40 9, p. 426 Infinite cylinder in aninfinite medium having alinear temp gradient.At large distances fromcylinder, t = t Q z.

Cylinder, conductivity = k .

Medium conductivity = k .

z = *A„

2.1 .41 9, p. 434 Sector of a c y l i n d e r ,

t = t x, 0

e = o, e n

t = t 1 # 0 < r < r Q ,

fc = V r • V0 < 9 < 9„ .

fc-fcl— tan

si n ( T T 9 / 90)

Isinh K-©]

Page 89: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 89/578

Section 2.1. Solids Bounded by Cylindrical Sur fac es— No Internal Heating.

Case No. References Description Solution

2.1.42 9, p. 451 Two infinite cylinders inan infinite medium.

airkC^ - t 2 )

cosh ( * ^ )

R = r ] / r 2 ' s = s / r

2

w 2.1.43 9, p. 462 Spot heated semi-infinite solid.

K q z = q 0 , 0 < r < r Q f z = 0 .

q z = 0 , r > rQ , z = 0 .t = t r r > 0 , z -* =° .

( t " U kt j k rro qo i

exp (-\z)jQaR)J1a)^

%

H<H

Page 90: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 90/578

Section 2.1. Solids Bounded by Cylindrical Su rfac es—N o Internal Heating.

Case No. References Description Solution

2.1.44 73 Infinite cylinder with twointernal holes.

t m V r " r

0 •t = t., hole surface .

hole radius = A. .

q = Sk(t fl - t.)

S = shape factor

See Fig. 2.6

2.1.45 79 Infinite cylinder withmultiple internal holes.

2nk{t, V

®-i -® 'n

n = No. hol es

r 2 < r x , n > 1

Page 91: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 91/578

Section 2.1. Solids Bounded by Cylindrical Surf ace s—N o Internal Heating.

Case No. References Description Solution

2.1.46 79 Ellipsoidal pipe. 2irk(t x - t 2 )

Jin( ^ )

2.1.47 79 Ell ips oid with a constanttemperature s l ot .

2TTk{t. VJin (*f*)

Page 92: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 92/578

Section 2.1. Solids Bounded by Cylindrical Surf ace s—N o Internal Heating.

Case Ho. References Description Solution

2.1.48 79 Off-center tube row in aninfinite plate. q =

%<5 © © ©~ 1

-»|2rf«- «-2s-» ^ 7

2Ttk(t1 - t 2 )/ 6 2 ( a / 2 d ) \ ( , & ,

CO

9 (a/d) = 2 , exp i i rs/n + |Y /2 d cos [(2n + l )n a/2 d]n=l

e l ( o) = i re2 e 3e 0

OO

8 2(0 ) = ] £ exp kits (n + |)2 / 2 dn=l

9 = 1 + V e x P ( i t sn2 /2d)

n=l

8 = 1 t 2 2 (- •)" e x P (ittsn2/2d)n=l

Page 93: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 93/578

Section 2.1. Solids Bounded by Cylindrical Surfa ce s—N o Internal Heating.

Case No . References Description Solution

2.1.49 79 Single off-center tube inan infinite plate. q =

2 * 1 ^ - t 2 )

H-P^D' - f lS)T~T

t 2_/ t , y

2.1.50 73 Tube centered in a finiteplate. q =

2TTk{t1 - t 2 )

An

Y////////A(—)*¥•\Ttt / 2w

W////M

Page 94: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 94/578

Section 2.1. Solids Bounded by Cylindrical Surfaces—No Internal Heating.

Case No. References Description Solution

2.1.51 79 Heat flow between two pipes

in an insulated infinite plate. q =2nk(t 1 - t 2 )

w \nr /

2.1.52 79i

Tube in a semi-infiniteplate.

'zzm -zz*-AW/MUW

q =2irk(t 1 - t 2 )

2a + an (-*)2w \Tr)

2.1.53 79 Ellipsoid in an infinitemedium.Q -

4TTVI - a 2 / b 2 k{t x - t 2 )

^ — T T T :rctanh (\ l - a / b )

Page 95: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 95/578

Section 2.1. Solids Bounded by Cylindrical Su rfa ces —No Internal Heating.

Case No. References <?c r ip t i on S o l u t i o n

2 . 1 . 5 4 7 9

«oI

oo 2 . 1 . 55 79

E l l i p s o i d a l s h e l l . airkf^ - t 2 )

a r c t a n h ( c / b ) - a r c t a n h ( c / b . )

c = yb^ - 3] = Vb2 - a

R od i n a n i n f i n i t e m e di um ,t = t 2 ; x , y , z + °° .

4 t f k < ^ - V r

An (28,/r ) ' I < 0 .1

,-4 ±8- -<T

2 . 1 . 5 6 7 9 S h o r t c y l i n d e r i n a n i n f i n i t e Q = c k ( t , - t2 )zned. jnut = t 2 , - x , y, z + oo .

^ 12r

_ ^ £0 80 . 2 5 1 0 . 4 20 . 5 1 2 . 111 .0 14 .972 .0 1 9 . 8 74 .0 2 7 . 8 4

-28-

Page 96: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 96/578

Section 2.1. Solids Bounded by Cylindrical Su rfa ces —No Internal Beating.

Case No. References Description Solution

2.1.57 79 Toroidal ring in an infinite a-n^k(t- - t- )medium. 1 2t = t 2 . x , y , z - ~ . Q ~ In (Sr^/r.,) ' l / I : 2 * Z U

2.1.58 79 Thin flat ring in an infinitemedium,t = t 2 . x ,y,z -»» .

4ir'k(t - t )Q = to a6 t l / r 2 ) ' V r 2 > 0

2.1.59 79 Two parallel rods in aninfinite medium.

I^

26

Ty

4 7 r k ( t 1 - t 2 )

^ E Z H ]s > 5ra » r

For parallel strips of width 2w, use r = w/2

Page 97: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 97/578

Section 2.1. Solids Bounded by Cylindrical Su rf ac es —N o Internal Heating.

Case No . References Description Solu t ion

2.1 .60 79

, ~

Two alig ne d rods in anin f in i t e med ium.

T

28 -

V,

4 i rk ( t 1 - t 2 )

'[* f fW J-H- , s - 21 > 5r

For aligned strips of width 2w, use r = w/2

2 .1 .61 79 Pa ra l le l d isks in a iiin f in i t e med ium.

1 1M-H

1 1s

1

Q =iitktt^ - t 2 )

' . I- - arc tan ( r /s ), s > 5r

2.1 .62 86 I n f i n i t e c y l i n d e r w i t hsymmetr ic isothermal caps .

kTTt^ - t 2 )q ~ 2 Hn [ 2 ( 1 + c o s 9 ) / s i n 8 ]

Page 98: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 98/578

Section 2.1. Solids Bounded by Cylindrical Su rf ac es —N o Internal Heating.

Case No . References Description Solution

M

Page 99: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 99/578

Section 2.1. Solids Bounded by Cylindrical Sur fac es— No Internal Heating.

Case No. References Description Solution

toi

Page 100: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 100/578

Section 2.2. Solids Bounded by Cylindrical Surfaces—With Internal Heating.

Case No. References Description Solution

2.2.1 4, 51 Infinite cylinder withconvection boundary.

tn,h.

( t - t Q ) k

§ i - J

2 . 2 . 2 4 , 5 1

Iu >ui

H o l l o w i n f i n i t e c y l i n d e r w i t h ( t - tF ) kn o x i o w i n r i n i c e c y x i n a e r w i c n ( c - C _ ; K . i . r _ -i _ _ iw i t h c o n v e c t i o n b o u n d a r y o n — = - r r v l - R , + 1 - R + 2 R . Jin ( R ) lo u t a i d e s u r f a c e . q " ' r „ « IB 1 L J-J i Iq r - 0, r = i L

c/cit B i = h rQ / k

Page 101: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 101/578

Section 2.2. Solids Bounded by Cylindrical Surfac es—Wi th Internal Heating.

Case No. References Description Solution

2.2.3 4, 51 Hollow infinite cylinder with (t - t f ) k .. , . p , -i „ , iconvection cooled inside — = ~ | — R Q- 1 + 1 - R + 2R In (R)|

oI

surface.q r = 0. r = r 0

q-" r :

R = r/r , Bi = hr./k

2.2.4 2, p. 189 Infinite cylinder with

temperature dependent heat

t = t Q , r = r Q

q ' " = q ^ " d + 3t)

J (VPS: R)

s H r i - § — • o R - ten"* '*B t 0 + X J n(VPo7) B ° °

IJ o l " " S '

B t m + l

Mean temp: -g2 J

1

( V ? 5 i )

Max temp:

0 t° ^ V ^0t + l

max _ 16 to '^(Gfy

See Fig. 2.2

Page 102: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 102/578

Section 2.2. Solids Bounded by Cylindrical Surfaces—With Internal Heating.

Case No. References Description Solution

2.2.5 2, p. 189 Case 2.2.4 with:

toI

j (VPO" R) J (VPO~ R>

t = t„, r - r , 0 < $ <ir. t ' Vt = 2 ~ ~ * 7 > „ ZZT" '

q. . . = «.(i + 6t)n = 1, 3, 5, ...

Pojj-B^'rjA

2.2.6 2, pg 191 Case 2.2.4 with convection

boundary.

-O8t i- l0 t f + l

3 o ^ R >VPOT

' o 1 * 5 5 ^ - ~ i i J i ( V K i )

, P og = B q ' - ' r ^ A

Mean temp:2 J l( V 5 o T )

See Ref. 85 for nonuniform convection boundary solution.

Page 103: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 103/578

Section 2.2. Solids Bounded by Cylindrical Surfac es— With Internal Heating.

Case No. References Description Solution

2.2.7 2, p. 193 Infinite hollow cylinder with „

temperature dependent heat Q

source.

fc

" Vr = r

0 •t •> t i # r = r i .

q ' " - q n " ( l + St) .

t . + 1 \

(0 t „ + 1)

V ^ ' ( B t . + i) '0 „ (V fSlRj.)

( 3 t 0 + l)

(Bt. + D V ^ B V " J o ( V ^ )

a0(VPoTR)

Y 0(VPO^R)

MI

B =J 0 ( R . V P O ^ ) YQ ( V P V " J o ( V 5 ° B ' Y o ( R i V 5 ° B )

p

° B = B W k ' R = r / r o

2.2.8 2, p. 194 Infinite hollow cylinder

with temperature dependent

thermal conductivity,

t - t 0 , r - r..

fc = V r = Vk = k Q [l + B<t = t n ) ] .

( t - t Q ) k

. „ 2 2PoD| P oB 6(1 - R 2 ) (' - 0 n (1/R)

Zn

(k)

1/2

Po - , » T 0 B A 0 , K - r / r Q

Page 104: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 104/578

Section 2.2. Solids Bounded by Cylindrical Sur fac es— Wit h Internal Heating.

Case No. References Description Solution

2.2.9 6, p. 272 Electrically heated wire withtemperature dependent thermaland electrical conductivities.

t " V r r o •k t A t Q -.l + 3 t ( t - t Q) .k e / k e O = 1 + B e ( t - t n ) .

B = ^ & , . -X-^3k t o L

I(Jj

- J

k = thermal conductivity

k = electrical conductivitye J

E = voltage drop over length L

2.2.10 2 , p. 175 Cylindrical heat sourcein an infinite plate.

t = t . r

—VASA c 1-V/# ^v.

TL

2 , n 2

t ~ > V ™0

q'/kW 2n Bk ^B ]

See Fig . 2 .3

B = r 0^h x + h 2 ) / k w

h ^ + h 2 t 2

^ " h 1 + h 2

q' = heating rate in cylindrical source

Page 105: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 105/578

Section 2.2. Solids Bounded by Cylindrical Surf aces —Wit h Internal Heating.

Case No . References Description S o l u t i o n

2 .2 .U 9 , p . 224 F i n i t e cy l inde r wi th s t eadysurface temperature .t = t , z = 0 and SL , 0 < r < r .t » t Q f r = r Q, 0 < z < I.

l t ' V * z - z2 I„(nTrR)

q " ' * , 2

4 y *o*3 £ i n 3V ™ V

sin (nuZ) ,

iCO

2^ N q"

n = 1 , 3 , 5 , . . .

Z - z/l, R = c/SL

2 .2 .1 2 9 , p . 224 F in i t e ho l low cy l in de r . (t - t„) k „ „20 Z - Z

q'"Si

i _ V si n (mrZ) . _1

n = 1, 3, 5,

F = ijtniT R.jK (nirR) + I (mrR)K (m m .)

F 2 = ij^tnirRjJKjjtmrRjj) + I0 ( m r R0 ) X 1 ( m r Ri )

Z = z/fc, R = r/S,

Page 106: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 106/578

Section 2.2. Solids Bounded by Cylindrical Surf aces —Wi th Internal Heating.

Case No. References Description Solution

2.2.13 9, p. 224 Case 2.2.11 with

q ' " = q^"[ i + Pit - t Q)]

( t " V k _ c o s [(VFo72 - Y P Q " Z J _ 1_

q ' " H Po co s (VPo/2) P o

. r- . I . ( X R) s i n (n i rz )4_ X u n

" ^n T l V Wn X

n

, n = 1 , 3 , 5 ,

X 2 = ( 2n + 1)2 T T2 - P o , P o = q ' " B J .2 A , Z = z/l, R = r / J l

2.2.14 9, p. 423 Finite cylinder with line heat

t = t Q, r = r Q , 0 < z < «..

t = t Q, 0 < r < r Q , z = 0, SL.

q'

unit length is located at r , 8 ,

Line source of strength g' per

unit length i

b < z < I - b

"Z _L

2 V 1 — —= —j > — c o s (rairB) s i n (imrZ)

m=l

I (mTTR)? [I (nnTR )K (n mK .) - K (mpR ) I {nfflR j]~ i„ (nnrR„) L n ° n l n ° n 1 J

n=0 V ^ V

x E n c o s [ n ( 9 - ei ) l , 0 < R < R

E = 1 i f n = 0 , E = 2 i f n > 0 , m = 2 n i - ln n

B = b/SL, R = r A , Z = z/l

F o r R < R < R i n t e r c h a n g e R f o r R . .

Page 107: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 107/578

I

Section 2.2. Solids Bounded by Cylindrical Surfaces—With Internal Heating.

Case No. References Description Solution

2.2 .15 9, p. 423 Case 2. 2. 14 wit h a po int . . . „ °°(t - t Q)KJ(, L _

source of strength Q located = — y si n (mirz) sin (mirz..)a t r. , 9 . , z . . m=l

_ I (mnR)

* Z E a H 5 i j [ I n < M B l l n ( l r t l l ' " * n < n i m ) ' n ( B , , V ]n=0 n °

x cos["h(9 - 9 )~| i 0 < R < R

For R < R < R , interchange R for R n .

R = r/SL, Z = z/SL, E = 1 if n = 0, E = 2 if n > 0n n

2.2.16 9, p. 423 Infinite cylinder with ,. =>~ 0 0 1 V

point source of strength Q. g = 2? A c o s [ n '® ~ ®i']fc = fc . r = r . n~~°°

0 0ource located a t r l f 6 ^ ^ exp( -X | z | ) Jn & n R ) J

n^ n

R{>

X>0

4 % C - — f J n ( X n ) = 0 , Z = z / r0 , R = r / r Q

Page 108: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 108/578

Section 2.2. Solids Bounded by Cylindrical Sur fac es— Wit h Internal Heating.

Case No. References Descript ion Solution

2.2.17 16

I

Hollow cylinder with

temperature dependent

heating and thermal

conductivity.t V r Vq t = 0, r = r Q .

V r

q'

k

r = 0.

k Q + a ( t 0 - t ) ,

['" = 1'" + b(t . t ) ,

Solution by numerical method .

See Fig. 2.4 for values of t at r = r. .l

P i = I - ( r. / r Q) , K = k 0 / a t 0 , R = a t y b r ^ , G = g - • ' /b t Q

For a = b = 0: .

( t n - t , )k n

— — - ( l - p.) + - n/3-^-J - -

*o 0

(Eg. (5) in Fig. 2.4)

Page 109: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 109/578

Section 2.2. Solids Bounded by Cylindrical Sur fac es— Wit h Internal Heating.

Case No . References Description Solution

2.2.18 64 Triangular arrayed cylindricalcooling surfaces in an infinites o l i d .t = t Q , r = r 0 .

< m o ,.. .at?

t t - t „)ko ' K V 5• it 2 TT^ to <R)

2 £ (f) V (;f] - •<«See Table 2.1 for values of &. .

See Fig. 2.5 for t values ,maxS - s / V R = r/r Q

Equilateral triangular array

Page 110: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 110/578

Section 2.2. Solids Bounded by Cylindrical Sur fac es— Wit h Internal Heating.

Case No . References Description Solution

2.2.19 64 Case 2.2.18 with a squarearray of holes.

i

O Ox0

o m o

Square array

<fc - V k 2,,,2 = ? £ n ( R )

q' ' s

j=i

See Table 2.2 for values of 6..

See Fig. 2.5 for t values.max

Page 111: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 111/578

Section 2.2. Solids Bounded by Cylindrical Su rface s—Wit h Internal Heating.

Case No . References Description Solution

2.2.20 67 Eccentric, hollow, infinite Se e Ref. 67 for equational solution,cylinder.

K>i

2.2.21 73 Cylinder cooled b y ring of See Ref. 73 for max temperatures,internal holes.

Insu/ated surface

Page 112: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 112/578

Section 2.2. Solids Bounded by Cylindrical Surf aces —Wit h Internal Heating.

Case Ho . References Description Solution

tot

• >v n

Page 113: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 113/578

Section 2.2. Solids Bounded by Cylindrical Surf aces —Wit h Internal Heating.

Case No . Heferences Description Solution

Page 114: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 114/578

<*>

REPRODUCED FROM S

BEST AVAILABLE COPY

Page 115: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 115/578

Section 3.1. Solids Bounded by Spherical Su rf ac es— No Internal Heating.

Case No. References Description Solution

3.1.1. 4, p. 37 Spherical shell. 4n r 0k(t. - t Q)

<r 0/r.) - 1 + (r 0/ r. ) (k/h. r. ) + k / h ^

t - t„ (r QA) - 1fc i " fc 0 ( r 0 / r i » " * + ( r 0 / r i > ( k / r i h l » + k / r 0 h 0

i

3.1.2 92 Composite sphere. 4 i r ( t i " Vn-1

?. 'i ('i rLl) + ? . r2hi = l i = l I

*i-*i i[^( ' i" r ^ ) + ^ J + ^(^'")n-l n

i- 1 1 V 4 1 + l / i - 1 h i r i

n 1- J > 1

t. = local temperature in j layer

Page 116: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 116/578

Section 3.1. Solids Bounded by Spherical Surf ace s— Ho Internal Heating.

Case No. References Description Solution

3.1.3 1, p. 139 Sphere with temperature-

dependent thermal conductivity,

t • t. , r • r. .

t - t Q, c - t Q .

k - k 0 + B(t - t Q) .

4Trr.k (t. - t„)0 m i 0

( r ^ r. )

* m " k 0 V / 2

k - k 0 . t - t fl

k = k., t = t A

v 6 v

3.1.4 2, p. 137 Sphere with variable

surface temperature,

t » f ( 9 ) , r - r n .

t • ^ a r n P (cos 8)

n=0

f ( 9 )

a - * &n 2

£{9) P (cos 9) sin 9 d9n

Page 117: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 117/578

Section 3.1. Solids Bounded by Spherical Su rf ac es —No Internal Heating.

Case No . References Description Solution

3.1.5 2, p. 137 Case 3.1.4 wit h: t 1 , 3 D D . „„ Q , 7 _,3 _ , „„ „,

t = t 0 , 0 < 8 < IT/2 . c 0 Z * * i t > J

t = Q, n/2 < 8 < it . . t i i R

5 Pfcos 8) . . .32 5

3.1.6 2, p. 137 Spherical shell with specified » n 2 n + 1 _ n 2 n + 1

surface temperatures. fc ~ fc 0 = X ( n + 2/—/"' 2n+l \ — ( l ) p

n ( c ° s 9 )

t « t„ , r - r„ . n=0 \, R0 " 7

t = f ( 9 ) , r = tL

f< I P (cos 8)

f(cos 8) - 1] sin 6 d6

R = r/r.I

t = W )

Page 118: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 118/578

Section 3.1. Solids Bounded by Spherical Su rf ac es —N o Internal Heating.

Case No . References Description Solution

3.1.7 4, p. 41 Sphere in a semi-infinit e 4irr k(t - t )

solid. Q = i1 +

2 [ ( d / r Q) + ( l /B i ) " ]

'/A\V////////////A B i = h r ° A

I

3.1 .8 i, p . 43 Hemisphere in the su rfa ce Q = 2rrr k{t - t )of a sem i- inf in i te so l id .

J2v

Page 119: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 119/578

Section 3.1. Solids Bounded by Spherical Sur fa ce s—N o Internal Heating.

Case No. References Description Solution

3.1.9 9, p. 423 Sphere in an infinite medium

having linear temp gradient.

For large distances from sphere

t = t_z. Sphere conductivity

is k, and medium conductivity is r—

k °K 0 .

t 3 k Q

S + ( R ) (2k° + kJ ) J cos 9, R > 1

3.1.10 5919,p. 3-111

Irradiated spherical thin shel l. See Fig. 3.1 for T/T .

q = source heat flux .sT = sink temp .

a = absorptivity . T =a

/ E I / E 2 + 1/4V

1 \ l / e 2 + X I

1/4

^i.

Page 120: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 120/578

Section 3.1. Solids Bounded by Spherical Sur fac es— No Internal Heating.

Case No . References Description Solution

3.1.11 79 Sphere in an infinite medium. Q = 4T T r Qk(t., - t„)t = t 2 , r + » .

3.1. 12 79 Two spheres separated a la rg e

distance in an infinite medium.

4irrk(t - t )Q m 2(1 - r/s) ' s > 5 r

t.

2r

for s > 2r, error = 1%

Page 121: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 121/578

Section 3.1. Solids Bounded by Spherical S urf ace s—N o Internal Heating.

Case No . References Description Solution

3.1.13 79 Two spheres separated a small . ._ ... ,. .Hi L / , , / * 2 , . . . 3 , - , . 'Q =2rrrk(t 1 - t ? ) U + n/s + (r/s) + (r/s) + 2 (r/s)

distance (see case 3.1.12) in

an infinite medium.+ 3( r /s) + -], 2r < s < 5s

3.1.14 79 Two sphe res of dif fe re nt r ad ii

in an in f in it e medium.

4 T r r 2 k ( t l - t 2 )

/

3©r l

\ ( V S ) 4

r l 1 - ( r 2 / s ) 2

- 2r /s , s > 5 r 2

2r,

Page 122: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 122/578

Section 3.1. Solids Bounded by Spherical Sur fac es— Ho Internal Heating.

Case No . References Description Solution

i

Page 123: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 123/578

• i <*„r£aces—No Internal Heatingection 3.1. Solids Bounded by Spherical Surfaces

Page 124: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 124/578

Section- 3.2. Solids Bounded by Spherical Surfaces—W ith Internal Heating.

Case No . References Description Solution

3.2.1 Spherical shell with specified

inside surface heat flux.fc " V r = C 0 •q r - q r r = r. .

<t - t Q)k q , , ' r i

q i r i **<

R = r/r.

2 < R -

0 ' 2 2R* + R 0 ' R

R o - R

RR~

3.2.2 1, p. 190 Sphere with temperature

dependent heating.

, 1 1 1 _ — I I I + 0(t - t n )

( t " V g _ 1 sin (K VPO)

"*0

t - t,

sin (VPO)1 , Po = 0rV k

max 0

t - t,

0 2= 1 - R , Po = 0

0 sin (TTR) ,/-—

max 0

( t m a x - V fV P O

sin (VPO)- 1

Page 125: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 125/578

Section 3.2. Solids Bounded by Spherical Sur fac es— Wit h Internal Heating.

Case No . References Description Solution

3.2.3 6, p. 274 Sphere with nuclear type heating. (t - t.Jk

fc " V r Vq 1 " = q u " [ i - 3 < r / r

0

) 2 ]^ • - * [ « - • ' - » « - ' ' ]

*0 0

3.2.4 9, p. 232 Solid sphere with convection

boundary.

(t - t f )k= i[L - R 2 + (2/Bi)]

See Ref. 85 for nonuniform convection boundary

solution.

Page 126: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 126/578

Section 3.2. Solids Bounded by Spherical Surf aces —Wit h Internal Heating.

Case No. References Description S o l u t i o n

3 . 2 . 5 9, p . 232 So l id sphere in an in f i n i t emedium.k = k Q f 0 <. r < r Q .It = kj_, r > r Q .q ' " = q j " , 0 < r < r Q .q ' " = 0 , r > r Q .h = con ta c t coe ff i c i en t a t t = f .t = t^ , r > «. .

<fc " V Q 1 22 — = pi - R + 2 /B i + 2 ^ / ^ ) , 0 < R < 1

o' ' l t ~0 r 0

( t - t j k = 1/3R, r > r% X0

Bi = h r 0 / k Q

Page 127: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 127/578

Section 3.2. Solids Bounded by Spherical Surf aces —Wit h Internal Heating.

Case No . References Descciptioii Solution

Page 128: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 128/578

Section 3.2. Solids Bounded by Spherical Surface s—Wi th Internal Heating.

Case No . References Description Solution

Page 129: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 129/578

I

I

REPRODUCED FROMBEST AVAILABLE CO PY

Page 130: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 130/578

Section 4.1. Traveling Heat Source s.

Case No . Refe rences Descr ip t ion Solution

4.1 .1 2, p. 189 Traveling li ne heat source in9, p. 267 an infi nit e sol id .

t = t r x •»• « ° , y •*• ± ° ° .

• • V

» » v

(t - t„)k0 ) l t 1 / vx\„ /v V 2 __ 2 \' — = 2 ? e x P ( - 2 E T M t oV x + y )

y = ve loc i ty of line sourc e

g' = heat ing rate in line p e r

unit length

4.1.2 2, p . 291 Travelin g l ine heat source in

an infini te plate .

t = t Q , x •* °°, y + ±°°.

to.h,

I Iy- "o-'M

£L .

t Q ' h 2 ^

(t - t 0 ) w 1

q'A 2n exp ( - t > . [ A ^ * & ) ^v = ve loc i ty o f line source

q' = heat ing rate of line

Page 131: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 131/578

Section 4.1. Traveling Heat Sources.

Case No. References Description Solution

4.1.3 2, p. 286 Traveling plane heat source

in an infinite medium,

t = t Q, x + <*>.

(t - t Q)kv

(t - t 0)kv

exp (-S)

1, x « 0

, x > 0

q " a

q " = heating rate of the plane

4.1.4 1, p. 352 Traveling point heat source t - tA _ nee 5L — =—9, p. 266 in an infinite solid.

t = t Q, r + ».

q'/kr 4n " 4 " 2a 'j

q' = heating rate of the point

Page 132: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 132/578

Sec t ion 4 . 1 . Trave l ing Hea t Sources .

C a s e N o . Re fe rences Desc r ip t ion So lu t ion

4.1.5 9 , p . 268 Travel ing plane source in

an inf ini te r o d .

t = t Q , x + ±» .

to.h-

X V

(t - t Q ) k C

q~i= <*£ (vx - |x|u\

1/2U = (v 2 + 4 a 2 hC/kA)

v = velocity of source

q' = heating rate of source

C = circumference of rod

A = cross-sectional area

4.1.6 9, p . 268 Traveling point source on the

surface of an infinite plate

and no surface loss.

t = t Q , i •*• =>.

n /Mr* <%

C O ' 1/21

n=l

x cos (•?) xp(vx /2a )

2 2 ^ 2r = x + yv = source ve loc i ty i n x-direct ion

q' = heat ing rate o f point source

Page 133: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 133/578

Section 4.1. Traveling Heat Sources.

Case No. References Description Solution

4.1.7 9, p. 268 Traveling line source on the

surface of an infinite pl ate

with no surface losses,

t = t Q , x + ±«.

(t - tQ) v w k1 + N — cos(rmz/w ) (1 - N) exp (vx /2a)

n=l

/ j

I -J/<WAN = Cl + ( 2 a i m / w » >2 ] 1 / 2

v = source velocity in the

x-direction

q' = heating rate of source

4.1.8 9, p. 269 Traveling infinite strip

source on the surface of a

semi-infinite solid with no

surface losses,

t = t fl , x •* ±» .

( t • V * _ 2 ^ + B

j ' a ir /"'X-B

exp (X)K0[{ Z2 + X 2 ) I / 2 ] d X

X = vx/2a, z = vz/2a, B = bv/2a

See Fig. 4.1

v = strip velocity in thex-direction

q' = heating rate of strip

Page 134: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 134/578

Section 4.1. Traveling Heat Sources.

Case No. References Description S o l u t i o n

4 .1 .9 30 Tr a v e l i n g i n f i n i t e s t r i p s o u r c e

on a s e m i - i n f i n i t e s o l i d w i t h

convec t ion boundary,

t = t f , x + ±°°, and z .

"" /-Source = q s

( t (x ,z ) - tf)k i rvX+L

•LOO

/

V

m V Z

2

+ n , 2

, 2 - 2 .TTH ex p (HZ) J T e x p ( H ' T ~ ) e r f c (Z/2T + HT)

0

x {erf [ (X + D/ 2T + t ] - e r f [ (X - L) / 2r + i :}}*:

v = v e l o c i t y of s t r i pH = 2ah /kv , L = vJ l /2a , X = vx/2a , z = vz/2 a

See F i g . 4 . 2 .

Page 135: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 135/578

Page 136: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 136/578

Section 4.1. Traveling Heat Sources.

C a s e N o . R e f e r e n c e s D e s c r i p t i o n S o l u t i o n

4 . 1 . 1 1 34 I n f i n i t e c y l i n d e r w i t h

m o v i n g r i n g h e a t s o u r c e

on i t s s u r f a c e .

(t

J

- t f ) 2 n r 0 k " X 2 J Q ( X n R ). 1 . 1 1 34 I n f i n i t e c y l i n d e r w i t h

m o v i n g r i n g h e a t s o u r c e

on i t s s u r f a c e .

(t

J

Q 0 " A , (N u2/4) + X Wn=l n

/ h . t , ^ t ( z , r . t )

(t

J

exp( f ±Vfce 2 /16) + x;; C

^(p^/ie) + xj

Nu = 2 h r 0 / k , Pe = 2 v r Q / a , 5 = - * OT

Nu J n ( X ) = 2X j (X )O n n 1 n

+ f o r 5 < 0- f o r £ > 0

i/J-'^ ~-Ring source |

t °0 \

(t

J

exp( f ±Vfce 2 /16) + x;; C

^(p^/ie) + xj

Nu = 2 h r 0 / k , Pe = 2 v r Q / a , 5 = - * OT

Nu J n ( X ) = 2X j (X )O n n 1 n

k- •- ) •

exp( f ±Vfce 2 /16) + x;; C

^(p^/ie) + xj

Nu = 2 h r 0 / k , Pe = 2 v r Q / a , 5 = - * OT

Nu J n ( X ) = 2X j (X )O n n 1 n

' R = r / r 0) •

exp( f ±Vfce 2 /16) + x;; C

^(p^/ie) + xj

Nu = 2 h r 0 / k , Pe = 2 v r Q / a , 5 = - * OT

Nu J n ( X ) = 2X j (X )O n n 1 n

See F igs . 4.4 a and b.

Page 137: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 137/578

Section 4.1. Traveling Heat Sources.

Case No . References Description S o l u t i o n

4 .1 .12 34

I

I n f i n i t e c y l i n d e r w i t h

a moving rin g heat sour ce on

i t s inne r su r face .

A t ,

(t - tf)2TvrjkC - I sn = l

J n ( x R) W Y n (^ R)0 l n* ' Y,{X ) 0 ' n1 n

Xn[WV W ~ W W o>]= f N"[VXnV W - ^< V VX nV ] .

C / 2

• n " ^(Pe /16) +\'ex p I (Pe/4) ± \ ( P e2 / 1 6 ) + \ M ,

+ for? < 0- for? > 0

[ww - ww ] wBn • "I { [ W o - W - W V W ] *

+ [WWV " WWo n}

-f[WW " WWTR = r / r. , Nu = 2hr . /k , Pe = 2v r. / a , £

l l l

See Fi gs . 4.5 a and b .

Z + vr

Page 138: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 138/578

Section 4.1. Traveling Heat Sources.

Case No . References Description Solution

4.1.13 70 Infinite cylinder traveling Temperature solution given in source Ref. 70.

through temperature zones.

^ , , y- h 2-t 2

1 r v )C

— z — ~ < iZone boundary

Traveling plane source in a Temperature solution given in source Ref. 71.

thin rod with change of phase.

* i f ' iMelt zone — ' IQ = Source

4.1.15 71 Traveling plane source in an Temperature solution given in source Ref. 71.

infinite medium with change of

phase.

4.1.14 71

Page 139: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 139/578

Section 4.1. Traveling Heat Sources.

Case No . References Description Solution

iO

Page 140: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 140/578

Section 4.1. Traveling Heat Sources.

Case No. References Description Solution

Page 141: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 141/578

<J\

|

REPRODUCED FROMBEST AVAILABLE CO PY

Page 142: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 142/578

Page 143: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 143/578

Section 5.1. Extended Su rf ac es— No Internal Heating.

Case No. References Description Solution

5.1.3 7, p. 43 Finite rod with end loss,

t = t Q , x = 0.

mkAQ =

ft i2/mk)+ ta n (m&f| ( tQ - t f )

1 + (h /mk ) t a n (mJl)

h i - t f-h„t,V ^ " H

P

t - t co sh QnU - x) ] + (h /mk) si nh [m(£. - x)]

co sh (md) + (h /ink) s in h {ml)

iu = kA

5.1.4 7, p. 44 Straight rectangular fin.

<

h . t ,

°7Eu

Use m = •Wrr in cas e 5.1.3 .

tanh (ml ) .

— a -1

- - *c =* +

See Fig. 5.2

Recommended design criteria: 2k/hb > 5 .

Minimum weight criteri a: 2X,/b = 1.419 V2k/hb

Page 144: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 144/578

Section 5.1. Extended Sur fac es— No Internal Heating.

Case No. References Description Solution

5.1.5 7, p. 52 Straig ht triangular fin.

r ^bf^-o

q = Y2hkbI ± (2>p)

I Q (2-vfI)

2hHkb

t - t f I 0 ( 2 ^ x )fc0 " fcf I (2V0I)

± I 1 (2T^I)See Fig . 5. 2,

Optimum %/h r at io : Vb = 0.655-j | jr .

5.1.6 1, p . 228 St r a igh t f in of minimum mass, t - t " ^n ~ fcp' x

fc 0 fc fi q'

q- = total heat loss.

Profi le:

y = 2k ( X <* \ 2

y = 2k ( X ( t Q - vf q '

- h(t Q - V

Page 145: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 145/578

Section 5.1. Extended Su rf ac es —N o Internal Heating.

Case No. References Description Solution

5.1.7 10, p. 95 Straight fin of convex

parabolic profile.t - 1

t o - fc f W

m = V2h/kb

q = kbm(t 0 - t f )

wi_,„(f^V / 4 )1/3V

211

-1/3

(M

(H

(H1 I 2 / 3 ( ? m i l )

-1/3

, See Fig . 5.2

5.1.8 10 , p. 175 Straight f i n of trapezoidal t - t g

parabolic profile. t - t , ~ \Jl /

f W » ' R - i + i" 2 + 2 VI + 4 m'Jl „2

^ ( t ,- T" (t oI

3 + 1 '

V

See F i g . 5.2

Page 146: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 146/578

Section 5.1. Extended Sur fac es— No Internal Heating.

Case No. References Description Solution

5.1 .9 10, p. 175 Str aig ht fin of trapezo ida l

prof i le .

t - t . K1«WB> + WV B )

fc0 " fc f = WW + W WKl ((y W - W WS c ( t 0 V

H 2 cb s G _ 1 e 0 c 1 e 0 c .

B K (BJ 1, (3J - 1,(0JK (0 )c 1 e 1 c 1 e 1 c

2H* W W + WW

0 = 2H

2H

\ x +b (1 - ta n 9)

e _2 tan 0

= 2H M - ta n 9)

2 tan 9

VI +b (1 - ta n 9)e

2 tan 9 , H = Vh/k s i n 9 ,

S L = £ + —C 2

Page 147: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 147/578

Section 5.1. Extended Su rfaces—No Internal Heating.

Case Mo. References Description Solution

5.1.10 7, p. 54 Cylindrical fin—rectangular

profile.

I (x m)K (x m) - K (x a (x m)_ _ „ Mrmffr ^ \ I D 1 e 1 D

y - <«rx bDKmtt 0 - t f j x m ) K ( x m ) + K ( x m ) T ( x m )e ' <T b l l e ' ( K b

«WuwJ ^-h,t,

m = Y2h/kb

t - t K. ( x m) I <rm) + I {x m)K n (rm)t_ _ 1 e 0 1 e 0t Q - t f - K l ( x e m ) l 0 ( x b m ) + I ^ B O K ^ X J B . )

f, , / ,21 I . (x,m) + BK„(x.i

' I ^ x ^ ) - BK x m)

,m), See Fig . 5.3

8 = I , ( x / x ) / K (x / x. )1 e o 1 e b

Minimum material: use Fig. 5. 4.

5.1.11 7, p. 58 Cyli ndrical fin—triangul ar91 „ . n

p r o f i l e . x b m[l - ( x e / x b ) 2 ]

- I - 2 / 3 ( 6 ) + g I 2 / 3 ( 5 )

i 1 / 3 ( 6 ) + Bl _ 1/ 3 ((S)

m = V2h7kb, 6= - x b m, - I _ 2 / 3 fe)Se e Fig. 5.5.

2/3 i,3/2-

Page 148: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 148/578

Section 5.1. Extended Su rf ac es —N o Internal Heating.

Case No. References Description Solution

5.1.12 10 , p. 106 Cylindrical f i n —

hyperbolic profile .b x b

Q 2 . W * , , , t0 t f ) [ l _ a / 3 ( B 8 ) I _ l y 3 ( B b ) - I 2 / 3 ( B e ) I 1 / 3 ( B b ) ]

(t - t f )( t 0 " V

(x_\1/2 [ I 2 / 3 ( B e ) I l / 3 ( B ) " J ,^ b / [^'V1 1/3 <V

M ' V ' - l f l1 " ]I - 2 / 3 ( B e ) I - l / 3 ( B b » ]

1 / 4 0 ( 1 - 0 ) \1 / 2 [ I 2 / 3 { B e > I - 2 / 3 < B b > " ' - 2 / 3 ( Be » * 2 / 3 < V ]n \ d + P)^n (1/pJ P ^ ' V ^ ' V " '2/3 <e> *l/3 ( V ]

M = Y2hAbx B = | M x3 / 2 , B = f MX3, 7 2, B = | M xV 2

b e 3 e b 3 b 3

, 3 / 2D = <xe - *h) ' M/Vin l / p , p = xf a / x e

Page 149: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 149/578

Section 5.1. Extended Sur fac es —No Internal Heating.

Case No. References Description S o l u t i o n

5.1 .13 1 , p . 234 C yl in dr ic a l f i n of minimum

m a t e r i a l .

UIi

hux 'Q = -j± ( x + 2 ) ( x e / ^ - 1 ) ( tQ - t £ )

P r o f i l e :

y W " ^ ( x j " 2 x e

+ 6 x

5 . 1 . 1 4 1 0 , p . 114 P i n f i n s — c y l i n d r i c a l t y p e .

^ h . t ,

t o — - * - — t , — ^

Q = ~ kd2m ta n h (mK.) ( tQ - t f )

<) = • t a n h J m a ) , "I = > W k d , See Fi g . 5 .1

Page 150: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 150/578

Section 5.1. Extended Sur fac es— No Internal Heating.

Case No . References Description Solution

5.1.15 1 0 , p. 115 Pin f ins—rectan gular type.

Depth of fin = b.Same as for case 5.1.14 except I —d I is replaced by (bd)(H

.1 C

<,-/F r^5.1 .16 10, p. 117 Pin fi ns—c oni cal ty pe. , . 2„ I„ (M)

U Bl I^M) l C 0 V

t - t f ft \ (M>^A)t Q - t f \ x I l ( M)

, See Fig . 5.1

4I 2 (M)

Ml] ")", M = 2V2 ml, m = V2h/kb

Page 151: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 151/578

Section 5.1. Extended Sur fac es— No Internal Heating.

Case No. References Description S o l u t i o n

5 . 1 . 1 7 10, p. 119 P i n f i n s— c o n c a v e p a r a b o l i cs = W-3]<t 0 - V

t - t

^ f

_ i+ W w2

<>1 + (I + | M ^ ) 1/2

, M = V 4 h / k b I , S e e P i g . 5.1

5 . 1 . 1 8 10, p. 121 P i n f i n s — c o n v e x p a r a b o l i c

t y p e .Q jAh t _ t )u 16A I Q ( M ) ( t o c r

« . b r ' * \ , / 2

t - t f I 0 l l M ( x / J l ) ]3 / 4

I 0 ( M ) ' M " 3 V kb

2 V M >M IQ (M)

, S e e F i g . 5. 1

Page 152: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 152/578

Section 5.1. Extended Surf ace s—N o Internal Heating.

Case No. References Description Solution

5.1.19 10 , p. 134 Infinite fin heated by square See Fig. 5.6

arrayed round rods.

— Sn

5.1.20 10, p . 135 In fin ite f in heated bye q u i l a t e r a l - t r i a n g u l a rarrayed round rods,

h.t.

E ~Pk-«n

See Fi g. 5.7

Page 153: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 153/578

Section 5.1. Extended Sur fac es— No Internal Heating.

Case No. References Description Solution

5.1.21 10, p. 185 Straig ht rectangular fin

with nonuniform cooling.

h(x) " + (iy-h = av coeff.a

/h(x).t,

It

t - t. i&Mt Q - t f 2 l / ( Y + 2 >

1 / (Y+2)I Xil <V

1 i <> + i J + 2 , tu D ) J i

* L ( m * ,2

^+ 1

> J

Y+2

V(Y+2) r i

Y+ 2 '

(U)

( Y + D / ( Y + 2 ) ( V1 (Y+D/(Y+2) ( V

V+2

L Y+2.

2 V Y + T r - Y / 2 v ( Y + 2 ) / 2Y + 2

U „ = *• L ml, m = V2h / kbJ, Y + 2 a

.1.22 10, p. 191 Same conditions as case

5.1.21 with:

h(x ) = h.["(1 + a) (x/fc +

{(1 - = ) a + 1 " «cTa+l

n| I { 0)1. „(U 0 ) - I „(U)I , ( 0 0 )/ u \ " n ' ^ l - n ' ^ ' *- n 1 " ' n - l 1 " ^

W I . W W V * I

-B<D

0) I

»-l( D

.2(1 - n)

T / , 2( l- nn"oL1 ( W J

V l ' V W V " H -n^o'Vi 'VWWV WVWV J

- - K^)/2 ( x / & + c) 1/n

(1 + c ) a - n ) / n _ c ( l - n ) / nml

u, x = 0; \i Q = u, x = l , n = — , m = V2h / kb2 a '

Page 154: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 154/578

Section 5.1. Extended Sur fac es— No Internal Heating.

Case No . References Description Solution

5.1.23 10, p. 187 Same conditions as case 5.1.22 2m£ _ / xc\n = — ' U = n V 5 e X P ( - 2l)with: x '

[ , , ... _ i|) = nVa exp(c), 8 = nVa

1 - (a/c) p. - exp (-c)J J If n is an integer:

0 = . 3f ^1 ~ h2v 2m£(l - (a/c)Cl - exp(-c)]) A 3 - A 4

\ = [*„_ <*> - V l 1 * 1 ] [ J n-1 (B > " V l ( S > ]

A2 " [ J n - 1 " W " * ] [ V l ( B ) " W e > ]

A3 = J n ( B ) [ V l ^ - V l ' *1 ]

A 4 = Y m ( e , [ J n - l W " Jn +l ' *>]

If n is not an integer:

. c . A l " A 2

2(raH)2(l - (a/c)Cl - exp(-c)]) A 3 A 4

A l = [" nJ -n ( l | ; : " ^ l - n W i r- " ^ ' 6 ' + 0 J n - l ( e ) ]

A2 = [-J n(*> + * Jn_ 1(W][-nJ .n(B ) - B J ^ t B ) ]

A3 = J n ( e ) [ ~ n J - n ( , , , , " ^ l - n ^ ' l

A4 = J - n

( 0 ) [ ~ n J n ( , t ' ) + ^ n - l W ]

Page 155: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 155/578

Section 5.1. Extended Surfaces —No Internal Heating.

Case No. References Description Solution

5.1.24 10 , p. 205 Straight fin of rectangular

profile radiating to free

space.

t = t 0 , x = 0.

T = T , X = l .e

Space temp = O K .

OK

\>.r^-

Z^

4 0oeT_

kbB(0.3, 0.5) - B (0.3, 0.5)

B = complete beta functionB = incomplete beta function

Q = k b \ f | h ( To " e ) ' s e e F i g s - 5 , B a n d 5 - 9

2 >l/z 3 - L/z 8

=

**' 20o« /kb ' V e

2 3Optimum length: b/i. = 2.486aeT A

Page 156: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 156/578

Section 5.1. Extended Sur fac es— No Internal Heating.

Case No . References Description Solution

5.1.25 10 , p. 211 Straight fin of rectangular

profile radiating to

nonfree space.

T = T , x = 0.

T = T , x = I.

K = incident radiationabsorbed from surroundings.

K 2

2 K „ T :_ f l L . .l p L g v r - [kbT0 \ 5kbZ

Ql/kb1Q

2ae L2Tpkb

4 3 2 5 Z \Z + Z + Z + Z + 1 —K 1 T 0

1 / 2

, K = 2a e , z = T / T1 u e

S e e F i g s . 5 . 1 0 a n d 5 . 11

O p t i m u m l e n g t h : b/SL2 = 2 .365aeT:? /k

Page 157: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 157/578

Section 5.1. Extended Su rf ac es —N o Internal Heating.

Case No . References Description Solution

5.1.26 10 , p. 218 Straight trapezoidal fin

radiating to nonfree space.

T = T , x = 0.

K = incident radiationabsorbed from surroundings.

Se e Figs. 5.12a, 5.12b, 5.12c, and 5.12d.

\ = b / b . = 0.75, 0.50, 0.25, and 0 (triangular fin)e 0

K = 2 ere.

5.1.27 10, p. 228 Straight fin of least material Profile:

radiating to free space.

T = 0, x = 0.f(x) = _JSL.

2kaeT;

7/2

( ) ' •=

3Q4

2aeT„

OK

fc-(fi1/2

Page 158: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 158/578

Section 5.1. Extended Sur fac es— No Internal Heating.

Case No. References Description Solution

5.1.28 10, p. 230 Straight fin with constant Profile:

temperature gradient

radiating to nonfree space

T - TdT 0 e

dx =

SL

10kZ 3 (Z - 1 ) Z < L *• J KjT* *-*• Jl

K S,T 4(Z 5 - 1)Q = 5(Z - 1) K2l

Z = T Q / T e

K = 2 ere

z 5 - i5Z 5 (Z - 1) KjT*

K_ = incident radiation absorbed

T = ( K , / K , )1 / 4

e,rain 2 1 t See Figs. 5.13 and 5.14

Page 159: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 159/578

Section 5.1. Extended Su rf ac es —N o Internal Hea<-i

Case No . References Description Solution

5.1.29 1 0 ,

p . 247

Radial fin of trapezoidal

profile radiating to nonfree

space.

T = T„ , r = r„ .0 0

Fin efficiency: (See Figs. 5.15a-5.15£)

X = b /b„ = 0, 0.5, 0.75, 1.0e o

K

2/ K

1T

0 =

° ' ° "2

' °- 4

Prof i le No. = K^r j j /kbj j

K. = oz , K_ = incident radiation absorbed

Page 160: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 160/578

Section 5.1. Extended Su rf ac es —N o Internal Heating.

Case No . References Description Solution

5.1.30 1 0 ,

p. 275

The capped cylinder,

convection boundary,

t = t Q , x = I.

Insulated inside surfaces.

M f - i 5 r„

- H I — S t.

1

Side:

t - t . cosh (mx) + sinh (mx) fl, (mr )/ l 0(mr )~\£_ LI e 0 e -1

t„ - t ~ co sh (mi) + si nh (mS,) r i , (mr )/ I„ (m r )1O r L l e Q e J

si nh (rnS.) + [c o sh (mS.) - l ] [ l (mr ) / I (mr >]

^ =

mS ,|cosh (mX.) + s in h (mS.) [ l1 ( m r e ) / I ( ) { m r e ) ] }

Top:

t - t . I 0 ( m r ) / I0 ( m r e )

t . - t , co sh (m£) + si nh (m£) fl., (mr )/ I„ (m r )"lO r L l e O e J

2 I 1 ( m r e ) / I 0 ( m r e )mr jc o sh (mS.) + s in h (mJl) [ I (rar ) / I (rar )1 I

m = "Vh/kfi, See F ig s . 5. 16 a, and 5.16b

Page 161: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 161/578

Section 5.1. Extended Suc Ca ces —No Internal Heating.

Case No . References Description Solution

5.1.31 10 , Doubly heated straight,

p . 407 rectangular fin.

t = t Q , x = 0.

t = t & , x = I.

fc - "f

t o - t f= exp(mx) - 2B sinh (mx)

q Q = kbm(2B - 1) (t Q - t f )

r'' i0

q fc = kbmJexp{mJl) - 2B co sh (mJl) ( t - tf ) ]

exp (mi) - ( tp - t ) / ( t - t )1 Tr r r -2 - m=V2h7kbsinh (m£)

See Pi g . 5 .17

Page 162: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 162/578

Section 5.1. Extended Su rf ac es —N o Internal Heating-

Case No. References Description Solution

5.1.32 1 0 ,

p . 394

Single T, straight,

rectangular fin.

t = t Q , x = b.

A l l s u r f a c e s c o n v e c t i v e l y

cooled by h , t f .

%LI

n 1

b

id

It

• ^

Vertical section:

t - t^

t> = —x m xb

— = FJ co sh (m x) + "V2u/v tanh (m a) s in h (mxx)]

|s in h {m b) + V2u /v ta nh (m a) £cosh (m b) - lj )

Horizontal section:

t - t , cos h (m-Ty)= F £'t Q - t f " cosh (m a)

F tan h (m a)m a

y

, See F ig s . 5 .18 a, 5 .18b

co sh (m b) + V2u/v tan h (m a) si nh (m^b)

m = VhTiw, m = Yh/kux y

Page 163: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 163/578

Section 5.1. Extended Su rf ac es —N o Internal Heating.

Case No. References Description Solution

5.1.33 10,

p. 413

Double T, straight,

rectangular fin.

t ** V xi = b i -

All surfaces convectivelycooled by h, t f .

'/AAX 2 b 2

H

m\ u i, b, U,

EI

Ve r t i c a l s e c t i o n s :

t - t f

- — ^ - j - = F^T cosh (nijjjXj ) + ^ si n h (n > x l x 1 )] , 0 < x1 < b 1

t - t^I — - = ^ [ c o s h ( mx 2 x 2 ) + V 2 V V 2 t a n h ^ V

x s i n h ( mx 2 x 2 )] . 0 < *2

< b 2 '

*xl " Sx 7 b 7 E S i n h < r ax l bl> + K l ( c o s h ( m x l b l ) " D ] . 0 < xx < b r

4>x2 " ^ [ S l n h ( m x 2 b 2 ' * V 2 V V 2 t a n h ( r ay 2 a2 >

x (cosh (mx 2 b 2 ) - 1 )] , 0 < x2 < b 2 .

Hor izon ta l s e c t i o n :

t - t f co sh (m YX)

t Q - t f

= F l cosh 0 " ^ ) ' ° < Y l < a l

t - t. cosh (m„2y 2)=— = F F y , 0 < v < a

t Q - t f 1 2 c o sh ( my 2 a 2 i ' *2 2

V = i v ^ t a n h W ' 0 < y i < a i

f y 2 = ^ a 7 t a n h ' m y 2 a

2 ' ' 0 < y 2

< a 2

Page 164: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 164/578

Section 5.1. Extended Sur fac es— No Internal Heating.

Case No. References Description Solution

5.1.33 continuedF =

1 cos h (in _b ) + B sinh (m b )

2 cosh (ra jc,t)2) + 1 ' 2 u 2 ' / v 2 t a n h ^ mv 2 a 2 ' S i n h { m x 2 b 2 '

B = F

2 " Vv

2/ v

i [s i n n ( m

x 2b

2) +

'V 2 u

2/ v

2 t a n h ( m

y 2a

2 '

x cosh (m 2 b_ )l + 2Vu /v tanh (ra b )

Oli

mxl = W** ' \2 = V 5 E 7 1 ^ 2

m x = V 2 h / k u 1 , m 2 = V 2 h / k u 2

Page 165: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 165/578

Section 5.1. Extended Su rf ac es —N o Internal Heating.

Case No. References Description Solution

5.1.34 2, Insulated wires adjoined on t - t m 1

p . 179 a co nv ec t iv el y coo led p la te t - t^ 1 +(fe Kj( r H)/K ( r Hj]( e . g . , t h e r m o c o u p l e w i r e s ) ,t = t , r - co.

Wire ther m, con d. = k .

In su la t i on the rm , cond . = k .P l a t e the rm, cond . = k .

P

tS U T2 , l f 2 .

B =Wire r a d iu s = r . ~ VET + Y k Tw wl w2Wi re i n s u l a t i o n t h i c k n e s s = 6 .

kpWd^ + h2 ) ( l / h i + S / k ^ l1 7 2

rw

w ' H = "V2(h + h2 ) / k w

Page 166: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 166/578

Section 5.1. Extended Su rf ac es —No Internal Heating.

Case No. References Description Solution

5.1.35 9,

p . 157

ito

Composite finite rod.

t = t Q , x = 0.

t = t 2 , x = x 2 .

A 1 , A_ - areas.

C. , C_ = cir cumfe re nces.

Lh, , t f ph 2 ,t f

cosh (A) si nh (B) + H si nh (A) co sh (B) + (T /T ) si nh (Dx/x )

T ~ si nh (D) cosh (A) + H cosh (D) si nh (A)

0 < x < x.

A = m 2 (x 2 - X l ) , B = m 1 (x 1 - x) , D = m ^ , T = t - t f

E " V W l V W z V »1 = V h l C l / k l A l ' m 2 = V h 2 C 2 A 2 A 2

h— xi—^U x.F — * x

2 J l cosh (A) sinh (B) + H sinh (A) cosh (B) + (T /T ) sinh (m b - rax)

sinh (D) cosh (A) + H cosh (D) sinh (A)

\ < X < X 2

A = m 1 x 1 , B = m 2 (x 2 - x) , D = m 2 (x 2 - x ), T = t - t f

Page 167: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 167/578

Section 5.1. Extended Surf ace s—N o Internal Heating.

Case No. References Description Solution

5.1.36 9, Case 5.1.35 with: t - t_ cosh (m l x. - IILX)

p . 157 q = 0, x = x . t - t cosh (m x ) cosh (m, x 2 - "• x ) + H si nh (m x ) sinh (m x - m x )

0 < x < x .

(t - t f ) cosh (m 2 x 2 - ra 2x)

t n - t- H cosh (m.x ) cosh (m x - m x ) + sinh (m x ) sinh (m_x - H L X )

X . < X < X . .

H = V 5 ^ V W A ' m i = V h l C l / k l A l ' m2 = Vh 2 C2 / k2 A 2 - >"2"2 2""2' "1 1 "1 1 ' 1 ^ - j r i ' l ~ r 2 y ~2 2' "2 2

Page 168: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 168/578

Section 5.1. Extended Su rfa ces —No Internal Heating.

Case No . References Description Solution

5.1.37 31 Concave parabolic fin See Fig. 5.19 for valu es at <b(N ,N ) .c s

radiating to non-free space.

T = T , x = 0.

K_ = incident absorbed

N c = (2eoF . 2T^)/kb 0, N S = K 2 / 2 e a F T * .adiating to non-free space.

T = T , x = 0.

K_ = incident absorbedF = view factor.

radiation. .

Profile: f (x) = - | (1 - x/l) .

5.1.38 31 Convex parabolic fin

radiating to non-free space.

Conditions same as for case

5.1.37 except profile is:

f (x ) = - | V l - x/l.

See Fig . 5.20 for valu es of <j>(N , N ) ,

N and N given in case 5.1.37.c s

5.1.39 81 Straight rectangular fin of

variable conductivity.

k = k 0[l 3 ( t - t 0 , ] .

See Ref. 81 for approximate temperature and efficiency

solutions.

Page 169: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 169/578

Section 5.1. Extended Surfaces—No Internal Heating.

Case No. References Descr iption Solution

5.1.40 83 Sheet fin for square

array tubes with

convection boundary,

h f t f .

*

f

o

oooo

- t — 1 - —

I J I

oooo

J J I

+x> +x>

fc- fcf

fco- fc f

2 , Z K

0 lV 5 IOx - mA - 2 + <Y - ^ )

n=-»» m=-°°jca jut

K ^RUST) + i n {R>ET) ^ ^ K Q [AVBT(m 2 + n 2 ) J

n=- c ° m=-°°

n, m 7 s 0 .

21T

K > § l [ ( A / R )2 - IT]

K (KVST) - I ^ R Y B I ) V V K [AVIi(ni 2 + n 2 j], 1 /2

= - m m = - 0 3

K 0 ( K V 5 T ) + I 0 (HVBT) ^ ^ K 0 [AVBl(ni 2 + n 2 ) ]1/2

n=-°° 111=-"

n , m ? 0 .

X = x/ b, Y = y/ b, R = r /b , Bi = h b/k, A = a/b

Page 170: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 170/578

Section 5.1. Extended Sur fac es— No Internal Heating.

Case No. References Description Solution

mi

to

Page 171: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 171/578

Section 5.1. Extended Su rfa ce s—N o Internal Heating.

Case No. References Description Solution

Page 172: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 172/578

Section 5 . 2 . Extended Sur fac es—W ith In te rnal Hea t ing .

Case N o . References Descr ip t ion Solution

5.2.1 1 0 , Straight, rectangular f i n . (t - t )

p . 19 4 q = q Q , x = 0.

q x = 0 , x = b .

1,-h.t,

iUl

I

f . i_ cosh (mx) . . , . , g' ' 'b— mk b = -—- • I „ . - s inh (mx) + a

tanh (m&) q 0m

Optimum profi le:

sinh (2mA) i - g 0 / h b ( t 0 - t f )

2mil 1/3 - q 0/hb(t 0 - t f ) ' ° i V h b ( t 0 " V < 1 / 3

m = -V2h/kb, t = t Q , x = 0

5 .2 .2 1 , p . 246 S t ra igh t in f i n i t e rod .t = t Q , x = 0.

h.t,kq'"

F 7

t - 1 ,fco- fcf

= 1 + 2 1 -km (t f l - t f ) Miti

Page 173: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 173/578

Section 5.2. Extended Surfac es—W ith Internal Heating.

Case Ho. References Description Solution

U1i

Page 174: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 174/578

Section 5.2. Extended Surface s—Wi th Internal Heating.

Case No. References Description Solution

inI

Page 175: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 175/578

f\

I1

IREPRODUCED FROM

BEST AVAILABLE COPY

Page 176: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 176/578

Section 6.1. Infinite Solia s—N o Inte \i Heating.

Case No. References Description Solution

6.1,1 9, p. 54 Infinite plate source.

t = t Q , - b < x < b , x = 0.

t = t . b < x < - b , T = 0.i-rr - [«* K - K)+ e r fK + F0 ] *°° < X < <

See F i g . 6 .1

x = "b x = b

x

Page 177: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 177/578

Section 6.1. Infinite So li ds —N o Internal Heating.

Case No. References Description S o l u t i o n

6 .1 .1 .1 74, Case 6 . 1 . 1 wi th a p l a t e of

p . 424 d i f f e r e n t p r o p e r t i e s .

© 0 ©

l^k^-TTil (-H rfcn=l

(2 n - 1) - X

2VFO.b l

+ e r fc <2n - 1) + XZW% 1

J , - 1 < X <+1

t - t.— = K e r £ c / X " 1 \ - K ( 1 + H ' V d H ) 1 1 - 1

\ D2/ n= l

/ X - 1 + 2nVa^/ot \x e r f c [ -—=• , 1 < X < - 1

V " ^ /

P2C

2k

2 1 + K

Interface temp

t - t7 - = V . K ? > (-H) e r f c / F o ) , X = 1fc » X + K (1 + K ) 2 £ V b 1 '

Por Fo .„ s m a l l :D Z

fc 2 ~ fc » _K . / X - 1e r f co °° ziss-y a + K )-

2K , / X - 1 + 2 Vl\erfc l—2 V P o ^

Page 178: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 178/578

Section 6.1. Infinite Sol ids —No Internal Heating.

Case No. References Description Solution

6.1.1.2 74, Case 6.1.1 with a pulse source(t

p . 427 of heat of strength Q J/m" at

X = 0, T = 0.

t = t Q, -«> < x < °°, T = 0.

V P l C l b 1 / ( X 2 \ V n-1-^H^/\? ( _ H )

{ (2n - X) '+ e x p

n = l

(2n + X)'4 Fo, - 1 < X < 1

« t ^ VP^c^b

IX (-H) n - l

x exp[ fx. - 1 + (2n - D V ^ T T ]2 Ij_L_l _ _ 2_ J_f, K X < - 1

K = Wi n l - KP 2 c 2 k 2 ' 1 + K

6 . 1 . 2 9 , p . 5 4 C a s e 6 . 1 . 1 w i t h : °?_ _ 1 -_ Xt = t Q ( b - x ) / b , -b < x < b, t - t a

T = 0 .

t = t m , b < x < - b , T = o.

* K - K)+ H^ «*K + K) - * ««j . ; ' a T ,

b TT ( L a

- (x + b) 'exp

• (x - b) '

a 2 J2 exp

Page 179: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 179/578

Section 6.1. Infinite So li ds —N o Internal Heating.

Case Ho. References Description S o l u t i o n

6 . 1 . 3 9 , p . 56 I n f i n i t e r o d s o u r c e .

t = t Q , |x | < d , |y | < b ,T = 0.

t = t ^ , | x | > d ,

| y | > b , T = o.

t - t

I - T T ; = i [e r f K - F ox)+ e r f K + K)]x [e r f ( F O - F o * ) + er f ( jFo , + Fob y)]

• + •

6 . 1 . 4 7 4 , p . 4 32 I n f i n i t e c y l i n d e r s o u r c e ,

t = t Q r r < r 0 , T = 0.

fc = fc= o r > V T = °"

exp(-X Fo)C 0 " ^ " Jo

\ \ = K f e x p ( - X2 Fo)c 0 » IT SO

j 0 a R ) j 2 ( X )

J 1 ( X ) YQ(X) - JQ( X ) Y1(X)

J 0 ( X R ) J1 ( X )

f " j1 ( X ) Y0 ( X ) - J0 ( X ) Y1 ( X ) ' j2

a , » > •

dX , R < 1

See Fi g . 6 .2

Page 180: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 180/578

Section 6.1. Infinite So li ds —N o Internal Heating.

Case No. References Description Solution

6. 1. 5 9, p. 55 Sphe rical sour ce,

t = t 0 , r < b , T

t = t . r > b , T = 0

t - t

t = t 0 , r < b , T = 0. t Q

1 / * * \ 1 / * * \- erf fFo - Fo ) - - er f( Fo + Fo )

V r r Q ; 2 V r t Q)

F7 — H K - -:0)2] «*[(*>; • K 0 )

2 ] )2 Fo

See Fi g. 6.3

Page 181: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 181/578

Section 6.1. Infinite Soli ds— No Internal Heating.

Case No . References Description Solution

6.1.5.1 74, Case 6.1.5 with a sphere of

p. 429 different thermal properties.

x erfcA-t-^ _ p V F O 7 \ - e c f\ 2 V F O ; 1 X 2 V F 0 7 / I

fc 0 ' R ( ^ z Vi o ^ J K 2 " ^ V F O ^

- V l j - exp(pjto 2 - P 2 R - l)erfc/ j-~^ - P. V F O ^

t - t

^ 2 _ + K ^(K 2 - 1) (K n

• ^ - e r f c / - 1 + 2 ^ " A + — K ^ ^" 2 - 1 \ 2 V ^ ; ( K 2 - l ) ( K i + l )

x e x p f p2 F o 2 - P 2 R - 1 + 2'Va 2 / a 1 ^erfc/ R - 1 + 2y^/\

V ^

P 2 V F O ^ \ \ , R > 1

P l ° l k l k l K 2 " l K 2 ~ X

K l = V ^ ' * 2 = V ? 1 = K2 + V K 1 ' ? 2 = ^ ^f (+R) = f (-R) - f(+R)

Page 182: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 182/578

Section 6.1. Infinite Soli ds— No Internal Heating.

Case No . References Description Solution

6.1.6 9, p. 6x Adjoined semi-infinite regions,

t = t , x > 0, T = 0.

t = t 2 , x < 0, T = 0.

P V I K O - ] , - - 1 ,OQ < j; < 00

6 .1 .7 7 , p . 89 Spe c i f i ed t emp era tu r e

d i s t r i b u t i o n ,

t = f ( x ) , - » < x < °°, T

CO

vl / > + X0)exp(-X )dX

Page 183: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 183/578

S e c t i o n 6 . 1 . I n f i n i t e S o l i d s — N o I n t e r n a l H e a t i n g .

C a s e N o . R e f e r e n c e s D e s c r i p t i o n So lu t ion

6.1.8 9, p. 88 Adjoined semi-infinite

regions with contact

resistance,

t = t , x > 0, T = 0 .

t = t_, x < 0, T = 0.

«2

t - t

t - t,

t^ \ m r h I1 + A [ e r f K )+ e x p( v+ Hf2/4)x e r f c (Fo + HO /2Yj 1 , x > 0

x e r f c ( | F o * | + H2a 2/2YJ , x < 0

= hyP H = h ( 1 + A > H = - & < 1 + A )k ^ C t ' H l k , A ' H 2 k ( 1 A )

1 2

6.1.9 9, p. 88 Adjoined semi-infinite

regions—no contact

resistance.

tt

t , X > 0 , T = 0 .

t 2 , X < 0 , T = 0 .

__JL . _ i_ [x + A e r f ( Pc 0j ,

t~rr 2 - T^A e r f (K 0' x < 0

A = ^k l "2

x > 0

Page 184: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 184/578

Section 6.1. Infinite So li ds —N o Internal Heating.

Case No. References Description Solution

6.1.10 9, p. 89 Plane source of heating

between adjoined semi-

infinite regions.

t = t . , < X < <=, T = 0.

\ = q 0r x = o, x > o= heat source strength.

X »i

( t - t >k , , .J- 1 = T - ^ T ierfclFo ),

nO. 1 + A \ x/'x > 0

"01

( t - V k 2q 0 a 2

= r T T i e r f c ( l F o x l ) ' x < 0

k * a1 2

6 . 1 . 11 I F p . 3 4 1 L i n e s o u r c e o f h e a t .

9 , p. 2 61 t = t , 0 < r < rQ, T = 0.

i l l

t - t

t „ - t It Fo0 °°

e x p (- K 2 ) • > V r0 * °

I f l i n e i s a s t e a d y s o u r c e o f s t r e n g t h q :

(t - t )k

"i/Vf

Page 185: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 185/578

Section 6.1. Infinite So li ds —N o Internal Heating.

Case No. References Description S o l u t i o n

6.1.12 1 , p . 34 2 C y l i n d r i c a l s h e l l s o u r c e .t " V r i K r < V T =t = V r > rQ , T = 0.

t - tz~ = (Fo * - Fo 2 ] e x p [ - ( F o *2 + F o *2 \ J„ /2 i Fo Fo \

t o "f c- V r o V L V r r

i / J ° V r r J

-v=i

6.1.13 9 , p . 247 S p h e r i c a l s u r f a c e a t s t e a d yt e m p e r a t u r e ,

t = t . f r > t , T = 0.

t = t 0 , r = rf l , T > 0.

t ' fci 1 / *- — - = - e r f c ( F or - Fo

0 l \ ; )

Page 186: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 186/578

Section 6.1. Infinite So li ds —N o Internal Heating.

Case No . References Description S o l u t i o n

6 . 1 . 1 4 9, p. 247 Spher i ca l su r face wi th

convection Ipoundary.

t = t . , r > r Q , T = 0.

B i- t.i _ _

t t - t . (Bi + 1)Rf l

e r f c fPo - Fo | e x p [ ( B i + 1){R - 1)

+ (Bi + l ) F o ] e r f c Fo* - Fo* + (Bi + 1 ) Y F O I .r o J |

IP 6 . 1 . 1 5 9, p . 248 Spher i ca l su r face wi th

s teady hea t f lux ,t = t i f r = r Q , T = 0.q r = V r - V

( t - t )k x r , *~ = =r e r f c (Fo - Fo

% r0 ; )

- exp(R - 1 + Fo)e rfc( Fo^ - Fo^ + V F O | |\ r n

Page 187: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 187/578

S e c t i o n 6 . 1 . I n f i n i t e S o li d s— N o I n t e r n a l H e a t i n g .

C a s e H o . R e f e r e n c e s D e s c r i p t i o n S o l u t i o n

6 .1 .1 6 1 , p . 336 P o in t so u rc e .t - t." °° C 0 / „ *2 \— = - exp - Fo ,i " fc°° A C U V r /= t . , o < r < v x = o. TT^X, = 7 T ^ e x p l" F°r"i ' r > V ro * °

t = t m , r > r , T = 0. X °° 6Vira T

If point is a steady source of strength Q fl :

( t S t ) k rf l

V r 0 " 47r3 / 2V a 1 ? V T

— / e x p l - X F o JdXff A/= V r '

F o r T •+ <*>:

( t - t j k r 1Q 0

= 41T

Page 188: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 188/578

ction 6.1. Infinite Solids—No Internal Heating.

se No. References Description Solution

17.1 1, Spherical shell source.

p . 340 t = t . , r. < r < r1 1

T = 0 .

0 '

t - fc ~ R 0 - 1 [ ( R - l ) :

t. - t_ 6VTTRVFO e x p L 4Fo exp(R + 1)

4Fo ' R > V R 0 * °

R = r/r.

I f the shell i s a steady source of strength Q :

(t - O k VoTV r i 47t 3 / 2

For T •+ °°:

(t - t J kr

OO

exp

, 2,2(r - r ^ X

4a - exp(r + r ^ 2 * 2

4ad)

_14ir

1 . 1 7 . 2 1 , p . 342 Plane sou rce.

t = t t , -a <

t - o |x| > i, x = o.9, p. 263 t = t., -A < x < +J-, T = 0.

/MAA

rtA( y

I I

t - t_

1

If the plane is a steady source of strength q

r r ^ f - = ik exp (~ F o x 2 ) ' i x i * l>*+ °

(t - t j k

1/Vx A

2 2exp(- x X /4a)dX

= VFO"o exp I (-«0-Jf ««.(»;„ i)

Page 189: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 189/578

Section 6.1. Infinite Solids—No Internal Heating.

Case N o . References Description S o l u t i o n

6.1 .18 9 , p . 335 Cyl inder wi th s teady

surface temp,

t = t i f r > r Q , t = 0.t

= v r

- vT y

°-

CO

o i J n

JQ( X R ) Y0(X) - YQ(XR)J0(X)Fo) —

See Fi g . 6 .4

<Jr

n

Jg{A) + Yg(X)

1/2k ( t „ - t . )

0 l

For Fo < 0 .02 :

1t - tt)

( t 0 - t . ) " V5

ax_x

. „ « , - ^ . i - l ( P ) - , if c . . . . . -

32R

6 .1 .19 9 , p . 337 C yl ind r i ca l su r face wi th

convec t ion

t = t i f r > r Q r T = 0.

' ""*: ^ f , B i fboundary. - — = -2 — It . - t_ if I exp(- X'Fo)

J 0 ( X R ) [ X Y1 ( X ) + B i YQ(X)] - YQ(XR)[XJ1(X) » Bi J 0(X>] ^

[ X ^ t X ) + B i J

0 ( ^ ) ] 2 + [X ^ lX ) f B i YQ{X)J

Page 190: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 190/578

Section 6.1. Infinite Solids—No Internal Heating.

Case No. References Description Solution

6.1.20 9, p. 338 Cylindrical surface with

steady heat flux,

t = t i f r > r Q , T = 0.qr = V r

"" V T > °-

I

( t ~ V k 2 f r 2 1 J

0 < X R ) Y1 ( X ) " Tf 0(XR)J (X)dX

— — — = - - / L 1 - e i cP ( ^ F

°>J r , 5 — T^ 0 * JQ ^ jJ (X) + Y * ( X ) J X

2

For Fo < 0.02:

(t - t.)k

V o

For Fo » 1

(t - t.)k

i'K <lFo . , /R - 1\ 3R + 1 ^ = - .2 . /R - 1\ i - = 2 V - i er fc (- ^ =) - - j j - VPS" I e r f c ^ - ^ )

= An /^ f^ - 0.57722v o ~*"U 2>

Page 191: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 191/578

Section 6.1. Infinite S^ Ld s—N o Internal Heating.

Case No. References Description S o l u t i o n

6 . 1 . 2 0 . 1 7 4 , C a s e 6 . 1 . 2 0 w i t h tw o d i f -

p . 434 e r e n t t h e r m a l m a t e r i a l s ,

t = t . , r > 0, T = 0.

g c = q n , r = r0 , T > 0.

n

( t. - t . ) k J„ (A R)J . t t )dA

Vo / J L v ^ X4< < > +

(t - t4 ) k

X R i * • v o \ ^ a X R ' *

^h =^ / " [ l - exp^o j ~^f-

* K J i ( X , 7o W ?x ) - > § • Vx > J i W r x

(<j) + il l' )

J , (A)

, R < 1

(* + r )

dX , R > 1

"42

Page 192: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 192/578

Section 6.1. Inf ini te So l id s—N o Internal Heat ing.

Case No. References Description Solution

i

6 .1 .21 9 , p . 342 I nf ini te conducti vi ty

cylinder in an in fi ni te

medium.

t = t Q , r > r Q , T = 0.

t = t , r < r Q , T = 0.

CO

fc " t 0 40 f , , 2 _ %dAR < 1

B = 2 p 0 c 0 / p l C l

A = [XJ„(X) - B J ^A ) ] 2 + [XY 0(X) - BY^X)] 1

See Fig . 6.5

6.1.22 9, p. 342 Infinite conductivity

cylinder with steady heat

source in an infinite medium.

t = t , r > 0 , T = 0 .Heat rate = Q per unit length.

(t - t Q )kCO

1 - e x p ( - X 2 F o ) ] ^ - , R < 1X 3 A

B and A defined in case 6.1.21.

See Fig. 6.6.

Page 193: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 193/578

Section 6.1. Infinite Solids— No Internal Heating.

Case No. References Description Solution

6.1.23 9, p. 346 Cylinder with properties fc » j(XR)J<X)dXdifferent from surrounding — = —fr I exp(-A Fo , ) — _ r _ r — , R < 1

medium.

t = t L , r < r Q , T = 0.

t - t r , N J ( X R ) J (X)d)rounding = -£ / exp(-A Fo ) — - p - ^ T

fc - * 0 2Y f ( , 2 , \ J l ( X ) [ J 0 ( e X R ) " ' - Y 0 ( 6 X R ) ' t ' ] d X

= —*- I exp -X Fo, I = -

0

i|) * Y ^ c X j j j j j B X ) - B J0 ( X ) J1 ( B A )

<> = y J ^ X j y ^ B A ) - B Jo ( A ) Y1 ( 0 X )

R > 1 .

A X y B - V 5 ^ , Y = k A00

S e e c a s e 6 . 1 . 4 f o r e q u a l m a t e r i a l p r o p e r t i e s .

6 . 1 . 2 4 9 , P o i n t s o u r c e o f r e c t a n g u l a r ( t - too)4Trrk

p . 4 0 2 p e r i o d i c w a ve h e a t i n g . Q~ " e r c * "'**' T ^ + 1

CO

( S T ) - T i

e x p ( - T X " " ) j e x p f - X2 + T X 2 j - e x p ( - X2 ) J s i n ( F o * X ) d X

x[l - exp(-X2)]

Q(T) = 0 , x < 0. „ 2 j

Q ( T ) = Q Q , n T Q < T < n TQ

+ T.f n = 0 , 1, . . .

Q(T) = 0 , n tf l + T < T < (n + 1 ) T0 . 0 < T < T .

n = N umb er o f c y c l e s .

t = t ^ , r + co. T x = T 1 / T 0 , T = T / T Q , Fo* = r/V5f^

>* r

Page 194: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 194/578

Se ct io n 8 . 2 . So l id s Bounded by P la ri e Sur faces— With In t e rn a l He a t in g .

Case No . Refe rences D esc r ip t io n S o l u t i o n

8 . 2 . 3 9 , p . 1 3 1 I n f i n i t e p l a t e w i t ht ime dependenti n t e r n a l h e a t i n g ,t = t . , -Jt. < x < ±SL,

T = 0.t = t , X = ±1, T > 0.

q " ' = f ( T ) .

q"'

h-HU*|

fu i. \ *» V ( - 1 ) " r (2n + l ) 1( fc " t i ) = iiT Z Un + 1) C O S L 2 — "X J

n=0

x J f ( T ) exp -ir (2nJ o

+ l )2 a (T - x ' ) / i2 J d t

8. 2.4 9 , p . 132 Case 8 . 2 . 3 wi thf t t ) = q £ " e "b T .

( t - t j k

I n * ' *

i 1 i fc os (yy^d) .-] m , . ,

2 ^ (- 1 )" co s (X^X) exp (-X* Fo)

n=0

X = (2n + 1 ) TI /2n

Page 195: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 195/578

m

O iB

•rtJJ

100>£HflcM0)+Jc c-H 0

-w0 4J

f u& O• 0 m•A 41M a00 )

4»t >•rf <aM 4 s-l cC 01W u0 )

<M

, Sr-( PiM>

»0o z•"* 1 ..-1 1 »o 2d > 1 wto 1 O

6-2Q

Page 196: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 196/578

Section 6.1. Infinite So li ds —N o Internal Heating.

Case No. References Description Solution

i

Page 197: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 197/578

Section 6.2. Infinite Sol ids —Wi th internal Heating.

Case No. References Description S o l u t i o n

6 . 2 . 1 9, p . 265 Cy l in d r i ca l s o u r c e of h e a t i n g ,

q ' " = q j " , 0 < r < r1 #

-SL < z < +1 , T > 0 .

q " ' = 0 , r > i t , | z | > J .,

T > 0.

t = t, . , r > 0,

| z | > 0, T = 0.

q"' = 0

•1

— 8 ,

5— = ^ r / 1 - e x p ( - r / 4 a u ) e r f ( X0 *' r l r i J 0 V™

( t - t . ) kdu , r = 0, Z = 0

For S, + » :

( t - t . ) (c

7^T- = * £ ' e xp(~ ^ ) ] « E " ™ ) ' r = °' z =o rq 0 1

Po = OT/r

6 . 2 . 2 9 , p . 347 Case 6 .1 .23 wi th a cy l ind er

and i n t e rna l h e a t i n g .t = t Q f r > 0, T = 0.— i i i — n t i i

to - —( t

~ fc

0)k

0 _4_ f 11 - expi-\2

F o1)\j Q(\R)Jia)a\

q " 1 , 0 < r < rn .T > 0. (t " t n ) k- Vk Q 2 f [l - exp(-X FOjfl [ J0(BXR)(|) - Y0(SXR)4)ldX

x 3 [ *2 • *2 ]R > 1,

1, <|)(and ii def in ed in case 6 .1 .23 .

Page 198: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 198/578

Section 6.2. Infinite Sol id s—W ith Internal Heating.

Case No. References Description S o l u t i o n

6 . 2 . 3 9 , p . 348 Sphe re w i th i n t e r n a l h e a t i n g ( t - tn ) k _ *2

i n an i n f i n i t e m e d iu m ,

t = t Q , r > 0 , T = 0.

- V " FcflrL"rl ' 4 L

1 - 2R i e r f c

*0 0

' " = q j " , 0 < r < rQ ,

T > o

0 , r > r .

T > 0.

2 Fo .3 ,•=—-— i e r f c

0 < R < 1 .

( t - t . ) k * 2 ,

*0 0

0 ' FO f. 2 . /R - 1 \ x .2 /R + 1 \ * .3 c /R - 1\

+ F o i e r f c , R > 1 ,

F o = 2-vSr / r

Page 199: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 199/578

Section 6.2. Infinite Sol ids —Wi th Internal Heating.

Case No . References Description Solution

6.2.4 9, p. 349 Infinite conductivity sphere r• * • -u *• ' ^ u ( t " 0* 1 1 + Bi 6 2 _ .2i n a n i n f i n i t e m ed iu m w i t h - — = — ——. — K Bi, , . 2 3 B l TT

c o n t a c t r e s i s t a n c e . ^ 0 0 L

t = t , r > 0, T = 0. » 2

q ' " - q j " , 0 < r < rQ , T > 0 . X ^ ^ ^ 2 " f V„ » . - 0 ° r > 0. r > 0° K [ u 2 d + B i , - K B i ] 2

+ [ u 3 - K B i „ ] '

0 < R < 1 .

f \ o- .c- / For sm all va lue s of T:

< V ' > r c r k l ( t " V " _ K F o- 3 [1 - (K Bi Fo ) /2 + . . . Ja ' ' ' r0 0

F o r l a rg e v a l u e s o f T:

a ' " r 2

q 0 0

lpL + Bi 1_ 2 + B i(2 - K) 13L B i " * F o "2 B . K 7 i A / ^ J - J

3P cK = " T T ^

P 0 C 0

Page 200: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 200/578

Section 6.2. Infinite Sol id s—W it h Internal Heating.

Case No. References Description S o l u t i o n

lto

6 . 2 . 5 7 4 , p . 426 I n f i n i t e p l a t e w i t h i n t e r n a l

h e a t i n g i n a n i n f i n i t e

medium,

t = t_ , -I < x < I, T = 0.t = tm , «. < x < -£ , T = o.

i U "

fc J . i .

= 1 + PO Fo , er fc (2n - 1J_ + X2VFo7

+ 4 Po Fo,

t - t„

tfi " ^

1 1 + K L, * 'n=l

- r i r [-* (1*4) * * - 2 <2«- (§ * $

l < x < l .

n=l

'2riVa / a + X - ie r f c i W S T -

2 / 2nV5q7c^ + X - 1+ 4 P o F o2 i e r fc ^== , 1 < X < - 1

K = 1

V , H = f — f , f (+X) = f (-X) - f(+X)P 2 C 2 k 2 1 + K

Page 201: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 201/578

Section 6.2. Infinite Sol ids —Wi th internal heating.

Case Ho . References Description Solution

ito01

Page 202: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 202/578

Section 6.2. Infinite Sol ids —Wi th Internal Heating.

Case No. References Description Solution

I

Page 203: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 203/578

7. Semi-Infinite Solids — Tran sient

o oD111OIDDOo:i l

ea<

<><UJ W

CQ

Page 204: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 204/578

Sect ion 7 .1 . Sem i-Inf ini te Sol ids—Ho Inte rna l Heat ing.

Case Ho. References Descript ion Solution

7.1.1 9, p. 61 Constant surface temperature, t - t / *\bx

t = t Q + bx, x > 0, T = 0.

t = t f x = 0 , T > 0 .s

0 s

For b = 0:

V _2k ( t s - t Q ) - V i r

0 s

See Fig. 7.1

i

7.1.2 7, p. 89 Var iable initial temperature,

t = f (x), x > 0 , T = 0.

t = t , x = 0 , T > 0 .s

t - t s ~ cryir , / «,L[-(H*)}--.[- (^)1B

f (B) = £ W

Page 205: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 205/578

Section 7.1. Semi-Infinite Sol ids —No Internal Heating.

Case No . References Description Solution

7.1.3 5, p. 80 Convection boundary

74,

p. 206

t = t i f x > 0, x = 0.

t , .h

t - t .1 _

fcfi-fcl

h ( t f - 1 . )

1 - erf (FO^)

~ expK + Blx ^ i 1 ' e r f K + B i x * ^ l l

= e x p ( c r r h2 / k 2 ) e r f c ( Vo x h A ) S e e F i g . 7 . 2

T 7.1.4to

2, p. 275 Ramp surface temperature. t - t.

t = t., x > 0, T = 0.

t = t. + bT, x = 0, T >_ 0.

t = t . + b r .

bT( l + 2 Fo^ 2 ) erfc ( Fo ; ) - § o ; exp(-Fo; 2)

7.1.5 1, p. 258 Steady surface heat flux,

t = t., x _> 0, T = 0.

g^ = q Q , x = 0, T > 0.

(t - t.)ki ^ 5 f - " "* F o x «fc(Fo*) exp(Fo^)

(t - t )k

- " d - x = o0V5r" VW See Fig. 7.7

Page 206: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 206/578

S e c t i o n 7 . 1 . S e m i - I n f i n i t e S o l id s — N o I n t e r n a l H e a t i n g .

Cases No. Ref eren ces D e s c r i p t i o n Solution

7.1.6 9, p. 62 Time dependent surface

temperature.

t = t Q , x = 0, 0 < T < T 0 .

t = t^, x = 0, T > T Q .

t = t , x > 0, T = 0.

t - t.erfc K).

t - t

0 < T < T„

t. " t,±- = erfc(F 0; ) ^ - ^ erf c(^-2—-y ) T > T„

7.1.7 9, p. 63 Time dependent surface

temperature,

t = t., x > 0, x = 0.

t = b T, x = 0 , T > 0.

bT-

^ i = (l 2 F o ^ e r f c ^ ) - | = Fo* exp (-Fo 2)

7.1.8- 9, p. 63 Time dependent surface

temperature.t = t . , x > 0, T = 0.

l

t = bVx, x = 0, T > 0.

t - t .

b t- = ex pl -2 Fo "J - Vix Fo erf cfF o J

by/r-

Page 207: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 207/578

Section 7.1. Semi-Infinite Sol id s—No Internal Heating.

Case No. References Description Solution

/.1.9 9, p. 63 Time dependent surface

temperature.

t - t.

^53* - A (f • i)i"-*.K)t = t., X > 0, T = 0-it = t t + br"^ 2 , x = 0, T > 0. See Fig. 7.6

br'n/2.

I7.1.10 9, p. 64 Time dependent surface

temperature,

t = t., x > 0, T = 0.

t = e , x = 0, T > 0.

t - t^ - i = | e x p ( - x V b/ ty e r f c / F O * - Vbr\

+ exp (xY b/ct) erfc( Fo + VbTJ

Page 208: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 208/578

Section 7.1. Semi-Infinite Sol ids —No Internal Heating.

Case No . References Description Solution

7.1.11 9, p. 74 Convection boundary with t - t.

step fluid temperature

t = t , x > 0, T = 0.

t f = V 0 < T < Tr t _ t

t f = t 2 , T > V

t f . h -

Iui

;— = e rf c (FO*) - e x p [ B ix + ( H2 /4}Jer fc |Fo* + (H/2)J

i - = e r f c ^ F o * ) - e x p [ B ix + ( H2 /4)jerfc |Fo* + (H/2)J

F h a ( T - T0 ) - |e x p [ B ix + jj j

, 0 < T < T,

+ •— ^ I e r fc^ " ' i 2Vct(T - TQ)

x e r fc2Va(T - xQ )

+ k | ' T > T o

H =2hV5r

Page 209: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 209/578

S e c t i o n 7 . 1 . S e m i - I n f i n i t e So l id s — N o I n t e r n a l H e a t i n g .

Ca se N o . Re fe r ences De sc r i p t i on So l u t i o n

7 .1 .1 2 9 , p . 76 S t ep su r f ac e hea t f l u x . ( t - t . ) k

t = t . , x > 0 , T = 0. IQ*^*= 2 i e r f c

v x / T \ « & < T - x0)J^ = q Q , X = 0, 0 < T < TQ .

^ - 0, X - 0 , T > V T > T

0

See ca se 7. 1. 5 for 0 < T < T. .

_j ' 7 . 1. 13 9, p . 76 Time dep ende nt su rfa ce t - t . = 1, x = 0, 0 < T < T0* heat f l ux .

t = t l f x > 0 , T « 0. t - t i = | s i n_ 1 ( V T0 / T ) r x = 0, T > T0

q = k/Vcrrir, x = 0 ,

° * T * V 2 / V ^ V xpf- Fo* 2,l + u 2 , lq x = 0 , x - 0 , t > TQ . t - t i = ? y L

x ' u 2 ^ d u , T > T 0

Page 210: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 210/578

Section 7.1. Semi-Infinite So li ds —N o Internal Heating.

Case No. References Description Solution

7.1.14 9, p. 77 Time dependent surface

heat flux.

t = t . , x > 0 , T = 0.

q^ = l ^ 2 - x = 0, T > 0,

n = - 1 , 0 , 1 , 2 . . .

( t - t ^ H I + n /2 )_ / o - /•> _ \ ' X U f I ' U

^ ^ 2 " r( | • f)

( t " X l , - 2 ( 4 )n / 2 r ( l + n / 2 ) in + 1 e r f c

q 0VOT Tn/2 ;

See F ig . 7 .8 for n = 2K)

V 7 . 1 . 1 5 3 ,p . 402

p l a t e a nd s e m i - i n f i n i t e s o l i dc o m p o s i t e w i t h c o n s t a n t

s u r f a c e t e m p e r a t u r e .t = t . , - b < x < <*> x = 0 .t = t , x = - b , T > 0.

n=0 '

e r f c (2n + l ) b - x , - b < x < 0,

fc2 " fci _ _ 2 V n _ f u n + l ) b +6x'

n=0

6 - V a i / a 2 , X = k 2 6 A r x B = p ^ y

, x > 0

Page 211: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 211/578

Section 7.1. Semi-Infinite Sol ids —No Internal Heating.

Case No . References Description Solution

7.1.15.1 74, Case 7.1.15 with:

p. 409 t = t ,0 < x < b,

T = 0.

t = t_, x > b, T = 0.

t = t , x = 0, T > 0.o

t - tt~=\ = r f ° ( F°x) * 2 H n _ 1 e t f c ( 2 n o b * F ° x )

n=l

t, - t

(t \ ) (1 K) S ^^ r f 0 [n=l

(2n - 1) Fo. + Fo, :]•O < X < 1 .

t - t1 | _ = J U L y H"" 1 erfc TFO* - Fo* + Fo,t - t. 1 + 1 L L x x I

° n=l

.. + (2n - 1)B Fo.b b.a

( fcl - V K

(t Q - t x ) (1 + K) erfc Fo - Fo. +x b2 K

(1 + K)'{t Q - tx)

y H n - 1 erfc |Fo* - Fo* + 2nB Fo* , X > 1 .

n=l

P l c l k l _ 1 - K _ W 2

Page 212: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 212/578

S e c t i o n 7 . 1 . S e m i - I n f i n i t e S ol id s — N o I n t e r n a l H e a t i n g .

Case No. R efere nces D e s c r i p t i o n Solution

7.1.16 7 , p . 99 Periodic surfacetemperature,t = (t„- t J cos I — — \

x = 0, T > 0.t - t , x > 0 , t = 0 .

0

l T o / '

i ^ = e xp ( - V J x ) c os (u,x - V J x ) , S ee F ig 7 .3- t„

V" "oT = maximum su r fa ce tem per a tu remT 0 = p e r i o d of p e r i o d i c t e m p e r a t u r ea) = 2irn/Tn

Maximum temp:

fcmax ~ fc0 _ o m ( yljl x \

Time for t to rea ch xsmax

St _ m Xfc0 n 2 "Vamrx

, m = Q, 1, 2,

H e a t t r a n s f e r r e d i n t o s o l i d , x < x < x :

q V a A 0 1 T I % \ i i r \1-— r- r- = cos l u x . - - I - cos (a)X_ - 7 )

Page 213: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 213/578

Section 7.1. Semi-InLinite Solids—No Internal Heating.

Case No. References Description Solution

7.1.17 7, p. 106 Periodic fluid temperature,

t.£ =(tf M t 0 ) cos &2L\

T > 0. \ ° /

t = t . JC > 0, T = 0.0

t - to

t C w - tfM o

exp (-yiT* U)T 25 - a n

Cl + (2/H) + ( 2 / H 2 ) ] 1 / 2

Mi)]

t f .h -

H = — 2 = -, ID = 2mr/ximlc °

t = max fluid temperature

T . = period of periodic fluid temperature

Maximum temp:

fc M- fc oexp ( - # * )

( t f M V [l + (2/H) + ( 2 / H 2 ) ] 1 / 2

7.1.18 9, p. 68 Square wave surfacetemperature.

0.*• V X

2mT. < T < (2m + 1)T ,0 0

m = 0, 1, 2, . . . .

t = t - t , x =ra D

(2m + 1)T < T <0

(2m + 2)T .

0,

" T> nTo X

° ' L

°_ /t2n + 1 ) 1V 2 ar 0 J

irr

T = period of periodic temp0

t = mean surface tempm r

L = deviation of surface temp from t

7.1.19 2, p. 248 Quarter-infinite solid.

7.1.20 2, p. 248 Eighth-infinite solid.

7.1.21 2, p. 248 Semi-infinite plate.

Dimensionless temperatures equal product of solution for

semi-infinite solid (case 7.1.1 or 7.1.3) and solution for

.infinite plate (case 8.1.6 or B.1 .7) . See Figs . 9.4a and 9.4b.

Page 214: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 214/578

Section 7.1. Semi-Infinite So li ds —N o Internal Heating.

Case No. References Description Solution

7.1.22 4, p. 84 Infinite cylinder in asemi-infinite solid.Cylinder assumed raassless.

Time for soil to reach steady stat e:

B | = C(d/D + 1/Bi I 1 " 4 4 ,D

I

2 d

C = 4.6 for const, cylinder temperature.

C = 6.0 for const, heat flux from cylinder.

The heat transferred during the time given abo ve:

-2SLKD (t c - t f )

12(d/D + l/Bi D).25

Temperature of cylinder = t .

Initial temperature of semi-infinite solid = t f .

t > t,.c r

The time for th e cylinde r to ret urn t o temp t aft ersteady state is achieved and heating is stopped:

^ = (d/D + VBi/" f (^f-D \ c f

See Fi g. 7.4 for va lue s of f,

Page 215: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 215/578

Section 7.1. Semi-Infinite Sol ids —No Internal Heating.

Case No. References Description Solution

7.1.23 9, p. 264 Semi-infinite surfaceheating,t = t., 0 < x < <*>,

- C D < r < +ot>, T = 0 .

% - v x =

° --oo < y < 0 .

q = 0 , x = 0 ,

0 < y < +°°.

( t - t . , f c 1

q (T/ax Vn

Poer fc K)+S*Ei W2) . , x = 0.

7.1.24 9, p. 264 Infinite strip heatedsurface.t = t., 0 < x < o°,

-=o < y < +=o 1 = 0 .

q x = q Q , x = 0,

-a < y < +a.g^ = 0, x = 0,

y > a, y < -a.

: = -n=- 1 erf / 1 + erf /

V -« {* l ^ a+ e r f( 2^ J

(zVK^ir)Ei 1 + Y.

2VFo\i - y

\2VFO " \ 0

Ei 1 - Y

2Vfo"

x = 0 .

See Fig. 7.5

Page 216: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 216/578

Section 7.1. Semi-Infinite So li ds —N o Internal Heating.

Case No. References Description Solution

7.1.25 9, p. 264 Heating through acircular surface.

% ' V ° < r " VX = 0, T > 0.c r = 0 , r > r , x = 0 , T > 0 .

t = t . , 0 < r < ° ° ,

0 < x < °°, T = 0 .

( t - t . )k

V c ~ = 2 > f \ r e r f c K )

^ x V1 + ( r c / x ) 2]ierfc , r = 0

Page 217: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 217/578

Section 7.1. Semi-Infinite So li ds —N o Internal Heating.

Case Ho . References Description S o l u t i o n

7.1 .26 9, p. 265 Heating through ar ec t angu l a r su r f ace .t = t . , x > 0 , y > 0 ,Z >. 0, T = 0 .

% - V-w < y < +w,-% < z < +&, x = 0 ,

T > 0.

g^ = 0, x = 0

|y | > w, |z j > I,

T > 0.

Maximum temp:

('max ~ fc i)k

q 0w

Average temp:

m l )kq 0w l

| s i n h - 1 (L ) + L s i n h- 1 QS\, -W < y < +w,

-£ < z < +S,, x = 0.

2 - 1— jsi nh (L) + L sinh•HiHH + i

- ^ ^ ] | . - » < y < +w, -S. < z + £ , x = 0 .

L = l /w

Page 218: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 218/578

ection 7.1. Semi-Infinite So li ds —N o Internal Heating.

ase No. References Description S o l u t i o n

.1 .27 9, p . 401 Recta ngu lar wave

su r f ace hea t f l ux .

t = t , x •*•<*>, i > 0.CO

q = q n ( T ) , x = 0 , T > 0 .q n (x) = or x > o.

9 0 ( T ) = q „ ,n x 0 < x < nxQ + V

n = 0 r 1, . . .

V T ) " °' n T 0 +

A T, < T < ( n + l ) Tn .ui x u

n = No. of cy c l es .

At x = 0:

( t - t_) k

V a T o

( t " t I k

2 T_ ^ Vr + - — [(1 - Tx) V ^ - I [T v T)/ViF],

0 < T < T,

< * > 2 ~- 2 T r 1/2 ~\_ _ _ = __ ^ vr + - — ^ _ T i , V5-_ ( T . T i , _ x { T ] / T ) / V n J ,

T < T < 1 ,

CO

I ( T 1 # T) = /

q„(r)-

exp (- T X2) 1(1 - T ) exp (-X2) - exp (-X2 + X 2 ^ ) + T 1

X Z [l - exp (-X 2)]

dX

T = T/TQ , Tx = T l A 0

Page 219: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 219/578

S e c t i o n 7 . 1 . S e m i - I n f i n i t e S o l id s — N o I n t e r n a l H e a t i n g .

C a s e N o . R e f e r e n c e s D e s c r i p t i o n S o l u t i o n

7 . 1 . 2 8 9 , p . 419 S e m i - i n f i n i t e c y l i n d e r S e e c a s e 9 . 1 . 2 0w i t h c o n v e c t i o n b o u n d a r y.

t = t Q , 0 < cQ< c . . , z > 0 , t = 0 .

t = t , , 0 < r < r Q , z = Q, T > 0 .

Convection boundary

of h , t . a t r « t . i z > 0 , T > 0.

7 .1 .29 9 , p . 419 Case 7 .1 .28 wi th : See c a s e 9 . 1 . 2 1t - t x , r = r 0 , z > 0,

T > 0 .t = t n , 0 < r < r , z = 0 , T > 0 .

Page 220: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 220/578

Section 7.1. Semi-Infinite So li ds —N o Internal Heating.

Case No. References Description Solution

7.1.30 19 , Plate and semi-infi-p. 3-83 nite solid composite

with constant surfaceheat flux,t = t Q, 0 < x 1 < 6, 0

< X < <*> r T = 0 .

k •* • » .

q = q", x = 0, T > 0.

k 2 ( t r V _ i2 q" Vo^r 2 m V F o 2 L

exp (m Fo J erfc (m VF o ) -1

+ — , 0 < x < 6

VF 1

Heat flux at interface:

q /q" = 1 - exp (m Fo j erfc (m VF o ) , x = 6 ,

• = (P 2 c 2 / p x cx)

See Fig. 7.9

7.1.31 74 , Semi-infinite rod withp . 211 convection boundary.

t = t . , x > 0 , x = 0 .

t = t_ , x = 0 , T > 0.

— - ± - = 1 exp (VB Td X ) e r f c ( j ^ - B i d F o d

+ e x p ( B i , X) e r f cd n "— — + V B T T F O T2 V F o , d d

T"t , . n

. cross section aread = : r , X = x/d

perimeter

Heat flux at x = 0:

Vk ( t f - t.

= = exp (-Bi F o J + V B T , erfc (VBi Fo,)IT VF oT d d d d d

Page 221: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 221/578

Section 7.1. Semi-Infinite So li ds —N o Internal Heating.

Case No . References Description

7.1.32 74 , Semi-infinite platep. 46 5 with fixed surface

temperatures.

i

v

1

Solution

r } - = + I 2 , *=i*~ sir> (A > exp ( -X2 Fc>)fc o " fc i n n=l n n \ n /

CO

+ ^ 2, "^n 1" s i n < x X) [exp (A n Y) erfc

x rPo* + X n VfoJ + exp {-X nTC) erfc ( F O * - X Vfo )

( Xn F O) r f c ( F Oy ) ] '

A n = nir.

- 2 exp

Page 222: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 222/578

Section 7.1. Semi-Infinite Solids—N o Internal Beating.

Case No. References Description Solution

7.1.33 74,

p . 466

Semi-infinite cylinderwith fixed surfacetemperatures.t = t i f 0 < r < r Q ,

o < y < °°, T = o .

t = t ± , 0 < r < r Q ,

y = 0, T > 0.

fc • V r = r 0 ' ° < y

t - t.- t . ,— J . (A R) r / o \ / * \

n=l

+ exp (X Z) er f c (Fo + X V F 5 )

+ ex p (-X Z) er f c Fo - X V F O \ " | .

< =», T > 0 . w = o

K7H

7.1.34 74,

p . 466

Case 7.1.33 with:convection boundaryh , t . at r = r , and

t = t Q , 0 < r < r Q ,

Z = 0 , T > 0.

t - t. 2 Bi J 0 (X n R) exp (-X nZ)

£L J 0 ^ ( B i 2 + X n )

Bi J n (X„R)^ - Bz J [A R] r / * \+ / 7—= =\ exp (X Z) e r f c (X VFO + Fo }

~ J„(X ) f B i 2 + X 2 U n V n * 'n=l 0 n \ n /

exp {-X Z) er f c f\ VFo - Fo*)

W " B i

Page 223: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 223/578

Section 7.1. Semi-infinite So li ds —N o Internal Heating.

Case No . References Description Solution

Page 224: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 224/578

Sect ion 7.1. Semi-inf ini te So l i ds —N o Internal Heat ing.

Case No . Reference s Description ' Solution

Page 225: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 225/578

Section 7.2. Semi-infinite Sol ids— With Internal Heating.

Case No . References Description Solution

7.2.1 9, p. 79 Steady surfacetemperature andinitial temperaturedistribution,t « T. + bx, x >. 0,

T - 0.

t « t Q, x * 0, T > 0.

t - t, 0 * * * 2 / * \ 2 * *— = (1 + Po + Po Fo ) erf (Fo I + jpr Po Fo exp (" »D

bx _ * _ *2+ Po Fo .T. x

POa' • ''" at

7.2.2 9, p. 79 Case 7.2.1—variableheating,t • T, + bx, x >_ 0,

T = 0.

t

uq ' " - q,

tQ, x = o, T > o.

- q ^ " e_ B x

.

(t - t o)k0" bx

T, Po- b " 1 ) * -Sxer f (Fo ) + 1 - e p

i • X - B * e r fc (VX - Fo*) - \ e

A + p x e r f c (V* + Fo * , ,

q ' 1 •Po*= — ~ , X = <* 32T

Page 226: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 226/578

Section 7.2. Semi-infinite Sol ids —Wi th Internal Heating.

Case No. References Description Solution

7.2.3 9 , p . 79 Case 7.2.1 withband heating,t = T., + bx, x >_ 0,

T = 0 .

t •> t , X • 0 , T > 0 .

g ' " - q j " ,0 < x < d.

q ' " = 0 , x > d .

t - t,— - = Po* l l - 4 i e r fc / F O j+ 2 i2 e r f c IFo* (1 + X) 1

i 2 e r f c [ F O * ( 1 - X ) ] j + § * + e r f ( F G * ) ., 0 < X < l

t - t— - = 2 Po* J i2 e r fc fo*(X - 1)1 + i2 e r f c |Po*(X + 1)1

i 2 e r f c ( F o * ) ) + ^ + e r f ( F O * ) ,i

* q • • > axPo _ JO

kT,

I , X > 1 .

Page 227: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 227/578

Section 7.2. Semi-infinite Sol ids —Wi th Internal Heating.

Case No. References Description Solution

7.2.4 9, p . 80 Insulated boundaryand band heating.t » t . , i > 0 , T = 0 .

X = 0 , T > 0.

(t - t .) k

g^ = 0,

q ' " = q ^" , 0 < x < d,

T > 0.

q ' " = 0, x > d.

, . , . * T = 1 - 2 i 2 e r f c [ F O * { 1 - X)l - 2 i 2 e r f c [ F O * ( 1 + X)l ,

0 < X < 1 .

. . .aT 2 j i 2 e r f c [F o

d

( X 1 }] " i 2 e r f° [F

° d( X + 1 }] ) '

X > 1

IHJ

7. 2.5 9, p. 80 Insul ated boundaryand variable heating,t = t Q + bx, x > 0,

T = 0 .

a = 0, x = 0, T > 0.q . . . = q j . , e - 6 x t

x > 0 , T > 0 .

r r n = — * " exp (-Bx) + — ^M 0 P o \F o Po

X \ X X

+ 2X1 erfc K)+ j exp (X

2

- Bx) erfc f\ - Fo*} + j exp (X2

+ Bx) er fc (x + Fo*)

P o* l i " «

kbx, X = B Var

Page 228: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 228/578

ection 7.2. Semi-infinite Sol ids —Wi th Intecnal Heating.

ase Ho. References Description S o l u t i o n

. 2 . 6 9 , p . 323 Pl a te and se m i- in f i - . . .n i t e so l i d com posi te . ' 1~ (T 1t = t 0 , -b < x < °°fT = 0.

t = t , x = - b , T > 0.

*0 '-b < x < 0, x > 0 .

g-'-ar = 1 - 4

e i e r fc

0 , X '< 0, T > 0 .X .2 „

i e r fc+ X

n=0

f(2 n + 1) - X~| X .2 . / 2 n + X \L -2Vfo- J + 1 + X * e r f c \Z^ }

( Yv f e * ' ) ] - * < - < ° •( V t « ) k" V k l 4 r . n f . 2 _ / 2 n + j x \

^ — = (in) z B { 1 e r f c V T v f s - Jn=0

. f(2 n + 2) + 6x1 , • 2 „ f( 2n + 1) + 6x1 I v -, nf c

L 2 v i s — J -2 1 e r f c

[ 2 V P 5 — J J *x >

° -

+ i 2 e r f

6 = VSp5T2, x = k26 /klf 3 = f = - i FO = ¥-, x = *b

Page 229: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 229/578

Section 7.2. Semi-infinite Sol ids —Wi th Internal Heating.

Case Ho . References Description So lu t ion

7 .2 .7 9, p. 307 Time dependent hea tingand convection boundary.t = t , x > 0 , T = 0.

q " 1 - q ^ " T S / 2 ,s = - 1 , 0, 1, . . .

V h -

( t - t | J ) k- i ., r m + (s/2 )], , , „ T l + ( s / 2 ) [ 1 + ( a / 2 fl F o ( s / 2 ) + l , _n 4 , s+2q^ 'OT — J Fo^~' (-Bi x )

e x p Fo + Bi VP o

X X I X ,(s i + B i2 Fo \ e r f c (\

s+2 / n . in

<* 7.2.8 9, p. 308 Con stant tempera turesurface and bandbea t ing ,t = t - , x > 0, x >» 0 .t = t Q , x = 0, x > 0.

q " ' = 0, 0 < x < x ,

x > x„ .

q " " = q , ; " .X]_ < x < x2 .

Surface hea t f lux:

%'• a t = 2 ie r f c (Fo \ - ie r f c |F o 1 , x =

Page 230: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 230/578

Section 7.2. Semi-infinite Solids —With Internal Heating.

Case No.. References Description Solution

7.2.9 5419,p. 384

Exponential heating,t = t Q / x > 0, T = 0.

q " ' • = q ' " e x p ( -u x ) .

k (

2~q,

fc" V / *\ e x p ( _ 2 M F o x ) r 2i

^k = l e r f c K ) — i i —- L - «* »n_ HEjaa [ e x p (.2 .„ F c g e r f c (F o* _ H )

- ex p [ 2 H F o j e r f c ( P o + M^ .

Sur face temp:

M t w " V = 0 5 6 4 2 _ 1 - e x p (M2 ) e r f c (M)2 q ( J

1 , Va r r 2M , x 0

M = U Vo f

See F i g . 7 .10

7.2.10 74 , p . 383 P la nar hea t pu lse andc o n v e c t i o n b o u n d a r y.I n s t a n t a n e o u s h e a tpu ls e occur s a t T = 0 ,x = x , w i t h s t r e n g t h

• Vm

t = t , X > 0 , T = 0 .

( t - t £)kx 1

Qa = 2 V ^ ° | e x p

- Bi ex p Bi (X -

(X - 1 ) '4 Fo + exp

(X -

1) + Bi Fo e r f cX + 1

2 Fo + Bi VFn]l

Page 231: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 231/578

Section 7.2. Semi-infinite Solids—Wi th Internal Heating.

ito

C a s e N o . R e f e r e n c e s

7 . 2 . 9 541 9 ,

p . 384

D e s c r i p t i o n S o l u t i o n

E x p o n e n t i a l h e a t i n g .t = t Q , X > 0, T = 0.

q i i i = g ^ i i x p J.^J

7.2.10 74, p. 383 Planar heat pulse andconvection boundary.Instantaneous heat

pulse occurs at T = 0,x = x, with strengthQ J

m

t = t

2

r X > 0 , T = 0 .

k ( t - t >o- /_ *\ e x p ( "2 M F o

. . . ,— = i e r f c ( F o

2 qAM

VccF V x) -

*

X

M^ -

exp (M)

iexp (M)

4M exp ( - 2 M F O x )o ) erfc (FOXJ \ X - )

- exp( 2 » * > » ) ('

erfc [Fo + -)iS u r f a c e t e m p :

k ( V t o )

2 q J ' W= 0 . 5642 1 - ex p (M ) er f c (M)

2M x = 0

M = UYOfT

S e e F i g . 7 . 1 0

(t - t f ) k x x

Qot= 2-VTTFO exp (x - i r

4 Fo + exp (X - 1)4 Fo

- Bi exp.2

(X - 1) + B i Fo er fc X + 12 Fo

+ Bi YFn

Page 232: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 232/578

Sect ion 7.2 . Sem i- inf ini te Sol ids—With Inte rna l Heat ing.

Case No. References Des cription Solution

Page 233: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 233/578

Section 7.2. Semi-infinite Soli ds—W ith Internal Heating.

Case No. References Description Solution

i• o

Page 234: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 234/578

OB

SB9«

H

s

R E P R O D U C E D F R O MBEST AVAILABLE COPY

Page 235: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 235/578

Section 8.1. Solids Bounded by Plane Surfa ces —No Internal Heating.

Case No. References Description So lu t ion

8 . 1 .1 9 , p . 94 In f in i t e p l a t e w i th s t eadysurface tempera ture .t » t ( x ) , 0 < x < & ,T = 0.

t = t , x = 0, I, x £ 0.K>V1

t - t Q = 2 > A s in (rnrx) exp (-n V Fo)

n = l

*„ = /= / f (X) sin (mrx) dx

See case 8 .1 .25 for con vect io n coo l in g a t x = i ..

8 . 1 .2 ° , p . 96 In f in i t e p l a t e w i th s t eadysurface temperature andl i n e a r i n i t i a l t e m p e ra t ur e .

t = t Q + b x , 0 < x < J L ,T = 0.

t = t , x = o, a, T >_ o.

t - tb S L

L = 2 V Szlln - 1 2 2sin (mrX) exp {-n IT FO )

n=l

7

Page 236: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 236/578

Section 8.1. Solids Bounded by Plane Sur fa ces —N o Internal Heating.

Cas e (to. Referenc es Descript ion Solut ion

8.1.3 9, p . 97 In f in i te pla te withsteady surfa ce temperature and bi l ineari n i t i a l t e m p e r a t u r e .t = ( tc - t0){ l - | x | ) /0, + t Q ) , -i. < x < + S L ,

T •» 0.t = t , X = tl , T > 0.

D

CO

fc ~ t Q = -i V i c o s [ ( 2 n + 1) 1 ["_ ( 2 n + 1 ) 2 ^ F o ]' e ^ O i r 2 \ <2n + l , 2 |_ * " M ^ L 4 J

n= 0 l

= 1 - |X | - 2 V F O " J ( - l )n f i e r f c (2 n + l X ' )

["(2n + 2) - |x|~ |lL 2VIS Jl

N A ^ A ^ I

i e r fc

— *0

>w\MSee Fig . 8.1

Page 237: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 237/578

Section 8.1. Solids Bounded by Plane Su rf ac es —N o Internal Heating.

Case No. References Description So lu t ion

8 .1 .4 9 , p . 98 In f in i t e p l a t e w i ths t eady su r f acetemperature and bi-p a r a b o l i c i n i t i a ltempera ture .fc - < V V <*2" * 2 ) /

z2

+ t , -a < x < +1,c

T = 0 .

t = t Q , x = ±1,

T > 0 ( s ee ca se 8 .1 .3 ) .

t ~ fc0 32 XTt - t n - 2 2

±UJ (2n + 1) TTX expn O ( 2 n + 1 ) '

£_ i l n^ l i i p o

See Fi g . 8 .2

8 .1 .5 9 , p . 100 In f in i t e p l a t e w i ths teady surfacetemperature and cosinein i t i a l t empera tu re . / vt ~ fc0 - ( tc " V <* ( i f )+ t , -I < x < +&cT = 0 .

t = t n , x = ±1,T >_ 0 .

t„

V fco( f x ) e x p ( - ^ F o )

UsA/^/V/

Page 238: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 238/578

Section 8.1. Solids Bounded by Plane Sur fac es —No Internal Heating.

Case No. References Description Solution

8.1.6 9, p. 97 Infinite plate with74, p. 113 steady temperature and

constant initialtemperature,t = t±, -I < x < I,

T

t 0' ±1.T > 0.

N V » ' V * >

^

+^/\s*

— * < >

oo

T=T: =2 E ^ « V> *** {< FO)i 0 . n x 'n=0

Mean temp:

£ £ - » £ * - ( • * »X

n=0 n

*« " fc 0 /Fo^ — ^ = 1 - 2 ^ / - , FO < 0.1

Beat loss:

Q , V S i n ^ X n i1 * e x P (- Xn F o) ]2£pc (t.- t.) Z Z , X |"X + sin (X ) cos (X )'

* ^ i 0 , n I n n nn= l •- J

X = (2n + l)n/2, See Fig. 8.3

Page 239: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 239/578

Section 8.1. Solids Bounded by Plane Sur faces—No Internal Heating.

Case No . References Description Solution

8.1.7.1 74, Infinite plate withp. 220 convection boundary

(general).t = f (x), -SL < x < +1 ,T = 0.

-h. t.

t - t f = 2X cos (X X) exp (-X Fo 0 ) f 1

— " n . ",, ' I [f W - t-1 cos (X X) dXsin (X ) cos (X ) I L fj n

n n Jn

„ A cos

L x +n=l

cot (X ) = X /Bi

X given in Table 14.1n

8.1.7.2 3, p. 294 Infinite plate with74, p. 223 convection bound ary—

constant initial temp.t = t . , -I < x < +£,

lT = 0.( s e e c a s e 8 . 1 . 7 . 1 )

t - t„ ~ s in (X ) co s (X X) ex p l-\ F o )

t . - t - Z , X + s in {X ) co s (\ )n=l

co t (X ) = X /B in n

t . - t f

t - t

1 - cos ( V B I X) exp ( - Bi Fo) , Bi < 0 .1

r~ = e r f Z 1 " X ) - e x p | B i ( l - X) + B i2 F o ] e r f c f1 ~ X + Bi "VFo)i f \ 2VFO/ L J \2 VFO /

fc l1 + X 1 - exp U3 i( l + X) + B i2 F o | e r f c ( •*• * X + B i VFo") ,\ 2 V F O " / L J \2 VF^ /

+ erf + B i VFO"1VFO

Fo < 0 .1 .S e e F i g s . 8 . 4 a , b , c , d a n d e a n d 9 . I d .

Page 240: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 240/578

Section 8.1. Solids Bounded by Plane Sur fac es— No Internal Heating.

Case No. References Description Solution

8.1.8 1, p. 268 Infinite plate withtime varying surfacetemperature.t = t . , -I < x < S.,

l

T = 0. t = t . + b t ,

x - ± I, T > 0.

I

t ( T ) -

' I I J

- t ( T )

( t - t±) a= Fo +

[(2n + 1) | xj

» * " » ' n r 0 (2n + 1)

x c o s I(2n + 1)

See Table 8 .1 , F i g . 8 .16 and F i g . 8 . 2 5 .

8 . 1 . 9 9 , p . 104 I n f i n i t e p l a t e w i t ht ime varying sur facetemperature (general) ,t = t . , -i. < x < l.

T = 0.

t =

X = ± I, T > 0.

t i + f {T ) ,

, 2 2- V (2n + 1) (- 1 )" _ f (2n + 1) "Tf „- t . = Tt y J tJ — * — F o exp — j—* Fo

n=0

x cos [ • t t t 7 J a ']/"»[" , ^ V "1 [' ""•>] dT'

Page 241: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 241/578

Section 8.1. Solids Bounded by Plane Surfaces—No Internal Heating.

Case No . References Description Solution

8.1.10 9, p. 104 Infinite plate withexponentially varying i _ -bx cos (X"^9) _ 4_ S T (-1)surface temperature. T - t . e „/Trr, it ,n ,•., "-, ,-> . i > 2 „ 2 / ; l r ,,2nt = t. , -I < x < I, * cos (VP3) n = Q (2n + 1 ) |_1 - (2n + 1) u /4Pd J

I

T = 0.

t = t. + T (1 - el

X = ±1, T > 0.

_ bX)i x e x p [_ iaa^i iV F oj c o s [ i 2 n _ ^ ii J L XJ (

b ft (2n + l ) 2 i r 2 a / 4 A2

^ 8 .1 .11 9 , p . 105 In f in i t e p l a t e w i th °°i. ex po ne nt ia ll y var yin g i _ ^bx cosh (XT^d) _ 4 X" (-1)

IT ^->

t = t . , -i, < X < I,sur fac e temp erature . I - t . ^ ^ TT ^ ( 2 n + 1 } r + 4 M / „ 2 ( 2 n + 1 ) 2 - j

T (2n +. l )2 i i 2 „ 1 f~(2n + l)ir „1exp - J j - 1 Fo co s P -—<— XJ= 0.bT

t = t. + Tei

x = ±JL, T > 0.

Page 242: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 242/578

Section 8.1. Solids Bounded by Plane Sur fac es— No Internal Heating.

Case No. References Descr iption Solution

8.1.12 1, p. 299 Infinite plate withperiodic surfacetemperature.fc - "ta - W

( ? ) • " *±1

rax mn5 cos [ ( 2 T T TA0 ) + *]

t = max su rf ace tempmx

t = mean sur fa ce tempmn

cycle time

t W -

M ^ « V b « l

t

-tlr)

5 =

r 2 2f-^Xa) + f 2(XO)

f^(o) + t\{a)

1/2

4> = t an

See Table 8.2

£ xia) f 2 (xa ) - f 2 (a) f^xa)

f x (a ) ^( xa ) + f 2 (a) f 2 (xa)

f x (a ) cos (a) cosh (a ), f»(a) = si n (a) sinh (a)

a = VirPd = JSVir/aT.

Heat stored during half cycle:

2X.pc (tmx

t ) F(a)/0mi l /

F(a) =df ^ (a) + df 2 (a)

1/2

See Fig. 8.5

df x (a ) co s (a) sinh (a) - sin (a) cosh (a)

df _ (0) = sin (0) cosh (o) + cos (0) sinh (0)

Page 243: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 243/578

Section 8.1. Solids Bounded by Plane Surfac es—N o Internal Heating.

Case No. References Description Solution

8.1.13 9, p. 105 Infinite plate with t - t.periodic surface — — _ = A sin (w + 9 + $)temperature. m it - t t , -» < x < I,

T = 0 .

CDI

ID

t<T) -

t = t, + (t - t . )i m i

s i n (on: + 9 ) , x = ±Sb,T > 0.t = maximum sur fa cemtemperature.

^ \ » » * ^ . ^ *^

\~H

• t (T)

H

+ 4ir Y ( - l ) n ( 2 n + 1) [4 Pd cos (9) - (2n + 1 ) 2 TT2sin (9)}/ , 2 4 4~ 16 Pd + {2n + 1) ITn=u

[ - ( 2n + I )2 * 2 Fo /4 ] co s [ i 2E_±_ l )JL x ] .

co sh (X V2 Pd + co s (X -V2 Pd)

x exp

A =cosh { V 2 Pd) + cos (Y 2 Pd)

c os h ( x ^ + X ^ f i ) '

1/2See F ig . 8 .6a .

a rg

. c o s h W ^ + V 2 l)S ee F i g . 8 . 6b .

Pd = 2. to/a .

Page 244: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 244/578

Section 8.1. Solids Bounded by Plane Sur fac es— No Internal Heating.

Case No . References Description S o l u t i o n

8.1.14 9 , p . 1 05 I n f i n i t e p l a t e w i t hp e r i o d i c s u r f a c et empera tu re on ones i d e / c o n s t a n tt empera tu re on t heo t h e r ,t = t . , 0 < x < I,

T = 0 .

* = fci + <f c . Vs i n (u t+ 9) , x = % ,T > 0.t = t . , x = 0 , T > 0.t = maximum surfacem

temperature.

-t(r)

t - t .— = A s i n (wr + 6 + <>)

m I

CO

V n ( - l ) n [n 2TT2 s in (9) - cos (9) PdJ£•> A A 7 A ?

n TI + urtr/ar= l

x exp ( - n V F o ) sin (n IT X)

co sh (XV2 Pd) - co s (xVz~Pd)cosh (V2~Pd) - cos (V2~"Pd)

1/2

$ = argsinh (x>pf + X-y/^l i)

, Pd = I a/a

hH

Page 245: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 245/578

Sec t ion 8 . 1 . So l id s Bounded by P l ane Su r f aces—No In t e r na l He a t ing .

Case No . Re fe rences De sc r ip t i on So lu t i on

8.1.15 9 , p . 108 I n f i n i t e p l a t e w i t h « X (T - T " ) X { T- T ' )s t e a d y p e r i o d i c fc 0 2 V ( - 1 )n . e n - e n

su rfa ce tem per a ture t , - t„ " rr A , n s l n ( m r X } X T. , . 1 0 n= l , n

on one s i de , co ns t an t 1 - et empera tu re on t heo t h e r . T* = x - nff, m » 1 .t = t Q , X = 0, T > 0. fc - X n ( T - T 1 - T ' - ) Xn ( T- T " )

t - t 2 ^ ( H n

fc = V* =*- ir^r = * 2. -H— in { m T X ) s fi

m T < T < ID T + T , X ° n = 1 1 - e n

m = 0, 1, 2 , . . . .» t - t 0 , x - i . mr T " = T - (mT + T l ) f m » 1 .p :

T < T

- i ,(

v1 )

1

T

- * = a n

2

, vT = pe r iod o f cy c l e . n

Page 246: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 246/578

Section 8.1. Solids Bounded by Plane Su rfa ce s—N o Internal Heating.

Case No . References Description Solution

8.1.16 9, p. 109 Infinite plate withsteady surfacetemperature on oneside, insulated on theother,q = 0, x = 0, T > 0.

t = t 1 # x = I,mT < T < mT + T ,

m = 0 , 1 , 2 , . . . .

00

t o

t = t , x = SL , mT

+ T x < x < (m + 1 )T .

T = p e r i o d o f c y c l e .

fcl " fc0 * n 4 * > + 1 ° ° S L 2 X J

X (T.. --TM X T -T ' )n v 1 ' n v

e - e

1 - eX Tn, T ' = T - mT, m » 1

00

_ _ ? _ . i S (-1 )" cos f(2n * l) i t 1- t,t

X (T-T - T" ) X (T -T " )n 1 ne - e

1 - eX T

n

, T " • = t - (mT + T ) , m » 1

X = o (J2n + 1) 2 T T 2 / 4 A 2

Page 247: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 247/578

Section 8.1. Solids Bounded by Plane Surfac es—No Internal Heating.

Case No . References Description Solution

00

I

8.1.17 4, p. 82 Infinite plate with48 steady surface heat

flux and convectionboundaries.t = t , 0 < x < I, T = 0.

%f q 0 r X = «. , T > 0.

tf, h -

( t - V h Bi fio" 1 xp (X - l ) 2

4 Foq 0 " 2 V , |-xp (X - l ) 2

4 Fo

- Bi Po exp (Bi + Bi + 4 Bi Fo

See Fig. 8.18.

For Bi + » :

<fc ' V k VF5 f r (x - i ) 2 i

v - 2vr b 4 Fo J ' tt|

+ exp(X + 1) '

4 Fo

> — ( J v K * *5) ] '

(X + 1 ) '4 Fo

See case 8.1.20 for special solutions.

h-'-H

Page 248: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 248/578

Section 8.1. Solids Bounded by Plane Sur fac es— No Internal Heating.

Case No . References Description Solution

8.1.18 144774 , p. 174 flux and variable

Infinite plate with „ r „ °°steady surface heat q 0 1 ,_ , \ ,„ i, . * . ,, 2 V 1 r „ , v , Cl

— £ - . J (X - 1) + (X - 1) + y + Fo - — £ — cos \m ( X - 1)Jt h e r m a l c o n d u c t i v i t y,t = t Q , -I < x < +1,

0 0 L IT n= l n

2_2X = 0. k = k ( t ) . a is x exp (-n ir Fo)c o n s t a n t .q x = V X = l' " lm

Wok (T) dT

k(t)

- » - x

T = ( t - t0 ) / t 0 , kQ= k ( tQ )

For k( t) = kQ [ l + 3 (t - tQ ) ]

tf k(T) dT = t - fcn S t n / t - t

'0 0

For f$ = 0, se e Fi g . 8. 7.

£(^)For 0 = 0 and q - t e rm ina t ed a t T = D , s ee F ig . 8 .1 " .

Page 249: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 249/578

Section 8.1. Solids Bounded by Plane Surfaces—No Internal Beating.

Case No. References Description Solution

8.1.18.1 3, p. 279 Infinite plate withsteady surface heatflux.t = t t , -I < x < +SL,

T = 0.

q ^ q„ , X = ±1, T > 0.

( t " V k „ X-TJL- = F ° 2 6

X = nnn

n=l X v 'cos (X X)

n

M- -H

Page 250: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 250/578

Section 8.1. Solids Bounded by Plane Su rfa ce s—N o Internal Heating.

Case No. References Description Solution

8.1.19 3, p. 350 Infinite compositeplates with convectionboundary and infinitethermal conductivity.

t = t 2 ,0 < x < i.2, T > 0.

fc V l2 < * A2 + VT > 0.

t = t,

T - 0.

< ^ - 0, x - 0,

h_ is contact coefficient

between 1 and 2.

. Q, 0 < x < *j+ i . r

-X„T -\,Tt - t X,e _ X.e

fc o- fc f x x - x 2

/ - X „ T - x n-r4 - " l ^ f . f e 2 -e 1

t„ - t c " t„ - t* 3 \ X, - X,

X l + X 2 - b l + b 2 + b 3

X l X 2 * b l b 3

bl - 2 A C 2 V b 2 - V P 1 Cl V b 3 - V P 1 Cl S.

V*\'// V.-+<~\ k-»~

1• h r t f

Page 251: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 251/578

Section 8.1. Solids Bounded by Plane Surfaces—No Internal Heating.

Case No. References Description Solution

8.1.20 3, p. 476 Infinite plate withsteady surface heatflux and convectionboundary,t = t f , 0 < x < %, T = 0.

c^ = q Q , x = 0, T > 0.

(t - t f )k

(t - t fn

z \ V5Fo7, 0 £ T < T r

4 0 - i p - t f • & • * « - - A ]

-h.t.

K-«H

x \ 1 - exp[ l + (Bi/3 )]Bi Fo [1 - (T 0 A)]

1 + 2(Bi /3)+ 2(B i 2 /15)T > T„

T Q = penetration time to X = 1

= 1 2/5CL

See case 8.1.17 for general solution.

8.1.21 3, p. 349 Infinite plate withunsteady surface heatflux; convectionboundary and infinitethermal conductivity,

t = t , 0 < x < £,, T = 0.a = q.cos (cot) , x

(t - t f )hCOS (WT - b) -

V m + to2 ^ 2

ex p (-mx)

m = h/pct, b = tan (to/ra)

k->«>|-h.t,

k - f — I

Page 252: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 252/578

Section 8.1. Solids Bounded by Plane Su rfac es—N o Internal Heating.

Case No. References Description Solution

8.1.22 2, p. 248 Semi-infinite plate,quartet-infinite plate ,infinite rectangular bar,semi- infiniterectangular bar,rectangularparallelepiped.

Dimensionless temperatures equal the product of solutionfor semi-infinite solid (case 7.1.1 or 7.1.3) andsolution for infinite plate (case B.1.6 or 8 .1 .7) .Se e Figs. 9.4a and 9.4b.

8.1.23 9, p. 113 Infinite plate withunsteady surfaceheat flux.

( t - t ,) k

V T4 r - 2m + 1 r (m/2 +1 , VFO- y i -i. r t c r <2 n + i> -x i* 2 n=0 L 2 VFO" J

. .m+1 ,+ I e r f c (2n + 1) + X"|

2 V?o J

k-i-l

Page 253: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 253/578

Sec t ion 8 . 1 . So l id s Bounded by Plane Surfaces—No Inte rna l Heat ing .

Case No. References De scr ip t io n

8.1 .24 9 , p . 114 Case 8 .1 .23 wi tht = t . , x » 0, T > 0.

S o l u t i o n

(t - t . )k

q 0 *T

1 ' " ' = 2 n H " 1 T (m/2 + 1) VF 5 J i1m+1m/2 n=0

fe f( 2 n -f- 1) - X le t t c L — n S — J

.m+1 .I e r f c

f (2n + 1 ) + x ]

L 2 V F O " J

8 .1 .25 .1 9 , p . 120 In f in i t e p l a t e w i ths t eady su r f acetempera ture , convec-ti o n boundary andv a r i a b l e i n i t i a ltempera ture ,t = f (x ), 0 < x < I, xt = t Q , x - 0, x < 0.

• " 1 * 0

( t

co / 2 2\V (Bi + \ ) s i n i\ X)

- V = 2 y exp (-X F o V °> "n=l x ' Bi + X + Bi

n,-1

* / [ t 0 - f (X)] si n (Xn X) dx- J o

Bi = hVk f * co t (A } + Bi = 0n n

See case 8. 1 .1 for t = t , x = I, x > 0

•h-«H

Page 254: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 254/578

Section 8.1. Solids Bounded by Plane Su rf ac es —No Internal Heating.

Case No . References Description So lu t ion

8 .1 .25 .2 74 , p . 239 In f in i t e p l a t es teady surfaceand convect ionboundar ies .

" i t h t - t n v fai2 + *

2

) ["i - « * <* >1 / , \

t = t , 0 < x < SL,

T - 0 .

t - t f l , X = C, T > 0 .

I—I—I

X cotn

See Fig . 8 .24

n=l [ Bi + Bi + \

+ Bi = 0

* 0 " - M ,

Page 255: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 255/578

Section 8.1. Solids Bounded by Plane Su rfac es—N o Internal Heating.

Case No . References Description Solution

8.1.26 7 4 , p. 236 Infinite plate withparabolic initialtemperature andconvection boundary.

o < x < a, T = o.t = t , x = 0 , T = 0 .ct = t , x = ±1, T = 0,

* - fcf 1 + 4t s _ t f n = 1 K X n /

s i n (X ) cos (X X)n nX + s i n (X ) cos (X )n n n

exp «»oX n tan (X n) = *i t

H" -HCDI

-h . t .

Page 256: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 256/578

Section 8.1, Solids Bounded by Plane Sur fa ce s— No in. .. ,u. Heating.

Case No . References Des cript ion Solut ion

8.1.27 9, p . 125 Infinite plate withsteady surface tempand convectionboundary,t = t , 0 < x < H, T = 0.

t • t 0 , x = 0 , t > 0.

-h.t,

B i X1 + B i

- 2 B^ s in (X X) exp f -X Fo 1

n=l (Bi + B i 2 + X 2 J si n (X )

V cot (X \n V V Bi = 0

h-*—I8.1.28 9, p. 126 In fi ni te pl at e with a

steady surface temp.Convection boundaryand linear in it ia ltemperature,t = ( t j- t Q)x/l + t Q ,

0 < x < l, T » 0.t = t Q , x = 0, T > 0.

•h,t.

fc - fc 0 X +[Bi ( t f - trf/^ - t Q ) - Bi - 1

Bi + 1

2 JBi [(t f - t 0 ) / ( t l - t 0 )]

^ sin (X X) exp ( - X 2 Pol

n=l ( Bi 2 + Bi + X 2 } si n (X n )- Bi - 1

X co t (X ) + Bi = 0n n

h-i-H

Page 257: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 257/578

Section 8.1. Solids Bounded by Plane Su rfa ce s—N o Internal Beating.

Case No. References Description Solution

8.1.29.1 9, p. 126 Infinite plate withtwo convectiontemperatures,t = t , -I < x < +1, T = 0.

fc" fc o _ B J X _ yt - t - 2 (Bi + 1) B 1 _4-

s i n ({5 X) exp « » )n=l ( B I 2 + Bi + e 2 ) s i n (B )

t n , h-

osIo

f-i-^[-i-*-l

- h . t f

i »•' f cos (X n X) exp (-X^ Fo)2 ~ 4- 7 2~\

n=l (Bi" + Bi + X 1 cos (X )

X tan (X ) = Bi, B co t (6 ) + Bi = 0n n n n

8.1.29.2 74, p. 239 Infinite plate withtwo convect ioncoefficients,t = t Q , 0 < x < +1,

T = 0 .

W - h 2 , t,

t - fco l + B i £ l X

fcf - to~ 1 + B i s , i + ( B W B i i 2 )

oo

-Xvn=l

B i J>l 1 / 2cos (X XJ+ - r s i n (X X) e xp [-X Fcn X n \ n

( r . .-, s in (X ) co s (X ) + XA n = | [ 1 + K l / B i 4 " z s i n C X ^ "

+ " X — s i n ( X n>n

HM Bi i l l = h^/ k, Bi ^ = h 2 Vk

co t (X )n B i U X n / V BilZI

Page 258: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 258/578

Section 8.1. Solids Bounded by Plane Sur face s—No Internal Heating.

Case No. References Description Solution

8.1.30 9, p. 127 Infinite plate withconvection boundariesand time dependentfluid temperature.t = t . , -I < x < +8,, x = 0 .

t f = 4> (T) .

-h . t ,

asl

°° , 2

t - t . = 2 Bi IA co s (X X) ex p i-\ Fo)n n r \ n /

I2 n= l (&i + X 2 + B i 2 J cos (Xn)

<.( exp ( a x V A2

) * ( T1

) dT'Ja

X ta n (X ) = B i.n n

Page 259: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 259/578

S e c t i o n 8 . 1 . S o l i d s B o u n d e d by P l a ne S u r f a c e s — N o I n t e r n a l H e a t i n g .

C a s e N o . R e f e r e n c e s D e s c r i p t i o n S o l u t i o n

8.1.30.1 7 4 , p . 316 C a s e 8.1.30 w i t h t - t± cos (V P S X ) e xp (-Pd F o)t, = t_ - ( t „ - t . ) - D T . — ;— = 1 - : — —

f f m »» * • t f m - c. c o s ( V ? 3 ) _ J , ^ s i n { V M )

A cos (X X ) e x p (-X 2 F o )n n \ n /

n=l 1 - X 2/Pdn

(•

,,n+l _ „. A .2 ,2\l/2-1) 2 Bi 1 B l + X 1 '

n X n ^ B i 2 + Bi + X 2 )

Mean Temp:

t - t,m i exp (-Pd Fo)

^ m " fc i V p d " f c o t { V P d ) - ; rr V P d " l

» 2 I e x p2 B i "

« » )»-l i* (Bi 2 * Bi * 1*) [l -(X=/ M)]

Page 260: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 260/578

Section 8.1. Solids Bounded by Plane Surf ace s—No Internal Heating.

Case No. References Description Solution

8.1.31 9, p. 127 Case 8.1.30 withase 8.1.30 with ^ _ °° / , 2 „ \

t _ f v " » . i ik . .x , ,M i - v > • * KF° ) .• <T< x ,t " ~ -T r 0 i n=l(Bi + X + Bi ) — -'

[ t l r T > T 0 . V n )

cos (Xn)

fc- fcl , , " f [T + ( 1 - T> e x p (

X

n F oo ) ]- _ . - l - 2 Bi ^ T - r -c l c i n= l ( Bi + X + Bi ) co s {X )

x co s (X X) exp (-X Pol

< j> T - (t - t ) / ( t - t . ) , Fo. = OCT / i 2 , X tan (X ) = Bii O i l i O O n n

Page 261: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 261/578

Section 8.1. Solids Bounded by Plane Surf ace s—N o Internal Heating.

Ref-Case No. erences Description S o l u t i o n

8 . 1 . 3 2 9 , C a s e 8 . 1 . 3 0 w i t hp . 127 t f = ( t Q - t j ) s i n

I * 3 2 5 <U T + £ ) + VT > 0.

ooI

t - t . Bi M

~ = ~M ~2 S i n ( W T + E + B 0 " B l 'co- fci

+ 2 Bi

iS„

2 Fo*2c o s ( e ) - s i n ( e )

v- X'co s (X X) ex p (-X FoA

n ^ n /

„ = ( * + 4 F ° M A n ) ( x * + B i 2

+ B i ) c o s < Xn)

~n * * * * *M e = co sh (X Fo ) cos (X Fo ) + i s in h (X Fo ) (X Fo ) s i n (X Fo )

1 it it * * * * 1tM e = (Fo ) sinh (Fo ) cos (Fo ) - Fo cosh (Fo ) sin (Fo ) + Bi cosh (Fo )

* r * * * * * *x cos (Fo ) + i I Fo sinh (Fo ) cos (Fo ) + Fo cosh (Fo ) sin (Fo )

+ Bi s inh (L) si n (L)J

F o = I V(»)/2a , X tan (X ) = B in n

Page 262: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 262/578

Section 8.1. Solids Bounded by Plane Su rfac es—N o Internal Heating.

Case No . References Description Solution

8.1.33 9, p. 127 Case 8.1.30 with89 t = t A+ bT, x > 0.

( t - V ° „ B i X 2 - B i - 2= F o + — •

t>r2 Bi

„ . V cos (X X) exp (-X Fo 1+ 2 Bi \ n \ n I

n=l X 2 (Bi 2 + X 2 + Bi\ cos (X )n \ n / n

X tan (X ) = Bi , See Fig. 8.26.n n

(See Fig. 8.1.25 for Bi = ™.)

perfect contact withan infinite plate ofinfinite conductivity,t = t., 0 < x < Jl + SL ,

T = 0.

q = 0 , x = 0 , T > 0.

- q x = q Q , X = l 1 + l 2 .

T > 0.

2

I—/,-*K~l

( t - t. )k' V _M_ L + i- 3 + M 1~£~ ' 1 + M L 1 2 " 6{1 + M)J

V c o s ^ x j e x p ^ F o J

n= l X 2 (x 2 + M + M) cos (X )n \ n / n

X co t (X ) = -Mn n

« - q . E o i = V / S v x = x / *i

Page 263: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 263/578

Section 8.1. Solids Bounded by Plane Su rfa ce s— No Internal Heating.

Case No . References Description Solution

8.1.35 9, p. 129 Case 8.1.34 withq = 0, x = I + I , T > 0.

t = t 2 , i.x< x < «, 2, T = 0.

t = t., 0 < x < I , x = 0.

(t - t.)- V i v cos (X X) expn « •»•)

( 4 - t j i n=l f x 2 + M 2 + M ) cos (X )\ n / n

X cot (X ) = -Mn n

8.1.36 9, p. 12B Cas e 8.1.34 witht = t., x = 0, x > 0. (t - t.)k

= X - 2MY sin (X n X) exp (-X 2 FOjJ

n=l X |X 2 + M 2 + M ) cos (X )n \ n / n

CDi

X tan (X \= Mn \ n/

8.1.37 9, p. 128 Cas e 8.1.34 witht = t., x = 0, T > 0.

t = t 2 , & 1 < x < % 2, T = 0.

t = t. , 0 < x < I , X = 0.

q^ = 0, x = SL1 + l 2 , x > 0.

( t - v( t 2 - t . ) = 2M 2 sin (X X) exp « * • , )

n=l ( X 2 + M 2 + M) sin (X )\ n / n

X tan i\ ) = Mn \ nl

8.1.38 9, p. 129 Case 8.1.34 withb Q , x = 0, X

0, x = I, + &,, T > 0.

t = t Q , x = 0, X > 0.( t ~ V . , f ( X n + 2 ) s i n ( v ) e x p ( - X n F o l )(t„ - t.) " _4, ^ ^ 2 + M 2 ^

n=l

X tan (X ) = Mn n

Page 264: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 264/578

Page 265: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 265/578

Section 8.1. Solids Bounded by Plane Su rfa ce s—N o Internal Heating.

Case No . References Description Solution

8.1.41 9, p. 129 Ca se 8.1.40 with <* .2 ,, „, / ,2 „ \— X cos X X) exp l-X Fo, I

n n V n 1/q = f ( T ) , x = 0 , (t - t ) _ 2 a _ Y

T > 0. kJT n=l I^Bi - X 2 / M V + (1 + 1 /M)' X 2 + Bil cos (X )

x f f(T') exp (\^az'/l Z) dt ' .

Jo

X tan (X ) = Bi , - X 2 / Mn n 1 n

OD 8 . 1 . 4 2 9 , p . 1 2 9 C a s e 8 . 1 . 3 4 w i t h a ( t - t . ) (M + l ) k 3 B i + 6 + M B iii > c o n t a c t r e s i s t a n c e h r - r = F on + — (1 - X) - ——— — — — —

q -J l. M 1 2 6 B i ( 1 + M)e t w e e n t h e t w o c

p l a t e s .

+ 2 3 i „ . „ V - X2 - M B ic

( X 2 - M B i ) ta n (X } = B i X .V n c / n e n

P = X + X ^Bi + B i - 2 M B i ) + M B i2 (1 + M) X2 .n n n \ c c c / c n

B i c - h c V k l •

Page 266: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 266/578

Section 8.1. Solids Bounded by Plane Sur faces—No internal Heating.

Case No. References Description Solution

8.1 .43. 19, p. 324 Composite plates of Region 1, -& 1 < x < 0:different materials.fc V "V x < V (t - t„)x = 0.

t - v

x = -X^ , T < 0.

t = t n , x. = l 2 ,

T > 0.

( t " t p ) = < •-»> - 2 y exp - X 2 F O ,

cos (A X) sin (B U ) - a sin (A X) cos (3LA )ri li n n

A Td + K3 2 L) sin (A ) sin (PlA ) - B (K + L) cos (A ) cos (BLA )ln L n n n n J

Region 2 , 0 < x < l^'

_ _ r ^ - (t i ~ V ~ + K £1exp -A Fo 1

sin (0LA - 0A X)n n

A [(X + K3 2L) sin (A sin ( S L A - 3 (K + L) cos ( A ) cos (SLA )]

cot (A ) + a cot (3 U ) = 0n n

B = V V ^ ' K = k 2 A l ' F ° l = V/ll' L = W X = X / £ l

Page 267: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 267/578

Section 8.1. Solids Bounded by Plane Su rfac es—N o Internal Heating.

Case No . References Description S o l u t i o n

8.1.43.2 7 4, p. 441 Composite p la te s ofd i f f e r e n t m a t e r i a l sw i th i n su l a t edsurface and convection boundary,

t = t . , 0 < x < I. +

-h , t ,

rrf - x ~ 2 1 Hp c o s (x n x / v s) e x p ( -x n L 2 p oi / A ) ' ° < x K

f l n=l ir v ' v '

L .

t - t.T^T = x " 2 A xlJ (c o s K (x " L> 1 c o s ^ n1- / ^ )

f i n=l n ' L J

- K s i n l"x (X - L)l s in (XnL/VE) } exp (-xh^Fo^h) , L < X < 1 .

• [(X * *>** S P ) S i n ( Xn > + X„ (TP)( l + KL/VA ) ra ( Xj] cos ^X n L/VS^ + [ ^ i + K L / VA + ^ g p ) c o s (X )

- \ (SP) (* +

i & )s i n

<V] K s i n

<x

,y*> •LX X—"- (1 + L ) t a n (X L / V A ) = 1 - - T T ( 1 + L ) t a n (X )

- K ta n (X ) ta n (X L/ih) .n n

Bi = oyK.,, L = V V F O l = *f/ . A - a ^ , K = ^ J

Page 268: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 268/578

Section 8.1. Solids Bounded by Plane Sur face s—No Internal Heating.

Case No . References Description Solution

i

8.1.44.1 9, p. 416 Rectangularparallelpiped.t = t . , 0 < x < w ,

0 < y < b , 0 < z < d ,X = 0 -

t = t Q , x = 0 ,

0 < y < b , 0 < z < d ,

T > 0 .

t = t . , a l l

o t h e r f a c e s , T > 0 .

t - t . , , v V" s i n (imrY) s i n (mrZ) s in h | ( 1 - X)-v/X Ii _ _ X6_ y y L \ mf n,o Jt n - t . ~ 2 ^ , ^-t . . , , ,

0 i IT — " — " - - . 1 . M i

as co

m n si n h (X )m , n , o

O O 0 0

m=0 n=0

i. s i n (nnrY) si n (mrZ) s in (JITTX) exp (-X . Fo )ID f n t Xf w

0 m n X_m,n,Jl

X „ = A2TT2 + (ntirw/b2) + (mrw/d)2I Q , n , x <

m = 2m + 1, n = 2n + 1, X = x /w, Y = y /b , Z = z /d

Page 269: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 269/578

S e c t i o n 8 . 1 . S o l i d s B o u n d e d by P l a n e S u r f a c e s — N o I n te r n a l H e a t i n g .

C a s e N o . R e f e r e n c e s D e s c r i p t io n S o l u t i o n

8.1.44.2 7 4 , p . 287 R e c t a n g u l a r p a r a l l e l e - » » mp i p e d w i t h c o n v e c t i o n 0 _ . V y *\boundary.t = t±, -i.x < x < + £ r

- l2 < y < +A 2 ,- J l 3 < z < +A , T = o.

n = l m=l s=lAn l A m 2 s 3 o s < * „ 1X ) « » < \ n 2Y>

B

• t l . t .

x c o s ( x ^ z ) e x p (\ 2

nl ? ox + X 2 P o 2 + x j 3 F o 3 )

( n , . , s )+ l / 2 + x2 \l/2A = J . l i i n ,m ,s , i j

n ' m ' s ' i X . ( W + B i . + X 2 . )n , m , s f i \ I i n , m , s , i /

co t (X . ) = ( r T - J X . , Fo . = ax/I 2.v n , m , s , i ' \ B i . / n , m , s , i l l

Bi i = WI../IC, i = 1, 2, 3 , X = x Ar Y = y / £2 , Z = z A 3

<1 A

Page 270: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 270/578

Section 8.1. Solids Bounded by Plane Surfaces—No Internal Heating.

Case No. References Description Solution

8.1.45 9, p. 417 Case 8.1.44.1 with

t = t Q sin (UK + e) ,

x = 0, 0 < y < b ,0 < z < d, T > 0.

00 00t - t . V ^ " s i l > ivm?) si n (mrz) M s i n (urr + c + d> )M^n m,n- fc i _ i6 yt - t 2 " —^0 i n m=0 n=

QO 00 00 ^ — O

„- V"* V* V" & s i n (nffiY) si n (mrz) s i n (JITTX) (W COS E -X n s i n E) exp(-Xar /w )

- f Z 2 2 7-i— - 2 —x-- mf f*m=0 n=0 H=Q ( W + \ _ 1 m n

\ m,n,x./

m,n »P »m,n s i n h { [ ( S r w / b )

2

+ ( ^ w / d ) 2 + i w ] 1 / 2 }

2 *~ "~W = w 0)/a, See ca se 8. 1. 44. 1 f or X ,.,, X, Y, Z, m, nm n . < £

Page 271: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 271/578

Section 8.1. Solids Bounded by Plane Sur fac es— No Internal Heating.

Case No. References Description Solution

8.1.46 9, p. 419 Wedge with steadysurface temperature. i 6 L 2 V , ,.n r . , „ n ,

t - t . . o < e < e n , t n - t. - 57 + e" L <-« [ S l n < 2n + D /BJi 0 0 l 0 0 n= l

T = 0.

t = t , e = o, T > o.t = t . , e = e 0 , T > o. / exp (-< rruVr

2

> a ( u ) d u

J n u s

09I

s = (2n + 1) TT/8.

Fo r t = t Q , 9 = 0, 8 0 , T > 0:

t _ t = 1 " | ~ ^ s i n < s 9 >J e x P ( -o ru 2 / r 2 ) —J (u)du

0 n=0

Page 272: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 272/578

Section 8.1. Solids Bounded by Plane Su rfac es—N o Internal Heating.

Case No . References Description Solution

8.1.47 33 Composite slabs withramp surfacetemperature.t = t , 0 x < 5L X+ %,

T = 0.

t = fc

i + ( t

o " Vfcrc

'x = 0, 0 < t < 1 /b.

t = t , x = 0 f T>" l /b .

t. - t. = 2

S

k-»oo

i

Y Pd (x^ + M) exp f-A^ Fo ) [l - exp / x 2 / Pd ) j si n (X X)

n=l \^ (\^ + M 2 + K)

\ ta n {A n) = M, M = A

1 P 1

C

1 / J ' 2 P 2 C 2 ' X = x / X l

See cases 8.1.34 to 8.1.42 for o the r con dit io ns.

h-it-H*-je2-H

Page 273: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 273/578

Section 11.1. Change of Phase—Plane Interface.

Case No. References Description S o l u t i o n

1 1 . 1 . 9 9, p . 292 C o n v e c t i o n b o u n da r y a t

o r i g i n a l s o l i d - l i q u i d

b o u n d a r y.

t = t 1 # x > 0 , T = 0 , t x > t m .

t = m e l t i n g t e m p .

t - t F B i 2

_ § _S = B i T-^{1 + 2 Po )t - t , x 2 x'

m £

P Bi

IT' 1 + 3 1 F

° x >+ . . . , 0 < x < w .

V \ . ,

F 2 B i 3

F B i x F O x . _ _ x ( 1 + P ) F o 2 + . .

F = k s ( t m - V / a s P Y ' F o x = V / x ' Bi x = h x A s

(solid) (liquid)

Page 274: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 274/578

Section B.l. Solids Bounded b y Plane Surfaces—No Internal Heating.

Case No. References Description Solution

8.1.49 19 , p. 3-30 Infinite plate ofinfinite conductivitywith convectionboundary and harmonicfluid temperature.fc f - W (t mx - • t )mnC O S (U K ) .

t = mean temp,mn

t = max temp,mx

I

V"—i • h . t ,

t - tmx mn Ve*COS (TU) - \p)

+ 1

~ exp ( -' + 1 V pe l J

9 = u p e V h , \|i = tan (9)

I n s t a n t a n e o u s s u r f a c e h e a t f l u x :

J I _ . eh {t - t )mx mn

See Fi g . 8 .9

mx mn" |ZT?~s i n (Tto - i|))

(« -2 i -* |

Page 275: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 275/578

Section 8.1. . Solids Bounded by Plane Surfaces—Ho Internal Beating.

C, .a No. References Description Solution

8.1.50 40 Infinite plate ofinfinite conductivitywith surface reradia-tion a nd circularpulse heating,t = t Q, T = 0,

c r ^ T 4 .

See Pi g . 8 .12 for maximum temp era ture va lu es :

/3naj£

D =' he a t i n g du ra t i on

Sc = 'W111 l r r / D >

Ik->»

|— 28—|

Page 276: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 276/578

Section 8.1. Solids Bounded by Plane Sur fac es—N o Internal Heating.

Case No . References Description Solution

8.1.51 19 , p. 3-44 Infinite composite424366

plates in perfectcontact, convectionboundary on one side,insulated on other side,t = t Q , 0 < x < & 1 +

S2, T = 0.

o = 0, x = 6 + 6 , T > 0.

See Fig. 8.14 P l 6 l= f

V P i k i D / ° iD = heat ing durat ion

fc 2inax " fc 0t„ - t„

|k,^H

t f . h * \ JHH^-H

Page 277: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 277/578

Section 8.1. Solids Bounded by Plane Sur fac es— No Internal Heating.

Case No. References Description Solution

8.1.52 19, p. 3-49 Infinite plate with44 radiation heating68 or cooling.

t • t Q , 0 < x < S,

9 r - ^ ( T s - T x = o ) -

See Figs. 8.15a-e for heating.

See Figs. 8.15f-l for cooling,

t - t„

t •* t= f (Fo)

source temp.

Page 278: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 278/578

Section 8.1. Solids Bounded by Plane Sur fa ces —No Internal Heating.

Case No . References Description Solution

8.1.53 19 , Infinite plate withp . 3-68 time-linear surface49 heat flux.

t = t 0 , 0 < x < 6,

T = 0.

gx " W ^ ' > °-

k ( t -

«0«Jfii Fo |

" F oD ^ k 2x 3

1 2

% = c t D / 62 , X - x/6

¥ - - f e ) .*< *><F ° D 'F ° D > 1 .

For Sc = q n , a x ( 1 - T / D ) ;

MH

k (t - t n ) x 2 ±

= Fo + —- - X + — + (solution forV 3 Vq x = q n u

T/D) •

D «• duration ofheating.

TT < Fo < Fo , Fo„ > 12 D D —

8 . 1 . 5 4 1 9 , C a s e 8 . 1 . 5 3 w i t hp . 3 -6 8 a = a s in wT / t> .150 ^ ™ *X

S e e F i g s . 8 . 1 9 a & b

&S* ( t - t Q ) = f ( 2 i r t / D ) , QQ= ^ D

Page 279: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 279/578

Section 8.1. Solids Bounded by Plane Sur fac es—No Internal Heating.

Case No . References Description Solution

8.1.55 1 9 , p . 3-73 Porous infinite5-l plate with steady

surface heat fluxand fluid flow,t = t Q , 0 < x < S,

x = o.t fl = fluid source

09I - V k f c ,

k-«H

See F i g s . 8.20a & b

y i t - tn)

F = ,G f f 5 /k e

k e = Pk f + (1 - P) k s

G = fluid mass flux

P = plate porosity

Steady state solution:

^T7l = p exp (-Fx/6)

Page 280: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 280/578

Section 8.1. Solids Bounded by Plane Sur fac es— No Internal Heating.

Case No. References Description S o l u t i o n

8 . 1 . 5 6 1 9 , Two i n f i n i t e p l a t e sp . 3 -7 5 i n p e r f e c t c o n t a c t52 w i t h a s t e a d y su r f a c e

h e a t f l u x .t = t 0 , 0 < x x < fiir

0 < x 2 < 6 2 , t = 0.

^ = q 0 , x x - 0 , T > 0 .

See Pi gs . 8 .21 a-d

( t ~ V k iV i

f (Fo >

COI I1

H i * K H

8 .1 . 57 19,p . 3-7548

Case 9 .1 .5 6 w i thk 2 + » .

See Fi g . 8 .22

q 6 - = f < F ° l >V i

8 . 1 . 58 19 ,p . 3-7553

Case 8 .1 .5 6 w i thk_ + ™ and

% * Snax S l n 2 ffT/D-

See F ig s . 8 .2 3 a , b , and ct ~ fc0

t h - t„ = £ U 1 T T / D )

eqb 0

D = du ra t i o n o f p u l s e

Page 281: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 281/578

Section 8.1. Solids Bounded by Plane Sur fac es— No Internal Heating.

Case No. References Description So lu t ion

8.1.59 74 , p. 245 Thin pl a te with twoc o n v e c t i o n c o n d i t i o n s ,t = t , -A < x < +1,

T = 0.

CO

I

V h i

t , . h . V h - i —

h,.t«fcr^"\ H

t - t_ cosh K z 0tvE

fcf - *o cos h (B i ^ 2 L ) • ^ s in h ( B i ^ ) L

- 2X n s i n X n C O S ( X n X ) e x p [" ( X n * B i l w L 2 ) F o w J

(Xn + B il wL 2) [X „ + s i n( MC O S( X

n ) ]

X n t an (X n ) = B i2 w , B i l w = h l W A, B i 2 w = h ^ / k

X = x /w, L = V w

Mean temp:

t_ - t _ t anh (B i * '2 L )B i ," " t ° " » ^ - ^ - 2 " - K 2 -)

X ' °n «» f- ('n * " l . L ' ) ">.]n=l

X 2 + B i . L2

n l w

B iB_ = lw

\2 fa i2 +B i , + X2 )n \ lw lw n /

Page 282: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 282/578

Section 8.1. Solids Bounded by Plane Sur fac es— No Internal Heating.

Case No . References Description Solution

8.1.60.1 74 , p. 320 Infinite plate withevaporation and convection boundary.

t = t . , -S , < x < +S, ,

T = 0 .

-bxm = m . e , x = ±SL.

m = e v a p o r a t i o n r a t e .

H- -H

-h. t«

t - t .M co s (VPdY) ex p (-Pd Fo)

tf ~ fci co s (VPd) - ^ r VPd s in (Ypd)= 1

-2n=l

1 - M

1 - Pd/X

B i

A c os (X X) exp -X Fon n n

2 s in ( X n ). M =

Y^O fcf - fcwbn X + s i n / X \ c o s (X \' h ( t . - t . ) t c - t .

n ( n | I n | f i ' f 1

co t / X ) = X / B i , t . = we t b u lb t emp .

Page 283: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 283/578

Section 8.1. Solids Bounded by Plane Surfaces—No Internal Heating.

Case No. References Description Solution

8.1.60.2 74, p . 321 Case 8.1.60.1 with t - tasymmetrical boundary i

s

t f ,h

h X + s in / X )cos /X \' "m X_ - c o s /X _ \ s i n fX

co t /X ^= X /B i , t an /X \= -X /Bi

Mean temp:

" l- t.m l

i -« - )

- 2 — - 2 l { X - 2 ) X 2 / . 2 + B . + x 2 )n=l n \ n /

Page 284: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 284/578

Section 8.1. Solids Bounded by Plane Surfaces —No Internal Heating.

Case No . References Description Solution

i

o

Page 285: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 285/578

Section 8.1. Solids Bounded by Plane Surfac es—No Internal Heating.

Case No . References Description Solutioni _ _ _ _ _ — _ —

Page 286: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 286/578

Section 8.2. Solids Bounded by Plane Surfa ces—Wit h Internal Heating.

Case No. References Description Solution

8.2.1 3, p. 276 Infinite plate withuniform internalheating.t = t . , -S L < x < S L ,

iT = 0.

t = t ± , X = ±SL. T > 0,

CDI

KJ

( t - V k 1 2~ = f (1 - X Z) - 2

X = (2n + 1J1T/2n

See Fig. 8.8

y 1=11:n ^

n=0 n

exp ^-X 2 Fo\ cos (X X)

k*. i , - » j

Page 287: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 287/578

Section 8.2. Solids Bounded by Plane Surfaces—With Internal Heating.

Case No. References Description So lu t ion

8.2.2.1 74 , p . 363 In f in i t e p l a t e w i ths teady surface hea tf lux and var iablein t e rna l hea t i ng .t = t . , -a < x < +i,

x = o .q " ' = q , J " ( 1 - * / * ) •\ = q„» x = ±a, x > o.

CDI

i nU)

%" - < 1 o

i i " V k Fo* i *2

™ cos f(2n - l)7rxl cos (X X)

_ ^ ( 2 n . } 4 ~n=l

°.n

1 - exp f-xjj Fo ) + *

« n=l \ n i

t - W - f )cos ,X nX)n=l W

x expX = mrn

8.2.2.2 74 , p. 363 Case 8.2.2.1 with (t - t,)k. 1 I I — — • • •= q > " (1 - X - ) . — i - - f Fo - J ("I)" cos (X nX, [l - exp (-X* Fo)] + *

0 n=l n

X and * given in case 8.2.2.1n r

Page 288: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 288/578

Section 8.2. Solids Boi id by Plane Surfaces— With Internal Heating.

Case No. References Description Solution

8 . 2 . 2 . 3 74, p. 364 Case 8 . 2 . 2 . 1 w i th

q > " = g j " exp (-bX). irjr • H t" - '-b] * I t 1" -1' - H 7W77)0 n=l n \ n/

(X X) j l - exp (- A 2 Fo) + $COS

X and $ given in case 8.2.2.1

8.2.2.4 74, p. 364 Case 8.2.2.1 with (t - t )k± —= Fo (1 + Pd Fo) + $

T 1 ' l A *1 + * > • q- " 9?

4 given in case 8.2.2.1

Page 289: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 289/578

Section 6.1. Infinite Solids— No Internal Heating.

Case No. References Description Solution

6.1.23 9, p. 346 Cylinder with properties fc » j(XR)J<X)dXdifferent from surrounding — = —fr I exp(-A Fo , ) — _ r _ r — , R < 1

medium.

t = t L , r < r Q , T = 0.

t - t r , N J ( X R ) J (X)d)rounding = -£ / exp(-A Fo ) — - p - ^ T

fc - * 0 2Y f ( , 2 , \ J l ( X ) [ J 0 ( e X R ) " ' - Y 0 ( 6 X R ) ' t ' ] d X

= —*- I exp -X Fo, I = -

0

i|) * Y ^ c X j j j j j B X ) - B J0 ( X ) J1 ( B A )

<> = y J ^ X j y ^ B A ) - B Jo ( A ) Y1 ( 0 X )

R > 1 .

A X y B - V 5 ^ , Y = k A00

S e e c a s e 6 . 1 . 4 f o r e q u a l m a t e r i a l p r o p e r t i e s .

6 . 1 . 2 4 9 , P o i n t s o u r c e o f r e c t a n g u l a r ( t - too)4Trrk

p . 4 0 2 p e r i o d i c w a ve h e a t i n g . Q~ " e r c * "'**' T ^ + 1

CO

( S T ) - T i

e x p ( - T X " " ) j e x p f - X2 + T X 2 j - e x p ( - X2 ) J s i n ( F o * X ) d X

x[l - exp(-X2)]

Q(T) = 0 , x < 0. „ 2 j

Q ( T ) = Q Q , n T Q < T < n TQ

+ T.f n = 0 , 1, . . .

Q(T) = 0 , n tf l + T < T < (n + 1 ) T0 . 0 < T < T .

n = N umb er o f c y c l e s .

t = t ^ , r + co. T x = T 1 / T 0 , T = T / T Q , Fo* = r/V5f^

>* r

Page 290: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 290/578

Sec t ion 8 .2 . So l id s Bounded by P le^ e Sur faces— With In t e rn a l He a t in g .

Case No . Refe rences D esc r ip t io n Solution

8.2.3 9, p. 131 Infinite plate withtime dependentinternal heating.t = t . , -a < x < ±SL,

T = 0 .t = t , X = ±1, T > 0.

q ' " * f ( T ) .

c -« J - s i •&$» - P ^ -]n=0

x J f fr) exp -IT (2n

J o+ l )2 a (x - T ' ) / X2 J * : '

8. 2 . 4 9 , p . 132 Case 8 . 2 . 3 wi thf ( r ) = q j " e " b T .

( t - t j kV * l fcos (xVgd) ."1 o % m , . .

2 V t - l>" cos U n X ) exp ( -X2 Fo)

+ ™ \ X (l - X 2 /Pd )n=0 n \ n /

X = (2n + 1 ) IT /2n

Page 291: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 291/578

Section 8.2. Solids Bounded by Plane Surface s—With Internal Heating.

Case No . References Description Solution

8.2.5 9, p. 132 Case 8.2.1 with

q' «• • f ix ) . fr"J-5:2H«-Pi}r k , nn=l

1 - exp (-=¥-)]

x I £ (X) cos ( ~ x )J-X

dX

CDI

m

Page 292: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 292/578

Section 8.2. Solids Bounded by Plane Sur fac es— Wit h Internal Heating.

Case No. References Description S o l u t i o n

8 . 2 . 6 9 , p . 1 3 2 I n f i n i t e p l a t e w i t h u n i fo r m4 1 i n t e r n a l h e a t i n g a nd

c o n v e c t i o n b o u n d a r y,t = t f , -l < x < +1, T = 0 .

t „ h -

(*- (,—|*-X,-»|

-h, t ,

( t - t j k B i „ . . 2f T . B l B i X

^ = 1 + T'~2~- ' T

co s (X X)2 B i '

~ X2 f \ 2 + B i 2 + B in = l n V n J cos (Xn)exp K -)

X ta n (X ) » B i , S e e P i g . 8 . 1 3n n

8 . 2 . 7 9 , p . 1 3 2 I n f i n i t e p l a t e w i t h u n i fo r mi n t e r n a l h e a t i n g a nd c o nv e c t i o n b o u n d a ry o n o n e s i d e ,t = t , 0 < x < «., T = 0 .

t = t - , x = 0 , T > 0 .

- M f

{ t " t f ' k ( 1 + B i / 2 ? X _ x f

l ' " i 2 1 + Bi

+ 4 Bi^ s i n {X X ) f l - c o s (X )~1

, X 2 (\ 2 + B i 2 + Bi \ s i n (2X )n = l n \ n / n

e x p « *>)

X c o t (X ) + B i = 0n n

H-<M

Page 293: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 293/578

Section 8.2. Solids Bounded by Plane Surfaces—With Internal Heating.

Case No. References Description Solution

8.2.8 9, p. 311 Infinite plate withtime-dependent heating,t - t , 0 < x < I, T = 0.

t = t n , x = 0, I, x > 0.

q - = l * 8 / 2 ,

S - - 1 , 0, 1, 2, . . . .

1

I — A — I

(t - t 0 ) k

Bar +s/2 (1 + s/ 2)1 - T(2 + s /2) 2 +2

^•['"-(^•'"-(l^)]}

8.2.9 9, p. 404 Infinite plate with variable internal heating. ( t - t„)kt = t n , 0 < x < l, x = 0. „ i . ip2 B ] cos (Vl )

u 9 0t = t Q , x = «., T > 0 .

0 ' _ 1 cos(Vlx) _

. t i t _ - H Iq j " + B t t - t Q ) .a = 0 , x = 0, T >. 0.

16 V 1-1)" exp {L-t2n -v \)2

T\2

+ tej go/4J cos L(2n + l)nx/2j* ~ f4B - (2n + l ) 2 i i 2 ] (2n + 1)

x

:

n=0

B = &8T A

Page 294: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 294/578

Section 8.2. Solids Bounded by Plane Surf ace s—Wi th Internal Heating.

Case No . References Description Solution

8.2.10 9, p. 405 Case 8.2.9 withconvection boundaryh, t at x = I.

( t - t f l ) kBi cos (V EX ) 1_

, , , .2 ~ B [ B i cos (VTf) - V T sin (V"B) B90*"*

+ 2 Bi^ cos {X X) exp (B - X 2 ) Fo

\ = o (B- Xn ) [ Xn B i<B i + 1> ] O S < V

D

X tan (X ) = Bi, B = 04 /kn n

8.2.11 19 ,p . 3-29

Infinite plate of infinite G H n (l - (Q/G)\ + 9 = LH/Cconductivity, variablespecific heat, convection :boundaries and steady heating.

(1 + q^ " £)/hL(t - t f J, C = (1 - c f ) / c Q , H = hT/pc£

t = t , 0 < x < 28,, T = 0.

c = c Q + S(t - t Q ) .

a • * > = a l ' ' .

%

- * • x

H evaluated at fc„ , c, evaluated at t_.0 E f

L = H x (surface area/volume) = 1

9 = (t - t 0 ) / ( t f - t Q )

- h , t f

I — 2 S - H

Page 295: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 295/578

Section 8.2. Solids Bounded by Plane Sur fa ces —Wi th Internal Heating.

Case No. References Description Solution

8.2.12 19 , Case 8.2.11 for infinitep . 3-29 square cod and cub e.

See case 8.2.11, set: L = 2 for squareL = 3 for cube

rod

8.2.13 19 ,p. 3-32

Infinite plate of infiniteconductivity with surfaceradiation and steady heating,t = t , 0 < x < 2£, T = 0.

q t = adr ( i* - T 4 ) .

T = source temp.

4=% -

In + 2 t a n -1 ( 8 / N ) = 2 t a n _1 ( l / N ) + 4 M N 36 + N) (1 - H ) " |(6 + N) (1 + N)J

/ 4 4 \ 1 / 4 3

6 = T/TQ , N = [q^'SL/a&T0 + 8*J , M = a^T^/pcl

<*r - ^ r

H-2JH

Page 296: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 296/578

Section 8.2. Solids Bounded by Plane Surfac es—W ith Internal Heating.

Case No. References Description S o l u t i o n

8.2.14 19 ,p . 3-33

09I

Case 8.2.13 w i t h s i m u l t aneous su r f ace conve c t iona n d r a d i a t i o n .^ = h ( tf - t ) + a-jr^T4 - T 4 ) ,

x = 0, 211, x > 0.

M = A i *n ( F T ^ ) + A Jin9 - R \ A

wnrj + r^(9 - n ) 2 + d >2l

2 2( i - n.) + <t> :

A

4 r - i /e - n\ .. - i A - n\"l

^ = JBVU - n2 [n Vv - n2 + (v/2 + n2)]J

A2 = jsVv - n2 [nVv - n2 - (v/z + n2 ) ] |

A 3 = n / (v2 + 8n4)

A, = (V/2 - V2 ) / ( V 2 + 8I14)4

•\f 2 \ ( 2

R1 = - n - > v - r i , R2 = - n + ' y - n* = Vn + B/4, n = ^672

\ V 3

*-(££+&^F + (£-JF ^rv = - J N4 + 32/4

s = h/a#-T„

N = I q " ^ / ^ ^ + 9* + s9fl1/4

Page 297: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 297/578

Section 8.2. Solids Bounded by Plane Su rfaces —With Internal Heating.

Case No. References Description Solution

8.2.15 19, Infinite plate of infinitep . 3-34 conductivity with prescribed

heating rates.t = t f l , T = 0.

a. st ep input; _TTT = 1 ' q ?"p = 1Tnax Tnax

g i l l Qf I Ib . li near input; ^nr = T , «,,-, ' = 0.5

Tnax TnaxQ I I • Q I I I

c. li near input; _rrr =» (1 - T) , * , , , p =0 . 5Tnax Tna~ax

r l l l

sax) • 11n ' 2 — 0 ' "

d. circ ula r puls e; g , , , = si n irr , •, , , D

Toax Tnax

0.5

b. ^ e = 7 2

PC«5Q">

peg

= T( 2 - T)

sin27TT

e. power pu lse; JL1L = ( 3 T ) - 3 e ~ ( l A - 3 ) f aLlL- = 0 .5473 e. &*.Tnax Tnax

0.06767 f -( I *1

)"(l/T-3)

f. power pul se, J l l = ( 5 T ) - 5

e - ( V c - 5 ) f QLLL_ m 0 < 2 7 9 5

Tnax Tnax

pC6

Q "- 6 = 0.006869/'- r- + ~Z7 + Z + x J

\ 6 T 2T T /

• ( l /T-5)

exponential pulse; _rrr = < 1 0 T ) e 1 _ 1 ° T , £7775 = 0.2717 g. &~ 9 = 1-001 [ l - (10T + 1) e 1 0 T JTnax <Tnax D

9 = t - t_, D = heating duration

T = x/D, Q''' = total heat input per unit volume during time D

See Pig. 8.10

Page 298: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 298/578

Section 8.2. Solids Bounded by Plane Surfa ces— With Internal Heating.

Case No . References Description Solution

8.2.16 19 , Infinite plate of infinite See Fig . 8.11p . 3-35 conductivity with surface

reradiation, steady surfaceheating, and steady internal

heating.t = t Q / T = 0.

^ = q " + O&^l - T 4 ) , x = 0 , 26 .

T = source temp.

k-

q"

I — - ' 5 — |

Page 299: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 299/578

Section 8.2. Solids Bounded by Plane Sur fac es— Wit h Internal Heating.

Case No. References Description S o l u t i o n

8.2.17 7 4 , p . 3 8 6 I n f i n i t e p l a t e w i t h t wos y m m e t r i c a l p l a n a r h e a tp u l s e s a n d c o n v e c t i o nb o u n d a r i e s ,t = t f , -ft < x < +&, T = 0 .

I n s t a n t a n e o u s p u l s e o c c u r sa t T = 0 , x = ± x , w i t h

2s t r e n g t h Q (J /m ) .

t f , h -

/

• x 1

X

- h , t f

(t - t f ) U= 2 I

n = l

, ; : T;—; 7,—r co s (X X, ) c o s (X X)X + s i n (X ) c o s (X ) n 1 ' n

x exp {< )•X ta n (X ) = B i .n n

For t = f (x) , -H < x < +«,, T = 0:m

Xt - t f ) k &

03 = 2 / T : : 7\— ; 7\—r co s (X X) ex p (-X Fo)<L >. + s i n (X ) c o s (X ) n r \ n /

n = l

1

x / [ f (X ) - tf ] c o s (X X)dX .

Mean temp:

( t m - t f) k X , ^ . B i2

c o s (Xn\) e x p ( - X2

F o j& ~ s i n (X ) X ( B i2 + B i + X 2 V

n = l n n \ n /Fo r B i = °°:

( t - t f) k X .

Q5= 2 Y ( - l )n + 1 c o s J"(2n - 1)TTX "I c o s [( 2n - l ) i r x ]

n = l

e x p [ - ( 2 n - 1 ) IT 2 F o / « ] .

Page 300: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 300/578

Section 8.2. Solids Bounded by Plane Sur fac es— Wit h Internal Heating.

Case No . References Description Solution

8.2.18 74, p. 387 Infinite plate witha planar heat pulse,t = t , 0 < x < I, T = 0.

Instantaneous pulse occursat x = x. ,

T = 0 w i th2

st rength Q(J/m ) .

rri

(t - tQ ) k £ V 2 2= 2 > s i n (mrx ) sin (mrX) exp (-n v Fo)

£j in=l

LO

h-M

Page 301: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 301/578

Section 8.2. Solids Bounded by Plane Surf aces— With Internal Heating.

Case No. References Description Solution

Page 302: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 302/578

Section 8.2. Solids Bounded by Plane Surfac es—Wi th Internal Heating.

Case No . References Description Solution

Page 303: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 303/578

n

I

i

REPRODUCED FROM

BEST AVAILABLE CO PY

Page 304: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 304/578

Section 9.1. Solids Bounded by Cylindrical Su rfa ces —No Internal Heating.

Case No . References Description Solution

9.1.1 2, p. 240 Infinite cylinder with74 , p. 131 steady surface temp.

t = t i , 0 < r < r Q , T = 0.

t = t 0 , r = r Q , T > 0.

i

t ~ t,~ 0 „ V 1 ( ,2 _ \ V n

n=l

J (A ) = 0, s ee Fig . 9.2

Cumulative heating:

J, (X R)s--»sM--k-)^a=l n

e 0

= 7 I r u p o ( t o - t i )

0 x n

9.1.2 X, p. 269 Infinite cylinder with time9, p. 328 dependent surface temp.

t. f 0 < r < r Q , T 0.

t. + cr, r = r Q , T > 0.

t - t

cr 2 /ai = Po + J (R 2 - 1) + 2 V exp (-A Fo) J ^ J L L

n 1 nn=l

W = °See Table 9.1 and F ig . 9.8

Page 305: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 305/578

Section 9.1. Solids Bounded by Cylindrical Su rfa ces —No Internal Heating.

Case No. References Description Solution

9.1.3.1 74 , p. 270 Infinite cylinder wit hconvection boundary andvariable initial temp.

n=l

W > eX P l' Xn Fol

fn= l J 0 < V + J l ( X n >

B i

w - V i ( V

R)dR

9.1 .3. 2 3, p. 298 In fi ni te cyli nder withconvection cooli ng.t = t t , 0 < r < r Q , T =

h,t.

fc- fc f . V B i V \ R ) °*P ( - X 2 Fo)

fci - fc f " Z , (X 2

+ Bi 2 ) J n ( X )n=l \ n / 0 V n

X J,(X ) + Bi J.(X ) = 0n 1 n u n

See Fig s. 9.1a -c

Cumulative heating:

J . Bi 2 | l - exp (-X 2 Fo) | ,

n=l n \ n /

For Fo < 0.02, R » 0:

( t " t i ) , n . /Fo" . . A - R\ __ , „. Fo

(t„ -1.) • 2 B i v r i e r f c vr^re)+ 4 B l vs

Page 306: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 306/578

Section 9.1. Solids Bounded by Cylindrical Sur fac es— No Internal Heating.

Case No . References Description Solution

9.1.4 9, p. 199 Infinite cylinder with initialtemp varying with radius.

t = t . - b r 2 ,

0 < r < r , T = 0 .

t = t 0 . r = r 0 , x > 0 .

t - t„

b r Iexp (-X 2

n F o) J Q ( R V

n = l

J 0 ( X n ) = 0

n 1 n

l j J (X ) + 2 J (X )I 1 n 2 n

9 . 1 . 5 9 , p . 2 01 I n f i n i t e c y l i n d e r w i t h p er i o d i c s u r f a c e t e m p e r a t u r e ,t =» t . , 0 < r < r_ , x = 0.

t = ( t - t . ) s i n (wr + e ) ,ni i

r n , T > 0 .

t = m a x f l u i d t e m p ,m

'( t - t.)sin(wT + e)m i

t - t .

t - t .m I

r e a lI n ( R Vi Pd) 1

. . . . . . . . ,i i n ( v* pa) e x p C i ( w r + e ) l

+ 2 2n = l

e x p (-Xn F ° ) Xn [ P d

2co s (e ) - X s i n ( e )n

( x 4 + P d 2 ) J (X )\ n / J- n

J 0 ( R V

J o ( V = ° ' p d = r o t J / a

Page 307: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 307/578

Section 9,1. Solids Bounded by Cylindrical Sur fac es —No Internal Heating.

Case No . References Description S o l u t i o n

9 . 1 . 6 . 1 9 , p . 20 2 I n f i n i t e c y l i n d e r w i t h89 conv ec t ion coo l ing and

l i n e a r t i m e - d e p e n d e n t

f lu id t emp ,t = t t , 0 < r < rQ , t = 0 .

Ib

( t - t . ) a exp

b r

o' - 4 V - V

n l n ' B i J 0 ( X n >

Mean temp:

t - t .m i • i / w L l

Kii J»( *_ R)

~ X2 ( B i2 + \ 2 ) j n ( \ )n=l n \ n) 0 n

«•>)bx

n=l n \ n /

See F i g . 9 .9

Page 308: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 308/578

Section 9.1. Solids Bounded by Cylindrical Sur fac es— No Internal Heating.

Case No . References Description Solution

9.1.6.2 74 , p. 317 Case 9.1.6.1 with fc yjg F ( j )

-o r x _ , 0t_ = t , - (t.. - t. )e T r~ = l ,f f m £ m l ' fcfm

_ti V p a j n { V p d ) - ^ P d J , ( Vfd)0 B l X

2Bi V W * e X P (' X n F °)

n=l W ( Xn + B i 2 ) [ l - ( X n / M ) ]Mean temp :t - t . 2J (VPd) exp (-Pd Fo)

£ fcfm " fci VPd J Q ( VPd) - i j - Pd jj_ VPd

exp- 4 Bi '

2 2S »5 W * « * ) L1 - ( » M J

Page 309: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 309/578

Section 9.1. Solids Bounded by Cylindrical Surf ace s—N o Internal Heating.

Case No . References Description Solution

9.1.6.3 74 , p. 320 Infinite cylinder with fc _ M J n ( V P T R ) exp ,-Pd Fo)convection and evaporation i_ _ 0boundary. t f - t. J Q ( VPd) - ( VPd/Bi) ( VP<3)

1 - T T rr=r r A cos (A R) exp (-A Fo ]

t = tj, 0 < r < r Q, T = 0.

m = m n e = evaporation rate.0 - 2

h-h n=l

~{\j S " < W ( 4 • • ' * ) ' = h <=

h( t c - t . ) '

0 n l n n

Page 310: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 310/578

Section 9.1. Solids Bounded by Cylindrical Surf ace s—N o Internal Heating.

Case No. References Description S o l u t i o n

9 . 1 . 7 9 , p . 20 2 I n f i n i t e c y l i n d e r w i t h p er i o d i c c o n v e c t i o n b o u n d a r y,t = t . , 0 < r < rQ , T = 0.

t . = ( t - t . ) s i n (<DT + e)1 m it = wax f lu id tem p,m

Jh,t .

t - t . f Bi I (R Vi pd) exp (ion + ie)= r e a l TT

t - t.m I

i[VT"Pd I1 ( YlHPd) + Bi IQ ( VFPd)] + 2 Bi

V / 2 \ X n C P d o o s ( e l " s i n ( e ) l J o ( X n R )

A ex p ^ P o ) (V + r d

2Wx2

+ B r W >n=l V n / V n / 0l n

V i { V = B i Jo ( V ' P d = r o u / a

9 . 1 . 8 9 , p . 203 In f i n i t e cy l ind e r wi ths teady su r face hea t f lu x ,t = t . , 0 < t < rQ, T = 0.

q r = V r = r 0 ' T > °-

( t _ V k 2 V / 2 \— *— = 2 Fo + (R /2 ) - (1/ 4) - 2 y exp / -A* FojV o n = l

\£J , (X ) = 0 , See F i g . 9 .3I n ' '

0For Fo < 0 . 02 , R » 0:

, /Fo" . , / l - R\ ^ F o (l + 3R) . 2 . (\ - R\t - t t ) k

V o 2R

Page 311: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 311/578

Section 9.1. Solids Bounded by Cylindrical S urf ace s— No Internal Heating.

Case No . References Description Solution

t - t„9.1. 9 9, p. 207 In fi ni te hollow cylinder

with steady surface temp. c ~ 0 V / -,2 „ \t - t „ r / < r < r n , x = 0. 1 " ^ = * 2 «-P K F ° )

t » t Q , r = c i f r Q , t > 0.

IDi

n=l

J0 (Vn> [ J Q ( X n R ) W ~ W W * ]V W + W

VWVV " V WW = °

R = r/r Q , Fo = oer/r 0

Page 312: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 312/578

Section 9.1. Solids Bounded by Cylindrical Su rfa ces —No Internal Heating.

Case No. References Description Solution

9.1.10.1 9, p. 207 Infinite hollow cylinder withdifferent surface temp,t = t. f r. < r < r Q r T = 0.

t = t Q , r = V T > 0.t = t , r = r i , x > 0.

f- = TT £ exp (-X* Fo)

n=l

W V R VJo ( a„ > + W T .

1

C W - < W W ] J0(an)UQ(RXn)

n = lJ^(a ) - J?(b )O n 0 l n

exp « »•)

T 0 [ ( T 1 / T 0 ) l n l 1 / R ) + &n(R/Ri)]T J lnd /Rj )

a n = V n ' b n = V °0 (R X n' = W ' W ~ W V X n R >

W i ' W ~ W V V W i ' " °

R = r/r 0 , Fo = a x / r Q

See F ig . 9.7a for t, = t., and Fig. 9.7b for t„ = t.,1 l 0 l

Page 313: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 313/578

ction 9.1. Solids Bounded by Cylindrical Sur fac es— No Internal Heating.

se No. References Description Solution

1.10.2 74, p. 282 Infinite hollow cylinder with °°two convection boundaries and _ y / 2 \variable initial temperature- f Z* n ^ \ n ^ l n' ' *general case. n=lt = f ( R ) , r.< r < r , T = 0 .

V ^

W(XnR) = - [ B i . Y 0 ( X n ) + X n Y l ( X n ) ] a Q ( X n R )+ [ W V + B i i W ] W > .

2T 2 , 2En " T K K V W " W W ] 'R 0

x [ R [£(R, - tf ] W(Xn,R)dR j(xj + BiJ) [Bi. J ^ ,

+ W V ] 2 - (x n + Bil) CBii V W " W W ]2 ) " . 1

CBii W + V l M CBi0 V W " W W ]" LBi0 J 0 ( W " W W ] P1 V V " W V ] = ° '

B ii - W * Bi 0 " V i / k ' R = r / r 0

Page 314: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 314/578

Section 9.1. Solids Bounded by Cylindrical Sur fac es— No Internal Heating.

Case No . References Description Solution

9.1.11 3, p. 409 Infinite hollow cylinderwith steady insidesurface temperature.

i , _ x i \2 _ \ 1 n 0 n 1 n o n

v ^ T = " 4 e x p ( n Fo ) Vo ' v - W i 'B i '= l

W = W V W - V W W

Al(R.) = VX

n) J

l( X

n V - V V V WW W i > - J i f t „ | Y o ( V i ' - °Po = ocr/r 0 , R = r /r Q

9.1 .12 74, p. 200 In f in it e hollow cyli nder with (t - t .) ksteady surf ace heat f lux.t = t i ? c ± < r < r Q , x = 0.

- q r - q 0 / * = r 0 , x > o.

q r = 0, r = r i f T > 0.

V o 1 - R' h - i ' r - " "» fe * r h »x An (R 1 ) + -

j . a R . ) j , a >+ i | U Y ir u l l A n * i , u l * V4JJ nTl^l 'W W

[ J 0 < * „R > V W - ^ V l ^ f t ^ ) ] exp (-X* Fo)

Po = Qtr/r 0 , R = r /r Q

j i u . ] . a ) = Y a p..?J. (Xjl n x l n l n i i n

Page 315: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 315/578

Section 9.1. Solids Bounded by Cylindrical Su rf ac es —N o Internal Heating.

Case No . References Description S o l u t i o n

9 . 1 . 1 3 9 , p . 21 0 I n f i n i t e c y l i n d e r w i t h v a r ia b l e i n i t i a l t e m p e r a t u r e a n dc o n s t a n t s u r f a c e t e m p ,t = f ( r , 9 ) , 0 < r < rQ , x = 0.

t = t Q f r = rQ , X > 0.

CO 0 0

t - fc0 = 2 I [V» c o s <n 9 ) + Bn ,m s i n ( n 6 )]m=l n=0

x J (XmR) exp K-

)-1 - I f

\ = r / / R| f(K ,9) - tn" | Jn (X R)dR dB

°'m * [ w ]2 I 4 [ o J ° m

1 IT

\ = - / | R p E ^ e ) - t . l cos (n9) J (X r )dR dBn'm * [ W ] I L ° J' 0 - I T

1 IT

n,m * O W ] * Jo 4,I / R|"f(R,9) - t J s i n (n9) Jn ( X r aR ) dR

n •i.tr

de

J (X ) = 0n 4 m'

Page 316: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 316/578

n 9.1. Solids Bounded by Cylindrical Surfaces—No Internal Heating.

No. References Description Solution

9, . 211 Infinite cylinder with vari- °° °°

able initial temp and convec- . . V V r» / , , ,-. , >n T , I T,, / I 2 r,

. . , t - t = ) > A cos (n9) + C sin (n9) J (XR) exp (-X Fo)

tion boundary-general case . f Z_, £-, \_ n,m n,ra 'J nl

n V n /= f ( r , 9 ) , 0 <r < r , x = 0. ra=l n=0

x 2 - 1 -*A = —j-z 5? I I Rff (R,9) - t,~| J.(X R)dR d9

° ' m n(x 2 + Bi 2 ^ f j i j t l 2 l J L fj 0 m

2X 2

m

""•( " - )[W]

1 IT

x / / R[~f{R,9) - t 1 cos (n9)J (XR)dR d9

2X 2

mn ' m " TT(X2 + Bi 2 - n 2 ) [ J (X )1 :i - n ; ivvj 2

1 .It

x / / R[f(R,9) - t j sinf (R,9) - t , 1 sin (n9)J (X R) dR d9* • n m

' 0 -i r

K? J X J + B i J n < X J = °n m n m

See case 9.1.3.2 for f(r,9) = .

or

case 9.1.3.1 for f(r,9) = f(r)

Page 317: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 317/578

Section 9.1. Solids Bounded by Cylindrical Surf ac es —N o Internal Heating.

Case No . References Description Solution

9.1.15 9, p. 212 Infinite cylindrical sectorwith steady surface temperature. 0 8 V sin(j8) \* / , 2 _ \ j m f _ T ,_, .._

t = t i f 0 < r < r Q, 0 <P9 < 9 Q, T — r - 1 2 ^ Y 1 «* K ^ T ^ T P j j ' n=0 m=l D m "'O

= 0

t = t Q , r = r Q , 9 = 0, x > 0. j = (2n + l)ir/8 , J.(X ) = 0

— 0

.1.16 2 , p . 248 Semi-infinite cylinder. Dimensionless temperature equals product of solutionfor semi-infinite solid (case 7.1.1 or 7.1.3) andsolution for infinite cylinder (case 9.1.1 or 9.1.3).Se e Figs. 9.4a and 9.4b.

1.17 2, p. 248 Finite cylinder. Dimensionless temperature equals product of solutionfor infinite plate (case 8.1.6 or 8.1.7) and solutionfor infinite cylinder (case 9.1.1 or 9.1.3).Se e Figs. 9.4a and 9.4b.

9.1.18 Inf in i te cy l inder in asemi - in f in i t e so l id .

See case 7.1.22

Page 318: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 318/578

Section 9.1. Solids Bounded by Cylindrical Su rf ac es —N o internal Heating.

Case No . References Description S o l u t i o n

9 . 1 . 1 9 9 , p . 4 18 F i n i t e c y l i n d e r .t = t„, 0 < r < V

o < z < a , T = o .t = t 1 # 0 < r < r Q ,

z = 0, T > 0 .t =

v0 < r < r , z = I, T > 0.

C o n v e c t i o n b o u n d a r y h , tQ

at r = r Q , x > 0.

t - t" ~ "0 V" B i J p t ^ n ) s i n h [ ( 1 - Z ) Xn L ]

fcl " fc0 ~ ( B i2 + X 2 ^ J„(X ) s i n h (X L)n= l \ n / 0 n n

"I I

- 4ir Bi

mJ (RX ) s i n (nmZ) e xp j - [ x2 + (imr/L) 2 j F o J0 " w V

n = l m = l K L ) 2 + lm)2] [Bi* + Xn ] V VVi'V = B i WB i = h r Q A , R = r / r Q , Z = z /X , , F o = a r / r2 , L = V r 0

9 . 1 . 2 0 9 , p . 4 18 C a s e 9 . 1 . 1 8 w i t h c o n v e ct i o n b o u n d a r y h , t

a t z = I, T > 0 . h~ ko= 2 Bi

~ J,,(RX ) I X c o s h ["X L ( l - Z)"| + B i s i n h1V(1 - 4

- 4 B

n-1 (B i 2 + Xn) W [Xn c o s h <LV + B i s i n h <LV ]

" y » . ( B i2 L 2 4 6; ) J o ( R X n ) s i n ( z em ) e x p [ - f a + ^ / L

2 ) F Q ]

Z

n

Z , fBi 2

+ X 2 ) ( B i2 L 2

+ B 2 + B i L ) ( L 2 X 2

+ B 2 ) J n ( Xn = l m= l V n / V ra / \ n m / 0 n

B co tB = -B i L , L = H/ t„m m u

Se e cas e 9 .1 .1 9 fo r X , B i , R , Z , and Fon i i i

Page 319: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 319/578

Section 9.1. Solids Bounded by Cylindrical Surf ac es —N o Internal Heating.

Case No . References Description Solution

9.1.21 9, p. 419 Semi-inf inite cylinder withconvection boundary.t = t Q , 0 < r < r Q , z > 0,

T = 0 .

t = t ± , 0 < r < rQ ,z = 0, T > 0.

Convec t ion boundary h , t .

a t r = rQ , z > 0, T > 0.

t - t, J 0 ( R Vh-k^" ^ ?Bi2 + X

2

) J n ( X )n=l \ n / 0 n

2 exp (-X Z) + exp (X Z)n n

x e r f c\2 Po*

+ Z Fo 1 - exp (-X Z) e r f cn 2 FoZ FO

X J (X ) = B i J (X )n 1 n O n

Bi = h rQ / k , R = r / rQ , Z = z / rQ , Fo = rQ / 2 yjaJF

9 . 1 . 2 2 9 , p . 419 S e m i - i n f i n i t e c y l i n d e r w i t hs t e a d y s u r f a c e t e m p e r a t u r e ,t = t Q , 0 < r < rQ , z > 0,T = 0

t fcl' r = r 0 ' Z > ° 'T > 0.

t = t ( J , 0 < r < rQ ,

Z = 0 , T > 0 .

fc- fco J « < » * >

n=l

V O n ' I 2 \ *Z X J (X ) 2 e x p \ TXn F o j e c f ( Z F o

+ e x p ( X

nZ )

(z Fo* + — M + exp (-ZX ) er fc (z Fo* " - _ )V 2Fo / n ^ 2 Fo 'x e r f c i z Fo +

See case 9 . 1 .2 0 f or X , Fo , R,and z

Page 320: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 320/578

Section 9.1. Solids Bounded by Cylindrical Su rfa ces —No Internal Heating.

Case No . References Description Solution

9.1.23 9, p. 420 Cone with steady surfacetemperature.

t = t . , o < e < e Q , T = o.t = t Q f e = e 0 , T > o .

= I +~ {2n + 1)T [<n + l ) / 2 ] P n (X)

^ 2 . nf (n/2) [dPn(X)/dn] x = x

n=0 0

•f x p ( - o r u / r * ) J n + 1 / 2 (u )du

..3/2

P (X„) = 0 (Legendre polynomial)n 0

24 33 Infinite composite cylinder,t = t., r 3 < r < r , T = 0.

t = t Q , r = r 3 , T > 0.

q r = 0, r = r ± .

k = °°

1 - ^ 2 - = TT J exp (-X 2 Fo) FG [x;J 0 ( R 2 X n ) - NX n J l (R 2 X n ) ]

n=l

F =v w

[Wall "['n - N ( N " 2 / R2>Xn] " K J 0 <R

2V " " V l ' V n ^G ° J0 (R V KWn' " "Wn'] " V n'

^KvVi,1

- H V I ( R 2V]{R - D 2 P, C

R = r / r i ' N = ^ — ^ T ~ ' J ° ( R 3 X n > = °(R 3 - 1) P 2 c 2

Page 321: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 321/578

Section 9.1. Solids Bounded by Cylindrical Surf aces —No Internal Heating.

Case No . References Description Solution

9.1.25 33

oI

boundary and insulated end. -~ fc i V B i J 0 ( X n R ) c o a h [ X n L ( 1 ~ X>]t = t,, 0 < r < r rt , 0 < x < I, t n - t. - Z A 2 + B i 2 \ c M h

n=l \ n / O n n

Finite cylinder with convectional,r 0

T = 0. t = t Q, 0 < r < r Q ,

X = 0 , T > 0. q = 0 ,

0 < r < r Q, x = Si , T > 0.

Convection boundary h,h 2 , t Q : at r = r 0 .

h,t.

I

V —| x = A

- 271

2 1(2m + l)BiJ0 (X n R ) co s [(2m-^~ -"J (1 - X)nJ

«=0 „ - l L ' K + ( 2 m + X > V / 4 L 2] ("n + B i 2 ) WL [~,2 A (2m + 1 )2 T T 2 "11x exp | -Fo |_Xn + J — - - J J |

X J . (X J = Bi J (A,,)n l n O n

Bi = h rQ / k , L = J /r 0 , R = r / rQ , X = x / £ , Fo = or r / r2

Page 322: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 322/578

Section 9.1. Solids Bounded by Cylindrical Sur fac es— No Internal Heating.

Case No . References Descr iption Solution

t - t. *- Bi, Bi„ J n (X R) cosh fX L (l - X)lX £. U n i- n £_

9.1.26 33 Case 9.1.25 with convection

V t. at r = r Q. ^ L . = , - =Convection boundary 0 i , (X + Bi. ) J. (X ) X sinh (X L) + Bi_ cosh (X L)

n= l \ n 1 / O n L n n 2 n J2 , t 0 : a t x = 0.

4in

" " , X m B i l B i 2 ^ + B i2 J 0 (X n R ) COS [ Xm L(l - X)]

Z , ^ (X2 L 2 + X 2 ) (X 2

+ B i 2 ) J n (X ) [(X2

+ B i 2 ) + B i , l11=1 n=l V n m/ \ n 1 / (T n |_\ m 2 / 2J

* e x p [-FO ( x v + xy]V i ( V = B i i J o ( V ' x » t a n ( V = B i 2B i = h r A , B i = h l A , L = V r . , H = r / r , X = x / i

Page 323: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 323/578

Section 9.1. Solids Bounded by Cylindrical Sur fac es— No Internal Heat ing.

Case No. References Description Solution

9.1.27 33

I

Finite cylinder with alinear time dependenttemperature on one end.t = t.,, 0 < r <c r Q ,

0 < x < %, T = 0.t = t t + b(t Q - tjjx,

x = 0, 0 < T < b.t = t Q , x = 0, T > b.

c ^ = 0, 0 < r < r Q , x = l ,

T > 0. Conv ect io n boundaryh/ t . : at r = r Q .

t = f{r)-

^ x

h,t r

IX =

Lt 1

Bi J Q (3 n R) cosh [e n L(l - x)]

o " t i £, (ef + B i2)j . (3„) cosh te Dn= i \ n / o n n

B Bi j n ( 6 R) cosh f3 L( l - xjlin 0 n L m J

t „ -4_Pd

CO CO

m=0 n=l . f r 2 + *m) ( B n + B i 2 ) W S i n «*»>

1 « * [ f a (6n + B>2) ] « • [ "F o (Bn + e > 2 )

0 m = (2m + UTT, U ( B ) = Bi j n (3„)in n 1 n O n

Fo = oct/r jj, Bi = h r Q /k , L = l/a, R = r /r Q , X = x/B.,

Pd = r Qb/a

9.1.28 33 Case 9.1.27 with convectionboundary h_, t- at x = 0.

t £ = t. + b ( t 0

0 < T < 1/b. t = t Q , T > 1/b.

Solution identical to that given in case 4.1.25 exceptmultiply the second s ummation series by

Pd {exp l^rr (X: + X~/L") | - 1}[ k « • > >2) ]Convection boundary h . , t . :

at r = [..

Page 324: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 324/578

Section 9.1. Solids Bounded by Cylindrical Sur fac es— No Internal Heating.

Case No . References Description Solution

9.1.29 6

UPl

Infinite rod attachedto an infinite plate,t = t Q , 0 £ x <.<D ,

0 < r < » , T = 0.g^ = q Q , x = 0, X > 0.

©b — ^

tf?mmzz;

te5S5S555 ?£

3 • s »exp(-n 2 TT 2 Fo) ,

X = 1 , R + » •

(fc - V k l H* - V k l l / k 2 P 2 C 2 \ 1 / 2

q 0b Lg 0

b J^ 1 V k l P l c l /R+oo

x J Fo j 4 i 2 erfc ( =) +4 i 2 erf c (=) 4 i'erfcV « 4) 1 / 21

2 VFo J

W 2 / T ( 2 n + 2 ) 2 + R oim l( „ /n \ , f /n + l\

- erfc p * 4) 1/21 , (nf^iiliir). 2~?Fo J e t f C \ L i~F5 J /

, X = 1, R =

F o = o ^ T / b " , X = x/b , R Q = r Q / b

Page 325: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 325/578

Section 9.1. Solids Bounded by Cylindrical Surfa ces— No Internal Heating.

Case No . References Description Solution

Page 326: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 326/578

Section 9.1. Solids Bounded by Cylindrical Surfa ces —No Internal Heating.

Case No. References Description Solution

Ito

Page 327: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 327/578

Section 9.2. Solids Bounded by Cylindrical Sur fac es— Wit h Internal Heating.

Case Ho . References Description Solution

9.2.1 9, p. 204 Infinite cylinder with steady »internal heating and constant 0' 1 ... _2 - V

4 (1 - R ) - 2 2 ,

J 0 ( R X n ) exp (-X 2 F O )

surface temperature. r 2 a " *0*0 n=l i n n

J„(X ) = 0

See Fig. 9.5

9.2.2 9, p. 205 Infinite cylinder with90 steady internal heating

and convection boundary,t = t £ , 0 < r < r Q , T = 0.

<t t f ) k

r„q„• * »

" exp (-A Po) J n ( R A n )R 2 + 2/Bi) - 2 Bi J •" - "

*i x 2 ( B I 2 + x 2 ) j n(x )n=l n \ n/ 0 n

Bi j (AJ = X J (X ),O n n l n

See Fig. 9.10.

Page 328: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 328/578

Sec t i o n 9 .2 . So l i d s Bounded by Cy l ind r i ca l Su r f ace s —Wi th I n t e rn a l He a t i ng .

Case No. References De scr ip t ion S o l u t i o n

9 . 2 . 2 . 1 74 , p . 372 Case 9 . 2 .2 w i th q' ' • = q j - ' e " 1 * 1 t ~ t

i

t = t . r 0 < r < r , T = 0.t f _ t i P d L J0 ( V P d , - 4 p Jl ( v P d , J

CO

1 ( 1 - ^ ) * n W » » (- Xn P0)

exp (-Pd Fo)

A =2 Bi J„(A ) A0 n n

^"v V (x; + B»)' W

9 .2 .3 9 , p . 204 In f i n i t e cy l i nde r w i thexponen t i a l t i ne -dependen ti n t e r n a l h e a t i n g .t = t Q , 0 < r < rQ , T = 0.fc - V r - V T * °"

<* - V exp t-bt) ( VR > y >Pd J n (VT3)

W

. I I I _ — • I I

- « « " •-br

2_ V exP ("^K^n 1

P d Z , X f x 2 / P d - l ) J ,( X )n = l n V n / I n

Page 329: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 329/578

Section 9.2. Solids Bounded by Cylindrical Su rfaces —With Internal Heating.

Case No . References Description Solution

9.2.4 3, p. 363 Infinite pipe with steady Pipe temp:fluid flow and sudden heatgeneration in the wall. (t - t.)h P. / I \ 1 T + F r *F l u i d : t = t . , T = 0. E l ^- = A T+ + ( r ^ T ) d " e > " e ( ^ " D

a ' " R (X - l l / i 2 \A - 1 / u.P i p e : t * t . , T = 0 . q 0 V 1 ) M

F l u i d v e l o c i t y = V.

\o

x * ( E , T * ) - X<f>(£,T*> + ^ - i - j . ) e _ X T A ( ? , T \ A ) ] , T + > (X - 1 )C.

No ax i a l cond uc t i o n . F lu id t emp :

Wa l l h e a t i n g : g• " = q' " ,T > 0 . u

( t . - t . ) h P. __ . + r

0 Insulated £ 1 i - = X T + - (1 - e ~* T ) - e"^J, outer wall q ( J " A p ( X - 1 ) / X 2

JM(M(/«l<lti«/<(tt(tllltM<«q _ „ . ** ~ X ^ * ~ x [ < V r + X " 1 ) , I ' ^ ' T ) _ A * ( u . T * 5 - e A ( C , T , X ) ] , T + > (X - l) Cv-<^

6 e ~6 d6h / M J J M M / M M / M M M d ± £ r n f T

I — ' * *(E,T ) = > - S — r /n fo <"'> 2 J

F, » b - x / v , X = 1 + b f / b . T* = b„ (x - x / v ) ,1 r

P P a> T

b f - h P i / P j C j A j . b p = h P i /PpCpAp , , T

+ - b p x + ( 5 f T * , . £ j £ _ J fin+le-fl d f i

A , = f l ow a r e a , A = p i p e s e c t i o n a r e a , n = 0 °

P. = p i p e i n s i d e p e r i m e t e r . °° r /. -, n .-(X-l)T1 A«,T*,») = y M * - i ) ] f « n - 6 *

S e e F i g s . 9 . 6a, 9. 6b, and 9 .6c . *-* fn l) Jn= 0 * ' 0

Page 330: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 330/578

Section 9.2. Solids Bounded by Cylindrical Su rfac es—W ith Internal Heating.

Case No. References Description Solution

9.2.5 9, p. 405 Infinite cylinder withlinear temperature-dependent internal heating,t = t 0 , 0 < r < r Q , T = 0.

Vr = r Q , T > 0.

V'T > 0.

(t - t 0 )k x J Q ( R V P 5 ) X ^ exp [( -X n + Po)Fo] J Q( R X n )4 2 z-'-r*. ~ B J

Q ( V P o ) P O

'0 0~ X (Po - X 2 )j 1 (X )n=l nV n' 1 n

W = °' P ° B Vk ' / r

02

If 6 > 0, steady state solution exists for Po < A..'.

9.2.6 19, Infinite cylinder ofp. 3-29 infinite conductivity,

variable specific heat,convection boundary, anduniform heating.

See case 8.2.11, set h = 2, radius

9.2.7 19, Case 9.2.6 with a shortp. 3-29 cylinder of length 2&.

See case 8.2.11, set L = 3, radius = i.

Page 331: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 331/578

Section 9.2. Solids Bounded by Cylindrical Sur fac es— Wit h Internal Heating.

Case No . References Description S o l u t i o n

9 . 2 . 8 63 H o ll ow i n f i n i t e c y l i n d e rw i t h e x p o n e n t i a l l y s p a c ev a r y i n g h e a t g e n e r a t i o n ,t = t . , r . < r < rQ . x = 0.

t = t^ Cr ) , r = r1 # T > 0.

t = t 2 ( T ) , r - r 2 , T > 0.

q " 1 • im e x p [ - B ( r - c , ) ] .

I

CD

{t - t . ) kB a • 2 J ?

n =l "O^n* " 0 " " n " 2 '2 = * I 2 ? W e XP (~Xn F°)

l/tJ n < x J

FO

T ^ T ) exp W-) d(Fo)

^ f (Xn) ( S ^ ) 2 / mx ex p ( \2 Foj d(Fo)J

( t - t . ) kS aR = r / r i r F o = t r r / rl f T ( T ) =

f*2:( Xn) = / exp [-[Jr^R - 1)] RB0(X nR)dR

B 0(X n R, = J0 ( X n R ) Y 0 ( X n , - V X n R , J 0 ( V

WVVV = W V W

Page 332: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 332/578

Sect ion 9.2. Sol ids Bounded by Cylindrical Surface s—Wi th Internal Heat ing.

Case No . References Description S o l u t i o n

9 .2 .9 74 , p . 375 In f i n i t e cy l i nde r w i th a ( t - t . ) ks tead y sur f ace hea t f lux —and s t e ady i n t e r na l he a t i n g . 1 n "r ot = t . , 0 < r < r„ , T = 0.l 0q

Po +

• " = *o" 0 < r < rQ , T > 0 . ^ _ g L FQ _ i ( 1 _ 2R2 ) _2 y

z " V C = r 0 ' T " °" L nt l

J0(X nR) exp ( A ) -

ICO

a' txj - o

9.2 .10 74 , p . 375 Case 9 . 2 . 9 wi th• I I I = C T * e •q ' " ( l - R ) . " - y - i „

J - = J Fo + *' r"0 0

[ 2 J W - W ]X n J 0<V

Ll2J Q (X n R) [ l - exp (-X' Fo) ] + *

$ g iven in case 9 .2 . 9

Page 333: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 333/578

Section 9.2. Solids Bounded by Cylindrical Sur face s—Wi th Internal Heat ing.

Case No. References Descript ion Solution

9.2.11 7 4 , p. 375 Case 9.2.9 with

q' = q£"(l + bT>.- - Fo ( 1 + ~ Pd Fo l + <j>

a ' r 2

q 0 r 0

given in case 9.2.9

9.2.X2 7 4 , p. 376 Case 9.2.9 with

.•it . „ I M' " eap (-br).

(t - t.)k -

...,2 Pd

given in case 9.2.9

V r o

<=> 9.2.13 74, p. 376 Case 9.2.9 with

qu i * q' cos (br).

(t - t )k5 — = £r sin (Pd Fo) +

q r*

*> given in case 9.2.9

9.2.14 74, p. 376 Case 9.2.9 withq . . . = q . . . b r n - <* - v * (P d Fo>"

q . , .2 » + l

given in case 9.2.9

Page 334: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 334/578

Section 9.2. Solids Bounded by Cylindrical Surfaces—Wit h Internal Heating.

i

Case No . References Description Solution

9.2.15 74 , p. 393 Infinite cylinder with ._ . 2 » 2 „ „ , , , , „ . _ / ,2 _\, . .7 ( t - t , )p c r„ , _~ A J„ (A R , ) J . (X R) ex p (-A Fo)pu lse he a t in g on a J f H 0 _ 1. V n 0* n V 0V n ' ^ V n /c y l i n d r i c a l s u r f a c e Q1 ~ TT Z , L/ L + ^ 2 \ j 2 . ^and con vec t ion boundary n=l \ n / 0 nh , t f , 0 < r < r0 , T = 0 . „ 0 / R =

Instantaneous pulse heatingof strength Q. occurs at For Bi •+ »:

1

" * 'T

" "• » - v °« o i £ ' . " . " ' . ' W -g (-'S*>)

Mean temp:

( t - t j p c r2 , Z X J (X E, )B exp (- \2 Fo)m f 'K 0 l V n O n l ' n r V n /JSl * ^ J2 rA )1 n -1 J l ( V

4 B i 2

1 1 A 2 ( A 2

+ B i 2 )

Page 335: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 335/578

Sect ion 9.2. Sol ids Bounded by Cylindrical Surfa ces— With Internal Heating.

Case No . References Description Solution

Page 336: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 336/578

Section 9.2. Solids Bounded by Cylindrical Sur face s—Wi th Internal Heating.

Case No . References Description Solution

Page 337: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 337/578

Til•9

Hi

IREPRODUCED FROM

BEST AVAILABLE COPY

Page 338: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 338/578

Section 10.1. Solids Bounded by Spherical Sur fac es—No Internal Heating.

Case No . References Description Solution

10.1.1 2, p. 239 Sphere with steady •=74, p. 126 surface temperature. 0 2 V (-1) n , 2 2 „ , . , „„.

t = t A, 0 < r < r fl , T = 0. t^ - t Q TT £, nn=l

' - V r • V x > °

- * - i £ [— ( 3a n^ s ) - — ( " S T ^ ] - •» «i-n=l

Mean temp:00

fcm " fc0 6 V 1 , K2 « ,

? I ^ y * ° * n= in

Cumula t ive hea t ra te :

0 * n=l n

See F i g . 10 .1

Page 339: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 339/578

Section 10.1. Solids Bounded by Spherical Sur fac es— No Internal Heating.

Case No . References Description Solution

10.1.2.1 74, Sphere with convectionp . 254 boundary-general case

ol

so

t = f ( r ) , 0 < r < rQ , t ' fcf = 2

T = 0.

h.t.

V Xn S l n ( XnR ) ex p K F o ) f „ r F , . ,. "1Z T x - si n (X ) co s (X )1 R / R L f ( r ) " fc f J

n=l L n n n J "0

x s i n (X R) dRn

t a n ( A n > - (1 - Bi)See Table 14.2 of roots

10.1.2.2 3,p . 298

Sphere with convectionboundary.t = t £ , 0 < r < r Q , T = 0 . t, - t, 2 Z

B i sin (X ) ex p (-X Pol si n (Xn \ n / nX - s i n (X ) co s (X )X Rn n n n

R)

n=lX co s (X ) = (1 - Bi ) s i n (X )n n n

Cumulative heat rate:

" [ s i n (Xn) - Xn co s tX nQ [l - exp {-\\ Fo)]

Q " 6 Z 7in=l

X 3 fX - sin {X ) cos (X )1n •- n n n ~>

Se e F igs . 10. 2a, 10.2b, and 10.2c

Page 340: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 340/578

Section 10.1. Solids Bounded by Spherical Sur fac es—N o Internal Heating.

Case No . References Description Solution

10.1.3 9, p. 233 Sphere with initial tempf(r) and surface temp4 > ( T ) J general case. - 1 2

n=l

•If

2 2exp{-n TT Fo) s in (rnrR)

Rf (R) sin (nirR)dR - nir( •l)nFoj exp(n 2 ir 2 Fo X)* (X)dX

10.1 .4 9, p . 235 Sphere wit h sur fa ce temppropo rt i onal to t ime.t = t . , . 0 < r < r Q , T = 0.

t Q = br + t i # r = r Q , T > 0.

fc " fc i /. , R 2 - l \ 2 V _tlll , K0 i \ / i F o R , n

n = l

Fo) s in (nlTR)

See Table 10. 1 and Fi g. 10.8

Page 341: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 341/578

Section 10.1. Solids Bounded by Spherical Sur fac es— No Internal Heating.

Case No . References Description Solution

10.1.5 9, p. 235 Sphere with variableinitial temp. t - t„ 8fc = ( t c " to* <r0 " r , / ( r 0 + fc0> fcc " fc0 " n3R % (2 n + 10 < r < rQ , T = 0 . n ~fc V r B V T > °-

Y ~ j exp[-T l2{ 2 n + l )2 Fo ] s in [( 2n + 1) TTR]

?

10.1.6 9, p. 236 Sphere with variable initialtemp (parabolic).

fc = t c V ( I ^ H o2 c o)'0 < r < r , T = 0 .

t = t Q , r = r Q , T > 0.

t - t„

' c - fc 0

12

7 T 3 R I ^-1 2 2

sin (ffitR) ex p( -n li Fo)

n=l

Page 342: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 342/578

Section 10.1. Solids Bounded b y Spherical Surfa ces —No Internal Heating.

Case No. References Description Solution

10.1.7 9 , p . 237 Sphere with variable initialtemp (trigonometric). ~ _0 _ 1 ._„. , Jl „ .._ .. . , , _ , , i , i . 7 I"~ = n Sin (TTR) exp(-TT FO )t = t Q + ( t ^ r ) s in (irr/r 0), t c - t Q R r i

oU1

10.1.8 9 , p . 237 Sphere with variable initialtemp (exponential). .. 0 2TTfc = fc0 + ( t c " V e x pL b ( r " r oU' fcc ~ fc0 " R

0 .< r < rQ , xt = t ( ) , r = r Q , T > 0.

n=l (nV + B 2 ) 2

2 2ex p( -n IT Fo)

x si n (nTTR) [ ( - l )n + 1 ( B 2 - 2B + n2TT 2) - 2B exp (-B)]

B = br„

Page 343: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 343/578

Section 10.1. Solids Bounded by Spherical Su rf ace s— No Internal Heating.

Case No. References Description Solution

10.1.9 9 , p . 236 Sphere with two initialtemperatures.

J

t - 1 0 2 Y" r s i n '• ri'nR

1'> i

t r^x = m Z L—m— - R i s i n <n i t Ri > J1 0 n=l2_2x sin (mrR) exp (-n n Fo )

10.1.10 9 , p . 237 Sphere with polynominalinitial temperature. t - t,

t - t x - t Q + b x r + b 2 r 2 + b 3 r 3 h - 0

+ . . . . , 0 < r < r , T = 0 .t = t Q , c = r Q t T > 0.

S - = 2 | « i . ( «m ( i H )I H 1 * - ^ [ ( A2 - 2,n=l

x ( - l )n + 1 - 2 ] + - ( n V _ enTT) ( - l ) n + 1

+4„4n it 5„5n TT

x [24 - < n V - 1 2 n V + 2 4 > ( - l )n + . . . . ] e x p ( - n2 n 2

Fo)

bX " V o / R ' b2 = b 2 r 0 / R ' b 3 = V o ' * '

Page 344: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 344/578

Section 10.1. Solids Bounded by Spherical Surface s—N o Internal Heating.

Case No. References Description Solution

10.1.11 9, p. 238 Sphere with convection boundary89 and changing fluid temperature.

t = t., 0 < r < r , T = 0.

t f = bT + tA , T > 0 .

oI

( t - V " „ R2 Bi - 2 + Bi 2 B i

—i— =Fo + —m + i r -b r :

s in (RX )e x p ( -F o X )

, X 2 |~X2 + B i (B i - 1 )1 s i n (X )n = l n L n -I nI

X cot{\ ) +n n Bi = 1

Mean temp:

( t m -t n. = Fo - 1

15( ' •

See Fig. 10, 9

V 6 X P (~Xn F ° )^ X 4 ( X 2

+ B i 2 - B i )n= l n V n '

Page 345: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 345/578

S e c t i o n 1 0 . 1 . S o l i d s B ou nd ed by S p h e r i c a l S u r f a c es — N o I n t e r n a l H e a t i n g .

C a s e N o . R e f e r e n c e s D e s c r i p t i o n S o l u t i o n

1 0 . 1 . 1 1 . 1 7 4 , C a s e 1 0 . 1 . 1 1 w i t h t - t . „ „ . . , v ^ T ^ > , „ J r, >, , . , _ K T i _ _ , R Bi s i n ( VPd R) ex p ( -Pd Fo)

- 1) s i n ( V P H ) + V"PcT co s

A R s in (A R) ex p ( -A2

Fo j

P " 3 1 7 t , = t „ - ( t „ - t . ) e "b T . t . - t . "" x ( B i - 1 ) s i n (V Ta ") + V M c o s ( V P 3 )£ £m rm l £m I

oI

y~ (l - A 2 / W ) Ai= l \ n / n

( - D n + 1 [^ + (Bi - I )2 ]

- 2 Bi

n= l

,21 1/2A

( A 2 + B i 2 - B i ]

Mean temp:

fcm " fci _ 3 Bi Ctan ( V?d ) - YPTLI exp (-Pd Fo)t f - t ± P d [ ( B i " l ) t a n ( - V P d ) + V P d J

00 / 2 \

_ ^ ex p (~A Fo)- 6 B i2 ^ V n '

, A 2 ( A 2 + B i 2 - B i) ( l - A2 / P d )n = l n \ n / \ ti '

Page 346: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 346/578

Section 10.1. Solids Bounded by Spherical Surfa ce s—N o Internal Heating.

Case No. References Description Solution

10.1.12 9, p. 238 Sphere with convection boundaryand changing fluid temp.t = t., 0 < r < r„ , T = 0.

i 0t = (t - t.) sin (OTT + G ) , T > 0.r m it - max fluid temp.

m r

o

t " t i 2 B it - t . Pd Rm I

X rX

P d L p d s i n ( e ) " c o s ( el l ( B i " 1 ) s i n ^V

\£ x C M H * X

l (X

n + B i 2

B i

) « » < Vx ex p f -Fo \ J + — - s i n (urr + e + $ + <t>2)>

Pd = <»)rn/a

X c o t (X ) + B i = 1n n

A e = s in h (u ) co s (u ) + I co sh (u> ) s i n (u> )

i < l >2A e = a) c o sh (to ) + (B i - 1) si n h (ui )

co = R "Vpd/2, ii) = (1 + i) V Pd /2

Page 347: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 347/578

Section 10.1. Solids Bounded by Spherical Sur fac es— No Internal Heating.

Case No . References Description Solution

10.1.13 9, p. 240 Sphere enclosed in afinite medium of infiniteconductivity.t = t . , 0 < r < r , x = 0.

t = t Q , r x < r < r 2 , x = 0.

q r = 0 , r = r2 , T > 0 .

a

o

Tem p o f t h e s p h e r e :

fc- fco 0 _ 1 2M V" nt . - t „ M + 1 " 3R Z w 2

M 2 X 4 + 3 (2M + 3 )X2 + 9- n

M X + 9 |M + l ) rn= l n n

s i n (RX )

x s i n (X ) ex p ( -X Fo J , 0 < R < 1 .Temp o f t he su r ro un d in g med ium:

oot - t

3 1 C 1

S e e F i g . 1 0 . 3

t j - t „ M + 1 M 2 A 2 + V n 1/n= l n '

H 2 U 2 / 3 \ " 'M = Kc7 (R 2- V ' R = r / r l ' t a n <V

1 < R < R_

3X

3 + MXn

Page 348: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 348/578

Section 10.1. Solids Bounded by Spherical Sur fac es— No Internal Heating.

Case No. References Description Solution

10.1.14 9, p. 241 Case 10.1.13, except the sur- Temp of surrounding mediumrounding medium transfers ^heat by convection to afluid at temp t .

t = t., 0 < r < r , T = 0.

fc - V r > V T °-Exterior surface area = A.

t - ti

- i L 0, - t„ Z ,

(3 Bi R2MX=) exp (-A* P o J

. M2X 4 + 3X^{3 + 3M - 2M Bi R_) - 9 Bi R , ( l - B i R_)n= l n n 2 Z 2

P,c_2 2 / 3 \B i = h r2 A . , H = — ( R2 - l ) , R = t / rL

tan(X )3X

3 (1 - B i R_) + MX2 n

\

Page 349: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 349/578

Section 10.1. Solids Bounded by Spherical Surfaces—No Internal Heating.

Case No . References Description Solution

10.1.15 9, p. 242 Sphere with steadysurface heat flux. < fc - V k

3 p o + 5 R 2 - 3 2 V sin (R 2 Xn ) exp (-X R F O )

t = t 0 < r < r , T = 0. q n r 0 " 10 " R L f s i n ( X )

n=l n n^ r V r V T °'

i

tan(X ) = Xn n

See Pig. 10.4

10.1.16 9, p. 246. Hollow sphere with two R. (T- /T. - R )R T /T . cos (mi) - R.sur fa ce tempera tures . T_ = _i t 0 i i 2_ V 0 i it = f ( r ) , c . < r < r „ , T = 0 . T. ° R R Rir Z . nt = t . , r = r , , T > 0 .

t = t 0 , r = r 0 , x > 0 .

n=l

2( 1 - R .)* 2 2 "v " i Vx s i n (nnR ) e x p ( - n n Fo) + ) s i n

n=l

(nTiR )

2 2x ex p( -n ir Fo)/ \ , + R) f (R ) s i n (nlTR ) dR

R* = (r - r , ) / ( r n - r , ) , R = r / r . , Fo = a T / ( r . - r . )2

• i " v 0 i' "0 i'

Page 350: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 350/578

ection 10.1. Solids Bounded by Spherical Surfaces—No Internal Heating.

ase No. References Description Solution

0.1 .1 7 9, p. 247 Hollow sphere withsteady surface flux,t = t t , r A < r < r Q , T = 0.

t = t i t r = r i r x > 0.

^ r = V r = V T > °'

?

(t - t ^ k (R Q - R)

V i R QR+ 1 V ( 1+X D 1/2 S i n ( X n R Q -X n R )

\=1 K K + <

R

0 1 ) X

n J,2

x exp (-X Fo)

tan (X R„ - X ) + X = 0n 0 n n

R = r/r . , Fo = orr/r .I I

0. 1.1 8 9, p. 350 Sphere of i nf in i teconductivity enclosedby she ll of fi ni teconductivity.

t - t,

fc i- fc 0

0 _ iJKR

'I

sin [X (1 - R)] exp (-X n Fo)

^ 2K(1 - R. )X n + 4R t X n s i n 2 fr^l - R^] - K sin [ 2\ n ( l - R.)]

R. < R < 11

R,K X cos fX (1 - R.)l = (x 2 R? - K) sin [\ (1 - R.)li n L n i ' J v n x ' u n v i ' J

2K = 3 P 2

C 2 / p i c l ' R = r / , , : 0 ' F o = c c r / r Q

Page 351: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 351/578

Section 10. 1. Solids Bounded by Spherical Sur fac es— No Internal Heating.

Case No. References Description Solution

10.1.19 9, p. 351 Composite sphere.

oi

fc V r = V T > °t - V 0 < r < V -r - 0. __±_ = _ 0 ^ ^ s i n ( R V s i n ( V s i n [ A < v 1 } X J

l u , nn=l

x ex p (- X 2 Fo n ) , 0 < R < 1 .

CO

fc - fc Q 2 R Q

t- ~ t . ~ R , . .1 ° n=l n

x exp (-X n Fo 2 ) , 1 < R < R Q .

(|)(X ) = K X s i n 2 TA X (R„ - 1)1+ A X (R„ - 1) s i n 2 (X )n n ' - n u - ' n O n

+ [(1 - KA)/A X n ] s in 2 (X n ) s in 2 [A X Q (R Q - 1)] .

X cotfA X (R„ - 1)"| + 1/A + K [X co t (X ) - l ] = 0 .n L n O ' J ' L n n J

Fo= CTC/r*, A = V\te 7. K = \ / * 2 , R = r / r . , A(R Q - 1) i rrational

Page 352: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 352/578

Section 10.1. Solids Bounded by Spherical Sur fac es— Wo Internal Heating.

Case No. References Descriptio n Solution

10.1.20 4519,P. 3-57

Sphere with radiation coolingt = t Q, 0 < r < t x , T = 0.

q = a #"(T 4 - T 4 ) , r = r,.^ r \ r= r x s / 1

T = sink temp.

See Fig. 10.6

oI

10.1.21 72 Prolate spheriod withsteady surface tempt = t., throughout solid, T = 0.

t

T > 0

t , on surface of solid.

See Figs. 10.7a & b fort - t .

1t -w

t .x

vs Fo

Page 353: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 353/578

Section 10.1. Solids Bounded by Spherical Surfa ces— No Internal Heating.

Case No . References Description Solution

10.1.22 74, p. 320 A sphere with convectionand evaporation boundary.t = t., 0 < r < r „ r T = 0.

I 0

m = m e = evaporation rate.

t - t.= 1 - R M Bi s in ( VPd" R) ex p (-Pd Fo)

(Bi - 1) si n (VP d) + VPa" cos (VP d)

H L i - ( p d A2 y n v n ;

n=l

A =n

( - l ) n + 1 B i [ A2

+ (Bi - I , 2 ] 1 / 2

2 2X + Bi - Bin, K = Y mQ / h ( t f - tt)

A cot(A ) = 1 - B in n

Page 354: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 354/578

Section 10,1. Solids Bounded by Spherical Sur fac es— No Internal Heating.

Case No . References Description Solution

o

Page 355: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 355/578

Section 10.1. Solids Bounded by Spherical Sur fac es— No Internal Heating.

Case No. References Description Solution

ol

} •CD

Page 356: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 356/578

Section 10.2. Solids Bounded by Spherical Sur fac es— Wit h Internal Heating.

Case No. References Description Solution

10.2.1 1, p. 307 Sphere with steady surfacetemp and internal heating,t = t. f 0 < r < r Q , x = 0.t = v r - vT" ° -q " ' = q i " , 0 > r > r n , T > 0.

(t - t Q) k

*0 '0i'-«2'*±Ife-^)-""T R ~;; "n

n=l

2_2x sin (nirR) exp (-n ir F o ) .

See Fig. 10.5 for condition t. = t ,

Page 357: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 357/578

Section 10. 2. Solids Bounded by Spherical Surfaces —Wit h Internal Heat ing.

Case No . References Description Solution

10.2.2 9, p. 243 Sphere with linear internalheating distribution,t = t Q , 0 < r < r n , T = 0.

t - t Q , r = r Q , T > 0.

q - - q J " ( E 0 - r > / r 0 ,

0 < r < r Q , T > 0.

(t - t Q ) k x

J 0 0

f j U - 2R Z + R 3 )_ J3__ V* _ _ _ 1

^ n=0 ( 2 n + 1 }

x exp [- (2n + 1) TT Po] si n [(2n + 1) TTR]

>fOa

10.2.2.1 74,p . 366

Case 10.2.2 with

«'" = %"^° n>b •» 1, 0, 1, 2, . . .t - t, , , 0 < r < r 0 , T = 0

t = t Q , r = r Q , T ? 0 ,

t^rr ' 2 R [ e r f c PYvfe" V ~ e r £ c ( 2 Yv * 5+ R )J

U - r ( 2 + | )

n=l

Po Po1 + (b/2)

h+2

V 1 T.b+2 . /2 n - 1 - R2 . R L 1 " ^ V 2VF5 j

b+2 c /2 n - 1 - R't ,b+2 . (^f^)])n=l

P o = q - ' T b / Z r J / b ( t 0 - t l

Page 358: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 358/578

Section 10.2. Solids Bounded by Spherical Surfaces—With Internal Heating.

Case No . References Description Solution

10.2.3 9, p. 243 Case 10.2.2, with

q - - < J " ( r ; - r 2 ) / r ; f ^ ^ - fe (1 - R 2 , (V - 3R 2 ,

0 < r < r n , T > 0. H 0 0 n=l

(t - t n)k , 9 •> 12 V (-l)"" 1

"0'2 2x exp(-n li Fo) sin (nltR)

10.2.4 9, p. 244 Case 10.2.2, with( t -

Vk

1 r 2 - ,q'-'r. 5 — = - 5 - [l - exp{-TT Fo)J sin (TTR)- J — a s l n d r r A 0 ) . q ' " r 2 ^ R

0 < r < r , T > 0 .

10 .2 . 5 9 , p . 244 Case 10 .2 . 2 wi th ( t - t . )k

q ' - ' r 2 B~

uas e io . - i . i wi tn i t - t JK , 1q » . = q ' - - e x p [ b ( r - r0 ) ] . — _ 2 _ . i j 11 - f - ( l - ^ ) exp(BR - B) - | ( | - l ) eB )

s i n (mrR) , 2 2 „ %

j j 2 e xp (- n TT Fo)2_ V s i n (mrR) Q n m , ^ 2TTR Z ,

n = 1 n (n TI + B )

[ ( - l )n ( 2 B - n 2Tf 2 - B2) - 2Be"B ]B = rQ b .

Page 359: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 359/578

Section 10.2. Solids Bounded by Spherical Surfac es—With Internal Heating.

Case M o. References Description Solution

10.2.6 9, p. 245 Case 10.2.2 with

q , ., . q - ' e ^ .i_ "br [sin (RVTdL _ I _2 _Pd LR sin( Vpd) "J 7 r 3 R

CD

V (-1) s in (mm)Z . _ , 2_2 „ ,

2 2ex p( -n fl Fo) ,

n=l

Pd = rjjb/ct

n (n TT - Pd)

ito

10 . 2 .7 9 , p . 245 Case 10 .2 .2 w i th

q " ' = q j - ' e " *1 * ,r x<c< r 0 .q " > = 0, 0 < r < r,

2a" ' ' r0 0

_ e j f s i n (RV"Pd) _~| s in (V Pd - RV pd) I" R Pd l [ s i n (V~Pd~) J s in (V Pd ) J

x [V co s (R jVPd) - ^ L g . s i n ( R jVPd j J

0 0

+

h I ,z \ M 1 [- '-1

'"+

T S F

s i n

"""Vn h I t — Prl l l -(n TT - Pd)

R cos (mtR,) sin 2 2(nuR) exp(-n TI Po) .

Pd = rjj b/a .

Page 360: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 360/578

Section 10.2. Solids Bounded by Spherical Surfaces—With Internal Heating.

Case No . References Description Solution

10.2.8 9, p. 245 Case 10.2.2 with ,,. . ,,,

. i n - * . - . n - - - _ * c ~ zn> K

T > 0

q ' " - f(r), 0 < r < r Q , ^ _ = _^_ y ±_ exp(-n'ir' Fo) sin (nirR) / R'f(R") sin (mrR')dR'fc 0 2 V 1 2 2 /

-= = - f " > ^ exp(-n IT Fo) sin (nTfR) / R'f(R')E* TT ZR ~ n 2 J

n=l 0

jj I R , 2 f ( R ' ) dR' + I R'f(R') dR" - I R' 2f(R') dR'

10.2.9 9, p. 245 Sphere with steady internal ,. . .. •» • ,i „ , / , 2 „ \90 heating and convection ( t ~ t f ) l { 1 2 „ . „ . , „ B i V s l n ( V > e x P H n

F ° )boundary. l t l 2 = ? ( 1 ~ + 2 / B x ] ~ 2 T 2

- = t f , 0 < r < rQ

b ou nd ar y. „ m , 2 6 R ^- ^ 2 ( \ 2 ^ r>- 2 „- \ , i >t = t *0 < r < rn , T = 0. *0 r 0 „ - l X J Xn + B l " B l J s l n <V

q . . . = q ^ . . # o < r < rQ , X n c o t (Xn> = 1 - B i

T > 0.

S e e F i g . 1 0 . 1 0

h .t f

Page 361: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 361/578

Sec t i on 1 0 .2 . So l i d s Bounded by Sp he r i ca l Su r f a c e s— Wi th In t e r na l Hea t i n g .

Case N o . Re fe r ences De sc r i p t i on S o l u t i o n

10 .2 .9 .1 7 4 , p . 366 Case 8 .2 .9 w i th

q " ' = qJ"e"" b T -Pd L

x exp(-Pd Fo)

B i s i n ( V P C T R ) "1R E(Bi - 1) s i n fy Pd)+ V Pd cos

.A s in (X R) exp (-X Fo ).Po \ n n \ n /

n=l nRX

2 T si n (X ) - X co s (X )~|L n n n J

X - s i n (X ) co s (X ) ' t a n ( Xn } ~ 1 - Bi

1 0 . 2 . 1 0 9, p. 246 Sphere wi th p a r a b o li c i n i t i a l ( t - t , ) ktemp and c o n v e c t i o n boundary. 1* 1 2 |" l_ 1 1 I" 2 Bi

0 < r < r , T = 0 ( t e m p d i s t .for steady state with const,surface temp = t 1 ) .

. i n _ — 111q ' " , 0 < r < r n , T > 0.

^ . s in (X n R ) e x p ( - X n Fo j -i

*£*_ (x* + B i 2 - Bi) sin (X ) -In= l v n / n

2

X n cot (X n, = 1 - Bi, Po = ° J° h)

Page 362: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 362/578

Section 10.2 . Solids Bounded by Spherical Surface s—With Internal Heating.

Case No . References Description Solution

10 2.11 9, p. 350 Sphere of infinite con- (t - t )kductivity enclosed by a 0__ _ 1 /i 2^.\ _ Mshell of finite a l " r 2 3 ^ R V R

" sin [ X n ( R Q - 1)] sin [X JR p - R)] exp (-X* Fo)

^ X n J2K(R 0 - l )X n + 4 X n s in 2 [ X ^ - 1) ] - K sin [ 2X n (R 0 - 1)])

K Xn cos [X n ( R c - 1)] = (x* - K) sin [X n (R Q - 1)] , 1 < R < % .

= 3 p 2 c 2 / P 1 c 1 , R = r/r., Fo = a 2T/r.

snexi or rinite q ' " ^conductivity. ° 0t = t Q , 0 < r < r Q , T = 0.

q . . . = g^.., o < r < r Q f

T > 0.

q'" = 0, t . < r < r Q ,

T > 0.

otoOl

0.2.12 19 , pp. 3-29 Sphere of infinite con- See case 8.2.11, set L = 3, radius = &ductivity, variablespecific heat, convectiveboundary, and steadyheating.

Page 363: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 363/578

Section 10.2. Solids Bounded by Spherical Surfac es—With Internal Heating.

Case No. References Description Solution

10.2.13 74 , p. 370 Sphere with a steadyinternal heating andsteady surface flux,t = t., 0 < r < r Q, T = 0.

- q r - q 0 , r = r Q, x > o .

*o"> 0 < C < r 0 >T > 0.

Ito

(t - t i )kFo + $

= Po 3 Fo - j£ (3 - 5R 2 ) - 2sin (X R) exp (-X Poj

t ana ) = X nn nn=l

X R sin (X )n n

10.2.13.1 74 , Case 10.2.13 withp. 370 q" ' = q '" ( l - r /r n).

(t - t.)k

• t i r

2 4 ^

2 - (2 + \ 2 ) cos (X ) sin (X R)V n/ n n

V r o n=l5 2X R sin (X )n n

x [l - exp(-X 2 Fo)] + $

$ given in case 10.2.13.

Page 364: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 364/578

Section 10.2. Solids Bounded by Spherical Surfaces—With Internal Heating.

Case No. References Description Solution

10.2.13.2 74, Case 10.2.13 withP-370 q l I I = q , . . a _ R 2 h

( t - V 2 Foa' "t0 r 0

- 2^ sin (X R) [l - exp (-X 2 Fo)]

z —~ — = ~—+ *n=l

X R sin (X )m m

$ given in case 10.2.13.

10.2.13.3 7 4,

p. 370

oI

Case 10.2.13 with. 1 1 1 — n i i l

= q A " exp(-bR).

( t " fc i )k 3 Fo [2 - exp(-b) (b 2 + 2b + 2)

q ' • 'r^0 r 0

2X+ 2b

n=l

- exp(-b) (2 + b + 2b + X ) sin (X ) sin (X R)n \ v\j_ n n

X 2 s in 2 (X ) (X 2 + b 2 ) 2 Rn n \ n '

x J"l - ex p( -X 2 Fo ) 1 + *

$ given in case 10.2.13.

10.2.13.4 74,p. 370

Case 10.2.13 with. 1 1 1 — n 1 1 1q'"( l + br),

( t ~ V k / 1 x5 — = Fo (l + ± Pd Fo) + $q 0 r 0

$ given in case 10.2.13.

10.2.13.5 74,p. 371

Case 10.2.13 withq " ' = q^-'expf-br),

<t - t.)kT~ = ^ L 1 " exp(-Pd Fo)J + 0

q ' " r 2H 0 0

Pd

$ given in case 10.2.13.

Page 365: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 365/578

Section 10.2 . Solids Bounded by Spherical Surf ace s—W ith Internal Heating.

Case No . References Description Solution

10.2.13.6 74 ,p. 371

Case 10.2.13 withq ' " = q '"cos(bT).

(t - t >k x

,,,2 " id i n ( P d P o ) + *

9 given in case 10.2.13.

10.2.13.7 74, Case 10.2.13 withp. 371

T " ' = < - . • '

v*( t - V k (Pd F o ) n

r .,,, 2 " n + 1 F o + *

o* given in case 10.2.13.

Page 366: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 366/578

Section 10.2. Solids Bounded by Spherical Surfac es—W ith Internal Heating.

Case No . References Description Solution

10.2.14 74 , p. 390 Sphere with pulse heatingon a spherical surface anda convection boundary,t = t f , 0 < r < r Q , T = 0.

Instantaneous pulse ofstrength Q occurs at

r = r x , T = 0 .

, 1 / 2( t - t f ) p c r ^ x ^ . [ ( B i - l ) 2 + X 2 ] A n s i n ( X ^ ) s i n (XnR )

{£ ~ 4TF Z , Bi R. Rl

A = ( -1 )nn+1

n = 1 x ex p ( -X^ Fo ) .

2 B i [ V * ( B i - l ) 2 ] 1 / 2

X 2 + B i 2 - Bi

oI

t a n « x

n > - r ^ - R = r / r oFor B i •* »s

( t - t f ) p c r g^ - / r^- s i n (mrR .) s i n (nTO) ex p (-n TT Fo)21T l_ j *^ i

For r. = 0 :n= l

3 °° , 2(t - t f ) p ^ _ j ^ V X n S i n ( X n R ) e x p ( - X2 ^ o )

21TR Z , X - s i n (X^Jcos fX^)n = l

Mean temp:

( t - t . ) p c r ^ , ^ - r , o - r / 2• Z 0 . I \ [ ( B i - l )2 + X 2 1 X B s i n (X R )

Q, 4irR, B i A J L nJ n n n 1n= l

x ex p (-X Fo)

6 Bin , 2 / , 2 , „. .2X 2 ( X 2 + B i 2 - B i )

n v n '

Page 367: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 367/578

Section 10.2. Solids Bounded by Spherical SurCaces—With Internal Heating.

Case No . References Description Solution

iuo

Page 368: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 368/578

Section 10.2. Solids Bounded by Spherical Surfac es—W ith Internal Heating.

Case No . References Description Solution

ou

Page 369: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 369/578

osr

R E P R O D U C E D F RO M j §

Page 370: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 370/578

Section 11.1. Change of Phas e—Pl ane Interface.

Case No. References Description Solution

11.1.1 9, p. 285 Initial surface maintained at Solid temp:constant temp: freezing liquid.t = t n , J t = u , T > 0 .

t = t , x > 0, T = 0.

t = me l t i ng t emp ,m

°Y•w i «

(solid)

V V1 "

(liquid)

' f c s - fc 0fcm" fc0

er f K ) e r f ( X ) , 0 < x < w.

Liquid temp;

t„ - t.a I / * \ i— ——t _ t = e r f c l F o ^ ) / e r t c ( X V c r / aA ) , x > w.m ~ 1 ^ '

XVVTTC

S

( t m " Ve x p ( - X2 ) , ( t m - V h e X P fo V * & )

er f (X) ( t m - t Q ) k s

2 a

erfc~(X)

w = 2X y a xs

11 . 1 . 2 9, p . 287 S o l i d r e g i o n m a i n t a i n e d a tm e l t i n g te m p : f r e e z i n g l i q u i d .t = t , x < w, T > 0 .mt = t „ , x > 0, x = 0.

t , < t , t = me l t i ng t emp .1 m m

Liquid temp:

= X V Te r f c / p o ^ Ve x p C - X ) , x > w .

w = 2X-ya.T

X exp(X 2 ) erfc(X) = ( t m - t ) C J / Y V T

Page 371: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 371/578

Section 11.1. Change of Phase —Plan e Interface.

_ase No. References Description Solution

11.1.3 9, p. 287 Melting of a solid in contact Solid temp:

with another solid.

t = t Q , x > 0, T = 0.

t = t, > t m, x = 0, T > 0.

t = me l t in g temp.m

'NU,

ito

v vk .(solid)

I W k I (liquid) (solid)

fc

S" fc0 = e r f c ( F ox s ) / e r f c ( X V c ^ / c T ) , x > w .

Liquid temp

= er f (F o ^ l / e r f (X) , 0 < x < w .

e x p ( - X 2 ) + " s^ ^O - V " P ^ V v _ XYV

e r f { X ) k . V 5 ~( t , - t ) e r f c (X Va . / a ) c X , ( t l " V£ s 1 m SL s

w = 2X Va - t

Page 372: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 372/578

Section 11.1. Change of Pha se— Pla ne Interface.

Case No. References Description Solution

11.1.4 9, p. 288 Liquid freezing on solid-

properties of solidified

liquid different from

original solid.

t = t „ , x < 0 , T = 0 .

t

t 0 , X < 0, T

t , , x > 0, X = 0 .t = me l t in g temp,m

O r i g i n a l s o l i d :

VA"csi - fcot - t„ VS" + K er f (X)m 0

[ l + e r f (F o*s l ) ] , x < 0 .

S o l i d i f i e d l i q u i d :

fcs2 - fc0 V * + K e r £ ( F° x s 2 >

m 0 V A + K e rf (X) , 0 < x < w

L i q u i d :

>1 ' i l 1 \T ai2- kn2(solid) I (solid) (liquid)

t„ - t ,t _ = e r f c ( F o ^ J / e r f c (XV a ^ / c ^ ) , x > wm i.

X Y V T K e x p ( - X2 ) ] " f c ^ ^ m - V 6 X P ( - X aB 2 / af t>c s 2 ( t m " t 0 ) VA"+ K e r f (X) k , V X ( t - t . ) e r f c (XVa , / a . )

s2 X, m 0 s2 X,

w = 2X V aT r , K = k , / k . , A = a , / a0s2 si s2 s i s2

Page 373: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 373/578

Section 11.1. Change of Pha se— Pla ne Interface.

Case No. References Description Solut ion

11.1 .5 9, p . 289 Melting of a so lid in con tactwith another so l id— prope rt iesof l iquid different thanor ig ina l so l id .t = t, > t , x < 0, T = 0.

1 mt = tQ , x > 0, T = 0.

w = 2 X V ^ t

X Y V T Tc A ( t l V

k^Va^exp ( -Xz)

H^7l + *s l V ^ e r f ( X )

+ k * ^ < t x - y erf c (XVapoT^)

See cas e.1 1.1 .4 for temperaturest = meltin g temperature ,m

11. 1.6 9, p . 289 S olid me lts over temp range For cas e 11 . 1 . 1 , change equation for X to :

>2,f tm l to Wt - t ^ , x > 0, T = 0.

H * °H + Y / ( t m 2 " W '

e x p [ t a s - H)V VaJ e rf c ( X V a ^ ) ( tm 2 - t m l ) k £ V ^

erf (X) (t.ml V s * 5 *

For case 11 .1. 4, change equation for X to :

K e x p [ ( a5 2 - y X 2 / ^ ] e rfc a ^ ^ \ ) _ ( tm 2 - t ^ ^ V T JV3T+ K er f (X) (t.ml t„> V^7

Use c." for c« in the above e quatio ns and solutions given in

cases 11.1.1 and 11.1.4.

Page 374: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 374/578

Section 11.1 . Cha nge of Phas e—P lane Interface.

Case Ho. References Description Solution

11.1.7 9, p. 290 Change of volume during t. - t ( t X ( p s - P„ ) /a

— -= = e r f c I Fo „ + n

s o l i d i f i c a t i o n . t_ - t , I xl Pt = t Q , X = 0 r T > 0.

t = t 1 # x > 0, T = 0.

P s > P r

t = m e l t i n g t e m p e r a t u r e .

I 2 ) ( t l - V h ^ e * p ( - * 2 P s V P & a l ) X Y V ?e r f (X) ~ (t_ - t n ) k „ Vo 7 e r f c ( X p „ V c T / pDVa; ) c^ ( t m - t n)exp(-X )

*m " O ' ^ s7 ^

W = 2 X V CX Ts

J s T BW'

II " x

w

P. - 'WM(solid)

t a . a s , k e , p s

(liquid)

1 1 . 1 . 8 9, p. 291 Cons t an t hea t f l ux a t

o r i g i n a l s o l i d - l i q u i d

bounda ry.

t - t , x > 0, T = 0 .m

q j£ = q Q , x = 0, T > 0.

t s o l i d t e m p , t < t .s r s m

( t s - V k sa s V

Qx2x

_ - 2 ^ ( 1 + 2 Fo J + - ^ - T d + 1 2 F o - + 1 2 P o » >x- 4X 12x

. . . , 0 < x < w .

w = QT - \ Q 3 T 2 + | Q 5 T 3

Q = q 0 / a s P s Y • F ° x = < V / X * ' T = V

t = me l t i ng t emp ,m

Page 375: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 375/578

Section 11.1. Change of Phase—Plane Interface.

Case No. References Description S o l u t i o n

1 1 . 1 . 9 9, p . 292 C o n v e c t i o n b o u n da r y a t

o r i g i n a l s o l i d - l i q u i d

b o u n d a r y.

t = t 1 # x > 0 , T = 0 , t x > t m .

t = m e l t i n g t e m p .

t - t F B i 2

_ § _S = B i T-^{1 + 2 Po )t - t , x 2 x'

m £

P Bi

IT' 1 + 3 1 F

° x >+ . . . , 0 < x < w .

V \ . ,

F 2 B i 3

F B i x F O x . _ _ x ( 1 + P ) F o 2 + . .

F = k s ( t m - V / a s P Y ' F o x = V / x ' Bi x = h x A s

(solid) (liquid)

Page 376: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 376/578

Section 11.1,, Change of Phase —Plan e Interface.

Case No. References Description Solution

11.1.10 55

19rp. 3-87

Solidification on plane semi-

infinite solid with convection

coefficient between solid-solid

and liquid-solid,

t = t , x < 0, T = 0.

c = 0.

t = melting temperature.

h 2 ( ts m V

pyk

N =

= i - o r N - 1 I BiM 2 LN(Bi + 1 ) - lJ " N

V fc 0 " Vh (t

s m V, Bi =

h ws

See Fig . 1 1. 1

(Solid) (Solid)

P.c

(Liquid)

-•V^o

11.1.11 5619 ,p . 3-88

Case 11.1.10 with so li di fie d

layer of finite heat capacity

and heat flow at x = 0 given

as q = bt , where t i s tempw w

at x = 0.

See Fig s. 11.2a and b

Page 377: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 377/578

Section 11.1. Change o f Phase—Pla ne Interface.

Case No. References Description Solution

11, . 1 . 1 2 1 9 ,77p . 3. 88

11 . 1 . ,13 1 9 ,p . 3 --88

Case 11.1.10 with heat flow4

at x = 0 given as q = btM .See Figs . 11 .3a and b

iCD

Decom posit ion of a sem i- Char la ye r:

i n f i n i t e s o l i d .

t = t Q , x >_ 0, T = 0.

t = t , x = 0 , T > 0 . .

t . = decom posit ion temp.

£ - bVT.

Char Virgin

©

I — i - 1

(D

t - 1 ,

w d

erf KJerf {b/2Va^> , 0 < x <_ I

Virgin layer:

t - t , e r f c KJt w - t d " e r fc" (b /2 V a p , x > I

e x p ( - b 2 / 4 a 1 ) / P ^ 7 / t d - t A exp f b 2 / 4a 2 ) _ i r p / c ^ yb

e r f ( b /2Va £) \ P-f^ \* v " t j « f c ( b / 2 V ^ ) 2 { tw - t f l )

See Figs . 11 .4a and b

Page 378: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 378/578

Section 11.1. Change of Phase—Pl ane Interface.

Case N o. References Description Solution

11.1.14 571 9 ,p . 3-93

i

Ablation of a semi-infinite

solid by convection heating,

t = t , x >_ 0 , T = 0.

t, = decomposition temp,d

See Figs. 11.5a, b and c

2cd" fc 0fc _ ° = 1 - exp [ ( h A ) O T d ] erfc [(h/k) Va Tj ]

T . = Time for free surface to reach temp t,d a

Steady state ablation velocity and temp distribution:

v =h < f c a " V

"ss p ( t d - t Q) + If]

^ = e x p [ - > ( * - * , ]

H = heat of ablation

Page 379: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 379/578

Section 11.1. Change of Phas e—Pl ane Interface.

Case No. References Description Solution

11.1.15 58 Case 11.1.15 with heating by See Fig. 11.6

19, a constant surface flux q " . Preablation time:p. 3-95

T * r ^ - ^yTd= 4 p c k \ T 5 r r ~ 7

A b l a t i o n v e l o c i t y :

' s s p [ c ( t d - t Q ) + H]

Page 380: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 380/578

Section 11.1. Change of Phas e-Pl ane interface.

SolutionCase No. References Description

V

Page 381: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 381/578

Section 11.1. Change of Pha se—P lane intecface.

Case No. References Description

i

t o

Page 382: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 382/578

Section 11.2. Change of Phase—Nonplanar Interface.

Case No. References Description Solution

11.2.1 9, p. 29 Liquid freezing ona cylinder.t = t , 0 < r < R .mt = t , r -»• «, t < tx i nt = me lt ing temp.

.£) ,

Liquid temp:

h^i = E i (_ F O* 0 m (-x2)' r > r

s-X 2 expCX2) Ei (-X2) + ^ ( ^ - t x ) / Y = 0 .

r = 2X VaTrs I

(Solid) (Liquid)

11 .2 .2 9 , p . 295 L iqu id f r eez ingon a sphere.t = t , 0 < r < R .t = t", r * » , t x < t m .

(Solid) (Liquid)

Liquid temp:

H ~ h = 2X^n ~ fcl exp ( -X2) X V 7 e rf c (X) (2 Fo*

exp(-3)rS,

- - er fc r > r_K)) •X 2 exp(X2) j exp ( -X2 ) - XTT e r fc (X)J = ^ ( tm - tj

r s = 2X V v

Page 383: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 383/578

Section 11.2. Change of phase—Nonplanar Interface.

Case No . References Description Solution

11.2.3 9,p. 296

Steady line heat sinkt = t , r > 0, x = 0,

t > t . sink rate = q.

t = me l t i ng temp .

So l i d t e mp :

( t s " V k s 4ir Ei (-2) Eif.-X" ) , d < r < r s .

r = 2X VC TTs s

Liquid temp:

( t , - Mr > r

m 1

xp( -X2) /4 i r + - f t - t ) e x p ( - X2 a s / a t ) / E i ( -\\zaj = X 2 a s p Y / q0 .

11 .2 . 4 9 , p . 296 F reez ing on s teadytemp cyl inder.t V c V T > 0 r

fc0 < V

* = V r ' r

o ' T = °*

t = me lt ing temp,m

Sol id temp:

^ 4 " T - * n( r /r ) / t a ( V r ) , r Q < r < r scm c 0

2 r s * » « Vr 0 » " r s + ^ = 4 k s ( t m - t 0 , T / ^

(Solid) (Liquid)

Page 384: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 384/578

Sec t ion 11 .2 . Change o ii Phase—Nonplanar In t er fac e .

Case No. Refe renc es 1 . - jr ipt ion So lu tio n

11 .2 .5 19 , F reez ing i n s id e a t ube , 2p . 3 -87 t ube r e s i s t an ce neg l ec t ed , ( m " a ' _ Bi T(X_ l \ 2 _2 „ / l \" l

conv ect ion co ol i ng a t r = rQ . pyk " 2 L U i + 2 j ( 1 ~ R ' " R . n UAJ ' R - 1 -t = t m , r = r 1 . Bi = h6 /k, R = c i/r Q

t = melting temp.

Liquid

Solid

11.2.6 19 , Case 11.2.5 with freezing on 2p. 3-87 outside of tube and convec- ' m a' _ Bi*" |/ 1 _ 1 \ ,Jl .. , _2

tion cooling on inside. pyk ^ lv ° 'i n ' v " """'Bi 171 1 \ ,Jl .. s „2

, R > 1

11 .2 .7 19 , Case 11 .2 .5 w i th f r eez in g jin I s - ~ tJp . 3 -88 in s id e a sphere . - 1 f e r a i = ^ f [ ( i i " 0 <* " H3) + f d - R2>] . R < 1

Page 385: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 385/578

Section 11.2. Change of Phase—Nonplanar Interface.

Case No. References Description Solution

11.2.8 19,p. 3- 88

Case 11.2.6 with freezingon outside of sphere.

n ^n, " Vo a B i 2

[&-) 3 3 2(R J - 1) - f (R - 1) R > 1

I

Page 386: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 386/578

Se ct io n 11 .2 . Change of Phase—Nonplanar in te r f ac e .

C a s e N o . R e f e r e n c e s D e s c r i p t i o n S o l u t i o n

i

Page 387: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 387/578

Sect ion 11.2. Change of Phase— Nonpla nar Interface.

Case Ho. References Description Solution

4.CD

Page 388: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 388/578

oBaeW" lM a

on

R E P R O D U C E D F R O MBEST AVAILABLE COPY

Page 389: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 389/578

Page 390: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 390/578

Section 12.1. Traveling Boundaries.

Case No . References Description S o l u t i o n

1 2 . 1 . 3 9 , p . 389 Sem i - in f in i t e s o l i d wi ths t e a d y p e r i o d i c temp,t = ( t f l - t ^ c o s t o r r + 9 ) ,x = 0 , X > 0 .So l id i nc rea s ing a tv e l o c i t y u .

t - t_ "* = e x p [ u x / 2 a - x V b c o s (<j>/2)] cos [UT - x V b s i n (<j>/2) + e ]

^ + f = b exp(i<t»4a

12.1.4 9, p. 389 Cylindrical boundarytraveling in aninfinite solid.t « t j, r > t fl , t > 0.fc = V r r o - °Cylinder traveling atvelocity u.

J3-

t - 1 „- ..„ _ e I (O)K (UR) cos (n6)0_ X n n nt 0 - t . " 2 K_,

n=0

,(U)

+ I y exp (-a 2 F o ) e cos (n6) i (U)IT {_ , n n

n=0

C° exp(-Fo X 2 ) f j (XR)Y (X) - Y (XR)J (X)~l XdXI L n n ii n J

10 ( X 2

+ u 2 ) [ a 2(X ) + Y2 ( X ) ]

e Q = 1, e n = 2 if n > 1, Fo = a r / r 2 , R = r / r Q

U = u r Q/2a

Page 391: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 391/578

Section 12.1. Traveling Boundaries.

Case No. References Description Solution

12.1.5 9, p. 391 Thin rod with fixed endtemps and convectioncooling,t = t , 0 < x < %, T = 0.

t = t , x - I, T > 0.

t = t Q , x = 0, T > 0.

The end boundaries traveling

at velocity u.p = rod p e r ime te r.A = cod s ec t i o n a r ea .

inh L\U2X 2 + Bi X 2 Jinht , - t„

X + Bi X J exp(DX - D)

sinh [V o + B i J

+ 2ir exp(DX - 0) £ ( - ^ " y i n im x)

n=lB i + 0" + n it

["exp l-Fo (Bi + U + n n )JB i = h p i 2 / k A , Fo = ore A 2 , U = uA/2a , X = x/SL

Iu

•4T

•-T

Page 392: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 392/578

Section 12.1. Traveling Boundaries.

Case No. References Description Solution

i

Page 393: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 393/578

Section 12.1. Traveling Boundaries.

Case No. References Description Solution

toim

Page 394: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 394/578

5"aeratosa.Hs:

REPRODUCED FROMBEST AVAILABLE COPY

Page 395: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 395/578

x/6

IG . 1 .1 . Tempera tu re d i s t r i b u t i o n and mean t emp era tu re i n a po ro us p l a t ec a s e 1.1.4, so u r ce : Re f . 2 , p . 221 , F ig . 9 .2 ) .

0 0 2 0 4 0 6 0 8 10

Page 396: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 396/578

F I G . 1 . 3 . Te m p e ra tu r e d i s t r i b u t i o n i n a h e a t g e n e r a t i n g p o r o u s p l a t e ( c a se1.2.6 , so ur ce : Ref. 2 , p . 223 , F i g . 9 .3 ) .

0 1 2 3 4 5 6 7 8 9 10 11 12-+ b/a (or a/b)

FIG . 1.4. Ratio of mean and maximum temperature excesses in an electricalcoi l of rectangular cro ss section (case 1.2.8, source: Ref. ?., p . 180,

Page 397: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 397/578

FIG. 1.5. First-term approximation to the maximum temperature in a solidrectangular rod with internal heating, ^ = -V q 0 " >/f$k 2b, \ | )2 = "V<3o'''/3k 2a(case 1.2.10, source: Ref. 2, p. 19 8, Fig. 8 . 1 6 ) .

Page 398: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 398/578

•±" 1 0 " 3

FIG. 1 .6a . Maximum tem pe ra tu re v a r i a t i o n s on th e co o le d su r fa ce of a f l a tp l a t e h a v i n g e q u a l l y s p a c ed a d i a b a t i c an d c o n s t a n t t e m p e r a t u r e s t r i p s on t h

o p p o s i t e s u r f a c e ( ca se 1.1.30, s o u rc e : Re f. 2 7 ) .

Page 399: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 399/578

0.8 1.0

IG. 1.6b. Heat flux through slabs held at a uniform temperature on oneurface and having equally spaced constant temperature strips on the othercase 1.1.30, source: Ref. 88 ) .

Page 400: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 400/578

ora

ha/k

FIG. : . .7 . Maximum tem pera tu re v a r i a t i o n of the coo led su r fa ce of a f l a t havi-(> a l t e r n a t i n g a d i a b a t i c an d c o n s t a n t h e a t - f l u x s t r i p s on t h e o p p o s i tsu r f ace ( ca se 1 . 1 .3 1 , sou rce : Re f . 28 ) .

Page 401: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 401/578

10 J

10^

o

10 1

10 L

"I 1 I I II I I

Insulatin

10 -2

hw/k

PIG. 1.8. Te m p e r a t u r e s at the s p o t c e n t e r of a s p o t - i n s u l a t e d p l a t e h av in g aun ifo rm in t e rn a l hea t sou rce ( ca se 1 . 2 . 13 , sou r ce : Ref. 29 ).

• ) 0 J c 1—i—r i M I I I 1—i—i i i i i 11 1 — i — I - T i i i i I 1—i—i i I I 11_

Insulating spot-

h, t „

oi n

' i i 1 1 i i i i i i i 1 1 i i i i i 1 1 1

10'

hw/k

10 J

Page 402: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 402/578

0.2 0.4 0.6 0.8

(y/B)/(1/Bi + 1)

1.2 1.4

PIG. 1.10. Hotspot temperatures along plate/ rib centerline (Bi = hS,/k)(case 1.1.39, source: Ref . 19, p . 3-126, Fig. 77 ).

0.5 1.0 1.5 2.0 2.5 3.,Ratio b/a

0.5 1.0 1.5 2.0 2.5 3.0Ratio b/a

PIG. 1 .11 . Con duc t ive shape f a c to r s fo r a r ec t an gu la r s e c t i o n con ta in i ng a

Page 403: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 403/578

H" 1.0

rcA

FIG. 2 . 1 . Heat l o s s from Ins u l a t ed t ub es ( ca se 2 . 1 . 3 , so u rc e : Re f. 3 ,p . 1 2 3 , F i g . 3 . 1 8 ).

Page 404: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 404/578

b

4

I 1 ' 1 1 T12.251 \

1

1

t m ^ l \ -

^ 3 1 \+ 1 \

£ Vb- r0 = 2.00 1 \1 \ -

+ 2 \ 1 \

§

1

" '1.75^ 1 \

\ —~ l.bU.

^ 1 \\ —

CSvV0 i — 1 — o . o o — 1

+o

*E

0 0.2 0.4 0.6 0.8R

1.0

FIG. 2 .2 . Temperature d is t r ib u t i o n and mean temperature in a cy l ind er w i thtempera ture dependent hea t source (c a se ? 2 .2 .4 , sourc e : Ref . 2 , p . 189 ,F i g . 8 . 11 ) .

J

F IG . 2 . 3 . Tem p er atu re d i s t r i b u t i o n i n an i n f i n i t e p l a t e w i t h a c y l i n d r i c a lhea t Bource , B = V ( hx + h 2 ) / kw r g , t 0 = t at r 0 , t«, = t a t r = °° (ca se 2 . 2 . 1

Page 405: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 405/578

0.1

0.01

0.001

= o 0 . 0 00 (1

0.001

0.01

0.0010.05

K = 10, R = 100K= 10 , R = 1K = 10, R = 1 0 -

K = 1, R = 100 -

0.4 0.5

FIG. 2 .4 . The i n s i d e s u r f a c e t e m p e r a t u r e o f an i n f i n i t e t u b e w i t h t e m p e r a t udependent co nd uc t iv i t y and hea t ing ( ca se 2 .2 .1 7 , sou rce : Re f . 16 , F ig . 1 ) .Equation (5) g iven in c a s e s o l u t i o n .

Page 406: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 406/578

s/r 0

FIG. 2. 5 . Maximum (hot sp ot) tem pera tures in the cr os s s e c t i o n of ahea t -gene ra t ing s o l i d (cases 2 .2 .1 8 and 2 . 2 .1 9 , source : Ref . 64 , F ig . 3 ) ,

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

1/P = b/r0

Page 407: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 407/578

0.01 0.1 1 10 100

G. 3.1. Steady temperature of thin, nonrotat ing spherical shell in uniformdiation field (case 3.1.10, source: Ref. 19 , pp. 3-112, Fig. 6 8 ) .

Page 408: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 408/578

PIG. 4 .1 . Surface temperature of a se ra i- in fi ni te sol id with heat ing on thesu rf ace over width 2b, which moves at ve loc i ty u (case 4 .1 . 8 , s ource : Ref. 9,p . 270, Fig . 34) .

3 -

2 -

1 -

• Heat sourcewidth - I

' I 1 1 1 1 1 '

A< °~ , \\ s H = 0 L = 1

/ / H = 0 . l S \

y^ H=I.O ^-

1 1

L e a d i n g e d g e — ^

» < • 1 •~~ " v | ^ ^-

x/8

f f l l d f l d

Page 409: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 409/578

o • ' ' ' • • — •

-0.10 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

0 - radFIG. 4.3a. S u r f ac e " t em p e r a t u re of an i n f i n i t e c y l i n d e r w i th a r o t a t i n gsur fac e band sou rce , <> =» 0 .01 (c a se 4 . 1 .1 0 , so u r ce : Ref . 30 ) .

n i T-0.1 0-0 .08 -0.0 6-0.0 4-0.0 2 0 0.02 0.04 0.06 0.08

f l - rad

FIG. 4 .3 b . (Same co nd iti on s a s fo r F ig . 4 .3a ) ,

Page 410: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 410/578

-1.5

(a)

f l ( R . r )(4/Pe) 2 0 _|_

Nu = 2.0

Pe = 20.0

Pe = 2.0

-1.0 -0.5

Nu = 0.2

Pe = 20.0

-1.5 -1.0 -0.5 0 0.5 1.0 1.5

(b)

FIG. 4 .4 . Temperature dis t r ibut ion i n a cylinder wi th a ring heat source (case 4.1.11, sou rce: R e f . 3 4 ) ,9 - (t - tf)2nrQk/Q0.

Page 411: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 411/578

e ( R . f ) Nu = 0.2R0 =1 .2BPe = 20.0

- Pe = 2.0

SIR,?)

Nu = 2.0R 0 = 1.25Pe = 20.0Pe = 2.0

PIG. 4.5. Tempecature distrib utions in a hollow cylinder with an inside ring heat source (case 4.1.12,source: Ref. 34 ). 9 defined in Pig. 4.4.

Page 412: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 412/578

n — i — i — i — i — i — r " i — i — i — r " 1 — I — i — i — r - 1 ' '2 'n = c o ; y = yb ( x / C )2 ;0 =

Vb

U-

n = - 1 ;y = Vb ( x / B | ; 0 =

2s/T .u b = — - - C V h T k y ;

9 b

u b l , ( ub )

n = O;y = yb ( x / C )1 / 2 ; 0 =

V 2 " ." b= — 7 — - K V h / k yb

2 l("b)u b l 0 (u b )

^?*&

tanh u h

n = 1/2;y = yb;tf>=-

u b = v ^ - f i V h 7 k yb "u b

J I I I I I I I L J I I L1 J I I L J I I L1.0 2.0 3.0

xVhTkVb

4.0 5.0

FIG. 5 .1 . Per formance of p in f i n s (cases 5 .1 .2 , 5 .1 .1 4 , and 5 .1 .16 through5 .1 .1 8 , so urc e : Ref. 8 and Ref . 7 , p . 55 , F i g . 3 .1 4 .

Page 413: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 413/578

J 1_

i= 1 /2 ;v = ;uh = » V h / k vb

tanh u b

= 1/3; y = V b ( x / C )1 " ; ub = — | ^Jhjk^

' 2/3 <u

b > 3

3 u b L, /3 <'Jb)= 0 ; y = yb ( x / B ) ; ub = 2 8 V ' h / k yb

2 ' i K '

i = - 1 ; V = V b ( x / B )3 / 2 ; u b =4C-. /h/kyb

"b Mub) _2, = ± oo; y = yb ( x , ' C )2 ; u b =Cx/h7kyb

2

1.0 2 . 0 3 .0 4 . 0 5 . 0

ev^RVb"

IG . 5 .2 . Perfo rmance o f s t r a ig h t f i n s ( ca ses 5 .1 .4 , 5 .1 .5 , 5 .1 .7 , 5 .1 .8 ,our ce: Ref. 8 and Ref. 7, p. 56, F ig . 3 .1 5 ).

Page 414: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 414/578

0.5 -

0.4

1.0 2.0 3.0 4.0

B V h 7 k V b

5.0

FIG. 5.3. Performance of circumferential fins of rectangular cross section(case 5.1.10, source: Ref. 8 and Ref. 7, p. 57, Fig . 3 . 1 6 ) .

Page 415: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 415/578

. 5.4. Curve for calculating dimensions of circular fin of rectangular

ofile requiring least material (case 5.1.10, source: Ref. 1, p . 234,

g. 11.11). a - Q/nhx£(t 0 - t f ) .

Page 416: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 416/578

1.0 2.0 3.0

FIG. 5 . 5 . Per formance of cy l in d r i ca l f i n s of t r i angu lar p r o f i le (case 5 .1 .1 1 ,sou rce: Ref. 8 and Ref . 7 , p . 58, F ig . 3 .1 7 ) .

Page 417: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 417/578

( r e * - r o) , / 2 h 7 k r0

FIG. 5,6. Efficiency of an infinite fin heated by square arrayed round rods(case 5.1.19, source: Ref . 11 and Ref. 10, p. 135, Pig. 2.22). t% = (2/W)s.

Page 418: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 418/578

(r e--r 0)V5R7E5;

FIG. 5 .7 . E ff i c i en cy of an in f in i t e f in hea ted by eq u i l a te r a l t r i angulararrayed round rods (case 5 .1 .2 0 , so u rc e: Ref. 11 and Ref. 10 , p. 136,F i g . 2 . 2 3 ) . r* * ( 2 V 3 7 n )1 / 2 s .

Page 419: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 419/578

Z = T0 A " e

FIG. 5. 8 . Fin parameter as afunc t ion o f Z fo r a s t r a ig h t f i nr ad i a t i ng t o f r ee space ( ca se 5 .1 .2 4 ,sour ce : Ref . 10 , p . 208, F ig . 4 . 3 ) .

Z = V T e

FIG. 5.9. Fin efficiency for astraight fin radiation to free space(case 5.1.24, source: Ref. 1 0, p. 209,

Fig. 4 .4 ) .

Page 420: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 420/578

0 0.2 0.4 0.6 0 .8 1.0 1.2 1.4 1.6 1.8

Profile number C(K1 T ^ / 2 k b )1 / 2

FIG. 5.10. Heat flow relationship for a straight fin of rectangular profileradiating to nonfree space (case 5.1.25, source : Ref . 10, p . 216, F ig. 4 . 8 ) .

0.4 0.8 1.2

Profile number « ( K ^ T j^ k b ) 1 7 2

F IG . 5 . 1 1 . E f f i c i e n c y o f a s t r a i g h t f i n o f r e c t a n g u l a r p r o f i l e r a d i a t i n g tf ( 5 1 2 5 R f 10 216 F i 4 9 )

Page 421: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 421/578

X = — = 0 .75

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Profile number K.,T^e2/kbn

IG. 5 .1 2a . Fin e f f i c i e n c y f or th e l o n g i t u d i n a l r a d i a t i n g f i n o f t r a p e z o i d a l

r o f i l e w i t h a t ape r r a t i o o f 0 .75 ( ca se 5 .1 .2 6 , source : Ref. 10 , p . 223,i g . 4 . 1 2 ) .

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Profile number K ^T j^ /k b rj

Page 422: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 422/578

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0Profile number K ,T 3(2/kb0

F I G . 5 . 1 2 c . F i n e f f i c i e n c y f or t h e l o n g i t u d i n a l r a d i a t i n g f i n o f t r a p e z o i dp r o f i l e w i th a t ape r r a t i o o f 0 .25 ( ca se 5 .1 .2 6 , sou rce : Re f. 10 , p . 224 ,F i g . 4 . 1 4 ) .

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

\ Profile number K^rg ^/kbn

FIG. 5 .12d . F in e f f i c i en cy for t he l on g i t ud ina l r ad i a t ing f in o f t r i a n g u l a rp r o f i l e ( ca s e 5 . 1 . 2 6 , so ur ce: Ref. 10, p . 225 , F i g . 4 . 1 5 ) .

Page 423: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 423/578

1.2 1.3 1.4 1.5 1.6

Temperature ratio Z = TQ/T

1.7

PIG. 5 .1 3 . P ro f i l e number of cons tan t - tem pera ture -grad ien t lo ng i tu d i na lr ad i a t in g f in as a fun c t ion o f ba se - to - t i p t empera tu re r a t i o ( ca se 5 . 1 . 28 ,so ur ce : Ref. 10 , p . 233 , F i g . 4 .1 8 ) .

Page 424: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 424/578

K 2 / K 1 T 0

0.4 0.8 1.2

Profile number £2

l<1T^/kb

1.6

FIG. 5.14. Efficiency of constant-temperature-gradient lon gitudina l radiatingfin as a function of profile number (case 5.1.28 , source: Ref . 1 0 , p. 232 ,Fig. 4.17).

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80Radius ratio p = r Q /r e

FIG 5 15a Radiation c i n efficiency of radia l fin of rectangular profile

Page 425: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 425/578

-©.> •

uca>\uM-4 -01

c

0.25 0.35 0.45 0.55 0.65

Radius ratio p = r Q /r e

0.75

FIG. 5,15b. Radiation fin efficiency of radial fin of rectangular profile.

Taper ratio, X = 1.00; environmental factor, K /K T = 0.20 (case 5.1.29,

source: Ref. 10, p. 251 , Fig. 4.25).

0.25 0.35 0.45 0.55

Radius ratio p = r n / r e

0.65 0.75

FIG., 5.15c. Radiat ion fin efficiency of radial fin of rectangular profi le.

Taper ratio, X = 1.00; environmental factor, K / K T n = 0.40 (case 5.1.29,

source: Ref. 10, p. 251, Fig. 4.26).

Page 426: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 426/578

0.25 0.35 0.45 0.55 0.65 0.75

Radius ratio p = r Q /r e

FIG. 5 .15d . R adi a t io n f i n e f f i c i e n c y of r a d i a l f in of t r a p e z o id a l p r o f i l e .

Ta p e r r a t i o , X = 0. 75 ; e n v i r o n m e n t a l f a c t o r , K2 / K , T = 0 . 0 0 ( c as e 5 . 1 . 2 9 ,

s o u r c e : Ref. 10, p . 252, Fi g. 4 . 2 7 ) .

Radius ratio p = r Q /r e

FIG. 5.15e. Radiation fin efficiency of radial fin of trapezoidal prof ile.

Taper ratio, X = 0.75; environmental factor, K./K.T. = 0 . 2 0 (case 5.1.29,

source: Ref. 10,p. 252, Fig. 4.28).

Page 427: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 427/578

Page 428: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 428/578

0.25 0.35 0.45 0.55 0.65 0.75

Radius ratio, p = r Q /r e

FIG. 5.15h. Radiation fin efficiency of radial fin of trapezoidal profil e.4

Taper ratio, X = 0.50; environmental factor, K

2 / K i T n = ° - 2 0 < c a s e 5.1.29,

source: Ref . 10 , p. 254, Fig. 4.31).

0.25 0.35 0.45 0.55 0.65 0.75

Radius ratio, p = r n /r e

FIG. 5.15i. Radiation fin efficiency of radial fin of trapezoidal prof ile.

Taper ratio, X = 0.50; environmental factor, K./ K. K = 0.40 (case 5.1.29,

source: Ref . 10, p. 254, Fig. 4.32).

Page 429: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 429/578

0.25 0.35 0.45 0.55 0.65 0.75

Radius ratio, p = r Q /r e

PIG. 5.15J. Radiation fin efficiency of radial fin of triangular profile.

Taper ratio, X •» 0.00; environmental fac tor , K / K T « = 0.00 (case 5.1.29,

source: Ref . 10, p. 255, Fig. 4.33).

0.25 0.35 0.45 0.55 0.65 0.75

Radius ratio, p = r n /r e

PIG. 5.15k. Radiation fin efficiency of radial fin of triangular profile.

Taper ratio, X = 0.00; environmental factor, K /K T = 0.20 (case 5.1.29,

source: Ref . 10 , p. 255, Fig. 4.34).

Page 430: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 430/578

-Q->uc

0.6

0.5

0.4

0.3

0.2

0.1

Z^^^^ —

^5^$^^r?^ Profile number

I I I I I I I0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80

Radius rato, p = r Q /r e

P IG . 5 .1 58 ,. R a d i a t i o n f i n e f f i c i e n c y o f r a d i a l f i n of t r i a n g u l a r p r o f i l e .Tap er r a t i o , X = 0 . 0 0 ; e n v i r o n m e n t al f a c t o r, K j A iT n = 0 . 4 0 ( c a se 5 . 1 . 2 9 ,s o u r c e : R ef. 1 0 , p . . 2 5 6 , P i g . 4 . 3 5 ) .

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Base paramater mR,

FIG. 5 .16a . E ff i c i en cy of the s i de ofa capped cy l i nd er f i n (case 5 1 3 0

Page 431: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 431/578

0.4 0.8 1.2

Base parameter mB

1.6

FIG. 5.16b. Efficiency of the top of a capped cylinder fin (case 5.1.30,source: Ref. 10, p. 277, Fig. 5.7).

Page 432: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 432/578

0.4 1.6 2.0 2.4

Parameter ml

2.8 3.2 3.4 3.6

FIG. 5 .1 7 . Heat flow ra t io q^/qg as a fun ctio n of mb and temp eraturee x c e s s r a t i o ( t^ - t f ) / ( t g - ff ) for the doubly he ate d recta ng ular f in(case 5 .1 .3 2 , source : Ref. 10 , p . 410 , F ig . 8 . 1 0 ) .

Page 433: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 433/578

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6m x 1 b l

I G . 5 . 1 8 a . E f f i c i e n c y of t h e v e r t i c a l s e c t i o n of a s t r a i g h t , s i n g l e Tee f i nor u » v (case 5 .1 .3 2 , sou rc e : Ref. 10 , p . 398 , F i g . 8 .4 ) .

1.0

0.9

0.8

0.7•e?

| 0.6

% 0.5i

0.4

0.3

0.20.1

IK 'i i i i i i

-

\\ / S . \ / S . y— Values of m .a.

-

- -

i 1 1 1 1 1 1

» « • « . -

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6Parameter r n x 1 b 1

FIG. 5 .18b. E f f i c i e n c y o f t he h o r i z o n t a l s e c t i o n of a s t r a i g h t , s i n g l e Teef i n fo r u • v (case 5 . 1 . 3 2 , sou rce : Re f. 10 , p . 399 , F i g . 8 .5 ) .

Page 434: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 434/578

Page 435: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 435/578

as

100

908070

6050403020100

V I I l I l I

~ \ -- TO^ -

_ y\ —Y*. A/2R -

\

^—1.5^ - 3 . 0^ - 5 . 0^—10.0

-

i i i3?===—_ -

i i i I I— 1 ' i

FIG. 5.21. Effectiveness of sheet f in with square array tubes (case 5.1.40,source: Ref. 83, p. 29 4, F ig . 2 ) .

J 0.5

< J \0 .05M

1

. 0 2 \ N AVi -

-

^^i^fc 1,

1 ^ O C s ^

^^i^fc 1,

FIG. 6 . 1 . Temperatures i n an i n f in i t e r eg ion o f which t he r eg ion | x | < b i si n i t i a l l y a t t e m p e r a t u r e t0 ( c a se 6 . 1 . 1 , sou rc e : Re f. 9 , p . 55 , F ig . 4 a ) .

Page 436: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 436/578

J 0.5

Ij) o >sfl b:\ 0.01 = F.u '1

oTN -

O^**-

0.5-

~1 "~

2 ^ = >.. ,., I ^ S2 ^ = >R

FIG. 6.2 . Temperatures in an i n f i n it e re gi on of which the re gio n r < rQ i si n i t i a l l y a t t e m p e r a t u r e t 0 (case 6 .1 .4 , sou rce : Ref. 9 , p . 55, F ig . 4b ) .

i i

1.00 0 5 ^

O.ION

W>2\\0 .0 l ' = Fo ' '1

0.50 . 2 0 s

0.50

1.00

1 I ^ ^ ^ S :

FIG. 6.3. Temperatures in an infinite region of which the region r < r n isinitially at temperature t 0 (case 6.1.5, source: Ref. 9 , p . 55 , F ig. 4c ) .

Page 437: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 437/578

— 0.4

PIG. 6 .4 . Temperatures in an in f i n i t e reg ion with s teady temperature t0 onthe su rfa ce r = r 0 ( case 6 .1 .1 8 , source : Ref. 9 , p . 337 , F ig . 4 1 ) .

log 10(Fo)

FIG. 6.5. Temperature in a cylinder of infinite conductivity, initially attemperature t l r in an Infinite medium inditially at t 0 . Numbers on thecurves are values of 2PQCQ/P1C (case 6.1.21, source: Ref. 9, p. 34 2,

Page 438: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 438/578

o

J, 0.2

F IG . 6 . 6 . Te m p e r a tu r e i n a c y l i n d e r o f i n f i n i t e c o n d u c t i v i t y , i n i t i a l l y tem pe ratu re tg , i n an i n f i n i t e medium. Numbers on the cu rv es are va lue s 2Pn co /P ic i ( ca se 6 . 1 .2 2 , sou rce : r e f . 9 , p . 343 , F i g . 46 ) .

0.2 1 2 10 20 100 200 1000 2000 10,000Fo-»

PIG. 6. 7. Temperature response of s o l i d sphere 0 < r < r 1 ( w i th kj_ + M andi n i t i a l l y a t t 1 g , embedded in an i n f i n i t e s o l i d ( r > r ^) i n i t i a l l y a tt 2 g (case 6 .1 .2 6 , source : Ref. 19 , pp . 3 -64 , F i g . 37 ) .

Page 439: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 439/578

0.001 0.00 5 0.010 0.050 0.100 0.500 1.000 5.000 10.00 0

F o -

PIG. 6.7. Temperature response of an infinite solid with a constan t sphericalsurface temperature of t Q (case 6.1.13, source: Ref 74, p. 430, Fig. 10.9).

0.6

(III)0.5

0.4t

~° 0.3

0.2

0.1

0 0.02 0.04 0.06 0.08(1)0.1I - *J I I

- • I _

l l l \ - II

III > II

I I I I S N

1.0

(II)

0.9

0.8

0.7

0.6

10.0

(I)0.99

0.98

0.97

0.50 0.2 0.4 0.6 0.8(11)1.00 40 80 120 160(111)200

20 40 60 80 10010 1 1 1 1 0.2b

0.08 - 0.20

0.06 0.15

0 .04 — - 0.10

0.02 —

I 1 1 1

0.05

00 200 400 600 800 1000

Page 440: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 440/578

. 3 - «3"I I

11 0.1

~ I J -

0.01

FIG. 7 .2 a . Temperature d i s t r i bu t io n in the se m i- in f i n i t e so l i d wi th con vec t io noundary co nd i t io n (case 7 .1 .3 , sou rce : Ref. 5 , p . 82 , F ig . 4 .6 ) .

Page 441: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 441/578

0.01 . 0.05 0.10 0.50 1.00 5.00 10.00 50.00

G. 7.2b. The dimensionless excess temperature vs the number BijjfFOjj) 1/ 2 andious Fourier numbers for semi-infinite solid with a convection boundary (case

1.3, source: Ref. 74 , p. 207, Fig. 6.2 ).

1.0'

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

-1.00 0.2 0.4 0.6 0.8 1.0

x

F IG 7 3 Te m p e r at u re d i s t r i b u t i o n i n a s e m i - i n f i n i t e r e g i o n when t h e s u r f a c

V-» 1 i i 1\*\° —

_ - v \

* \* VO — • ^

— C P V

7^° 2^s».^° 2^s». —JO

~h¥ '<? —/ * / / &4 y/.& _7 A /A /fi i 1 1 1

Page 442: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 442/578

1008060

40

o 20o

* „ 10

6

4

2

0 0.2 0.4 0.6 0.8 1.0 1.2

* & )

FIG. 7.4. Function f T(t- tf) /(t c - t f )] (case 7.1.22, sour ce: Ref. 4, p . 84,Fig. 4.15).

- 2 - 1 0 1 2

x/a

FIG. 7.5. Tempera ture distribution acr oss a heated strip of width 2a on thesurface of a semi-in finite solid (case 7.1.24, source: Re f. 9, p. 265,Fig . 3 3) .

Page 443: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 443/578

•i- 0.6 -

"2- 0 .4-

1.4 1.6

FIG. 7.6. Temperature response of semi-infinite solid (x >_ 0) with surfacetemperature t g suddenly increasing as power function of time, t s = t: + b r n ,(case 7.1.9, source: Ref. 19, pp. 3-66, Fig. 39 ).

1.0

1/ /— 0.61/V7T —

0.4

0.2

0

V \ I I I I ISemi-infinite solid

\ \ q 0 = const —

\ \i k i 3 t ~~J TIT a —

39

k 3t" " " q0 3x

' kl t- t, ) N ^

I t -q Q \ ^ r I t -0.4 0.8 1.2 1.6 2.0 2.4

FIG. 7 .7 . Temperature response1, temperature gradient, and heating rate in ase m i - i n f in i t e s o l i d a f t e r exposure t o a cons t an t su r f ace hea t f lux q0

(case 7 . 15 , sou rce : Ref. 19 , pp . 3 -8 1 , F i g . 49 ) .

Page 444: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 444/578

IG . 7 . 8 . Tem pera tu re r e sponse of a s e m i - in f i n i t e so l i d a f t e r sudden exposu ro a l i n e a r l y i n c r ea s i n g su r f ace hea t f l u x fo r a du ra t i o n D , Q = D qm a x / 2 ,

0 = q m a x T /D (case 7 .1 .1 4 , so urc e : Ref . 19 , pp . 3 -82 , F ig . 50 ) .

rri\/Fch

8 10 12 14 16

Page 445: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 445/578

My/it-0.6

Fo* -+x

FIG. 7.10. Temperature d i s t r i b u t io n s ina s e m i - i n f i n i t e s o l i d w i t h e x p o n e n t ia lh e a t i n g ( ca s e 7 . 2 . 9 , s o u r c e : Ref. 19,pp. 3-85, Fig. 52).

1.0

0 . 8 -

i 0.6U

J2 0.4

0 . 2 -

\ 0=Fo1

_ o . o rH ^

6 O J * ^ « S S N \ ^

— o T i o ,. ^ ^ -

0.4iQ

V

1.00

T r - - ^1 T r - - ^0.2 0.4 0.6

X0.8 1.0

Page 446: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 446/578

1 .Uo . o p " ^OuT"" <

I I^ ^ 0 = F o

I

0.8ouT""*^.

-

'„ 0.6 — —

4-<

^ 0.4 ^0 .40 \ \

0.21.0

N \ -

I I

N \ -

0.2 0.4 0.6 0.8

X

1.0

FIG. 8.2. Temperatures in a slab with a parabolic initial temperaturedistribution (case 8.1.4, source: Ref. 9, p. 98, Fig. 1 0 ) .

FIG. 8.3. Temperatures in the infinite plate with a constant intialtemperature and steady surface temperature (case 8.1.6, source: Ref. 9,

Page 447: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 447/578

1.000

0.100 -

0.010 -

0.0010 1 2 3 4 10 30 50 70 9 0 110 130 150 300 500 700

Fo

FIG. 8.4a. Hidplane temperature of an infinite plate of thickness 21 and convectively cooled.(case 8.1.7, source: Ref. 12, p. 227 and source: Ref. 5, p. 83, Fig. 4-7).

Page 448: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 448/578

0.0001 0.0005 0.0010 0.0050 0.0100 0.0500 0.1000 0.5000 1.000Fo

FIG. 8.4b. Surface temperature of an Infinite plate of thickness 21 andcorrection boundary (case 8.1.7.2, source: Ref. 74 p. 226, Fig. 6.6c).

i

0.0001 0.0005 0.0010 0.0050 0.0100 0.0500 0.1000 0.5000 1.0000

Fo

FIG. 8.4c. Surface temperature of an infinite plate of thickness 21 andconvection boundary (case 8 1 7 2 source: Ref 74 p 226 Fig 6 6d)

Page 449: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 449/578

1.0

0.9

0.8

0.7>' 0.6J?

> 0-5

i 0.4

0.3

0.2

0.1

00.

' ' I ' ' I 'j ^ 5 ? ^- 0.2 ^ ^ y j ^ 5 ? ^

— —D-4"""""^ / /A

/ /1/ -

— — °-6-*^ /// -

JU& /-

/ -

- ^ / -

A.Oi l l . i 1 i i . i

01 0.1 1.0

1/Bi

10.0 100.0

PIG. 8 . 4 d . Tem perature as a fu nc t io n of midpiane temperature for an i n f i n i t ep l a t e o f t h i c k n e s s 2i and co nv ec t ive ly coo led ( ca se 8 . 1 . 7 , so ur ce : Ref . 5 ,p . 8 6 , F i g . 4 - 1 0 ) .

1.0

0.8

a0.6 9 6" 6' •=" fi, <o ST , _

O O' o' O' O' O' O' O' ©' •- ' <V *l>" £" S '

B i2 F o

FIG. 8.4e, Relative heat loss from an infini te plate of thickness 2% andconvectively cooled (case 8.1. 7, source: Ref. 5 , p . 90, Fig. 4-14 andRef. 1 3 ) .

Page 450: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 450/578

G. 8.5. The function F(O) (case 8.1.12, source: Ref. 1. p. 301 , Fig. 14-3),

FIG. 8.6a. Variation of amplitude of the steady oscillation of temperature inan infinite plate caused by harmonic surface temperature (case 8.1.13,source: Ref. 9, p. 106, Fig. 13 ).

Page 451: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 451/578

-600

-500 -

- 4 0 0 -

-300

- 2 0 0 -

FIG . 8.6b. Variation in pha se of the steady oscillati on of temperature in aninfinit e place caused by harmon ic surface temperature (case 8.1.13 , source :Ref . 9 , p . 107, F i j . 14 ) .

Page 452: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 452/578

Iinm

Fo

FIG. 8.7. Temperature distribution in an infinite plate with no heat flow at x = 0 and constant heat fluxq 0 at x = I (case 8.1.18, source: Ref. 9, p. 113, Fig. 15 ).

Page 453: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 453/578

1.0

0.8

so 0.6

S °- 4

0.2

1.0

I I I

- 0.8

o l T ~

-

=— ~0.4

0.3

.

-

0.2

0.1

—0.06

—0.02 -Fo

I I I 1 — *

0.2 0.4 0.6X

0.8 1.0

F IG . 8 . 8 . Te m p e ra tu re s i n an i n f i n i t e p l a t e w i t h c o n s t a n t i n t e r n a l h e a t i n g and surface t empera tu re t ^ ( ca se 8 . 2 . 1 , sou rce : Re f . 9 , p . 131 , F ig . 20 ) .

F IG . 8 . 9 . Q u a s i - s t e a d y s t a t e te m p e r a tu r e o f an i n f i n i t e c o n d u c t i v i t y p l a t

Page 454: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 454/578

FIG. 8.10. Plate temperature responsefor prescribed heat inputs (case 8.2.15,source: Ref. 19, p. 3-35, Fig. 18 ) .

Page 455: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 455/578

iooo.o~l " ~800.0 finnn (q" + q " ' S + x 7 t * ) / o 7 t 2600.0

400.0 \

200.0

1.00.0001

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

1.0000

o.ftg/pCS)

-0 .90 i 1 r i r-0 .80

-0 . 70-0 . 60

0.50 jr- ( q " + q '"« + a.?\^lo&\\

-0 .40-0.34

-0 .30-0.24

•0 .20

— 0 . 1 4

0.10

-0.07

-0 .05

Thin platecooling

-0.04-0.02-0.02

-0.01

J L10 14 18 22 16 30

(b) (o.ftppC5)

Page 456: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 456/578

Thin plate

20 4010

q m a x

D / P C 6 t 0

(a)

FIG. 8 .1 2 . Maximum tem per a tur e of t h in in su la te d p la te sudde nly exposed to

c i r c u l a r h e a t p u l s e w i t h s u r f a c e r e r a d i a t i o n : ( ca se 8 . 1 . 5 0 , s o u r c e : R ef. 1 9p . 3 -38 , F i g . 2 0 ) .

Fo

0.20 0.16 0.12 0.08 0.04 00.20

0.16•*I

~ 0.12

? 0.08

0 . 0 4 -

l\ I I 1

A/ 0 . 5 // / 1.0X.

1

A/ 0 . 5 // / 1.0

Thick plate ^ / 2 /

^ ^ V / ^ S - ' 3 0 ^

&^\ i

^ ^ ^ 3 ^ 0 . 0 -

I I \0 0.04 0.08 0.12 0.16 0.20

Fo(a)

Page 457: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 457/578

0.2 J _ -i.0.1 0.2 0.3

1*2. max " W V

0.4 0.5

FIG. 8 .14a. I n s u l a t i o n w e ig h t f or s u b s t r u c t u r e p r o t e c t i o n t o t2 m a x i nh e a t i n g du ra t i on D , Wx = P i^ i ( ca se 8 .1 .5 1 , sou rce : Re f. 19 p . 5 -48 ,F i g . 2 7 ) .

Page 458: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 458/578

(a)

/i = n + (n + D /B i , - , n = / 32 C 2 f i 2 / p 1 C l 5 l

1.0

5 10 20

Bi , =h6,/k 1

F o:

( b )

F I G . 8.14b. T e m p e r a t u r e r e s p o n s e o f t h i c k p l a t e (0 < _ x <_ 6 ) c o n v e c t i v e l y

h e a t e d a t x . » 0 and in p e r f e c t c o n t a c t a t i t s r e a r f a c e x = 6 w i t h a

t h i n p l a t e (0 < x 2 < 5 2 ) i n s u l a t e d a t x 2 = 6 2 : ( a ) x . , / 6 , = 0.

( b ) x . / ^ " 1 ( c a s e 8 . 1 . 5 1 , s o u r c e : R e f . 1 9 , p . 3 - 4 6 , F i g . 2 6 ) .

Page 459: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 459/578

y = t s1.0

0.8

0.6

0.4

0.2

o tiS/k-^ 1

i wn/ T T ^••

0.5 / / // 0.33 / / / / /— / ' / 0.2 / iff/ / a i /' / / 0.05

/ / ^ - Th n plate

/ / / 0 - 0 3 3 /

P^ZZ- | |

^ • 0 2 t s = const

Heating: tg/t,. = 0 —

x/ 5 = 0

10.1 0.5 1

(a)5 10 50 100 50 100

50 100

FIG. 8.15. Temperature response o f thick plate (0 <_ >: < <5) wi th insulated rear face x = 6 after suddenexposure to uniform radiative environment t s at x = ("•: ""(a) hea tin g, tn / t s = 0, x/6 = 0, (b) heating,to / t s

= ° ' x/& = 1 ' < c> heating, t 0 / t s = 1/4, x/6 = ;, (d) heating, t 0 / t s = 1/4, x/5 = 1 (case8.1.52, source: Ref . 19, pp. 3-50, Fig . 29 ) .

Page 460: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 460/578

0.1 0.5 1 5 10 50 100 0.1 6.5 1 5 10 50 100 500

(f ) Fo (h)FIG. 8.15 (Cont.) . Temperature response of thick plate (0 <_ x <_ &) with insulated rear face x = 6 aftersudden exposure to uniform radiative environment t s at x = 0: (e) heating, t Q / t s = 1/2, x/6 = 0, (f)heating, t 0 / t s = 1/2, x/6 = 1 , (g) cooling, t 0 / t s = 6, x/6 = 0 , (h) cooling, t 0 / t s = 6, x/ = 1 .

Page 461: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 461/578

500

500

IG. 8.15 (Cont.). Temperature response of thick plate (0 <_ x £ 6) withnsulated rear face x = 6 after sudden exposure to uniform radiativenvironment t 8 at x = 0: (k) cooling, t 0 / t a = 2, x/6 = 0, (1) cooling,

0 / t s = 2, x/S = 1.

Page 462: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 462/578

500

Thin plate.

Cooling: tn /ts = 2x/8 = 1

50 100 500

FIG. 8.15 (Cont.). Temperature response of thick plate (0 <_ x <_ 6) withinsulated rear face x = 6 after sudden exposure to uniform radiat iveenvironment t_ at x = 0: (i) cooling, t g/ t a • 4, x/6 = 0, (j) cooling,t 0 / t s - 4, x/5 - 1.

Page 463: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 463/578

PIG. 8.16. Temperature response of thick plate (0 £ x £ 6) with surfacetemperature t„ at x = 0, increasing linearly with time and rear face x = 6insulated or exposed to uniform convective environment t Q (case 8.1.8,source: Ref. 19 , pp. 3-60, Fig. 33 ).

FIG. 8.17. Surface temperature response of a plate of thickness 21 exposed toa steady heat flux <jn on both sides for a time duration D (case 8.1.18,source: Ref. 19 , pp. 3-67, Fig. 40 ).

Page 464: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 464/578

•P 0,

J?

5 10 50 100

(a)

50 100

Fo

(b)

FIG. 8. 18 . Temperature response of a p la te with steady heat lnq qg at x = and convection boundary at x - 0 to tg (a) x /£ - 1, (b) x/fc = 0 (case 8 .1 .17,s o u r c e : Ref. 19, pp. 3-6 9, Fig. 41) .

Page 465: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 465/578

18

16

14

12

10

efo

Q D / 2 J I 52

Thick plate

= q m a x s i n2

nfl/Dx/5 =0

3 -

2 -

IThick plate

1 1aD/27tfi2 -

1 1x/6 = 1 0.1—v _ — a — —

0 . 6 - \ \

°-4- \ \ 400% <<S§^o.i°-3 —\ \4 tf/y/\/ 0.08

~~ 0 . 2 - A *0.16-M2

0.14-2cW0 12^225cOt£

• J X / / 0 . 0 6 -— Thin plate-

/ \ S ^S 0.03' ^ V ^ - O ^ 0.025i i ^ i - r - o . 0 2

,**« S = ^ q _ - n n i d0 1 2 3 4 5 6 7

2TTT/D

FIG. 8 .15 . Temperature resp onse of an i n f i n i t e pl at e exposed to a ci rc ul a rheat pulse q^ a j t s i n 2 (TTT/D) at x = 0 and insu la ted a t x = 6 (a) x/5 = 0,(b) x/6 = 1 (case 8. 1. 54 , so ur ce : Ref. 19, pp. 3-70, Fig . 42 ).

Page 466: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 466/578

0.05 0.1 0.5 1 5 10

OLeTlf>1

(b)

FIG. 8.20. Temperature response of an infinite porous plate after suddenexposure to a constant heat flux at x = 0 and cooled by steady flow throughplate from x = 6 of a fluid initially at t 0 (a) x/6 = 0 , (b) x/5 = 1 (case8.1.55, source: Ref. 19 , pp. 3-74, Fig. 4 4 ) .

Page 467: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 467/578

1 I '•Two-layer plateq constlk 2/k,)^a x/a 2 = 1/2

FIG. 8.21. Temperature response of an infinite plate with a constant heat fluxq« a t X i = 0 , in contact with a plate at x-± = 6^ and insulated o n exposedsurface o f second plate x 2 = 5 2 (case 8.1.56, source: Ref. 19, pp . 3-76,Fig. 4 5 ) .

Page 468: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 468/578

Two-layer platey i ' i T=^~I—r

(k,/k 1 )VVs = 2 >°2 ' * 1 ' V " , ' " 2x , = S r

l\.1/4

( S ^ l V S ^.1 /2

4 °°<"4 oo^

£J I L J . I ' l1 0 1

i (0

0.2

0.4

0.6

0.8

1.02 3 4 5 6 7 E S

Fo,1

v -i i i i i- Two-layer plate

fc 2/k,)^/u 2

1 —

= 4.A ' i ' i '

- \ vs 1 / 4 ^-—'

\

: \ "~ 1/2—1

" - 1 / 4 - ~ _ _ _ _ _ ^

r;, 1 , 1 J i ,

n _r;, 1 , 1 J i , 1 . 1 , 1 ,

0

- 0.2

- 0.4

- 0.6

0.8

0 1 2 3 4 5 6 7 8

(d> Fo,

1.0

FIG. 8 .21. ( c o n t i n u e d ) .

Page 469: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 469/578

FIG. 8.22. Temperature response of an infinite plate exposed to a constant heatflux q " at xi = 0 and in perfect contact at xi = 61 with a plate of thickness62 insulated at x 2 = S 2 (case 8.1.57, source: Ref. 19, pp. 3-78 , Fig. 46) .

Page 470: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 470/578

Two-layer plate

n = p 2 C 2 6 2 / p 1 C l S l = 0 . 1W t 0 - S i « W W n + 1 > k i

FO;/2TT = 3 , 0 / 2 ^ 2

G. 8.23. Temperature response of an infinite plate exposed to a circular heatse at ip = 0 and in perfect contact wi th an infinite conductivity plate ofckness &2 (case 8.1.58, source: Ref . 19 , pp . 3-78, P ig . 4 7 ) .

Page 471: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 471/578

1000I I

Two-layer plate

_ (b)

0.01

1000Two-layer plate

p 2 C 2 S 2 / p 1 C , 6 1 = 10

1 0 0 -

- (0

0.01

F IG . 8 . 2 3 . ( c o n t i n u e d ) .

Page 472: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 472/578

I

FIG . 8.24. Temperature response of an infinite plate surface having steadytemperature and convection boundaries (case 8.1.25.2, source: Ref. 74 , p. 240,Fig. 6.12).

FIG. 8.25. Temperature of a flat plate having a ramp surface temperatureequal to t 8 = t + br (case 8.1.33, source: Ref. 74, p. 305 , Fig. 7. 1) .

Page 473: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 473/578

2Fo

1 + 2/Bi

2Fo

1 + 2/Bi

G. 8.26. Transient surface temperature of a slab convectlvely coupled to anearly changing environment temperature equal to tg - t + bt (case 8.1.33,ource: Ref. 89 ).

Page 474: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 474/578

i

0.00110 16 24 30 60 90 120 150 350

Fo

FIG. 9.1a. Axis temperature for an infinite cylinder of radius r Q (case 9.1.3, source: Ref. 5, p. 84,Fig. 4-8 and Ref. 12 ) .

Page 475: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 475/578

1.0

0.8

0.6

1 0.4

0.2

1 I 1 1 L _-| •

- r / r 0 = 0 . 2 - ^ ^ ^ >

— °ji_—-"^'^ / //t ' -

/ III -— Q&y^ /ll -

/1 1 -— / /1

0.8 . / / /

^***^ / I -

— Q-\S / -1 . 0 , /

r ^ 1 i i 1 , I , ,

0.01 0.1 1.0

1/Bi

10 100

IG. 9 .1b . Tempera tu re a s a func t ion o f ax i s temp era tu re i n an i n f i n i t eyl inder of rad ius r Q ( c a s e 9 .1 .3 , sou rce : Re f . 5 , p . 87 and Ref . 12 ) .

1.00.90.8

0 .i 0.

°|cP o.0 .0.0.0 .

765.4,3.2.101 0 "5

^ . f ^ i i j * . . t i t § / # #

a S e o o S ^ fy <o ' ,/ < o < a f i ,oo o o o o o <a o o ^ V* y <v <o

IG. 9 .1c . D i m e n s i o n l e s s h e a t IOSB Q /Q0 o f an i n f i n i t e c y l i n d e r o f r a d i u s0 w i t h t im e ( c as e 9 . 1 . 3 , sou rc e : Ref. 5 , p . 90 , F i g . 4-15 and Ref . 1 3 ) .

Page 476: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 476/578

I .U0.90.80.70.6

V ' ~ r I I I I . I . _Plate: m = 1Cy linder: m = 2Sphere: m = 3 —

i Range of these lines:\ F o B > 0 . 2

0.5 \ B ic < 0 . 0 1 -•3-

1 0.4 \*-*"3-

i0.3 \ _

0.25 - \

0.2 - \

0.15

0.1 I , I i I , I , I , \

U. IU

0.08 \ 'I I

0.060.050.04

-

0.03 —

0.02 -

0.010.008

v -

0.0060.0050.004

\ -

0.003—

\ -0.002 - \ -

0.001 I I I I \

mBifFog

FIG. 9.Id. Center temperatures for plates , cylinders, and spheres for smallvalues of h (case 9 .1.3, 8.1.7 and 10.1., source: Ref. 5, p . 89 , Fig. 4-13and Ref. 12 ), C is half thickness of radius.

FIG 9 2 Temperature distribution in an infinite cylinder with initial

Page 477: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 477/578

PIG. 9 .3 . Temperature in an in f i n i t e cy l inde r w ith constant heat f l u x at thesur face (case 9 .1 .8 , sou rce : Ref. 9 , p . 203 , F ig . 25) .

Page 478: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 478/578

T = S(X)

Semi - in f i n i t e so l i d

T = S ( X , ) S < X2 )

Qua r t e r - i n f i n i t e so l i d

T = S(X1 ) S ( X2 ) S ( X3 )

E ig h th - i n f i n i t e s o l i d

T = P(Fo) T = P(Fo)S(X) T = P(Fo)S(X1 )S (X2 )

I n f i n i t e p l a t e

* — 2 8

Semi - i n f i n i t e p l a t e Q ua r t e r - i n f i n i t e p l a t e

T = P(Fo , )P(Fo2)

V

u~| — Z * 1

In f in i t e r e c t angu l a r ba r

.28,

T = P(Fo,)P(Fo2)S(X) T = P(Fo , )P(Fo2) P ( Fo 3 )

r28,

K - 2 8 ,

Semi - in f i n i t e r e c t a ngu l a r b a r

A 28,

h+«3

±\.- \Rectangula r para l le lep iped

• 26,

, T = C(F o,)

i

A.

I n f i n i t e c y l i n d e r

T = C(Fo1)S(X)

\S

T = C ( F0 l ) P ( F o 2 )

Y-2r,c b

-2r,

S e m i - i n f i n i t e c y l i n d e r S h o r t c y l i n d e r

S = s emi - i n f i n i t e so l i dP = plateC = cy l i nde r

FO T = G T / 62 = a r / r2

X , = x1 / 2 v / 5 f = F o J

T = ( t - tw ) / ( t 0 - t w )

FIG. 9.4a. Product solutions for internal and central temperatures in solidswith step change in surface temperature S(X) given in Fig 7 2 P(Fo) given

Page 479: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 479/578

0.01 -

0.001

Fo, or/5?

G. 9.4.b. Central temperatures in an infinite plate, an infinite rod, anfinite cylinder, a cube, a sphere, and a finite cylinder of length equal to

s d iameter, with all surfaces at temperature tg (case 7.1.29, 7.1.20,1.16, 9.1.17, and 8.1.22, source: Ref. 2, p. 248, Fig. 1 0 - 8 ) .

1.0

0.8

0.6

i 0.4 -

0.2

^ Q T 6 ^ - 4 = O I I I- 0 4 ^ ^ v

-o • 3 - _ ^ S s \ N s v -

- 0 - 2 — . — . ^ \ \ ^ v

— 0 - 1 5 . N . N ,

= 0 • 1 — _ _ _ _ _ _ _ ^ ^ * s N^vk -- 0 • 08 _ _ ^ ~ " - - « ^ _

— n • n f i - — ^ " ~ " " "

0 • 0 1— 0 • 0 ° ~ Fo

I I l ^p-^0.2 0.4 0.6 0.8 1.0

Page 480: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 480/578

100 .0

s 10.0 h

Juy>

• 9 -

AA?

•3-

0.4 0.8 2.0 3.0 4.0fo re?

F I G . 9 . 6 a . ( c a s e 9 . 2 . 4 , s o u r c e : R e f . 3 ,p . 3 5 6 , F i g . 7 - 5 ) .

F IG . 9 . 6 b . ( c a s e 9 . 2 . 4 , s o u r c e : R e f . 3 ,p . 3 6 4 , F i g . 7 - 8 ) .

Page 481: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 481/578

0.1 1 10 50

S/ IX-1)PIG. S .6 c. (case 9 .2 .4 , sou rce : Ref. 3 , p . 365 , F ig . 7-9)

F-87

Page 482: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 482/578

0.001 0.005 0.010 0 .050 0.100 0 .500 1.000 5 .000 10.00 0

Fo, OT/TQ

FIG. 9. 7a. Temperature re sponse of a hollow cy li nde r with a ste ady in si desurface temperature equal to the in i t i a l temperature , t^ (case 9. 1. 10,so urce : Ref. 74, p. 156, Fig . 4. 24 ) .

0.001 0.005 0.010 0.050 0.100 0.500 1.000 5.000 10 .000

Fo, ar/rg

FIG. 9.7b. Temperature response of a hollow cylinder with a steady outsidesurface equal to the initial temperature, t (case 9.1.10, source: Ref. 74,p. 157, Fig. 4.25).

F-88

Page 483: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 483/578

T — i - r - i i i i

0 . 8 0 " " " " " " "~ _ ^ - —

I I I

- /

-r i

0 . 6 6 " " " ^ ^ - - " " ^

^ 0.50 ^ \ ^ ^ ^ ^

I I I I

t 5 = t, + bT

I I I

I

I

0.8

0.6

a0.4

0.2

0 0.1 0.2 0 .3 0 4 0.5 0.6 0.7 0.8 0.9 1.0

Fo

FIG. 9 . 8 . Tem pera ture of an i n t i n i t * cy l in der having a ramp sur fac etemperature equa l to ts = t± + bx (c ase 9 .1 .2 , so ur ce : Ref . 74, p . 312,F i g . 7 . 3 ) .

4Fo

1 + 2/Bi

4Fo

1 + 2/Bi

FIG. 9 .9 . Tr an sie nt surfa ce temperature of a c y l i n d e r c o n v e c t i v e l y c o u p le d t oa li n e a r ly chan ging environment temperature equal to tf • t j + br ( ca se 9 . 1 . 6 ,sour ce : Ref . 89 ) .

F-89

Page 484: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 484/578

100 i i i i i 1 1 i i i i t i i i

J i I • ' • • • I I I I i i • • '10Fo

100 1000

FIG. 9. 10 . C en tral temperature of an i n f i n i t e cyl inde r w ith uniform int er n alheat in g and co nv ec t ion boundary (cas e 9 . 2 . 2 , source : Ref . 9 0 ) .

F-90

Page 485: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 485/578

IID

0.400

0.8 -

0.6

0.4 -

0.2 -

1 R -1

^ 0 . 9 5 ^

o.9o /

y 0.85 /

/ O.BoX/ ' /

—/' / 0.75 /

' / 0.66

— / ' / 0.50 •^-0.25

/ >^0.33X 'o

10 0.2 0.4 0.6 0.8 1.0

(1-R)

0.004 0.010 0.4 0.100

FIG. 10.1. Temperature distribution in a sphere of radius r Q with initial temperature t± and surfacetemperature t 0 (case 10.1. 1, source: Ref. 74, p. 127, Fi gs. 4.15 and 4 . 1 6 ) .

Page 486: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 486/578

1.000

I

-i . 0.050+•«

'._ 0.03 0

0.001

3.0 5.0 7.0 9.0 15.0 25.0 35.0 45.0 70.0110.0 170.0 250.0Fo

PIG. 10.2a. Center temperature of a convectively cooled sphere (case 10.1.2, source: Ref. 5, p . 85,Fig . 4-9 and source : Ref . 12 ) .

Page 487: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 487/578

1 c V ^ n

0.02 0.1 0.5 2.00 5.00 20.00 100.00

1/Bi

FIG. 10 .2b . Tem pera ture as a func t ion of ce nt er tem pera tu re of a co nv ec t lv e lycoo led sphe re ( ca se 1 0 .1 .2 , sou r ce : Re f. 5 , p . 88 , F ig . 4-12, and Ref . 12 ) .

a id 0.5 -

B i2Fo

FIG. 1 0 . 2 c . D l m e n s l o n l e s s h e a t l o s s Q/QQ o f a con vec t ive ly coo led sphe re( c a s e 1 0 . 1 . 2 , s o u r c e : Ref . 5 , p . 9 1 , F ig . 4-16 , and Ref . 1 3 ) .

F-93

Page 488: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 488/578

FIG. 10.3. Temperature of an infinite conductivity medium surrounding aspherical solid (case 10.1.13, source: Ref . 9, p. 241, Fig. 30 ).

0.2

o

0 -

- -0.1-

-0.2

-0.3

-

I I I

Ai

±1f

2.8

2.4

2.0

1.6

1.2

0.8

0.4

-

I I I

Ai

±1f

2.8

2.4

2.0

1.6

1.2

0.8

0.4 I

I I I

f A

I I I

\

i

0

i±1

f

2.8

2.4

2.0

1.6

1.2

0.8

0.4 I

I I I

f A

I I I

\

i

0

i±1

f

2.8

2.4

2.0

1.6

1.2

0.8

0.4 I

I I I

f A

I I I

\

„«I ^~*-~**5w

i

0

i±1

f

2.8

2.4

2.0

1.6

1.2

0.8

0.4 I

I I I

f A

I I I

\

i

0

i±1

f

2.8

2.4

2.0

1.6

1.2

0.8

0.4 I

I I I

f A

I I I

\

__ 0. 0 8 ( Xy/

i

0

i±1

f

2.8

2.4

2.0

1.6

1.2

0.8

0.4 I

I I I

f A

I I I

\

0.2 0.4 0.6 0.8

R

1.0 0 0.2 0.4 0.6 0.8

Fo

FIG. 10.4. Temperature in a sphere caused by a steady surface heat flux (case10.1.15, source: Ref. 9, p. 242, Fig. 31).

F-94

Page 489: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 489/578

1 -0

1 -0

FIG. 10 .5 . Temperature d i s t r ib ut io n in a sphere wi th s teady in te rn a l hea t ing(case 1 0 . 2 . 1 , source : Ref . 9 , p . 244 , F ig . 3 2) .

F-95

Page 490: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 490/578

0.010 0.100 1.000 10.000

Fo

10.00

10.6. Temperature response of solid sphere (0 <_ r £ r-^) cooling by radiation to a sink temperature of(a) r/ r x = 0, (b) r/c 1 = 1/2, (c) r/ r x = 1 (case 10.1.20, source: Ref. 19, pp. 3-57, Fig. 30 ) .

Page 491: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 491/578

T- T, 0 . 6

T w -T

i

0.02 0.06 0.10 0.40 0.80

F o , —

FIG. 10.7a. Tr a n s i e n t t e m p e r a t u r e d i s t r i b u t i o n a t t h e c e n t e r p o i n t (x = y= z = 0 ) fo r v a r io us p ro l a t e sph e ro id s ( ca se 1 0 . 1 , 2 1 , sou rce : Raf. 72 , F ig . 1 ) ,

1.0

0.8

T - T i 0.6

T w - T i

0.01 0.04 0.08 0.20 0.601.00_ a r

FIG. 10.7b. Transient temperature distribution at the focal point (x = y = 0,z - L2) fo r various prolate sol ids (case 10. 1.21, source: Ref„ 7 2 , F i g . 2 ) .

F-97

Page 492: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 492/578

FIG. 10 .8. Temperature of a sphere having a ramp surface tep.perature equal tot s = t£ + br (case 10.1.4, source: Ref. 74 , p. 3 10, Fig. 7.P 1 .

0.5

6Fo1 + 2/Bi

FIG. 10 .9 . Tr an s i e n t su r f ac e t empera tu re o f a sphe re con vec t ive ly coup led to al i n e a r ly chang ing env i ronmen t t empera tu re eq ua l t o t f = tj_ + b t ( ca s e 1 0 . 1 . 11 ,so u r ce : Re f. 89 ) .

F-98

Page 493: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 493/578

100.0

10.0

I

CNO

r-[—i i i 11 I I 1—I I 111 1 1—i i i i i I J 1—i i i i I I

R = 0 80.0 —

J I I I I I I100.0 1000.0

FIG. 10.10. Central temperature of a sphere with uniform internal heating andconvection boundary (case 10. 2.9 , source: Ref. 9 0 ) .

(h s Vk)(t m-t a )r

FIG. 11 .1 . Solidification depth in semi-infinite liquid for which solidified. phase has negligible thermal capacity and is exposed to convective environmentst a at free surface x = 0 and t 0 at interface x = w (case 11.1.10, sou rce :Ref. 1 9 , pp. 3-88, Fig. 54 ).

F-99

Page 494: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 494/578

0.01 0.05 0.1 0.50 1

(b 2/pck)T-

50 100 500 1000

10

5

0.5

0.1

0.05 -

0.010.001 0.005 0.01

(b 2/pck)T

100

5 10

50 100

50 100

500 1000

G . 11.2. Tempe ratur e response and solidification depth in semi-infinite

quid initially at t^ (a) surface temperature for convective cooling q = b t w

x = 0, (b) solidification depth (case 11.1.11, source: Ref . 19, pp. 3-89,g. 5 5 ) .

F-100

Page 495: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 495/578

0.010.001

0.05 0.1

(b2

tJL/pck)r

0.006 0 .01

50 100 500 1000

5 10

50 100

50 100

500 1000

( b 2 t 6 m / p c k )

F IG . 11 . 3 . Te m p e r a tu r e r e s p o n s e a nd s o l i d i f i c a t i o n d e p t h i n s e m i - i n f i n i t el i q u i d i n i t i a l l y a t t ^ w i th r a d i a t i v e c o ol in g q = b tw a t x = 0 (a) su rf ac et em pera tu re a t x = 0 , (b) s o l id i f i c a t i o n dep th ( case 1 1 . 1 . 12 , sou rce : Re f . 19 ,p p . 3 -90 , F ig . 55 ) .

F-101

Page 496: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 496/578

- 0.4 -

Semi-infinite solidt = constw0 < x = £ l

00.0001 0.0005 0.001

b/2V 7

0.005 0.01FO:

0.05 0.1 0.5 1

x l

0.01Fo'x2

PIG. 11 .4 . Temperature response of decomposing s e m i- in f i n i t e s o l i d af t er suddenchange in su rf ac e tem perature from tg t o t,,: (a) 0 £ x £ SL , (b) x £ SL(case 11 .1 .1 3 , s ource : Ref. 19 , pp . 3- 91 , F ig . 56 ) .

F-102

Page 497: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 497/578

10

5

0.01.

(a)

0.1

• W ^ d - V

Semi-infinite solid

t = const( h / p H ) t ta - td h / ^ 7 J = 1 / 2

0.5 1

r / r d - 1

10

5

i i i /

1

0.51 0 - 5 0 -

1 . 0 -0 . 5 -0.1 -

dv

0.1

\ / ,y\ ^ - V ^ ' V o 1

0.05

n n iV i

Semi-infinite solid( h / p H M ^ - t ^ ^ / T ^ I

1 1

(b)

0.1 0.5 1

r /Td - 1

10

0.05

0.010.1

vwv

Semi-infinite solid

(h /pH)( ta- td) v/5 d7d"=2

(c)

0.5 1

T/r, - 1

10

FIG. 11 .5 . Ab la t ion dep th o f s e m i - i n f in i t e so l id (x >_ 0) a ft e r suddenexposu re to co n ve ct iv e environment t- (> t ^ ) : (a) (h/pH) ( ta - t d )^ td /a = 1/ 2, (b) (h/pH) ( ta - t d ) STga = l , (c) (h/pfl) ( ta - t d )/T a/ a •» 2 (case 1 1 .1 .1 4 , source : Ref . 1 9 , pp . 3-94 , F i g . 5 8 ) .

F-103

Page 498: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 498/578

10

5

1

0.5

0.1

0 .05

0.011—<•

i—i—n— i | i i i I I 1—i—i—i—i I i i 11

Semi-infiniteq " = const

0.01

- V ? C ( td - t 0) /2Hv

0.05 0.1 5 1050 100

< r / Td ) - 1

FIG. 11 .6 . Ab lat io n depth of s e m i- in f i n i t e s o l i d (x >_ 0) af te r suddenexposure to con sta nt surface heat inpu t q" (case 1 1 .1 .1 5 , sou rce : Ref . 19 ,pp. 3 -96 , F ig . 59 ) .

F-104

Page 499: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 499/578

TABLE 1.1. Mean and maximum temperature excesses and their ratio for

electrical coils of rectangular and circular cross sections, 9 = t - t_,m mean 0

6„ = t - t„ (case 1.2.8, source: Ref. 3, p. 220, Table 10-3) .0 max u

Cross Section, Rectangular Circular,

b/ a » 10 5 2.5 1.5 1 r = 2a//i

0.66 0.625 0.58 0.28 0.32

1.00 1.00 1.00 0.59 0.64

0.6 6 0.625 0.58 0.5 2 0.485 0.475 0.50

TABLE 1.2a. Values of ( t - t ) / ( t f - t ±) on the

surface y = 0 of a se mi- in f in it e st r ip

(case 1.-1.29, sou rce : Ref. 15, Table 2) .

x/w hw/k hw/k hw/k hw/k hw/k

= 100 = 10 = 1 » 0.10 = 0.01

0.05 0.889 0.448 0.094 0.011 0.001

0.10 0.931 0.594 0.146 0.018 0.002

0.20 0.964 0.725 0.212 0.027 0.003

0.30 0.973 0.781 0.250 0.032 0.003

0.40 0.977 0.807 0.270 0.035 0.004

0.50 0.978 0.814 0.277 0.036 0.004

TABLE 1.2b. Heat transfer ra tes through the surface y = 0 of a semi -infi ni te

s t r i p (case 1. 1. 29, source: Ref. 15, Table 1) 9 = (t - t ) .

hw/k

1000 200 100 20 10 1.0 0.1 0.01 0.001

Q/k6 8.603 6.827 5.984 3.971 3.107 0.792 0.097 0.01 0.001

% Error 1.8 0.5 0.3 0.08 0.05 0.02 0.02 0.02 0.02

U k / q ' - ' a ^ e

; 2 k / q " ' a 2 ) 9 n

F-105

Page 500: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 500/578

TABLE 1. 3. Conductance dat a for he at flow normal to wal l cu t s in an i n f i n i t e

plate (case 1 .1 .37, so ur ce : Ref. 19, p . 3- 124). These groups of data are for

the four kinds of wall plates shown in case 1.1.37.

(a) K/Kuncut

(b) K/Kuncut

c/a b/a = 1/2 1/4 1/8 c/a b/a = 1/2 1/4 1/8

4 0.902 0.760 0.646 3/2 0.7 47 0.520 0. 381

2 0.818 0.618 0.480 3/4 0.575 0.315 0.217

1 0.704 0.465 0.339 1/2 0.430 0.209 0.146

1/2 0.610 0.363 0.235 1/3 0.296 0.113 0.080

1/4 0.564 0.303 0.182

(c) K/Kuncut

(d)

c/a d/a b/a = 1/2 1/4 1/8 c/a d/a

1/8 0.822 0.634 0.478 0.402

3 3/8 0.767 0.546 0.374 3/ 2 0.469

5/8 0.721 0.480 0.311 0.502

12/8 0.599 0.339 0.190 0.866

1/16 0. 740 0.486 0.342 1.010

3/ 2 3/16 0.698 0.430 0.284 1.083

5/16 0. 661 0.390 0.2421/2 1/2

12/16 0.570 0.299 0.164

0 0.627 0.403 0.270

1/2 1/16 0. 561 0.312 0.186

3/16 0. 527 0.276 0.152

K/Kuncut

0.507

0.479

0.329

0.362

0.338

1/16

0.310

0.254

0.213 0.141

P-106

Page 501: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 501/578

I

TABLE 2 . 1 . Va l u es of A. for a t r i a n g u l a r c o o l i n g a r r a y o f c y l i n d e r s ( c a se 2 . 2 . 1 8 , s o u r c e :

Re— 64 , Table 2) .

8 / r o A l A 2 *3 A 4 A5 A6 *7

4.0 - 5 . 0 5 0 7 2 ( 1 0 -2 ) - 8 . 0 8 9 1 ( 1 0 ~ 4) - 1 . 2 6 2 ( 1 0 ~ 5) - 1 . 9 7 ( 1 0 ~ 7 ) - 3 . 0 8 ( 1 0 ~ 9) - 4 . 8 ( 1 0 - 1 1 ) - 7 ( 1 0 - 1 3 ,

2.0 - 5 . 0 4 9 8 8 ( 1 0 -2 ) -8 .0542(10~ 4) -1 .217(10~ 5 ) - 1 . 6 4 ( 1 0 - 7 ) -1 .33(10~ 9) 2.8(10 -1 1 ) 2 ( 1 0 ~ 1 2 )

1.5 -5 .02447(10~ 2) - 6 . 9 9 2 0 ( 1 0 ~ 4) - 1 . 3 7 4 ( 1 0 -6 ) 8.34(10~ 7 ) 5.23(10~ 7 ) 2.4(10 -9 ) 8 ( 1 0 - 1 1 )

1.3 - 4 . 9 0 7 9 2 ( 1 0 ~ 2) -2 .1203(10~ 4) 6,354(10~ 5 ) 5.42(10~ 6 ) 2 . 9 9 ( 1 0 ~ 7) 1.3(10~ 8 ) 4 ( 1 0 - 1 0 )

1.2 - 4 .6 9 3 9 8 ( 1 0 - 2 ) 6.7812(10~ 4 ) 1.749(10~ 4 ) 1.31(10~ 5 ) 6.27(10~ 7 ) 1.7(10~ 8 ) - K 1 0 - 1 0 )

1.175 -4.60073 (1 0 - 2 ) 1.0619(10~ 3 ) 2.205(10~ 4) +1 .56(10~ 5) 6.32(10~ 7 ) 9.8(10~ 10 ) - 2 ( 1 0 ~ 9 )

1.15 - 4 . 4 8 3 4 5 ( 1 0 -2 ) 1.5384 (10~ 3) 2 . 7 3 6 ( 1 0 -4 ) 1.76(10~ 5 ) 4.21(10~ 7 ) -5 (10~ 8) - 7 ( 1 0 " 9 )

1 . 1 0 - 4 . 1 5 6 9 4 ( 1 0 -2 ) 2 .8029(10~ 3) 3 .782(10~ 4) 1.08(10~ 5 ) - 2 . 4 0 ( 1 0 -6 ) -5 (10~ 7) - 5 ( 1 0 " 9 )

1 .05 -3 .68059(10" 2) 4 .3358(10~ 3) 3 . 1 6 9 ( 1 0 ~ 4) 5.67(10~ 5 ) - 1 . 5 1 ( 1 0 ~ 5) - 1 . 7 ( 1 0 - 6 ) - 9 ( 1 0 " 8 )

TABLE 2 .2 . Va lue s o f 6 f o r a squa re coo l i n g a r r a y o f cy l i n d e r s ( c a se 2 . 2 . 19 , so u r c e : R e f . 64 , Tab l e 1 )

3 / r o 6 1 S 2 6 3 6 4 5 5 6 6 6 7

4.0 -1 .25382 (1 0 _ 1 ) - 1 . 0 5 8 3 ( 1 0 -2 ) -6 .120(10~ 4) - 3 . 8 9 8 ( 1 0 ~ 5) - 2 . 4 2 ( 1 0 ~ 6) - 1 . 5 ( 1 0 ~ 7 ) -8 do" 9 )2.0 -1 .25098 ( 10 - 1 ) -1 .0428(10" 2) - 5 . 7 1 3 ( 1 0 -4 ) - 3 . 1 7 7 ( 1 0 -5 ) - 1 . 3 9 ( 1 0 ~ 6) -2 (10~ 8) 3 (10~ 9)

1.5 -1 .22597 ( 10 _ 1 ) -9 .060 (10~ 3) -2.08 (10~ 4) 3.33 (10~ 5) 8.1 (10~ 6) 1 d O " 6 ) 1 ( 1 0 - 7 )

1.3 -1 .17022 (1 0 _ 1 ) -5 .995 (10~ 3) 6.13 (10 ~ 4) 1.83 (10~ 4) 3.1 (10~ 5) 4 (10~ 6) 4 ( 1 0 - 7 )

1.2 -1 .10421 (1 0 - 1 ) -2.387 (10~ 3) 1.566(10~ 3 ) 3.50 (10~ 4) 5.3 (10~ 5) 6 ( 1 0 - 6 ) 5 (10" 7)

1.15 -1.05352 ( 10 - 1 ) 3.172 (10 - 4 ) 2 .233(10~ 3) 4.44 (10~ 4) 5.8 (10 ~ 5) 4.3(10" 6 ) 1 ( 1 0 _8 >

1.1 -9.8721 (10~ 2) 3 . 6 5 9 6 ( 1 0 -3 ) 2 . 9 1 K 1 0 " 3 ) 4.655(10~ 4 ) 2.44(10~ 5) - 1 . K 1 0 " 5 ) -5. ( 1 0 - 6 )

1.05 -9.0358 (10~ 2) 7.310 (10~ 3) 3.210U0 - 3 ) 2.06 (10~ 4) -1 .20(10~ 4) - 5 . B ( 1 0 ~ 5) -1. ( 1 0 " 5 )

Page 502: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 502/578

TABLE 8.1. Values of (t - t,)/(t - t.) for an infinitely wide plate1 s 1

whose surface temperature increases proportionally to t i m e , t

(case 8. 1. 8, sour ce : Ref. 1, p. 268, Table 1 3 . 5 ) .

t . + bxi

Fo

X 0.08 0.16 0.20 0.32 0.40 0.80 1.60 2.00 4.00

0 0.004 0.045 0.074 0.170 0.231 0.464 0.694 0.752 0.875

0.33 0.030 0.104 0.142 0.245 0.305 0.522 0.728 0.779 0.889

0.5 0.082 0.194 0.238 0.346 0.402 0.594 0.770 0.814 0.906

0.66 0.214 0.353 0.398 0.498 0.545 0.698 0.830 0.862 0.930

0.8 0.418 0.548 0.586 0.664 0.699 0.802 0.889 0.911 0.955r

1 1 1 1 1 1 1 1 •1

TABLE 8.2. Values of the function X, (case 8.1 .12, so urce : Ref. 1,

p . 299).

X

a 0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1

0 1 1 1 1 1 1 1 1 1

0.5 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.99 1

1.0 0.77 0.77 0.77 0.78 0.79 0.81 0.85 0.91 1

1.5 0.47 0.47 0.47 0.48 0.52 0.58 0.68 0.83 1

2.0 0.27 0.27 0.28 0.30 0.36 0.45 0.58 0.77 1

4.0 0.04 0.04 o.or. 0.08 0.13 0.22 0.37 0.64 1

8.0 0.00 0.00 0.01 0.01 0.02 0.05 0.14 0.36 1

00 0 0 0 0 0 0 0 0

F-108

Page 503: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 503/578

TABLE 9 . 1 . Values of ( t - t . ) / ( t - t . )1 s 1

f o r a n i n f i n i t e l y l on g c y l i n d e r whose

s u r f a c e i n c r e a s e s p r o p o r t i o n a l l y t o t i m e

( t - t . = cT) (case 9 .1 .2 , s ou rc e :Ref . 1 , p . 269 ) .

R F o

0 . 0 8 0 . 1 6 0 . 3 2 0 . 8 0

0 0 . 0 1 6 0 . 1 2 3 0.354 0 . 6 9 1

0 . 3 3 0.054 0 . 1 9 1 0.420 0.725

0 . 5 0 . 1 2 2 0.287 0.505 0.768

0 . 6 6 0. ' , 68 0.443 0. 628 0.828

0 . 8 0.470 0 . 6 2 1 0.755 0.8881 1 1 1 1

TABLE 1 0 . 1 . Tem peratu res for a sp he re whose

s u r f a c e t e m p e r a t u r e i n c r e a s e s p r o p o r t i o n a l l y t ot ime ( tQ = t . + b t ) ( ca se 1 0 .1 .4 , sou rce :

Ref. 1 , p . 269 , Table 13 -7 ) .

R P o

0 . 0 1 6 0 . 0 8 0 . 1 6 0 . 3 2 0 . 8 0

0 0 . 0 0 0.054 0 . 2 1 9 0.506 0.792

0 . 3 3 0 . 0 0 0.090 0.290 0.560 0.725

0 . 5 0 . 0 0 0 . 1 6 2 0.385 0.626 0.844

0 . 6 6 0 . 0 2 0 . 3 1 2 0.529 0.722 0.884

0 . 8 0 . 1 4 0 . 5 1 6 0.686 0 . 8 1 9 0.925

1 1 1 1 1 1

F-109

Page 504: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 504/578

235n

ato

REPRODUCED FROMBEST AVAILABLE COPY

Page 505: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 505/578

SECTION 13. MATHEMATICAL FUNCTIONS

1 3 . 1 . The Error Function and Related Functions.

2 f 2erf(x) = y== I exp(-z ) dz

H w n-0 (2n+l)nl

- 1 - exp£x )

VX

2 x3

erf(0) = 0 , erf(~) = 1

er f (-x) • - erf(x)

erfc(x) • 1 - er f (x)

i n erfc(x) = r • _ 1 e r f c ( z ) d

2n+l, for small values of x

i erfc(x) « erfc(x)

1 2ierfc(x) » -& exp(-x ) - x erfc(x)

i 2erfc{x) = j [erfc(x) - 2x ierfc(x)]

2n in

erfc(x) » in _ 2

erfc(x) - 2x in _ 1

erfc(x)

l ^ e r f t x ) - ^ e x p ( - x 2 )

d 2 .. . 4x , 2 .— _ erf (x) - - T E exp(-x )d x z ^

forlarge

* valuesof x

13-1

Page 506: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 506/578

Z-ZT

•L zz •; •;•:•: z z s E •; •; s ; s ; : z z z z?

s s g s c s g s g s •;: 11z

i l i i l l l i i l i i l i i i l i i l i l l i l l l i l l l l i l lo o o o o o O a a o O a a o o o

o © o oS S 3 , emu V-i o O W

o u o» w IIM> IB V) 09

f . 3 M a 2en ui A. u M

hi a at o en

O O O O O O O O O O O O O O O H

I 1 1 iO O O

o o a o M M Ul Jh *• in Ut 91 91

U» P P *• J IS -J si W ~J N O IO K) W en m - J to - j u»' - • • oi o u> o ui m ui ui o

o o o o o o c - o o O O O O O Q O O

10 <A o « _C U3 10 10 O lO 10

10 ID U? U3 10 U) 40 10 U) to 10-- IS >0 10 10 CO C3 - - - - - - - » 5 » R

j o> oi wi m» O O* WU N M

0 10 10 " N » « « ? > F ' t = ° R ° S o i 3 K - « 5f o w w a j i o f c o m o f ? ? '

W O J-" O Ul CD *O Ul O N Ul h) Q CO 10H « r > * - * U J W i W O N > K l M S 5 S S

o o o o o o o o o o a a o O O O O O O O ) - '

i i S So o o o a H> H M w m - j o w ui CD w

IS Ol M ID c n u u i s j u i i o i a - j w u i o« a ?• s «q - j g o w y . » > i y > = » * o » = S * »

10 UJ C f v u i U l < * e n W C " > M

Ul U 10 03 U l U l M C F i U I I A t O M

O O O O O O O O O O O O O O O O O O O O *-• -•

g g g g g g g p o S H " H at- >o en in M ui

o o c a o o o o o

h - M M M W U l U l W *_ t n C D O * - J t - ' U I U ) *

«J » CO K> U) O * H O* 10 V>

C\ CT1 *-l 00 "O

U -J K> M IO

O O O O

u n am -a ui w ui

© o o o o

l l i l l l

o o o o

o o a a o o ow u m en* B B . i E S m W O N *

G O O D O O © O O O O O O

I I I I I I I I I Io o o o o o a o

o o o r~ o o o o o a o o o o o o a o oo o o o o o—

o o o oo o o o o o

o o o o o i- 1 \0 o\ * • pCk - J

o o a o o O P O O O O o o D o a o

o o o o o O O O O O O O h-n) o ro uien ui CD en

o o o o o o o o

a o o o o

o o o o oD O O O O O o o o o

o a o o o oO O Q O O D O O O Oo o o **m en m o

w w w

H" Ul W

»

Page 507: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 507/578

oo

1

t13-3

13.2. Exponenti al and Hypet bolic Functions.

e = 2.71828 . . .u

exp(u) = e

u -usinh (u) = - — i ~ ^ — , sinh (0) = 0 , sin h (=>) =2

ue

+ - u6

2

2e

u - 1tanh (u) = — , tanh (0) = 0 , tanh («)

2u ,e + 1

Page 508: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 508/578

TABLE 13 . 2. Exponential funct ions (source: Ref. 2, pp. 3 6 7 - 9 ) .

0.00 1.000 1.000

0.02 1.020 0.980

0.04 1.041 0.9610.06 1.062 0.942

0.08 1.083 0.923

0.10 1.105 0.905

0.12 1.128 0.887

0.14 1.150 0.869

0.16 1.174 0.852

0.18 1.197 0.835

0.20 1.221 0.819

0.22 1.246 0.802

0.24 1.271 0.787

0.26 1.297 0.771

0.28 1.323 0.756

0.30 1.350 0.741

0.32 1.377 0.726

0.34 1.405 0.712

0.36 1.433 0.698

0.38 1.462 0.684

0.40 1.492 0.670

0.42 1.522 0.657

0.44 1.553 0.644

0.46 1.584 0.6310.48 1.616 0.619

0.50 1.649 0.606

0.52 1.682 0.594

0.54 1.716 0.583

0.56 1.751 0.571

0.58 1.786 0.560

e " u

0.60 1.822 0.549

0.62 1.859 0.538

0.64 1.896 0.5270.66 1.935 0.517

0.68 1.974 0.507

0.70 2.014 0.497

0.72 2.054 0.487

0.74 2.096 0.477

0.76 2.138 0.468

0.78 2.182 0.458

0.80 2.226 0.449

0.82 2.270 0.440

0.84 2.316 0.432

0.86 2.363 0.423

0.88 2.411 0.415

0.90 2.460 0.407

0.92 2.509 0.3980.94 2.560 0.391

0.96 2.612 0.383

0.98 2.664 0.375

1.00 2.718 0.368

1.02 2.773 0.361

1.04 2.829 9.353

1.06 2.886 0.3461.08 2.945 0.340

1.10 3.004 0.333

1.12 3.065 0.326

1.14 3.127 0.320

1.16 3.190 0.313

1.18 3.254 0.307

e u

1.20 3.320 0.301

1.22 3.387 0.295

1.24 3.456 0.2891.26 3.525 0.284

1.28 3.597 0.278

1.30 3.669 0.272

1.32 3.743 0.267

1.34 3.819 0.262

1.36 3.896 0.257

1.38 3.975 0.252

1.40 4.055 0.247

1.42 4.137 0.242

1.44 4.221 0.237

1.46 4.306 2.232

1.48 4.393 0.228

1.50 4.482 0.223

1.52 4.572 0.2191.54 4.665 0.214

1.56 4.759 0.210

1.58 4.855 0.206

1.60 4.953 0.202

1.62 5.053 0.198

1.64 5.155 0.194

1.66 5.259 0.1901.68 5.366 0.186

1.70 5.474 0.183

1.72 5.584 0.179

1.74 5.697 0.176

1.76 5.812 0.172

1.78 5.930 0.169

13-4

Page 509: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 509/578

TABLE 13.2. ( C o n t i n u e d ) .

u e u e" u u e u e" u u e u

e" u

1.80 6.050 0.165 2.40 11 . 0 2 3 0.091 3.00 2 0 . 0 8 0.050

1.82 6.172 0.162 2.42 11 . 2 4 6 0.089 3.10 2 2 . 2 0 0.045

1.84 6.296 0.159 2.44 1 1 . 4 7 3 0.087 3.20 2 4 . 5 3 0.041

1.86 6.424 0.156 2.46 11 . 7 0 5 0.085 3.30 2 7 . 11 0.037

1.88 6.554 0.153 2.48 1 1 . 9 4 1 0.084 3.40 2 9 . 9 6 0.033

1.90 6.686 0.150 2.50 1 2 . 1 8 0.082 3.50 3 3 . 11 0.030

1.92 6.821 0.147 2.52 1 2 . 4 3 0.080 3.60 3 6 . 6 0 0.027

1.94 6.959 0.144 2.54 1 2 . 6 8 0.079 3.70 4 0 . 4 5 0.025

1.96 7.U?9 0.141 2.56 1 2 . 9 4 0.077 3.80 4 4 . 7 0 0.022

1.98 7.243 0. 138 2.58 1 3 . 2 0 0.076 3.90 4 9 . 4 0 0.020

2.00 7.389 0.135 2.60 1 3 . 4 6 0.074 4.00 5 4 . 6 0 0.018

2.02 7.538 0.133 2.62 1 3 . 7 4 0.073 4.20 6 6 . 6 9 0.015

2.04 7.691 0.130 2.64 1 4 . 0 1 0.071 4.40 8 1 . 4 5 0.012

2.06 7.846 0.127 2.66 1 4 . 3 0 0.070 4.60 9 9 . 4 8 0.010

2.08 8.004 0.125 2.68 1 4 . 5 8 0.069 4.80 1 2 1 . 5 1 0.008

2,10 8.166 0.122 2.70 1 4 . 8 8 0.067 5.00 1 4 8 . 4 0.007

2.12 8.331 0.120 2.72 1 5 . 1 8 0.066 5.20 1 8 1 . 3 0.006

2.14 8.499 0.118 2.74 1 5 . 4 9 0.065 5.40 2 2 1 . 4 0.004

2.16 8.671 0.115 2.76 1 5 . 8 0 0.063 5.60 2 7 0 . 4 0.004

2.18 8.846 0.113 2.78 1 6 . 1 2 0.062 5.80 3 3 0 . 3 0.003

2.20 9.025 0.111 2.80 1 6 . 4 4 0.061 6.00 4 0 3 . 4 0.002

2.22 9.207 0.109 2.82 1 6 . 7 8 0.060 6.50 6 6 5 . 1 0.002

2.24 9.393 0.106 2.84 1 7 . 1 2 0.058 7.00 1 0 9 6 . 6 0.001

2.26 9.583 0.104 2.86 1 7 . 4 6 0.057 7.50 1 8 0 8 . 0 0.001

2.28 9.777 0.102 2.88 1 7 . 8 1 0.056 8.00 2 9 8 1 . 0 0.000

2.30 9.974 0.100 2.90 1 8 . 1 7 0.055 8.50 4 9 1 4 . 8 0.000

2.32 1 0 . 1 7 6 0.098 2.92 1 8 . 5 4 0.054 9.00 8 1 0 3 . 1 0.000

2.34 1 0 . 3 8 1 0.096 2.94 1 8 . 9 2 0.053 9.50 1 3 3 6 0 0.000

2.36 1 0 . 5 9 1 0.094 2.96 1 9 . 3 0 0.052 1 0 . 0 0 2 2 0 2 6 0.000

2.38 1 0 . 8 0 5 0.093 2.98 1 9 . 6 9 0.051

1 3 - 5

Page 510: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 510/578

13.3. The Gamma Funct ion.

co

I ' M = / u*"" 1 e " u du, x > 0

Hx) = x x e - x ^ | L12x „„„ 2

139 571

288x" 5184x 3 2 4 8 8 3 2 0 X4 + ...

T(x + 1) = r<x)for large positive values of x

TABI£ 13.3. The gamma function (source: Ref. 17 , p. 136)

X T(x) X T(x> X T(x) X T(x) X T(x)

1.01 0.99 433 1.21 0.91 558 1.41 0.88 676 1.61 0.89 468 1.81 0.93 408

1.02 0.98 884 1.22 0.91 311 1.42 0.88 636 1.62 0.89 592 1.82 0.93 685

1.03 0.98 355 1.23 0.91 075 1.43 0.88 604 1.63 0.89 724 1.83 0.93 969

1.04 0.97 844 1.24 0.90 852 1.44 0.88 581 1.64 0.89 864 1.84 0.94 261

1.05 0.97 350 1.25 0.90 640 1.45 0.88 566 1.65 0.90 012 1.85 0.94 561

1.06 0.97 874 1.26 0.90 440 1.46 0.88 560 1.66 0.90 167 1.86 0.94 869

1.07 0.96 415 1.27 0.90 250 1.47 0.88 563 1.67 0.90 330 1.87 0.95 184

1.08 0.95 973 1.28 0.90 072 1.48 0.88 575 1.68 0.90 500 1.88 0.95 507

1.09 0.95 546 1.29 0.89 904 1.49 0.88 595 1.69 0.90 678 1.89 0.95 838

1.10 0.95 135 1.30 0.89 747 1.50 0.88 623 1.70 0.90 864 1.90 0.96 177

1.11 0.94 740 1.31 0.89 600 1.51 0.88 659 1.71 0.91 057 1.91 0.96 523

1.12 0.94 359 1.32 0.89 464 1.52 0.88 704 1.72 0.91 258 1.92 0.96 877

1.13 0.93 993 1.33 0.89 338 1.53 0.88 757 1.73 0.91 467 1.93 0.97 240

1.14 0.93 642 1.34 0.89 222 1.54 0.88 818 1.74 0.91 683 1.94 0.97 610

1.15 0.93 304 1.35 0.89 115 1.55 0.88 887 1.75 0.91 906 1.95 0.97 988

1.16 0.92 980 1.36 0.89 018 1.56 0.88 964 1.76 0.92 137 1.96 0.98 374

1.17 0.92 670 1.37 0.88 931 1.57 0.89 049 1.77 0.92 376 1.97 0.98 768

1.18 0.92 373 1.38 0.88 854 1.58 0.89 142 1.78 0.92 623 1.98 0.99 171

1.19 0.92 089 1.39 0.88 785 1.59 0.89 243 1.79 0.92 877 1.99 0.99 581

1.20 0.91 817 1.40 0.88 726 1.60 0.89 352 1.80 0.93 138 2.00 1.00 000

13-6

Page 511: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 511/578

th e p o s i t i v e s i gn used i f -n /2 < a rg u < 31T/2 and the n eg a t iv e s i gn used i f

-3TT/2 < ar g u < n / 2 .

I (u) - I (u)_ , . _ 7J_ —n n

nw

" 2 s i n (mr)

For n any positive integer:

n+2jKn( u , = < - i >

n + 1

| m ( u /2 ) + Y | in , „ , + ^- I iag__j=0

n+32 m 1 + S ra_1

.m=l m=l j=0

V - 1where f o r ]= 0r y m =

m=l

For large va lues of u :

v«->/H»^»'^ffi-••'*••»•'»4 - J (u) = J . (u) - s J (u) = - J (u ) - J _,, (u)du n n-1 u n u n n+1

| - y (U ) = y (U ) - £ Y (u) = T; Y (u) - Y «u)au n n— 1 u n u n n+1

4 - I (u) = I . (u) - - I (u) = I _,, (u) + - I (u)du n ' ' n - lx ' u nv ' n+1 u n '

jr K (u) = -K (u) - £ K (u) = £ K (u) - K (u)au n n-1 u n u n n+1

13-7

Page 512: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 512/578

1 3 . 4 . B e s s el F u n c t i o n s .

3 , „ / ^ + 2 ja ( u ) V ( - l ) J ( u / 2 ) " , n iJ

n

( u ) L j i r { n + j + i)i s r e a l and u may be comp lex

j=0

J (u) = (-1) J (u ) , i f n i s an i n t eg ern -n

J_ (u) co s (nir) - J__(u)V (u) = — : —

n s i n (nit)

J ,„/•,* n + 2 3TIY

B ( u ) = 2 ( i n ( u /2 ) + Y | J n ( u , - I ^ i ^ f ^ '

j=0

j+ n j n-1

^ m "1 + m "1 - S ( u / 2 ) " n + 2 j (n -_ J - 1)1

_m=l m=l J j=0

w he re y = 0 . 5 7 7 2 . . . i s E u l e r ' s c o n s t a n t , a n d n i s an y p o s i t i v e i n t e g e r

j YQ(u) = {In (u/2 ) + y}3Q{M ) + ( u / 2 )2 - ( l + j •&Z1L(21)

• ••WW--V d i ' ( 3 1 T

Vu )

Z , j i r t n + j +J-0

For la rge va lues o£ u :

I

n

( u ) " ^ r o r a

^.i* ^ ))

± = = e x p [ - u ± (n + | ) * i ] | l + 0 ( u ' 1 ) ) ,V2TTU

13-8

Page 513: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 513/578

TABLE 13.4.1. Zero and first-order Bessel functions of the first kind

(source: Ref 2, pp. 369-71) .

u J 0 (u) Jj_(U) u J 0 (u) •^(u)

0.0 1.0000 0.0000 3.0 -0.2600 0.3391

0.1 0.9975 0.0499 3.1 -0.2921 0.3009

0.2 0.9900 0.0995 3.2 -0.3202 0.2613

0.3 0.9776 0.1483 3.3 -0.3443 0.2207

0.4 0.9604 0.1960 3.4 -0.3643 0.1792

0.5 0.9385 0.2423 3.5 -0.3801 0.1374

0.6 0.9120 0.2867 3.6 -0.3918 0.0955

0.7 0.8812 0.3290 3.7 -0.3992 0.0538

0.8 0.8463 0.3688 3.8 -0.4026 0.0128

0.9 0.8075 0.4059 3.9 -0.4018 -0.0272

1.0 0.7652 0.4400 4.0 -0.3971 -0.0660

1.1 0.7196 0.4709 4.1 -0.3887 -0.1033

1.2 0.6711 0.4983 4.2 -0.3766 -0.1385

1.3 0.6201 0.5220 4.3 -0.3610 -0.1719

1.4 0.56690.5419 4.4 -0.3423 -0.2028

1.5 0.5118 0.5579 4.5 -0.3205 -0.2311

1.6 0.4554 0.5699 4.6 -0.2961 -0.2566

1.7 0.3980 0.5778 4.7 -0.2693 -0.2791

1.8 0.3400 0.5815 4.8 -0.2404 -0.2985

1.9 0.2818 0.5812 4.9 -0.2097 -0.3147

2.0 0.2239 0,5767 5.0 -0.1776 -0.3276

2.1 0.1666 0.5683 5.1 -0.1443 -0.33712.2 0.1104 0.5560 5.2 -0.1103 -0.3432

2.3 0.0555 0.5399 5.3 -0.0758 -0.3460

2.4 0.0025 0.5202 5.4 -0.0412 -0.3453

2.5 -0.0484 0.4971 5.5 -0.0068 -0.3414

2.6 -0.0968 0.4708 5.6 0.0270 -0.3343

2.7 -0.1424 0.4415 5.7 0.0599 -0.3241

2.8 -0.1850 0.4097 5.8 0.0917 -0.31102.9 -0.2243 0.3754 5.9 0.1220 -0.2951

13-9

Page 514: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 514/578

TABLE 1 3 . 4 . 1 . (Continued.)

u J 0 (u) J^u) u J 0 (u) ^ ( u )

6.0 0.1506 -0.2767 9.0 -0.0903 0.2453

6.1 0.1773 -0.2559 9.1 -0.1142 0.2324

6.2 0.2017 -0.2329 9.2 -0.1368 0.2174

6.3 0.2238 -0.2081 9.3 -0.1577 0.2004

6.4 0.2433 -0.1816 9.4 -0.1768 0.1816

6.5 0.2601 -0.1538 9.5 -0.1939 0.1613

6.6 0.2740 -0.1250 9.6 -0.2090 0.1395

6.7 0.2851 -0.0953 9.7 -0.2218 0.1166

6.8 0.2931 -0.0652 9.8 -0.2323 0.0928

6.9 0.2981 -0.0349 9.9 -0.2403 0.0634

7.0 0.3001 -0.0047 10.0 -0.2459 0.0435

7.1 0.2991 0.0252 10.1 -0.2490 0.0184

7.2 0.2951 0.0543 10.2 -0.2496 -0.0066

7.3 0.2882 0.0826 10.3 -0.2477 -0.0313

7.4 0.2786 0.1096 10.4 -0.2434 -0.0555

7.5 0.2663 0.1352 10.5 -0.2366 -0.0788

7.6 0.2516 0.1592 10.6 -0.2276 -0.1012

7.7 0.2346 0.1813 10.7 -0.2164 -0.1224

7.8 0.2154 0.2014 10.8 -0.2032 -0.1422

7.9 0.1944 0.2192 10.9 -0.1881 -0.1604

8.0 0.1716 0.2346 11.0 -0.1712 -0.1768

8.1 0.1475 0.2476 11.1 -0.1528 -0.1913

8.2 0.1222 0.2580 11.2 -0.1330 -0.2028

8.3 0.0960 0.2657 11.3 -0.1121 -0.2143

8.4 0.0692 0.2708 11.4 -0.0902 -0.2224

8.5 0.0419 0.2731 11.5 -0.0677 -0.2284

8.6 0.0146 0.2728 11.6 -0.0446 -0.2320

8.7 -0.0125 0.2697 11.7 -0.0213 -0.2333

8.8 -0.0392 0.2641 11.8 0.0020 -0.2323

8.9 -0.0652 0.2559 11.9 0.0250 -0.2290

13-10

Page 515: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 515/578

TABLE 1 3 . 4 . 1 . (Continued.)

u J 0 (u) J^u) u J 0 (u) J x (u)

12.0 0.0477 -0.2234 13.6 0.2101 0.0590

12.1 0.0697 -0.2158 13.7 0.2032 0.0791

12.2 0.0908 -0.2060 13.8 0.1943 0.0984

12.3 0.1108 -0.1943 13.9 0.1836 0.1165

12.4 0.1296 -0.1807 14.0 0.1711 0.1334

12.5 0.1469 -0.1655 14.1 0.1570 0.1488

12.6 0.1626 -0.1487 14.2 0.1414 0.1626

12.7 0.1766 -0.1307 14.3 0.1245 0.1747

12.8 0.1887 -0.1114 14.4 0.1065 0.1850

12.9 0.1988 -0.0912 14.5 0.0875 0.1934

13.0 0.2069 -0.0703 14.6 0.0679 0.1998

13.1 0.2129 -0.0488 14.7 0.0476 0.2043

13.2 0.2167 -0.0271 14.8 0.0271 0.2066

13.3 0.2183 -0.0052 14.9 0.0064 0.2069

13.4 0.2177 0.0166 15.0 0.0142 0.2051

13.5 0.2150 0.0380

13-11

Page 516: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 516/578

TABLE 13.4.2. Zero and first-order Bessel functions of the second kind (source:

Ref. 2 p . 371-3).

u Y 0 (u> Yx (u) u V u ) ^ ( u )

0.0 -co -CO 3.0 0.3768 0.3247

0.1 -1.5342 -6.4590 3.1 0.3431 0.3496

0.2 -1.0811 -3.3238 3.2 0.3070 0.3707

0.3 0.8073 -2.2931 3.3 0.2691 0.3878

0.4 -0.6060 -1.7809 3.4 0.2296 0.4010

0.5 -0.4445 -1.4715 3.5 0.1890 0.4102

0.6 -0.3085 -1.2604 3.6 0.1477 0.4154

0.7 -0.1907 -0.1032 3.7 0.1061 0.4167

0.8 -0.0868 -0.9781 3.8 0.0645 0.4141

0.9 0.0056 -0.8731 3.9 0.0234 0.4078

1.0 0.0883 -0.7812 4.0 -0.0169 0.3979

1,1 0.1622 -0.6981 4.1 -0.0561 0.3846

1.2 0.2281 -0.6211 4.2 -0.0938 0.3680

1.3 0.2865 -0.5485 4.3 -0.1296 0.3484

1.4 0.3379 -0.4791 4.4 -0.1633 0.3260

1.5 0.3824 -0.4123 4.5 -0.1947 0.3010

1.6 0.4204 -0.3476 4.6 -0.2235 0.2737

1.7 0.4520 -0.2847 4.7 -0.2494 0.2445

1.8 0.4774 -0.2237 4.8 -0.2723 0.2136

1.9 0.4968 -0.1644 4.9 -0.2921 0.1812

2.0 0.5104 -0.1070 5.0 -0.3085 0.1479

2.1 0.5183 -0.0517 5.1 -0.3216 0.1137

2.2 0.5208 0.0015 5.2 -0.3312 0.0792

2.3 0.5181 0.0523 5.3 -0.3374 0.0445

2.4 0.5104 0.1005 5.4 -0.3402 0.0101

2.5 0.4981 0.1459 5.5 -0.3395 -0.0238

2.6 0.4813 0.1884 5.6 -0.3354 -0.0568

2.7 0.4605 0.2276 5.7 -0.3282 -0.0887

2.8 0.4359 0.2635 5.8 -0.3177 -0.1192

2.9 0.4079 0.2959 5.9 -0.3044 -0.1481

13-12

Page 517: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 517/578

TABLE 1 3 . 4 . 2 . (Continued.)

u VQ( u ) V x ( u ) u Y 0 ( u ) ^ ( u )

6.0 -0.2882 -0.1750 9.0 0.2499 0.10436.1 -0.2694 -0.1998 9.1 0.2383 0.1275

6.2 -0.2483 -0.2223 9.2 0.2245 0.1491

6.3 -0.2251 -0.2422 9.3 0.2086 0.1691

6.4 -0.2000 -0.2596 9.4 0.1907 0.1871

6.5 -0.1732 -0.2741 9.5 0.1712 0.2032

6.6 -0.1452 -0.2857 9.6 0.1502 0.2171

6.7 -0.1162 -0.29459.7 0.1279 0.2287

6.8 -0.0864 -0.3002 9.8 0.1045 0.2379

6.9 -0.0562 -0.3029 9.9 0.0804 0.2447

7.0 -0.0260 -0.3027 10.0 0.0557 0.2490

7.1 0.0042 -0.2995 10.1 0.0307 0.2508

7.2 0.0338 -0.2934 10.2 0.0056 0.2502

7.3 0.0628 -0.2846 10.3 -0.0193 0.2471

7.4 0.0907 -0.2731 10.4 -0.0437 0.2416

7.5 0.1173 -0.2591 10.5 -0.0675 0.2337

7.6 0.1424 -0.2428 10.6 -0.0904 0.2236

7.7 0.1658 -0.2243 10.7 -0.1122 0.2114

7.8 0.1872 -0.2039 10.8 -0.1326 0.1973

7.9 0.2065 -0.1817 10.9 -0.1516 0.1813

8.0 0.2235 -0.1581 11.0 -0.1688 0.1637

8.1 0.2381 -0.1332 11.1 -0.1843 0.14468.2 0.2501 -0.1072 11.2 -0.1977 0.1243

8.3 0.2595 -0.0806 11.3 -0.2091 0.1029

8.4 0.2662 -0.0535 11.4 -0.2183 0.0807

8.5 0.2702 -0.0262 11.5 -0.2252 0.0579

8.6 0.2715 0.0011 11.6 -0.2299 0.0348

8.7 0.2700 0.0280 11.7 -0.2322 0.0114

8.8 0.26590.0544

11.8 -0.2322 -0.01188.9 0.2592 0.0799 11.9 -0.2298 -0.0347

13-13

Page 518: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 518/578

TABLE 13.4.2. (Continued.)

_u * 0 ( u ) Y x ( u )

12.0 -0.2252 -0.0571

12.1 -0.2184 -0.0787

12.2 -0.2095 -0.0994

12.3 -0.1986 -0.1190

12.4 -0.1858 -0.1371

12.5 -0.1712 -0.1538

12.6 -0.1551 -0.1689

12.7 -0.1375 -0.1821

12.8 -0.1187 -0.1935

12.9 -0.0989 -0.2028

13.0 -0.0782 -0.2101

13.1 -0.0569 -0.2152

13.2 -0.0352 -0.2182

13.3 -0.0134 -0.2190

13. 4 0.0085 -0.2176

u Y 0 ( u ) Y x ( u )

13.5 0.0301 -0.2140

13.6 0.0512 -0.2084

13.7 0.0717 -0.2007

13.8 0.0913 -0.1912

13.9 0.1099 -0.1798

14.0 0.1272 -0.1666

14.1 0.1431 -0.1520

14.2 0.1575 -0.1359

14.3 0.1703 -0.1186

14.4 0.1812 -0.1003

14.5 0.1903 -0.0810

14.6 0.1974 -0.0612

14.7 0.2025 -0.0408

14.8 0.2056 -0.0202

14.9 0.2066 0.0005

13-14

Page 519: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 519/578

TABLE 1 3 . 4 . 3 . Zero and f i r s t order modified Bes sel func tion s of the f i r s t kind

( s o u r c e : Ref. 2, p . 373-4) .

u I 0 (u ) I ^ u ) u I 0 (u ) 3^(11)

0.0 l.^OOO 0.0000 3.0 4.881 3.953

0.1 1.0025 0.0501 3.1 5.294 4.326

0.2 1.0100 0.1005 3.2 5.747 4.734

0.3 1.0226 0.1517 3.3 6.243 5.181

0.4 1.0404 0.2040 3.4 6.785 5.670

0.5 1.0635 0.2579 3.5 7.378 6.206

0.6 1.0920 0.3137 3.6 8.028 6.793

0.7 1.1263 0.3719 3.7 8.739 7.436

0.8 1.1665 0.4329 3.8 9.517 8.140

0.9 1.2130 0.4971 3.9 10.369 8.913

1.0 1.2661 0.5652 4.0 11.30 9.76

1.1 1.3262 0.6375 4.1 12.32 10.69

1.2 1.3937 0.7147 4.2 13.44 11.71

1.3 1.4693 0.7973 4.3 14.67 12.82

1.4 1.5534 0.8861 4.4 16.01 14.05

1.5 1.6467 0.9817 4.5 17.48 15.39

1.6 1.7500 1.0848 4.6 19.09 16.86

1.7 0.8640 1.1963 4.7 20.86 18 .48

1.8 1.9806 1.3172 4.8 22.79 20.25

1.9 2.1277 1.4482 4.9 24.91 22.20

2.0 2.280 1.591 5.0 27.24 24.34

2.1 2.446 1.746 5. 1 29.79 26. 68

2.2 2.629 1.914 5.2 32.58 29.25

2.3 2.830 2.098 5.3 35.65 32.08

2.4 3.049 2.298 5.4 39.01 35.18

2.5 3.290 2.517 5.5 42.70 38.59

2.6 3.553 2.755 5.6 46.74 42.33

2.7 3.842 3.016 5.7 51.17 46.44

2. 8 4.157 3. 30 1 5.8 56.04 50.95

2.9 4.503 3.613 5. 9 61.3 8 55. 90

13-15

Page 520: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 520/578

TABLE 1 3 . 4 . 4 . Zero and f i r s t order modified Besse l funct ions of th e second kind

( s o u r c e : Ref. 2, p. 3 7 4 - 5 ) .

u iV u > K( u

> u ¥oM K ( u )

0.0 CO CO 2.0 0.072 0.089

0.1 1.545 6.270 2.1 0.064 0.078

0.2 1.116 3.040 2. 2 0.057 0.069

0.3 0.874 1.946 2.3 0.050 0.060

0.4 0.710 1.391 2. 4 0.045 0.053

0.5 0.588 1.054 2.5 0.040 0.047

0.6 0.495 0.829 2. 6 0.035 0.042

0.7 0.420- 0.669 2.7 0.031 0.037

0.8 0.360 0.549 2.8 0.028 0.032

0.9 0.310 0.456 2. 9 0.025 0.029

1.0 0.268 0.383 3.0 0.022 0.026

1.1 0.233 0.324 3.1 0.020 0.023

1.2 0.203 0.277 3. 2 0.018 0.020

1.3 0.177 0.237 3. 3 0.016 0.018

1.4 0.155 0.204 3. 4 0.014 0.016

1.5 0.136 0.177 3. 5 0.012 0.014

1.6 0.120 0.153 3. 6 0.011 0.013

1.7 0.105 0.133 3.7 0.010 0.011

1.8 0.093 0.116 3.8 0.009 0.010

1.9 0.082 0.102 3. 9 0.008 0.009

13-16

Page 521: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 521/578

1 3 . 5 . Legendre Polynomials

The Legendre polynomial of degree n, of the first kind:

P ( u ) = ( - i )n / 2 l • ' — < n - X ) Ti - H U U - 1 L 2n* ' l ; 2 • 4 • 6 ••• n I 21

n(n - 2)(n + 1 } (n + 3) 4 , "l „ „ ,+ — i '•' ,. , ' ' - u + , , " , n = 2, 4, 6, ....

41 -1

n , , , t (n - l ) /2 1 » 3 • 5 • n r (n - 1) (n + 2) 3V U ) = » - X ) 2 • 4 • 6 — (n - 1) L u " 31 u

+ {n-l) {n-3nn + 2 ){n + A) 5 . . . . J

# n „ ^ ^ ? | u ] < 1

P Q( u ) = 1, P x (u) = u, P 2 (u ) = (3u 2 - l)/2 ,

P (u) = (5u 3 - 3u)/2 r P (u) = P 5 u 4 - 30u 2 + 3)/8 ,

P 5 < u ) = (63u 5 - 7 0 u 3 + 15u)/8, |u|<l

The Legendre polynomial of degree n, of the second kind:

Qn(U, = ( - i , <n + i>/ 2 ^ . v . 7 . i ? -n ^ - [ i - a f c j i- y - u2

+ n(n - 2) ( n ^ 1) ( , + 3) fl4 + .„.-] , n = 3 , 5 , 7 , . . . ,

O ( u , = ( _ i ) n / 2 ^ • i • 6 — a r _ <n - l)<n + 2) 3U n vuj \ i.) l • 3 • 5 • •• (n - 1) L u 31 u

a. (n - 1) (n - 3) (n + 2) (n + 4) 5 . 1 . , ,

13-17

Page 522: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 522/578

0 0 W ) - iQ ±W = QQ(u) P^u) - 1,

Q 2(u) = QQ(u) P 2 (u) - 3u/2

Q 3(u) » QQ(u) P 3 (u) - 5u2 /2 + §,

Q 4('J) = Q Q(u) P 4 (u) - 35u3/8 + 55 u2 /24 ,

Qn(u) = Q0(U) Pn(u , - - f - r - i l p n _ i ( u ) _ 1 2 2 ^ | L P n _ 3 ( u )

13-18

Page 523: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 523/578

TABLE 1J . 5. The f i r s t fiv e Legendre polynomials of the f i r s t kind ( sou rce :

Ref. 2, p. 3 7 5 - 7 ) .

u ^ ( u ) P 2 (u) P 3 (u) P 4 (u) P 5 (u)

0.00 0.0000 -0.5000 0.0000 0.3750 0.0000

0.01 0.0100 -0.4998 -0.0150 0.3746 0.0187

0.02 0.0200 -0.4994 -0.0300 0.3735 0,0374

0.03 0.0300 -0.4986 -0.0449 0.3716 0.0560

0.04 0.0400 -0.4976 -0.0598 0.3690 0.0744

0.05 0.0500 -0.4962 -0.0747 0.3657 0.0927

0.06 0.0600 -0.4946 -0.0895 0.3616 0.1106

0.07 0.0700 -0.4926 -0.1041 0.3567 0.1283

0.08 0.0800 -0.4904 -0.1187 0.3512 0.1455

0.09 0.0900 -0.4878 -0.1332 0.3449 0.1624

0.10 0.1000 -0.4850 -0.1475 0.3379 0.1788

0.11 0.1100 -0.4818 -0.1617 0.3303 0.1947

0.12 0.1200 -0.4784 -0.1757 0.3219 0.2101

0.13 0.1300 -0.4746 -0.1895 0.3129 0.2248

0.14 0.1400 -0.4906 -0.2031 0.3032 0.2389

0.15 0.1500 -0.4662 -0.2166 0.2928 0.2523

0.16 0.1600 -0.4616 -0.2:.98 0.2819 0.2650

0.17 0.1700 -0.4566 -0.2427 0.2703 0.2769

0.18 0.1800 -0.4514 -0.2554 0.2581 0.2880

0.19 0.1900 -0.4458 -0.2679 0.2453 0.2982

0.20 0.2000 -0.4400 -0.2800 0.2320 0.3075

0.21 0.2100 -0.4338 -0.2918 0.2181 0.3159

0.22 0.2300 -0.4274 -0.3034 0.2037 0.3234

0.23 0.2300 -0.4206 -0.3146 0.1889 0.3299

0.24 0.2400 -0.4136 -0.3254 0.1735 0.3353

0.25 0.2500 -0.4062 -0.3359 0.1577 0.3397

0.26 0.2600 -0.3986 -0.3461 0.1415 0.3431

0.27 0.2700 -0.3906 -0.3558 0.1249 0.3453

0.28 0.2800 -0.3824 -0.3651 0.1079 0.3465

0.29 0.2900 -0.3738 -0.3740 0.0906 0.3465

13-19

Page 524: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 524/578

TABLE 13.5. (Continued.)

u ^ ( u ) P 2 (u) P 3 (u) P 4 ( ) P 5 (u)

0.30 0.3000 -0.3650 -0.3825 0.0729 0.3454

0.31 0.3100 -0.3558 -0.3905 0.0550 0.3431

0.32 0.3200 -0.3464 -0.3981 0.0369 0.3397

0.33 0.3300 -0.3366 -0.4052 0.0185 0.3351

0.34 0.3400 -0.3266 -0.4117 0.0000 0.3294

0.35 0.3500 -0.3162 -0.4178 -0.0187 0.3225

0.36 0.3600 -0.3056 -0.4234 -0.0375 0.3144

0.37 0.3700 -0.2946 -0.4284 -0.0564 0.3051

0.38 0.3800 -0.2834 -0.4328 -0.075? 0.2948

0.39 0.3900 -0.2718 -0.4367 -0.0942 0.2833

0.40 0.4000 -0.2600 -0.4400 -0.1130 0.2706

0.41 0.4100 -0.2478 -0.4427 -0.1317 0.2569

0.42 0.4200 -0.2354 -0.4448 -0.1504 0.2421

0.43 0.4300 -0.2226 -0.4462 -0.1688 0.2263

0.44 0.4400 -0.2096 -0.4470 -0.1870 0.2095

0.45 0.4500 -0.1962 -0.4472 -0.2050 0.1917

0.46 0.4600 -0.1826 -0.4467 -0.2226 0.1730

0.47 0.4700 -0.1686 -0.4454 -0.2399 0.1534

0.48 0.4800 -0.1544 -0.4435 -0.2568 0.1330

0.49 0.4900 -0.1398 -0.4409 -0.2732 0.1118

0.50 0.5000 -0.1250 -0.4375 -0.2891 0.0898

0.51 0.5100 -0.1098 -0.4334 -0.3044 0.0673

0.52 0.5200 -0.0944 -0.4285 -0.3191 0.0441

0.53 0.5300 -0.0786 -0.4228 -0.3332 0.0204

0.54 0.5400 -0.0626 -0.4163 -0.3465 -0.0037

0.55 0.5500 -0.0462 -0.4091 -0.3590 -0.0282

0.56 0.5600 -0.0296 -0.4010 -0.3707 -0.0529

0.57 0.5700 -0.0126 -0.3920 -0.3815 -0.0779

0.58 0.5800 0.0046 -0.3822 -0.3914 -0.1028

0.59 0.5900 0.0222 -0.3716 -0.4002 -0.1278

13-20

Page 525: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 525/578

TABLE 13. 5. (Continued.)

u P-^u) P 2 (u )

0.60 0.6000 0.0400

0.61 0.6100 0.0582

0.62 0.6200 0.0766

0.63 0.6300 0.0954

0.64 0.6400 0.1144

0.65 0.6500 0.1338

0.66 0.6600 0.1534

0.670.6700 0.1734

0.6B 0.6800 0.1936

0.69 0.6900 0.2142

0.70 0.7000 0.2350

0.71 0.7100 0.2562

0.72 0.7200 0.2776

0.73 0.7300 0.2994

0.74 0.7400 0.3214

0.75 0.7500 0.3438

0.76 0.7600 0.3664

0.77 0.7700 0.3894

0.78 0.7800 0.4126

0.79 0.7900 0.4362

0.80 0.8000 0.4600

0.81 0.8100 0.48420.82 0.8200 0.5086

0.83 0.8300 0.5334

0.84 0.8400 0.5584

0.85 0.8500 0.5838

0.86 0.8600 0.6094

0.87 0.8700 0.6354

0.88 0.8800 0.6616

0.89 0.8900 0.6882

P 3 ( u ) P 4 ( u ) P 5 (u )

-0.3600 -0.4080 -0.1526-0.3475 -0.4146 -0.1772

-0.3342 -0.4200 -0.2014

-0.3199 -0.4242 -0.2251

-0.3046 -0.4270 -0.2482

-0.2884 -0.4284 -0.2705

-0.2713 -0.4284 -0.2919

-0.2531 -0.4268 -0.3122

-0.2339 -0.4236 -0.3313

-0.2137 -0.4187 -0.3490

-0.1925 -0.4121 -0.3652

-0.1702 -0.4036 -0.3796

-0.1469 -0.3933 -0.3922

-0.1225 -0.3810 -0.4026

-0.0969 -0.3666 -0.4107

-0.0703 -0.3501 -0.4164

-0.0426 -0.3314 -0.4193

-0.0137 -0.3104 -0.4193

0.0164 -0.2871 -0.4162

0.0476 -0.2613 -0.4097

0.0800 -0.2330 -0.3995

0.1136 -0.2021 -0.38550.1484 -0.1685 -0.3674

0.1845 -0.1321 -0.3449

0.2218 -0.0928 -0.3177

0.2603 -0.0506 -0.2857

0.3001 -0.0053 -0.2484

0.3413 0.0431 -0.2056

0.3837 0.0947 -0.1570

0.4274 0.1496 -0.1023

13-21

Page 526: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 526/578

TABLE 13.5. (Continued.)

u P x (u) P 2 (u)

0.90 0.9000 0.7150

0.91 0.9100 0.7422

0.92 0.9200 0.7696

0.93 0.9300 0.7974

0.94 0.9400 0.8254

0.95 0.9500 0.8538

0.96 0.9600 0.8B24

0.97 0.9700 0.9114

0.98 0.9800 0.9406

0.99 0.9900 0.9702

1.00 1.0000 1.0000

P 3 (u) P 4 (u) P 5 (u)

0.4725 0.2079 -0.0411

0.5189 0.2698 0.0268

0.5667 0.3352 0.1017

0.6159 0.4044 0.1842

0.6665 0.4773 0.2744

0.7184 0.5541 0.3727

0.7718 0.6349 0.4796

0.8267 0.7198 0.5954

0.8830 0.8089 0.7204

0.9407 0.9022 0.8552

1.0000 1.0000 1.0000

13-22

Page 527: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 527/578

13.6. Sine, Cosine, and Exponential Integra ls.

- X

Sine in t e g ra l : S i (x)

Si(<=°) = IT/2

/ "¥**••

Cosine integral: Ci(x) = - / c o s ^ du =i n(yx) - j 1

0

An Y = 0.577215... (Euler's constant)

Ex pon ent i a l i n t e g r a l : E i (x) = - / —— du, <0 , °° > x > 0

x

CO

/ ^ du, <0,

*i(x) = Joga r i th mic i n t e g r a l : S i (x) = / . " •• = E i ( i i x)

0

«,i(e x ) = Ei(x )

FOE smal l va lues of x :

S i (x ) = x ,

JU(x ) = -x /£ n ( l / x )

C i(x ) = Ei (-x ) = Ei (x) = J ln d/ pc ) = Y + An(x) - x + ( x2 / 4 ) +

For la rge va lues of x :

Si (x ) = TT/2 - cos (x )/ x

Ci (x ) = s i n (x ) / x

I i ( x ) = ( eX /x ) (1 + 11 /x + 2 i / x + 3 /x + '•'), | x | » 1

13-23

Page 528: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 528/578

TABLE 1 2 . 6 . Values o f t h e s i n e , c o s i n e , l o g a r i t h m i c , and e x p o n e n t i a l i n t e g r a l s .

( s o u r c e : R e f . 1 8 , p . 6 - 9 . )

S i ( x ) Ci(x) E i ( x ) E i ( - x )

0.00 +0.000000 -CO —CO

0.01 +0.010000 -4.0280 -4.0179

0.02 +0.019999 -3.3349 -3.3147

0.03 +0.029998 -2.9296 -2.8991

0.04 +0.039996 -2.6421 -2.6013

0.05 +0.04999 -2.4191 -2.3679

0.06 +0.05999 -2.2371 -2.1753

0.07 +0.06998 -2.0833 -2.0108

0.08 +0.07997 -1.9501 -1.8669

0.09 +0.08996 -1.8328 -1.7387

0.10 +0.09994 -1.7279 -1.6228

0.11 +0.10993 -1.6331 -1.5170

0.12 +0.11990 -1.5466 -1.4193

0.13 +0.12988 -1.4672 -1.3287

0.14 +0.13985 -1.3938 -1.2438

0.15 +0.14981 -1.3255 -1.1641

0.16 +0.15977 -1.2618 -1.0887

0.17 +0.16973 -1.2020 -1.0172

0.18 +0.1797 -1.1457 -0.9491

0.19 +0.1896 -1.0925 -0.8841

0.20 +0.1996 -1.0422 -0.8218

0.21 +0.2095 -0.9944 -0.7619

0.22 +0.2194 -0.9490 -0.7042

0.23 +0.2293 -0.9057 -0.6485

0.24 +0.2392 -0.8643 -0.5947

0.25 +0.2491 -0.8247 -0.5425

0.26 +0.2590 -0.7867 -0.4919

0.27 +0.2689 -0.7503 -0.4427

0.28 +0.2788 0.7153 -0.3949

0.29 +0.2886 -0.6816 -0.3482

- C O

-4 .0379

-3.3547

- 2 . 9 5 9 1

-2 .6813

-2 .4679

-2 .2953

- 2 . 1 5 0 8

-2.0269

-1.9187

-1 .8229

-1 .7371

-1 .6595

-1 .5889

- 1 . 5 2 4 1

-1 .4645

-1 .4092

-1 .3578

-1 .3098

-1 .2649

-1 .2227

-1 .1829

-1 .1454

-1 .1099

-1 .0762

-1 .0443

-1 .0139

-0.9849

-0 .9573

-0 .9309

1 3 - 2 4

Page 529: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 529/578

TABLE 1 3 . 6 . (Continued.)

X Si(x) Ci(x) Ei(x) Ei(-x)

0.30 +0.2985 -0.6492 -0.3027 -0.9057

0.31 +0.3083 -0.6179 -0.2582 -0.88150.32 +0.3182 -0.5877 -0.2147 -0.8583

0.33 +0.3280 -0.5585 -0.17210 -0.8361

0.34 +0.3378 -0.5304 -0.13036 -0.8147

0.35 +0.3476 -0.5031 -0.08943 -0.7942

0.3S +0.3574 -0.4767 -0.04926 -0.7745

0.37 +0.3672 -0.4511 -0.00979 -0.7554

0.33 +0.3770 -Q.4263 +0.02901 -0.73710.39 +0.3867 -0.4022 +0.06718 -0.7194

0.40 +0.3965 -0.3788 +0.10477 -0.7024

0.41 +0.4062 -0.3561 +0.14179 -0.6859

0.42 +0.4159 -0.3341 +0.17828 -0.6700

0.43 +0.4256 -0.3126 +0.2143 -0.6546

0.44 +0.4353 -0.2918 +0.2498 -0.6397

0.45 +0.4450 -0.2715 +0.2849 -0.6253

0.46 +0.4546 -0.2517 +0.3195 -0.6114

0.47 +0.4643 -0.2325 +0.3537 -0.5979

0.48 +0.4739 -0.2138 +0.3876 -0.5848

0.49 +0.4835 -0.1956 +0.4211 -0.5721

0.50 +0.4931 -0.17778 +0.4542 -0.5598

0.51 +0.5027 -0.16045 +0.4870 -0.5478

0.52 +0.5123 -0.14355 +0.5195 -0.5362

0.53 +0.5218 -0.12707 +0.5517 -0.5250

0.54 +0.5313 -0.11099 +0.5836 -0.5140

0.55 +0.5408 -0.09530 +0.6153 -0.5034

0.56 +0.5503 -0.07999 +0.6467 -0.4930

0.57 +0.5598 -0.06504 +0.6778 -0.4830

0.58 +0.5693 -0.05044 +0.7087 -0.4732

0.59 +0.5787 -0.03619 +0.7394 -0.4636

13-25

Page 530: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 530/578

TABLE 13.6. (Continued.)

Si(x) Ci(x) Ei(x) Ei(-x)

0.60 +0.5881 -0.02227 +0.7699

0.61 +0.5975 -0.008675 +0.8002

0.62 +0.6069 +0.004606 +0.8302

0.63 +0.6163 +0.01758 +0.8601

0.64 +0.6256 r0.03026 +0.8898

0.65 +0.6349 +0.04265 +0.9194

0.66 +0.6442 +0.05476 +0.9488

0.67 +0.6535 +0.06659 +0.9780

0.68 +0.6628 +0.07816 +1.0071

0.69 +0.6720 +0.08946 +1.0361

0.70 +0.6812 +0.10051 +1.0649

0.71 +0.6904 +0.11132 +1.0936

0.72 +0.6996 +0.12188 +1.1222

0.73 +0.7087 +0.13220 +1.1507

0.74 +0.7179 +0.14230 +1.1791

0.75 +0.7270 +0.15216 +1.2073

0.76 +0.7360 +0.16181 +1.2355

0.77 +0.7451 +0.17124 +1.2636

0.78 +0.7541 +0.1805 +1.2916

0.79 +0.7631 +0.1895 +1.3195

0.80 +0.7721 +0.1983 +1.3474

0.81 +0.7811 +0.2069 +1.3752

0.82 +0.7900 +0.2153 +1.4029

0.83 +0.7989 +0.2235 +1.4306

0.84 +0.8078 +0.2316 +1.4582

0.85 +0.8166 +0.2394 +1.4857

0.86 +0.8254 +0.2471 +1.5132

0.87 +0.8342 +0.2546 +1.5407

0.88 +0.8430 +0.2619 +1.5681

0.89 +0.8518 +0.2691 +1.5955

-0.4544

-0.4454

-0.4366

-0.4280

-0.4197

-0.4115

-0.4036

-0.3959

-0.3883

-0.3810

-0.3738

-0.3668

-0.3599

-0.3532

-0.3467

-0.3403

-0.3341

-0.3280

-0.3221

-0.3163

-0.3106

-0.3050

-0.2996

-0.2943

-0.2891

-0.2840

-0.2790

-0.2742

-0.2694

-0.2647

13-26

Page 531: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 531/578

TABLE 1 3 . 6 . (Continued.)

X Si(x) Ci(Jt) Ei(x) Ei(-x)

0.90 +0.8605 +0.2761 +1.6228 -0.2602

0.91 +0.8692 +0.2829 +1.6501 -0.2557

0.92 +0.8778 +0.2896 +1.6774 -0.2513

0.93 +0.8865 +0.2961 +1.7047 -0.2470

0.94 +0.8951 +0.3024 +1.7319 -0.2429

0.95 +0.9036 +0.3086 +1.7591 -0.2387

0.96 +0.9122 +0.3147 +1.7864 -0.2347

0.97 +0.9207 +0.3205 +1.8136 -0.2308

0.98 +0.9292 +0.3263 +1.8407 -0.2269

0.99 +0.9377 +0.3319 +1.8679 -0.2231

1.00 +0.9461 +0.3374 +1.8951 -0.2194

1.0 +0.9461 +0.3374 +1.8951 -0.2194

1.1 +1.0287 +0.3849 +2.1674 -0.1860

1.2 +1.1080 +0.4205 +2.4421 -0.1584

1.3 +1.1840 +0.4457 +2.7214 -0.1355

1.4 +1.2562 +0.4620 +3.0072 -0.1162

1.5 +1.3247 +0.4704 +3.3013 -0.1000

1.6 +1.3892 +0.4717 +3.6053 -0.08631

1.7 +1.4496 +0.4670 +3.9210 -0.07465

1.8 +1.5058 +0.4568 +4.2499 -0.06471

1.9 +1.5578 +0.4419 +4.5937 -0.05620

2.0 +1.6054 +0.4230 +4.9542 -0.04890

2.1 +1.6487 +0.4005 +5.3332 -0.04261

2.2 +1.6876 +0.3751 +5.7326 -0.03719

2.3 +1.7222 +0.3472 +6.1544 -0.03250

2.4 +1.7525 +0.3173 +6.6007 -0.02844

2.5 +1.7785 +0.2859 +7.0738 -0.02491

2.6 +1.8004 +0.2533 +7.5761 -0.02185

2.7 +1.8182 +0.2201 +8.1103 -0.01918

2.8 +1.8321 +0.1865 +8.6793 -0.01686

2.9 +1.8422 +0.1529 +9.2860 -0.01482

3.0 +1.8487 +0.1196 +9.9338 -0.01304

13-27

Page 532: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 532/578

TABLE 1 3 . 6 . (Continued.)

x Si(x ) Ci(x) IT (x) E i ( -x )

3.1 +1.8517 +0.08699 +10.6263 -0.01149

3.2 +1.8514 +0.05526 +11.3673 -0.01013

3.3+1.8481 +0.02468

+12.1610 -0.02

89393.4 +1.8419 +0.004518 +13.0121 -0.0 2 7890

3.5 +1.8331 -0.03213 +13.9254 -0.0 26970

3,6 +1.8219 -0.05797 +14.9063 -0.0 2 6160

3.7 +1.8086 -0.08190 +15.9606 -0.0 25448

3.8 +1.7934 -0.1038 +17.0948 -0.0 24820

3.9 +1.7765 -0.1235 +18.3157 -0.0 2 4267

4.0 +1.7582 -0.1410 +19.6309 -0.0 23779

4.1 +1.738T -0.1562 +21.0485 -0.0 2 3349

4.2 +1.7184 -0.1690 +22.5774 -0.0 22969

4.3 +1.6973 -0.1795 +24.2274 -0.0 2 2633

4.4 +1.6758 -0.1877 +26.0090 -0.0 22336

4.5 +1.6541 -0.1935 +27.9337 -0.0 2 2073

4.6 +1.6325 -0.1970 +30.0141 -0.0 2 1841

4.7 +1.6110 -0.1984 +32.2639 -0.02

16354.8 +1.5900 -0.1976 +34.6979 -0.0 21453

4.9 +1.5696 -0.1948 +37.3325 -0.0 2 1291

5.0 +1.5499 -0.1900 +40.1853 -0.0 2 1148

6 +1.4247 -0.06806 +85.9898 -0.0 3 3601

7 +1.4546 +0.07670 +191.505 -0.0 3 1155

8 +1.5742 +0.1224 +440.380 -0.0 4 3767

9 +1.6650 +0.05535 +1037.88 -0.04

124510 +1.6583 -0.04546 +2492.23 -0.0 5 4157

11 +1.5783 -0.08956 +6071.41 -0.0 5 1400

12 +1.5050 -0.04978 +14959.5 -0.0 6 4751

13 +1.4994 +0.02676 +37197.7 -0.0 6 1622

14 +1.5562 +0.06940 +93192.5 -0.0 7 5566

15 +1.6182 +0.0462B +234 956 -0.0 7 1918

13-28

Page 533: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 533/578

TABLE 1 3 . 6 . (Continued.)

X Si(x) Ci(x) X Si(x) Ci(x)

20 +1.5482 +0.04442 140 +1.5722 +0.007011

25 +1.5315 -0.00685 150 +1.5662 -0.004800

30 +1.5668 -0.03303 160 +1.5769 +0.001409

35 + 1.5969 -0.01148 170 +1.5653 +0.002010

40 +1.5870 +0.01902 180 +1.5741 -0.004432

45 +1.5587 +0.01863 190 +1.5704 +0.005250

50 +1.5516 -0.00563 200 +1.5684 -0.004378

55 +1.5707 -0.01817 300 +1.5709 -0.003332

60 +1.5867 -0.00481 400 +1.5721 -0.002124

65 +1.5792 +0.01285 500 +1.5726 -0.0009320

70 +1.5616 +0.01092 600 +1.5725 +0.0000764

75 +1.5586 -0,00533 700 +1.5720 +0.0007788

80 +1.5723 -0.01240 800 +1.5714 +0.001118

85 +1.5824 -0.001935 900 +1.5707 +0.001109

90 +1.5757 +0.009986 1 0 2

+1.5702 +0.000826

95 +1.5630 +0.007110 1 0 4

+1.5709 -0.0000306

100 +1.5622 -0.005149 1 0 5

+1.5708 +0.0000004

110 +1.5799 -0.000320 10 6 +1.5708 -0.0000004

120 +1.5640 +0.004781 1 0 7

+1.5708 +0.0

130 +1.5737 -0.007132 00 1/2TT 0.0

1 3 - 2 9

Page 534: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 534/578

SECTION 14. ROOTS OF SOME CHARACTERISTIC EQUATIOHS

TABLE 14.1. First six roots of X tan X = C. (Source: Ref. 74, p. 217.)

c X l X 2 X 3 X 4 X 5 X 6

0 0.0000 3.1416 6.2832 9.4248 12.5664 15.7080

0.001 0.0316 3.1419 6.2833 9.4249 12.5665 15.7080

0.002 0.0447 3.1422 6.2835 9.4250 12.5665 15.7081

0.004 0.0632 3.1429 6.2838 9.4252 12.5667 15.7082

0.006 0.0774 3.1435 6.2841 9.4254 12.5668 15.7083

0.008 0.0893 3.1441 6.2845 9.4256 12.5670 15.7085

0.01 0.0998 3.1448 6.2848 9.4258 12.5672 15.7096

0.02 0.1410 3.1479 6.2864 9.4269 12.5680 15.7092

0.04 0.1987 3.1543 6.2895 9.4290 12.5696 15.7105

0.06 0.2425 3.1606 6.2927 9.4311 12.5711 15.7118

0.08 0.2791 3.1668 6.2959 9.4333 12.5727 15.7131

0.1 0.0311 3.1731 6.2991 9.4354 12.5743 15.7143

0.2 0.4328 3.2039 6.3148 9.4459 12.5823 15.7207

0,3 0.5218 3.2341 6.3305 9.4565 12.5902 15.7270

0.4 0.5932 3.2636 6.3461 9.4670 12.5981 15.7334

0.5 0.6533 3.2923 6.3616 9.4775 12.6060 15.7397

0.6 0.7051 3.3204 6.3770 9.4879 12.6139 15.7460

0.7 0.7506 3.3477 6.3923 9.4983 12.6218 15.7524

0.8 0.7910 3.3744 6.4074 9.5087 12.6296 15.7587

0.9 0.8274 3.4003 6.4224 9.5190 12.6375 15.7650

1.0 0.8603 3.4256 6.4373 9.5293 12.6453 15.7713

1.5 0.9882 3.5422 6.5097 9.5801 12.6841 15.8026

2.0 1.0769 3.6436 6.5783 9.6296 12.7223 15.8336

3.0 1.1925 3.8088 6.7040 9.7240 12.7966 15.8945

4.0 1.2646 3.9352 6.8140 9.8119 12.8678 15.9536

5.0 1.3138 4.0336 6.9096 9.8928 12.9352 16.0107

6.0 1.3496 4.1116 6.9924 9.9667 12.9988 16.0654

7.0 1.3766 4.1746 7.0640 10.0339 13.0584 16.1177

8.0 1.3978 4.2264 7.1263 10.0949 13.1141 16.16759.0 1.4149 4.2694 7.1806 10.1502 13.1660 16.2147

10.0 1.4289 4.3058 7.2281

14-1

10.2003 13.2142 16.2594

Page 535: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 535/578

TABLE 14.1. (Contii)ued.)

X 2

15.0 1.4729 4.4255 7.3959 10.3898 13.4078 16.4474

20.0 1.4961 4.4915 7.4954 10.5117 13.5420 16.5864

30.0 1.5202 4.5615 7.6057 10.6543 13.7085 16.7691

40.0 1.5325 4.5979 7.6647 10.7334 13.8048 16.8794

50.0 1.5400 4.6202 7.7012 1C.7832 13.8666 16.9519

60.0 1.5451 4.6353 7.7259 10.8172 13.9094 17.0026

80.0 1.5514 4.6543 7.7573 10.8606 13.9644 17.0686

00.0 1.5552 4.6658 7.7764 10.8871 13.9981 17.1093

CO 1.5708 4.7124 7.8540 10.9956 14.1372 17.2788

14-2

Page 536: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 536/578

TABLE 14.2. F i rs t f ive root s of 1 -• X cot X = C. ( s o u r c e : Ref. 20 p. 442.)

c X l\

2X 3 X 4 X 5

0.000 0.0000 4.4934 7.7253 10.9041 14.0662

0.005 0.1224 4.4945 7.7259 10.9046 14.0666

0.010 0.1730 4.4956 7.7265 10.9050 14.0669

0.020 0.2445 4.4979 7.7278 10.9060 14.0676

0.030 0.2991 4.5001 7.7291 10.9069 14.G683

0.040 0.3450 4.5023 7.7304 10.9078 14.0690

0.050 0.3854 4.5045 7.7317 10.9087 14.0697

0.060 0.4217 4.5068 7.7330 10.9096 14.0705

0.070 0.4551 4.5090 7.7343 10.9105 14.07120.080 0.4860 4.5112 7.7356 10.9115 14.0719

0.090 0.5150 4.5134 7.7369 10.9124 14.0726

0.100 0.5423 4.5157 7.7382 10.9133 14.0733

0.200 0.7593 4.5379 7.7511 10.9225 14.0804

0.300 0.9208 4.5601 7.7641 10.9316 14.0875

0.400 1.0528 4.5822 7.7770 10.9408 14.0946

0.500 1.1656 4.6042 7.7899 10.9499 14.1017

0.600 1.2644 4.6261 7.8028 10.9591 14.1088

0.700 1.3525 4.6479 7.8156 10.9682 14.1159

0.800 1.4320 4.6696 7.8284 10.9774 14.1230

0.900 1.5044 4.6911 7.8412 10.9865 14.1301

1.000 1.5708 4.7124 7.8540 10.9956 14.1372

1.500 1.8366 4.8158 7.9171 11.0409 14.1724

2.000 2.0288 4.9132 7.9787 11.0856 14.2075

3.000 2.2889 5.0870 8.0962 11.1727 14.27644.000 2.4557 5.2329 8.2045 11.2560 14.3434

5.000 2.5704 5.3540 8.3029 11.3349 14.4080

6.000 2.6537 5.4544 8.3914 11.4086 14.4699

7.000 2.7165 5.5378 8.4703 11.4773 14.5288

8.000 2.7654 5.6078 8.5406 11.5408 14.5847

9.000 2.8044 5.6669 8.6031 11.5994 14.6374

10.000 2.8363 5.7172 8.6587 11.6532 14.6870

11.000 2.8628 5.7606 8.7083 11.7027 14.7335

16.000 2.9476 5.9080 8.8898 11.8959 14.9251

21.000 2.9930 5.9921 9.0019 12.0250 15.0625

14-3

Page 537: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 537/578

TABLE 14.2. (Continued.)

c X l X 2 X 3 X 4 X 5

31.000 3.0406 6.0831 9.1294 12.1807 15.2380

41.000 3.0651 6.1311 9.1987 12.2688 15.3417

51.000 3.0801 . 6.1606 9.2420 12.3247 15.4090101.000 3.1105 6.2211 9.3317 12.4426 15.5537

TABLE 14.3. F i r s t f ive roots of J (X )m n

(Source: Ref. 20, p. 443.)

2.4048

3.8317

5.1356

6.3802

7.5883

5.5201

7.0156

8.4172

9.7610

11.0647

8.6537

10.1735

11.6198

13.0152

14.3725

11.7915

13.3237

14.7960

16.2235

17.6160

14.9309

16.4706

17.9598

19.4094

20.8269

14-4

Page 538: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 538/578

TABLE 14.4. First six roots of X J 1 ( X n ) - CJ Q( X ) = 0. (Source: Ref. 74.

p. 217)

X6

0 0 3.8317 7.0156 10.1735 13.3237 16.4706

0.01 0.1412 3.8343 7.0170 10.1745 13.3244 16.4712

0.02 0.1995 3.8369 7.0184 10.1754 13.3252 16.4718

0.04 0.2814 3.8421 7.0213 10.1774 13.3267 16.4731n 06 0.3438 3.8473 7.0241 10.1794 13.3282 16.4743

0.08 0.3960 3.8525 7.0270 10.1813 13.3297 16.4755

0.1 0.4417 3.8577 7.0298 10.1833 13.3312 16.4767

0.15 0.5376 3.8706 7.0369 10.1882 13.3349 16.4797

0.2 0.6170 3.8835 7.0440 10.1931 13.3387 16.4828

0.3 0.7465 3 .9091 7.0582 10.2029 13.3462 16.4888

0.4 0.8516 3.9344 7.0723 10.2127 13.3537 16.4949

0.5 0.9408 3.9594 7.0864 10.2225 13.3611 16.5010

0.6 1.0184 3.9841 7.1004 10.2322 13.3686 16.5070

0.7 1.0873 4.0085 7.1143 10.2419 13.3761 16.5131

0.8 1.1490 4.0325 7.1282 10.2516 13.3835 16.5191

0.9 1.2048 4.0562 7.1421 10.2613 13.3910 16.5251

1.0 1.2558 4.0795 7.1558 10.2710 13.3984 16.5312

1.5 1.4569 4.1902 7.2233 10.3188 13.4353 16.5612

2.0 1.5994 4.2910 7.2884 10.3658 13.4719 16.5910

3.0 1.7887 4.4634 7.4103 10.4566 13.5434 16.6499

4.0 1.9081 4.6018 7.5201 10.5423 13.6125 16.7073

5.0 1.9898 4.7131 7.6177 10.6223 13.6786 16.7630

6.0 2.0490 4.8033 7.7039 10.6964 13.7414 16.8168

7.0 2.0937 4.8772 7.779 7 10.7646 13.8008 16.8684

8.0 2.1286 4.9384 7.8464 10.8271 13.8566 16.9179

9.0 2.1566 4.9897 7.9051 10.8842 13.9090 16.9650

10.0 2.1795 5.0332 7.9569 10.9363 13.9580 17.0099

15.0 2.2509 5.1773 8.1422 11.1367 14.1576 17.2008

20.0 2.2880 5.2568 8.2534 11.2677 14.2983 17.3442

30.0 2.3261 5.3410 8.3771 11.4221 14.4748 17.5348

40.0 2.3455 5.3846 8.4432 11.5081 14.5774 17.6508

50.0 2.3572 5.4112 8.4840 11.5621 14.6433 17.7272

60.0 2.3651 5.4291 8.5116 11.5990 14.6889 17.7807

80.0 2.3750 5.4516 8.5466 11.6461 14.7475 17.8502

100.0 2.3809 5.4652 8.5678 11.6747 14.7834 17.8931

00 2.4048 5.5201 8.6537 11.7915 14.9309 18.0711

14-5

Page 539: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 539/578

TABLE 14.5. First five roots of J 0 (X n )Y 0 (C X n ) = Y Q (X n ) J 0 ( C X n ) . (Source:

Ref . 9, p. 493.)

c X l X 2 X 3 X 4 X 5

1.2 15.7014 31.4126 47.1217 62.8302 78.5385

1.5 6.2702 12.5598 18.8451 25.1294 31.41332.0 3.1230 6.2734 9.4182 12.5614 15.7040

2.5 2.0732 4.1773 6.2754 8.3717 10.4672

3.0 1.5485 3.1291 4.7038 6.2767 7.8487

3.5 1.2339 2.5002 3.7608 5.0196 6.2776

4.0 1.0244 2.0809 3.1322 4.1816 5.2301

i14-6

Page 540: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 540/578

Page 541: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 541/578

SECTION 1 5 . CONSTANTS AND CONVERSION FACTORS.

1 5 . 1 . M a t h e m a t i c a l C o n s t a n t s .

e

Hn 10

T I

2 . 7 1 8 2 8 1 8 . . . .

2 . 3 0 2 5 8 5 1 . . .

3 . 1 4 1 5 9 2 6 . . .

Y = 0 . 5 7 7 2 1 5 6 . . . ( E u l e r ' s c o n s t a n t )

1 5 . 2 . P h y s i c a l C o n s t a n t s .

S t a n d a r d a c c e l e r a t i o n

of g r a v i t y

J o u l e ' s c o n s t a n t

9 . 8 0 6 6 5 m / s

3 2 .1 7 42 f t / s2

J = 1 . 0 N 'm /Jc= 7 7 8 .1 6 f f l b f / B t u

S t e £ a n - B o l t z m a n n

c o n s t a n t a = 1 .35 5 x 1 0 ~ 1 2 c a l / s ' c m 2 - K 4

= 1 7 12 x 1 0 ~1 2 B t u / h r « f t 2 - R 4

= 5 . 6 7 3 x 1 0 "8 W /m 2 'K 4

U n i v e r s a l g a s

c o n s t a n t R = 8 .3 14 3 J /mo l«K

» 0 .0 82 05 i l ' a t i v ' i ii o l 'K» 1.9859 B t u / l b m * m o l ' R

« 1 5 4 5 .3 3 f f l b f / l b m ' m o l ' R

" 6 . 4 1 x 1 0 j / k g * m o l ' K

1 5 - 1

Page 542: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 542/578

1 5 .3 . Conve r s ion Fac to r s .

TABLE 1 5 . 1 . Con vers ion factors for l eng th .

Vim in. ft yd

1 m

1 cm

1 lint

1 A1 in.

1 ft

1 yd

¥o

= 1 100 10" 1 0 i u 39.37 3.2B0 1.0936

= 0.01 1 1 0 4 1 0 8 0.3937 0.0328 0.0109

= 10" 6 l O " 4 1 1 0 4 0.3937 x 10 ~ 4 0.0328 x 1 0 - 4 0.0109 x 10

- I D "1 0

l O "8

io-4

1 0.3937 x 1 0- 8

0.0328 x 10 ~4

0.0109 x 10- 0.0254 2.540 25.4 x 1 0 4 2.540 x 1 0 8 1 0.0833 0.0277

- 0.3048 30.48 30.48 x 1 0 4 30.43 x 1 0 8 12 1 0.3333

= 0.9144 91.440 91.440 x 1 0 4 91.440 x 1 0 8 36 3 1

r 4

-8

TABLE 1 5 . 2 . Conve r s ion f ac to r s for a rea .

cm in. ft yd

1 cm

l m 2

1 in . 2 =

1 f t 2 =

1 y d 2 =

10 '

6.4516

929.034

8361.307

10

1

6.4516 x 10 4

929.034 x io

8361.307 x 10 4

0.1550 1 .07639 1.1960 x 10

1550 10.7639 1.1960

1 6.9444 7.7160 x 10

144 1 0.11111

1296 9 1

-4

Page 543: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 543/578

TABLE 15.3. Conversion factors for volume.

Uli

™ 3

cm . 3in. f t 3 ml liter gal

31 cm « 1 610.23 x 10 ~ 4 35.3145 x 1 0 - 4 9 9 9 . 9 7 2 x 1 0 - 3 9 9 9 . 9 7 2 x 10" 6 264.170 x lO " 6

1 i n . 3 = 16.3872 1 5.7870 x 10" 4 16.3867 16.3867 x 10" 3 432.900 x lO " 5

1 f t 3 = 283.170 x 10 2 1728 1 28.3162 x 10 3 28.3162 7.4805

1 ml = 1.000028 610.251 x 1 0 " 4 353.154 x 10 ~ 7 1 0.001 264.178 x 1 0 " b

1 liter = 1000.028 61.0251 353.154 x 1 0- 4

1000 . 1 264.178 x 10 "J

1 gal => 37 85.4 34 231 133.680 x 10 " 3 3785.329 3.785329 1

TABLE 15.4. Conversion factors f or mass.

lb slugs 9 kg ton

1 l b = 1 0.03108 453.59 0.45359 0.00051 slug = 32.174 1 1.4594 x 1 0 4 14.594 0.016087

1 g = 2.2046 x 10' 3 6.8521 x 10" 5 1 ID " 3 1.1023 x 1 0 - 6

1 kg = 2.2046 6.8521 x 10' 3 10 3 1 1.1023 x l o - 3

1 ton = 2000 62.162 9.0718 x 1 0 5 907.18 1

Page 544: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 544/578

TABLE I S .5 . Conversion fa ct or s for d en si ty .

l b m / f t 3 slug/in. lbm/in. 3 lbm/gal . 3g/cm

1 lbm/ f t 3 = 1 0.03108 5.787 x 1 0 - 4 0.13386 0.01602

1 s lug / f t 3 = 32.174 1 0.01862 4.3010 0.515433

1 lbm/in. = 1728 53.706 1 231 27.680

1 lbm/gal = 7.4805 0.2325 4.329 x 1 0 "3

1 0.119831 g/cm 3 62.428 1.9403 0.03613 8.345

• I

I

15-4

Page 545: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 545/578

TABI£ 1 5 . 6 . C o n v e r s i o n f a c t o r s f o r p r e s s u r e .

l b f / i n / d yn e/ cm k g f / c m i n . H g mm Hg i n . H O a tm b a r

1 l b f / i n . 2 = 1

1 d y n e / e m2 = 1 4 5 . 0 3 8 3

x 1 0 ~7

1 k g f / c m2 = 1 4 . 2 2 3 4

1 i n . H g = 0 . 4 9 1 2

1 ram H y = 0 . 0 1 9 3 4

1 i n . H O = 0 . 0 3 6 0 9

1 a tm

1 bar

1 4 . 6 9 6 0

= 1 4 . 5 0 3 8

6 8 9 . 4 7 3

x 1 0 2

1

9 8 0 . 6 6 53

x 1 0 J

3 3 8 . 6 4

x 1 0 2

1 3 3 3 . 2 2 3

24 .883

x 1 0 2

1 0 1 . 3 2 54x 10

1 0 6

0 . 0 7 0 3 1

1 0 1 . 9 7 2

x l O - 8

1

0 .03453

1 . 3 5 9 5

x 1 0 ~3

2 . 5 3 7

x 1 0 ~3

1 . 0 3 3 2 3

2.0360

295.299

x 1 0 ~ 7

28.959

1

0.03937

0.0735

29.9212

1.01972 29.5299

51.715

750.062

x 1 0 " 6

735.559

25.40

1

1.8665

760

750.0617

27.71

4.0188-4

x 10394.0918

13.608

0.5358

460.80

401.969

0.06805

986.923

x 1 0 " 9

967.841

x 1 0 3

0.03342

1.315

x 1 0 - 3

2.458

x 1 0 ~ 3

1

986.923

x 1 0 " 3

0.06895

i o - 6

980.665

x 1 0 ~ 3

0.03386

1.333

x 1 0 - 3

2.488

x 10

1.01325

Page 546: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 546/578

TABLE 15 .7 . Con version fa ct or s for en ergy .

f f l b f abs j ou l e i n t j ou l e c a l I .T. c a l

1 f f l b f 1 1.35582 1.355597 0.32405 0.32384

1 abs joule = 0.73756 1 0.999835 0.23885 0.238849

1 in t j ou l e = 0.737682 1.000165 1 0.239045 0.238889

1 ca l 3.08596 4.18401 4.1833 1 0.99934

1 I .T . ca l = 3.08799 4.18676 4.18605 1.000657 1

1 Btu 778.16 1055.045 1054.366 252 .161 251.9961 i n t kW'hr = 265 .567 x 104 360.0612 x 1 0 4 360 .000 x 104 860.565 x 1 0 3 860.000 x 103

1 hp'hr = 198.0000 x 10* 268.4525 x 1 0 4 268 .082 x 104 641.615 x 1 0 3 641.194 x 103

1 l i t e r - a t m = 74.7354 101.3278 101 .3111 24.2179 24.2020

B t u i n t kW»]hr hp»hr l i t e r ' a t m

1 f f l b f

1 abs joule

1 i n t j ou l e

1 ca l

1 I .T . c a l

1 Btu1 int kWhr

1 hp'hr

1 l i t e r ' a t m

128.5083 x 10

947.827 x 10"6

0.947988 x 10

396.572 x 10 '

396.832 x 10"

13412.76

2544.46

0.09604

-3

376.553 x 10

277.731 x 1 0 ~ 9

2.777778 x 1 0 ~ 7

116.2028 x 10 ~ 8

116.2791 x io ~ fi

293.018 x 10 ~6

1

0.74558

281.718 x 10 ~ 7

505.051 x 10 '

372.505 x i o - S

3.7256 x l o " 7

155.8566 x io"

155.9590 x io"

293.010 x 10 ~6

1.3412

1

377.452 x 1 0 ~ 7

133.8054 x 10

986.896 x 10

9.87058 x 10

412.918 x lo"

413.189 x lo"

10.4122255.343 x 1 0 2

264.935 x 1 0 2

1

-3

Page 547: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 547/578

Table 15.8 . Conversion factors for specific energy.

abs jou l e /h ca l /g I .T. cal /gm Btu / lb f t - lb£ / lbm in t . kw hr/g hp h r / lb , . 2 . 2t t / s

abs jou le /g - 1 0.2390 0.2388 0.4299 334.53 2.777 x 10" 7 1.690 x 10" 4 10763

c a l / g - 4.184 1 0.9993 1.7988 1399.75 1.162 x 1Q ~6

7.069 x 10~ 4 4 .504 x 10 4

I .T. ca l /g - 4.186 1.0007 1 1.8 1400.69 1.163 x 10" 6

7.074 x 10" 4 4 .506 x 10 4

Btu/lb . 2.326 0.5559 0.5556 1 778.16 6.460 x l O - 7 3.930 x in " 4 25,037f f l b f / l b m - 2.989 x 10~ 3 7.144 x 10"4 7.139 x 10~ 4 1 .285 x lo"" 1 8.302 x 1 0~ 1 0 5.051 x l o" 7 32.174

int . RWhr/g - 3.610 x 106

860,565 86C,000 \ 54 8 x 106

1.2046 x 109

1 608.4 3, 876 x ID1 0

hp-hr / lb • 5919 1414.5 1413.6 2545 1.980 x 10 6 0.001644 1 6. 370 x 10 7

f t W - 9.291 X 10" 5 2.220 x 10" 5 2.219 x 10" 53, 994 x 1 0 " 5 0.03108 2.580 x l o " 1 1 1.567 x 1 0 - 8

1

Table 15.9. Conversion factors for specific energy per degree.

abs j o u l e / g • >K Cal/g-K I .T . c a l / g ' K B t u / l b ' R Ws/kg-K

abs joule/g*K = 1 0.2390 0.2388 0.2388 1 0 3

ca l /g -K = 4.184 1 0.9993 0.9993 4184

I . T. c a l / g - K = 4.186 1.0007 1 1 4186

b tu / lb -R

Ws/kg-K

4.186

l O" 3

1.0007

2.390 x 10"-4

2 .

1

,388 x 1Q~•4

1

2.388 x I d- 4

4186

1

Page 548: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 548/578

Table 15.10. Conversion fac to rs for thermal conduct ivi ty .

cal/s«cm-°C Bt u/hr «f f° F Btu/hr -ft '" F/i n. W/ m-°C

1 cal/s'cm* C = 1 241.9 2903 418.6

1 Btu/hr'ft- F = 4.13 x 10~ 3 1 12 1.73

1 Btu/hr'ft 2- F/in. = 3.45 x 10~ 4 0.0833 1 1.44 x 10 1

1 W/m C = 23.89 5780 69350 1

Table 15.11. Conversion fa for thermal ''and momentum diffusivities

ft 2/hr stokes m2 /hr 2/m /s

ft 2/h r = 1 0.25806 0.092903 2.58 x 10~ 5

stokes =

m2 /hr =

3.885

10.764

1

2.778

0.36

1

io- 4

1.778 x 10~ 4

m2 / s = 38,750 1 0 4 3600 1

Page 549: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 549/578

TABLE 15.12. Conv ersi on factors for heat flux.

Btu W k c a l c a l

f t 2 « h r2

m . 2hr«m2

S"cm

B t u / f t 2 « h r = 1 3 . 1 5 4 2 . 7 1 3 7.536 x 1 0 ~5

W /m2 = 3 . 1 7 0 x 1 07 1 8.600 x 1 07 23892

k c a l / h r - m = 0.3687 1 .163 1 360002c a l / s ' c m = 1 32 77 4 1 8 6 8 . 2.778 x 1 0 ~5 1

TABLE 15.13. Conv ersi on factors for heat transfer coefficient.

Btu W c a l k c a l

n r . f t

2 . ° F m 2 ' ° C2 o„

s»cm • Ch r - m 2 ' ° C

B t u / h r - f t2 « ° F = 1 5.678 1 . 3 5 6 x 1 0 "4 4.883

W/m 2 '°C 1 . 7 6 1 x 1 07 1 2 3 9 1 8.600 x 1 0 7

c a l / s e c - c m - ° C = 7 37 6 4 . 1 8 6 x1 0 4 1 36000

k c a l / h r - m2 - ° C = 0.2049 1 .163 2.778 x 1 0 "5 1

15-9

Page 550: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 550/578

SECTION 16. CONVECTION COEFFICIENTS

16.1. Forced Flow in Smooth Tubes.

16.1.1 Fully Developed Laminar Flaw (Source: Ref. 21)

— = 4.364 (constant heat rate)k

— = 3.658 (constant surface temp)

16.1.2 Fully Dev elo ped Turbul ent Flo w (Soui'ce: Ref . 21)

£ £ = 6.3 + 0.003 (Re Pr ), Pr < 0.1 (constant heat rate)

— = 4.8 + 0.003 (Re Pr ), Pr < 0.1 (constant surface temp)

j p = 0.022 Pr * Re " , 0.5 < Pr < 1.0 (constant heat rate)

— = 0.021 Pr " Re , 0.5 < Pr < 1.0 (constant surface temp)

jp- = 0.0155 P r ° ' 5 R e ° * 9 , 1.0 < Pr < 20

f- = 0.011 P r ° ' 3 R e ° - 9 , Pr > 20

k

Pr = Prandtl number, Re = Reynolds number

16.2 . Forced Flow Between Smooth Infinite Parallel Plates.

16.2.1. Fully developed laminar flow (Source: Ref. 2 1 ) :he— = 4.118 (constant heat rate on both sides)

hs— = 2.69 3 (constant heat rate on one side, other side insulated)

16-1

Page 551: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 551/578

hs— = 3.77 (constant surface temperature on both sides)

h sr— = 2 .43 ( co ns t an t su r f ace t em per a tu re on one s i de , o th e r s id e in s u la t ed )

s = spa c ing o f p l a t e s

1 6 . 3 . Fo rced F low P a ra l l e l t o Smooth Se m i - I n f in i t e F l a t P l a t e s Laminar F low.1 6 . 3 . 1 . Laminar f low :hxk

temperature)(Source: Ref.7)

= 0.332 P r 1 / 3 R e 1 / 2 [ l - (X Q/X ) 3 / / 4 ] ~ 1 / 3 , (constant surface

X = unheated starting length

X = distance from leading edge

J P = 0.453 P r 1 / 3 R e x

1 / 2 [l - (X Q/X) 3 / 4 ] 1 / 3 , (constant heat rate)

(Source: Ref . 21)

1 6 . 3 . 2 . Tu rb ule nt f low (Source : Ref. 2 1) :

f = 0 .0 2 95 P r ° -6 R e x

0 ' 8 [ l - ( X 0 / X ) 9 / 1 0 ] " 1 / 9 , (cons tant su r fa ce

temperature)

hx 0.6 0.8 T 9/101-1/9— = 0.0307 Pr R e x |_1 - (X Q/X) ' J ' , (constant heat rate)

1 6 . 4 . Fully Developed Flow in Smooth Tube Annul .

16.4.1. Laminar flow (Source: R ef . 2 1 ) :

h

i <a

Q -d

i > N U

i ik " 1 " <q o/qX

h (d - d .) Nuo o i oo

i - VqX(Subsc r ip t s i and o r e f e r t o i nne r and ou te r su r f a ce s , q i s su r f a ce hea t f l ux ,

N u. . and Hu ar e in ne r and oute r su r fa ce N us se l t numbers when only one

su r fa ce i s hea t ed and 0 i s an in f lu enc e co e f f i c i en t g iven in Ta b le 16 .1 . )

16-2

Page 552: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 552/578

TABL E 16.1 . Tube -annu lus solutions for constant heat rate in fully developed

laminar flow and temperature profiles.

r.r Nu .. Nu 0. 0l o 11 oo l o

0 °° 4.364 °° 0

0.2 8.499 4.883 0.905 0.1041

0.4 6.583 4.979 0.603 0.1823

0.6 5.912 5.099 0.473 0.2455

0.8 5.580 5.240 0.401 0.299

1.0 5.385 5.385 0.346 0.346

16.4.2. Turbulent flow (Source: Ref. 2 2 ) :

7 (d - d.) - 0.023 R e ° ' 8 P r ° " 4 (d / d . ) ° ' 4 5 . R e . , 1 0 4 , A d = d - d.k o I . . Ad o i Ad o I

16.5. Forced Flow Norm al to Circular Cylin ders.

16.5.1. Local Coefficients (Source: Ref. 2 2 ):

& = 1.14 P r ° - 4 R e ° ' 5 [l - (G / 90 ) 3 ] , 0 < 6 < 80°

0 = cylinder angle from stagnation point

16.5.2. Average Coefficients (Source: Ref. 7 ) :

M = 0.43 + C Re"? P r ° ' 3 1

k d

TABLE 16. 2 .

R S d

1-4,000

4,000-40,000

40,000-400,000

0.533 0.500

0.193 0.618

0.0265 0.805

16-3

Page 553: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 553/578

1 6 . 6 . Forced Flow Normal to Spheres.

1 6 . 6 . 1 . Average Coefficients (Source: Ref. 7 ) :

^ = 0.37 R e , - 6 P r 0 " 3 3 , 20 < Re < 150,000

ifl = 2 + 0.37 R e ° -6 P r 0 - 3 3 , Re., < 20k d a

1 6 . 7 . Free Convection on Vertical Plates and Cylinders.

1 6 . 7 . 1 . Local Coefficients (Source: Ref. 7 ) :

jp = 0.508(Pr)1/ 2

(0.952 + P r ) ~1 /

'4

( G r x )1 / 4

f GrPr < 1 04

|* = 0.0295 ( P r ) 7 / 5 [ l + 0.494 ( P r ) 2 / 3 ] ~ 2 / 5 ( G r )2 / 5 , GrPr > 1 0 4

1 6 . 8 . Free Convection on Horizontal Cylinders. >

1 6 . 8 . 1 . Average Coefficients (Source: Ref. 23):

f = C (Gr d Pr) 1"

TABLE 16 .3.

Gr d Pr C m

0 - 1 0 " 5 0. 0 0

1 0 " 5 - 1 0 - 1 0. 7 1/16

1 0 - 1 - 1 0 ~ 4 1. 4 1/7

1 0 4 - 1 0 9 0. 3 1/4

1 0 9 - 1 0 1 2 0 13 1/3

16-4

Page 554: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 554/578

16.9. Free Convection From Horizontal Square Pla tes.

16.9.1. Average Coeffici ents (Source: Ref . 23) ;

•- 1 = C (Gr T P r ) m , L = plate dimensionk L

TABLE 16.4.

Condition Gr PrL

Upper surface heated or

lower surface cooledLower surface heated orupper surface cooled

Upper surface heated orlower surface cooled

1 05

- 2 x 1 07

0.54 1/4

3 x 1 0 5 - 3 x 1 0 1 0 0.27 1/4

2 x 10 7 - 3 x 1 0 1 0 0.14 1.3

16.10. Free Convection from Spheres.

16.10.1. Average Coef ficients (Source: (Ref. 5 ) :

^ = ?. + 0.43 (G r d P r ) 1 / 4 , 10° < G r d P r < 1 0 5

16.11. Free Convection in Enclosed Spaces.

16.11.1. Enclosed Verti cal Air Spaces (Source: Ref. 1 ) ;

G r B < 2,000

0 .1 8 {Gr )1 / 4 ( s / L ) 1 / 9 , 2,00 0 < Gr < 20,00 0s s

I 0.0 65 (Gr )1 / 3 ( s / L ) 1 / ' 9 , 20,0 00 < Gr < 1 078 S

16-5

Page 555: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 555/578

k e = e f f e c t i v e t h e r m a l c o n d u c t i v i t ys = width of a i r sp ac eL = le ng th of a i r spa ce

1 6 . 1 1 . 2 . Enc losed H or iz on ta l Ai r Spaces (So urce : Ref. 1 ) i

0.195 (Gr )1 / 4 , 1 04 < Gr < 4 x 1 05

s s

0.068 (Gr )1 / 3 , 4 x 1 05 < Grs s

1 6 . 1 2 . F i lm Con dens a t ion .

1 6 . 1 2 . 1 . V e r t i c a l P l a t e s — A v e r a g e C o e f f i c i e n t s ( S o ur ce : R ef. 5 ) :

P A ( P a - P v ) g

1/3

= 1.47 Re„-1/3 Re < 1800

&

H ^a " p

v) g

1/3

= 0 .007 R e j j0 , 4 , *•% > 1800

R% ' < 4 h A t v „ > / W *At = temp d i f f e ren ce be tween sa tu ra t e d vapor and w al li j = he a t o f ev ap ora t io nUg,ko ,p , , = v i s c o s i t y , th e rm a l c o n d u c t i v i t y and d e n s i t y o f l i q u i d

a t s a tu ra t ion vapor t emp

1 6 . 1 2 . 2 . H or i zo n ta l Tubes—Average C oe ff ic ie n ts (Source: Ref. 5) :

j £ = 0 .725 i(H ~ P I ) 9 H vd

W * A t v w

1/4

16-6

Page 556: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 556/578

16.13. Pool Boiling,

r -| 1/2 r CjAt -i

At = temp difference between wall and saturated vaporwv

c„,u«,Pj,Pro = specif ic heat, viscosity, density and Prandtl

number at saturated liquid temperature

a = surface tension at liquid vapor interface

i« = heat of evaporation

C , = surface coefficient (see Tabl e 16.5)

TABLE 16.5. Values of C and n (source: Ref. 19 ).

Surface-fluid combination C 8 f n

Water-nickel 0.006 1.0Water-platinum 0.013 1.0

Water-copper 0.013 1.0

Water-brass 0.006 1.0

CCl.-copper 0.013 1.7

Benzene-chromium 0.101 1.7

ri-Pentane-chromium 0.015 1.7

Ethyl alcohol-chromium 0.0027 1.7Isopropyl alcohol-copper 0.0025 1.7

35% K 2 C 0 3 -copper 0.0054 1.7

50% K.CO.-copper 0.0027 1.7

r»-Butyl alcohol-copper 0.0030 1.7

16-7

Page 557: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 557/578

SECTION 17. CONTACT COEFFICIENTS

An empirical correlation developed by Shevts and Dyban (Ref. 24) gives

estimated thermal contact coefficients for many common ferrous and non-ferrous

metals in contact, including dissimilar metals .

hr/k = ( T T / 4 ) [l + 8 5 ( P / S ) 0 - 8 ]

k = thermal conductivity of the gas phase

P = contact pressure

r = height of a micro-element of roughness plus the '.leight of the wave

for one surface

S = permissible rupture stress

A theoretical approximation of contact coefficients developed by French

and Rohsenow (Ref. 25) can be found by using Fig. 17.1 and the following

properties:

C = constriction number, P/M

P = contact pressure

M => Meyer hardness of the softer contact material

B = gap number = 0.335 C™1

m = 0 . 3 1 5 ( V " A 7 r ) 0 " 1 3 7

A = interface area (one side)

I = effective gap thickness, 3.56 (JL + I ) if (i, + I ) < 280

uin. (smooth contacts), or 0.46 (&, + I ) > 280 uin . (rough

contacts)

H.,%. • mean (or rm s) depths of surface roughnessk, = equivalent conductivity of interstitial fluid, for liquids use

k. = k evaluated at t = (t., + t,)/2, for gases:

k ^oK f 1 + 8 Y (v/v) + a 2 - a x - a 2 ) /Pr (y + U J U ^ + a 2

iole e t3

+ £ 1 + £ 2 " e i £ 2

17-1

Page 558: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 558/578

k = fluid conductivi ty at zero contact pressure

Pr = Prandtl number

'v = mean molecular velocity

Y = ratio of specific heats

v = kinematic viscosity evaluated at t

a = accommodation coefficient

e = surface emissivitya = Stefan-Boltzmann constant

K = conductivity number , k (k + k )/2k k,

k. = conductivity of first solid evaluated at

t =[\ + ( k ^ + ^ t j j / tk j + k 2 ) J /2

k = con du ctivity of second so lid evalu ated att = [ f c 2 + ( k ^ + k j V / t k j , * ^ ) ] ^

Some thermal contact' data assembled by P. J. Schneider from various sources

(Ref. 19) is given in Fig. 17.2. Also, some additional data from Re f. 26

showing the effects of machining processes and surface matching is given in

Fig. 17.3.

17-2

Page 559: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 559/578

TABLE 17.1. Interface conditions for contact data given in Fig. 17.2.

RMS surface Mean contact

Curv e Mate rial pair finish (Uin.) Gap material temp (°F)

1 aluminu m (2024-T3) 48-65 -4vacuum (10 mm Hg) 110

2 aluminum (2024-T3) 8-18 —4vacuum (10 ram Hg) 110

3 aluminum (2024-T36-0 (not flat) —4vacuum (10 mm Hg)

1104 aluminum (75S-T6) 120 . air 200

5 aluminum (75S-T6) 65 air 200

6 aluminum (75S-T6) 10 air 200

7 aluminum (2024-T3) 6-8 (not flat) lead foil (0.008 in.) 110

8 aluminum (75S-T6) 120 brass foil (0.001 in.) 200

9 stainless (304) 42-60 —4vacuum (10 mm Hg) 85

10 stainless (304) 10-15 —4vacuum (10 mm Hg) 85

11 stainless (416) 100 air 200

12 stainless (416) 100 brass foil (0.001 in.) 200

13 magne sium (AZ-31B) 50-60 (oxidized) —4vacuum (10 mm Hg) 85

14 magne sium (AZ-31B) 8-16 (oxidized) —4vacuum (10 mm Hg) 85

15 copper (OFHC) 7-9 —4vacuum (10 mm Hg) 115

16 stainless/aluminum 30-65 air 200

17 iron/aluminum - air 80

IB tungsten/graphite — air 270

Page 560: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 560/578

TABLE 17. 2. Interface conditions for contact data given in Fig . 17.3 .

Roughness

RMS (Uin.)

Block

Fluid

in Temp

Curve Material Finish 1 2 Gap (°F) Condition

a Cold rolled steel Shaped 1000-1000 Air 200 Parallel cuts , rusted

b Cold rolled steel Shaped 1000-1000 Air 200 Parallel cuts , clean

c Cold rolled steel Shaped 1000-1000 Air 200 Perpendicular cuts , clean

d Cold rolled steel Hilled 125-125 Air 200 Parallel cuts , rusted

e Cold rolled steel Milled 125-125 Air 200 Parallel cu t s , clean

f Cold rolled steel Shaped 63-63 Air 200 Perpendicular cuts , clean

g Cold rolled steel Shaped 63-63 Air 200 Parallel cuts , clean

h Cold rolled steel Lapped 4-4 Air 200 Clean

i 416 Stainless Ground 100-100 Air 200

J 416 Stainless Ground 100-100 Air 400

k 416 Stainless Ground 30-30 Air 200

X 416 Stainless Ground 30-30 Air 400

m Stainless Milled 195-195 Air Clean

Page 561: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 561/578

* * ^ 6 X 1 0 " 'i-i1-1

5 X 1 0 "4 X 1 0 '3 X 1 0 "1

2 X 1 0 "1

10" 1 ,8 X 10- 2

6 X 10" 2

4 X 10-22X10-2' o -2 ,8X10-36X10-34X10-32 X 10" 3

1 0 ~3 .

8 X 1 0 "4

6 X 1 0 i4 X 10"42 X 10 -4

8 X 10-f6 X 10"?4 X 1 0 "5

2 X 10"s

1 0 ~5

FIG. 1 7 . 1 . Thermal contact coefficient from theory (source: R e f . 2 5 ) ,

17-5

Page 562: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 562/578

J — I I I . . . I

5 10 50 100 200 500 1000

p - lb/in. 2

FIG. 17.2. Thermal contact coefficient data (source: Ref. 19 ), 1

17-6

Page 563: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 563/578

0.016

u

coo

100 200 300 400

Contact pressure — lb / in .2500

Parallelcuts

Perpendicularcuts

P IG . 1 7 . 3 . T h er m al c o n t a c t c o e f f i c i e n t fo r b a r e s t e e l s u r f a c e s , ( s o u r c e :

Re f. 26 , s e c t i o n G502 .5 , p . 5 ) .

17-7

Page 564: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 564/578

Table 18.1 Thermal properties of selected metals (source: Refs. 35 to 3 9 ) .

Properties at 30 0 K Thermal conductivity (k) , (W/m-K) x 10' T

(kg/m 3) x 10 * 3 (J/kg-K) x 1 0 " 3 (W/m-K) x 1 0 ~ 2 (m ? /s ) x 10* 50 100 200 400 600 flOO 1000 1200

O

Aluminum: Pure 2.70 0.88 2.4 1.01 235. 117. 12.3 3.0 2.4 2.4 2.3 2.2

2028 (4.5* Cu, 1.5* Kg) 2.77 0.84 1.3 0.56 0.08 0.17 0.40 0.65 1.0 1.4

5086 (4.1* rig, 0.5* Mn) 2.65 0.90 1.3 0.55 0.08 0.17 0.40 0.63 0.85

6063 (0.7* Hg , 0.1* Si) 2.70 0.92 2.1 0.85 0.86 1.7 2.8 2.1 2.0

Beryllium: Pure 1.85 1.84 2.0 0.59 i a . o ' 34.8 40.0 9.9 3.01 1.61 1.26 1.07 0.89 0.73

Chromium: Pure 7.19 4.56 0.90 0.03 3.9 6.0 3.2 1.6 1.1 0.B7 0.B1 0.71 0.65 0.62

Copper: Pure 8.96 0.38 4.0 1.17 196. 105. 12.2 4.8 4.1 3.9 3.8 3.7 3.6 3.4

Commercial bronze (10* Zn) 8.80 0.41 1.8 0.50 0.20 0.42 0.81 1.2

Yellow brass (35* Zn) 8.47 0.41 1.2 0.35 0.59 0.94 1.3 1.5

Naval brass (38* Zn, O.B* 5n) 8.41 0.38 0.75 0.23 0.85 1.01

German silver (22 * Zn, 15* Hi) 8.55 0.40 0.25 0.07 0.028 0.07 0.15 0.17 0.20

Cupronickel (20* Ni, 2* Zn) 8.94 0.38 1.5 0.44 0.11 0.20 0.38 0.92

Constantan (40* Ni) B.90 0.42 0.23 0.06 0.08 0.15 0;17 0.19

Manganin (13* Hn, 4* Ni) 8.19 0.40 0.22 0.07 0.015 0.032 0.082 0.13 0.17 0.28

Gold: Pure 19.32 0.13 3.2 1.27 28.2 15.0 4.2 3.5 3.3 3.1 3.0 2.9 2.B 2.6

Iron: Pure 7.87 0.45 0.80 0.23 7.1 10.0 3.7 1.3 0.94 0.69 0.55 0.43 0.33 0.2H

Wrought iron (<0.S* C) 7.87 0.46 0.60 0.17 0.5B 0.49 0.39

Gray cast iron (3.0* C, 0.6* Si) 7.15 0.42 0.29 0.10 0.31 0.34 0.29 0.22 0.20

5AE 1095 steel (0.9* C, 0.3* Hn) 7.83 0.47 0.44 0.12 0.08 0.22 0.34 0.43

AISI 4340 steel (1.9* Ni, 0.7* Cr) 7.84 0.46 0.36 0.10 0.26 0.31 0.38 0.38 0.34

Nickel steel (9* Ni, 0.8* Hn) 7.96 0.46 0.29 0.08 0.18 0.24 0.33 0.34 0.33

invar (31* Ni, 5* Co) 8.00 0.46 0.14 0.08 0.12 0.16 0.19 0.22

SAE 4130 steel (1* Cr, 0.5* Mn) 7.86 0.46 0.41 0.11 0.06 0.16 0.17 0.37

AISI 304 stainless (19* Cr, 10* N1) 7.90 0.38 0.15 0.05 0.008 0.021 0.06 0.09 0.13 D.17 0.20 0.22 0.25 0.28

AISI 316 stainless (1 7* Cr, 12 * Ni) 8.00 0.46 0.14 0.40 0.008 0.021 0.06 0.09 0.12 0.15 0.18 0.21 0.23 0.25

Lead: Pure 11.34 0.13 0.35 0.24 1.78 0.59 0.44 0.40 0.37 0.34 0.31

Solder ( 80* Pb, 20* Sn) 10.20 0.37

Solder (50* Pb, 50* Sn) 8.B9 0.18 0.46 0.29

Lithium: Pure 0.53 3.97 0.77 0.37 6.1 7.2 2.3 1.1 0.88 0.72

Magnesium: Pure 1.74 1.00 1.56 0.90 11.7 13.9 3.8 1.7 1.6 1.5 1.5 1.5

(6* Al, 2* Si) 1.84 1.00 0.70 0.38 0.50 0.62 9.BO

(12* Al, 2* Si)

Molybednum: Pure1.81

10.220.990.25

0.561.4

0.31

0.55 1.45 2.77 3.0

0.30

1.8

0 4 41.4

0.68

1 j 1.3 1.2 1.1 1.0

Page 565: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 565/578

Table 1B.1 (Continued).

Properties at 300 K Thermal conductivity (It), (W/m-K) x 1 0 ~ ?

P, c, k, a,

fetal (kg/m 3 ) x 10~ 3 (J/kg-K) x 1 0 " 3 (W/m-K) x 1 0 " 2 (m ?/s) x 10* 10 K 20 50 100 ?0D 400 600 800 1000 12O0

Ni cke l : Pure

Duranickel (4.5* Al)

8.90

8.26

0.45

0.54

0.91

0.19

0.23

0.04

6.0 8.6 3.4 1.6 1.1 0.B0 0.66 0.67 0.72 0.76

Monel (30* Cu, 1.4* Fe) 8.84 0.43 0.23 0.05 0.08 0.14 0.17 0.20

Inconel X-750 (16% Cr, 8* Fe) 8.51 0.46 0.12 0.03 0.010 0.025 0.06 0.08 0.10 0.13 0.17 0.21 0.25 0.29

Nichrome (20* Cr) B.40 0.45 0.13 0.03 0.14 0.17 0.21 0.25 0.28

Nichrome V (24* Fe, 16* Cr) 8.25 0.44 0.10 0.03 0.12 0.15 0.19 0.22 0.26

Niobium: Pure 8.57 0.27 0.54 0.23 2.2 2.3 0.76 0.55 0.53 0.55 0.5B 0.61 0.64 0.68

Platinum: Pure 21.45 0.13 0.71 0.25 12.3 4.9 1.1 0.78 0.72 0.72 0.73 0.76 0.79 0.83Plutonium: Pure 19.B4 0.15 0.67 0.23 0.03 0.48 0.90

Rhenium: Pure 21.04 0.14 0.48 0.16 14.0 8.4 0.96 0.60 0.51 0.46 0.44 0.44 0.45 0.46

Silver: Pure

Sterling (7.5* Cu)

Eutectic (28* Cu)

10.49

10.38

10 . 6

0.24 4.3

3.5

• 3.3

1.71 168 . 51. 7.0 4.5 4.3 4.2 4.1 3.9 3.7 3.6

00Tin: Pure 7.30 0.22 0.67 0.42 19.3 3.2 1.2 0.85 0.73 ' 0.62

1S3

Solder (40* Pb) 8.44 0.19 0.51 0.32 0.43 0.56 0.52 0.54 0.52

Tantalum: Pure 16.6 0.14 0.58 0.25 1.08 1.5 0.72 0.59 0.58 0.58 0.59 0.59 0.60 0.61

Tungsten: Pure 19.3 0.13 1.8 0.72 82. 32. 4.7 2.4 2.0 1.6 1.4 1.3 l.Z 1.1

Titanium: Pure 4.51 0.50 0.22 0.10 0.14 0.28 0.40 0.31 0.25 0.20 0.10 0.20 0.71 0.2?

. A-110 AT (5* Al, 2.5* Sn) 4.46 0.53 0.075 0.03 0.088 0.11 0.14

Uranium: Pure 19.07 0.12 0.28 0.12 0.098 0.16 0.19 0.22 0.25 0.30 0.34 0.39 0.44 0.40

Zinc: Pure 7.13 0 .39 1.2 0.43 43. 10.7 2.1 1.2 1.2 1.2 1.1

Page 566: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 566/578

T M L E I B , 2 . T h e r n a l p r o p e r t i e s o f m i s c e l l a n e o u s a o l l d s { s o u r c e : R e f s . 3 5 t o 3 8 ] .

P r o p e r t l e g a t 3 Q 0 K T h e r m a l c o n d u c t i v i t y ( k ) , ( W /m 'K ) > 10

(kg/aT) x 10 "J ( J /kg- l t )k.

( m / a ) * 1 0 1 0 K 1D0 200 400 600 1000 1200

C e r a m ic s * ( F o l y c r y a t a l l i n e , 9 9 . 5 'p u r i t y , 9 8 % solid}

A 1 2 0 3

B«0

MgOS i 0 2 [ h i g h p u r i t y f u s e d )

T W 2

TiO

s c o 2

G l a s s e s t

B o r o s i l i c a t e ( P y r e x )

S o d a l i n e ( 7 5 1 S i O )

Vi t r e o u s s i l i c a ( 1 0 01 S i O j ]

Zi nc crown (65% SiO )

I n s u l a t i o n s ; ( P e r h i g h t e m p s . )

A l u q t i n a , f u s e d ( 9 0 1 A 1 , 03 )

A s b B S t o s p a p e r [ l a m i n a t e d )

D i a t o n a c e o u s e a r t h .s i l i c a ( p o w d e r )Pirebrick (58% SiO ,

37% A 1 2 0 3 )

Magnesite (65% MgO)

Micro quart* fiber (blanket)Rockwool (loose)'

Zirconia (grain)

Insulations: (For low temps.)

Expanded glass (Foanglas)

Fiberglass (board}

Fiberglass (blanket)

Silica aerogel (powdei)

polystyrene foaa (latmabs)

polystyrene foam (10~ atmab s)

3 . 8 4 0 . 7 9 3 6 . 0 0 . 1 2

2 . 9 7 1 . 0 0 2 7 2 . 0 0 . 9 2

3 . 2 1 0 . 9 2 4 8 . 0 0 . 1 62 . 2 1 0 . 7 5 1.4 0.008

9 . 5 8 0 . 2 3 1 3 . 0 0 . 0 6

3 . 9 1 0 . 7 1 8 . 0 0 . 0 3

5 . 2 B 0 . 4 6 1 .6 0.007

2 . 2 1 0 . 7 1 1 .1 0.007

2 . 5 2 0 . 6 6 0 . 9 0.005

2 . 2 1 1 . 0 0 1.4 0.006

2 . 6 0 0 . 6 7 1 . 1 0.006

2 . 7 0 0 . 8 3 5 . 2 0 . 0 2

0 . 3 5 0 . 8 4 0.048 0.002

0 . 8 1 0 . 9 2

0 . 1 9 1 .13

0 . 0 5 0 . 8 4

0 . 1 6

1 . 8 1 D.50

0 . 1 7

0 . 1 8

0 . 0 5

0 . 0 8

0 . 0 8

0 . 0 8

0 . 3 4 0.005

0.050 0.002

0.036 0.009

0.046

0 . 1 8 0.002

0.062

0.040

0.038

0.022

0.036

0 . 0 1 7

10. 550 . 2 6 0 . 160 . 100 . BO.

4 2 4 0 . 1 9 6 0 . 111 0 . 7 0 0 . 4 7 0 .

7 5 0 . 3 5 0 . 2 2 0 . 1 4 0 . 9 0 .6 . 9 11 . 15 . 18 . 22 . 29 .

ISO. 100 . 70 . 50 . 40 .

1 D 0 . 7 0 . 5 0 . 4 0 . 3 0 .

1 7 . 18 . 19 . 19 .

6. 9 .

a.12 .

11 .

15 . 19 .

0.31

0.12

0.07 0.12

0.51

0.24

0.17

0.24

0.12

0.73

0.79

0.61

0.48

0.66

1.9

1.0

5.2

0.89

1.0

2.1

1.3

6.6

1.3

1.3

2.2

Page 567: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 567/578

TABU: IB. 2 . (Cont in ued . I

COI

P r o p e r t i e s a t 3 0 0 K T h e r m al c o n d u c t i v i t y ( k ) , Wmfl) x 10~2

P, c , k . a .M a t e r i a l < k g / m3) x 1 0 - 3 ( J A g - K ) x 10 ~3 W/m-K (r a 2 / s ) * 10* 10 K 20 50 100 200 400 600 800 1000 1200

P l a s t i c s :

A c r y l i c , PHKA ( P l e x i g l a s ) l . i a 1 . 4 6 0 . 1 6 0 . 0 0 1 0 . 6 0 . 7 1.2

N y l o n 6 1 . 1 6 1 . 5 9 0 . 2 5 0 . 0 0 1 0 . 3 0 . 9

P o l y v i n y l c h l o r i d e ( r i g i d ) 1 . 4 0 1 .00 0 . 1 5 0 . 0 0 1 1.5 1.6 1.5

Te f l o n , P T F E 2 . 1 8 1 . 0 5 0 . 4 0 0.002 1.0 1 .5 2 . 0 2 . 5 4 . 5 5 . 5

P o l y e t h y l e n e , h i g h d e n s i t y 0 . 9 5 2 . 3 0 0 . 5 0 0.002

R o c k s :

G r a n i t e 2 . 6 0 0 . 7 9 3 . 4 0 . 0 1 7 30. 2 " .

M a r b l e 2 . 5 0 0 . 8 8 l .B 0.00B 1 7 . 11 .S a n d s t o n e 2 . 2 0 0 . 9 2 S . 3 0.026 4 4 . 30 .

s h a i a 2 . 6 0 0 . 7 1 1 . 8 0 . 0 1 0 15 . 14.

H o o d s : ( a c r o s s g r a i n , o v e n d r y )

B a l s a 0 . 1 6 0.059

D o u g l a s f i r 0 . 4 6 2 . 7 2 a . i i 0 . 0 0 1

O a k , r e d 0 . 6 ? 2 . 3 8 0 . 1 7 0 . 0 0 1

P i n e , w h i t e 0 . 4 0 2 . 8 0 0 . 1 0 0 . 0 0 1

Redwood 0 . 4 2 2 . 9 0 0 . 11 0 . 0 0 1

M i s c e l l a n e o u s :C a r b o n b l a c k ( p o w d e r ] 0 . 1 9 0 . 8 4 0 . 0 2 1 0 . 0 0 1

C a r b o n ( p e t r o l e u m c o k e ) 2 . 1 0 0.B4 1 . 9 0 . 0 11 21 . 25 . 26 . 3 0 .

G r a p h i t e ( AT J )

( U t o g r a i n s ) ' 1 .73 0 .B4 1 2 5 . 0 0 .B9 S . 25 . 1 7 0 . 5 B 0 . 1 2 0 0 . 11 8 0 . 9 5 0 . 7 7 0 . 640 .

( i t o g r a i n s ) 1 . 7 3 0 . 8 4 9 8 . 0 0 . 6 7 4 . 19 . 1 3 0 . 4 2 0 . B 6 0 . 9 0 0 . 7 3 0 . 5 9 0 . 4 9 0 .

G r a p h i t e ( p y r o l y t i c )

( | t o g r a i n s ] 2 . 2 0 0 . 8 4 2 0 0 0 . 0 1 0 . B BID. 4 2 0 0 . 2 3 0 0 0 . 5 0 0 0 0 . 3 2 0 0 0 . 1 4 6 0 0 . 9 3 0 0 . 6 8 0 0 . 5 3 0 0 .

( 1 t o g r a i n s ) 2 . 2 0 0 . 8 4 9 . 0 0 . 0 5 2 7 0 . 11 0 0 . 1 0 0 0 . 3 9 0 . 1 5 0 . 7 0 . 40 . 30 . 20 .

C o n c r e t e 2 . 2 8 0 . 6 7 l . B 0 . 0 1 2

Mica 1 .96 0 . 8 8 0 . 4 3 0.002

R u b b e r ( h a r d ) 1 .19 1 .88 0 .16 0 . 0 0 1

G y p s u n b o a r d 0 . S 2 0 . 1 1

Sand (dry) 1 .52 0 . 8 0 0 . 3 3 0.003

Page 568: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 568/578

TABLE 1 8 . 3 . Thermal p r o p e r t i e s of some me ta ls a t 10 K above t h e i r me lt in g

po int (so ur ce: Refs. 35 and 38 ).

mp, k, P. c, YMetal K W/m'k k g / m 3 kJ/kg 'k kJ/kg

Aluminum 933.2 91 2390 1.09 395.4

Copper 1356. 167 7940 0.49 205.

Iron 1810. 41 7020 0.82 281.6

Lead 600.6 16 10700 0.21 24.7

Lithium 453.7 43 520 4.25 663.2

Mercury 234.3 7 13650 1.34 11.3

Potassium 336.8 54 820 0.84 61.5

Sodium 371.0 87 930 1.34 114.6

NaK (eutectic) 262. 13 850 1.00 ~

Tin 505.1 31 6980 0.23 60.2

Zinc 692.7 50 6640 0.50 102.1

18-5

Page 569: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 569/578

TABLE 18.4. Room temperature total emissivities (source: Ref . 3 7 ) .

Silver (highly polished ) 0.02 Brass (polished) 0.60

Platin um (highly polished) 0.05 Oxidized copper 0.60

Zinc (highly polished) 0.05 Oxidized steel 0.70

Alumi num (highly polished) 0.08 Bronze paint 0.80

Monei metal (polished) 0.09 Black gloss paint 0.90

Nickel (polished) 0.12 White lacquer 0.95

Copper (polj :..)ied) 0.15 Whit e vitreous enamel 0.95

Stellite (polisned) o.ia Asbestos paper 0.95

Cast iron (polished) 0.25 Green paint 0.95

Monel me tal (oxidized) 0.43 Gray paint 0.95Aluminum paint 0.55 Lamp black 0.95

18-6

Page 570: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 570/578

TABLE 1 8 . 5 . To t a l e m i s a i v i t i e s o f m i s c e l l a n e o u s m a t e r i a l s ( s o u r c e : R ef . 3 7 ) .

Temp, Emis- Temp, Emis -

H a t e r i a l °c s i v i t y M a t e r i a l °c s i v i t y

A l l o y s I r o n , r u s t e d 25 0 .65

2 0 N i - 2 5 C r- 5 5 F e , o x i d i z e d 2 00 0 .90 w r o u g h t , d u l l 2 5 0.94

500 0.97 o x i d i z e d 350 0.94

6 0 N i - 1 2 C r- 2 B F e , o x i d i z e d 2 7 0 0 . 8 9 L e a d , u n o x i d i z e d 100 0.05

560 0 .62 o x i d i z e d 200 0.63

BONi-20Cr, ox id ize d 100 0.87 M e r c u r y, u n o x i d i z e d 2 5 0 .10

600 0.87 100 0.12

1300 0.89 Molybdenum, un ox idi ze d 1000 0 .13

Aluminum, unox id ized 25 0.022 1500 0 .19

100 0.028 2000 0.24

500 0 . 6 0 M o ne l m e t a l , o x i d i z e d 200 0 .43

o x i d i z e d 200 0.11 600 0.43

600 0.19 N i c k e l , u n o x i d i z e d 25 0.045

B i s m u t h , u n o x i d i z e d 25 0.048 100 0.06

100 0.06 1 500 0.1 2

B r a s s , o x i d i z e d 200 0.61 laao 0 .19

600 0 . 5 9 o x i d i z e d 200 0.37

u n o x i d i z e d 25 0.035 1200 0.85

100 0.035 P l a t i n u m , u n o x i d i z e d 25 0.037

C a r b o n , u n o x i d i z e d 25 0 .81 100 0.047

100 0 . 8 1 500 0.096

500 0 .81 1000 0 .152

Chromium, unox id ized 100 0.08 1500 0 . 1 9 1

C o b a l t , u n o x i d i z e d 5 00 0 . 1 3 S i l i c a b r i c k 1 00 0O.80

1000 0.23 1100 0 .85

Columbiura , unox id ized 1 5 00 0 . 1 9 S i l v e r, u n o x i d i z e d 1 00 0 .02

2000 0.24 500 0.035

C o p p e r, u n o x i d i z e d 1 00 0.02 S t e e l , u n o x i d i z e d 100 o.oel i q u i d 0 .15 l i q u i d 0 . 2 8

o x i d i z e d 2 0 0 0 . 6 o x i d i z e d 25 0.80

1000 0.6 200 0 .79

c a l o r i z e d 1 0 0 0 .26 600 0.79

5 00 0 . 2 6 S t e e l p l a t e , c o u gh 4 0 0 . 9 4c a l o r i z e d , o x i d i z e d 200 0.18 400 0.97

600 0.19 c a l o r i z e d , o x i d i z e d 200 0.52

F i r e b r * c * 1000 0 .75 600 0.57

G o l d , u n o x i d i z e d 100 0.02 Ta n t a l u m , u n o x i d i z e d 1500 0.21

500 0.03 2000 0.26

Gold enamel 100 0 . 3 7 Ti n , u n o x i d i z e d 25 0.043

I c o n , u n o x i d i z e d 100 0 .05 100 0.05

o x i d i z e d 1 0 0 0.74 Tu n g s t e n , u n a x i d i z e d 25 0.024

500 0.84 100 0.032

1200 0.89 500 0 . 0 7 1

c a s t , u n o x i d i z e d 100 0 .21 1000 0 .15l i q u i d 0 .29 1500 0 . 2 3

c a s t , o x i d i z e d 200 0.64 2000 0.2S600 0 .78

Z i n c , u n o x i d i z e d

300 0 .05c a s t , s t r o n g l y o x i d i z e d 40

250

0 .95

0 .95

18-7

Page 571: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 571/578

TABLE IS.6. Electrical resistivity of some common metal s (source: R e f. 3 7 ) .

R e s i s t i v i t y , Temp. S p e c i f i c Mel t ing

llfi*cm c o e f f i c i e n t g r a v i t y . p o i n t .

Metal 20°C 20°C g/cra °cA d v a n c e . S e e c o n s t a n t a n

Aluminum 2.824 0.0039 2 . 7 0 659

Antimony 4 1 . 7 .0036 6 . 6 6 3 0Arsen ic 3 3 . 3 .0042 5 . 7 3 —Bismuth 120 . 0 0 4 9 . 8 2 7 1

Brass 7 . 0 0 2 8 . 6 900

Cadmium 7 . 6 .0038 8 .6 321

C a l i d o . S e e nichrome

Climax 87 .0007 e . i 1 2 5 0

Cobal t 9 . 8 .0033 B . 7 1 1480

Constantan 49 . 00001 8 .9 1190

Copperi annealed 1.7241 .00393 8 . 8 9 1 0 8 3

hard-drawn 1 . 7 7 1 .00382 8 . 8 9 —E u r e k a . S e e cons t an tan

E x c e l l o 92 .00016 8 . 9 1 5 0 0

G as carbon 5000 - . 0 0 0 5 — 3500

German s i l v e r , 18% H i 3 3 .0004 B.4 1100

Gold 2 . 4 4 .0034 1 9 . 3 1 0 6 3

I d e a l . S e e cons t an tan

i r o n , 99.984 pure 10 . 0 0 5 7 . 8 1 5 3 0

Lead 22 .0039 11 . 4 3 2 7

Magnesium 4 . 6 . 0 0 4 1 . 7 4 6 5 1

Manganin 44 . 00001 8 . 4 910

Mercury 95.783 .00089 13.546 - 3 8 . 9

M o l y b d e n u m , drawn 5 . 7 . 0 0 4 9 . 0 2500

Monel metal 42 .0020 8 . 9 1 3 0 0

N i c h r o m e3 100 .0004 8 . 2 1 5 0 0

Nicke l 7 . 8 . 0 0 6 8 . 9 1 4 5 2

Pal ladium 11 .0033 1 2 . 2 1 5 5 0

Phosphor bronze 7 . 8 . 0 0 1 8 8 . 9 750

Plat inum 1 0 . 0 0 3 2 1 . 4 1 7 5 5

S i l v e r 1 . 5 9 .0038 1 0 . 5 9 6 0

S t e e l , E . B . B . 1 0 . 4 . 0 0 5 7 . 7 1 5 1 0

S t e e l , B . B . 1 1 . 9 . 0 0 4 7 . 7 1 5 1 0

S t e e l , S iemens-Mart in 1 8 . 0 0 3 7 . 7 1510

S t e e l , manganese 70 . 0 0 1 7 . 5 1 2 6 0

Tantalum 1 5 . 5 . 0 0 3 1 1 6 . 6 2850

T h e r l o a 47 . 00001 8 . 2 —T i n 1 1 . E . 0042 7 . 3 2 3 2

T u n g s t e n , drawn 5 . 6 .0045 1 9 3400

Zinc 5 . 8 .0037 7 . 1 419

"Trade

18-8

Page 572: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 572/578

TABIB I B .7 . Thermal conduc t iv i ty in tegr a l s of misce l l aneou s ma te r i a l s {source : Ref . 76] .

Q - 7 *_) , k_ - J t dt , W/n x 10~ 2

L i X - ir

C o p p e r s S t e e l M i • c. A l l o y s

Temp, H i-p ur ity A l u m i n u m S ta in - In co ne l G l a s s a n d p l a s t i c s SoftK O.F.H.C. anneale d Brass (Pb) 2024-T4 6063-T5 SAE 1020 les s (annealed) glas s nylon persp ex Constantan Ag sold er sold er

6 6. 1 166 0.053 0.080 0. 850 0.088 0.0063 0.0133 2. 11 X 10 J 0. 32 x 10 ' 1.18 x 10"' 0.024 0.059 0.425

8 14. 5 382 0.1290.197

2. 05 0.231 0.0159 0.0348 4 ..43 0. 60 2.38 0.066 0.148 1.05

10 25. 636 0.229 0.347 3. 60 0.431 0.0293 0.0653 t. .81 1. 48 3.59 0.128 0.268 1.B3

15 61. 4 1270 0.594 0.872 9. 00 1.17 0.0816 0.182 13. 1 4. 10 G.69 0.375 0.688 4.16

20 110 1790 1.12 1.60 16. 5 2.22 0.163 0.356 20, 0 8. 23 10.1 0.753 1.25 6.86

25 169 2160 1.81 2.51 25. B 3.52 0.277 0.592 27. 9 13. 9 14.4 1.24 1.92 9.66

30 228 2410 2.65 3.61 36. 5 5.02 0.424 0.882 36. 8 20. B 19.6 1.B1 2.67 12.5

35 285 2580 3.63 4.91 48. 8 6.74 0.607 1.22 47. 1 29. 0 25.9 2.44 3.52 15.3

40 338 2700 4.76 6.41 62. 0 8.67 0.824 1.60 58. 6 3B. 33.0 3.12 4.47 1B.1

50 426 2860 7.36 9.91 89. 13.1 1.35 2.47 84. 6 60. 49.5 4.57 6.62 23.4

60 496 2960 10.4 14.1 117 18.1 1.98 3.45 115 B5. 6B.3 6.12 9.12 2B.5

70 554 3030 13.9 18.9 143 23.6 2.70 4.52 151 113 B8.5 7.75 12.0 33.6

76 586 3070 16.2 22.0 158 27.1 3.17 5.19 175 131 101. 8.75 13.9 36.7

SO 606 3090 17.7 24.2 167 29.5 3.49 5.66 194 142 110. 9.43 15.2 15.B

90 654 "140 22.0 30.1 190 35.5 4.36 5.85 240 173 132 . 11.1 IB.7 44.1

100 700 3180 26.5 36.3 211 41.7 5.28 8.06 292 204 155. 12.8 22.6 49.4

120 788 3270 36.5 50.1 253 54.5 7.26 10.6 408 269 200. 16.2 31.1 60.3

140 874 3360 47.8 65.4 293 67.5 5.39 13.1 542 336 247. 19.7 40.6 71.4

160 956 3440 60.3 83.1 333 80.5 11.7 15.7 694 405 294. 23.2 51.0 82.6

ISO 1040 3520 ' 73.8 100 373 93.5 14.1 IB.3 85B 475 342. 26.9 62.2 93.8

200 1120 3600 B8.3 119 413 107 16.6 21.0 1030 545 390. 30.6 74.0 105

250 1320 3800 128 171 513 139 23.4 26.0 1500 720 510. 40.6 105 133

300 1520 4000 172 229 613 172 30.6 35.4 1990 895 630 . 51.6 138 162

Page 573: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 573/578

Table 18.8 Specific heat of miscellaneous solids (source: Rets. 35 to 38) .

Specific heat (c) , J/ g-K

Material 10 20 50 100 200 400 600 800 1000 1200

Aluminum; Pure 1.4 8.9 142 481 790 161 1026 1092 1054 1096

2024 418 515 737 920 1029 1318

Beryl H u m 0.389 1.61 19.2 199 1113 2134 1046 2804 3022 3223

Copper: Pure 0.86 7.7 99 254 360 423 427 434 439 443

Brass 30 % Zn) 0.65 10.5 120 255 360 401 42B 448 469

Gold 2.2 15.9 72 108 122 134 135 138 140 142

Iron: Pure 1.24 4.5 55 216 389 485 582 677 774 665

AISI 316 stainless 0.80 13.1 110 265 420 510 560 580 590 600

: SAE 1010 steel 1.88 6.69 75 251 418 628 669 690 711 724

Lead 13.7 53 103 118 121 141 121 10B 103 96

Nickel 1.62 5.8 68 232 385 502 580 539 540 540

Platinum 1.12 7.4 55 100 121 133 142 146 150 155

Silver 1.8 15.5 108 187 226 243 251 259 267 280

Tin 4.2 4 0 130 189 200 242

Tungsten 0.234 1.89 33 88 122 133 138 142 146 130

Zinc 2.5 26 171 293 352 401 472 489 460 434

Carbon: Graphite 1.38 71 41.8 138 418 1004 1339 1590 1716 1799

Ceramic: A 1 2°30.08 0.84 14.2 125 502 920 1088 1172 1213 1255

Glasses; Borosi Licate

(pyrexi 4.2 25.9 125 272 544 837 1088

Quartz 16.7 16.7 96 255 502 879 1046 1172 1213 1255

Plastics Acryl c, PMMA

(plexiglas) 22 79 250 540 360 1640

NEMA G10 18 89 240 360 630 1110 1600

Teflon PTFE 20 75 200 380 700 1300

18-10

Page 574: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 574/578

REFERENCES

1 . M. Ja ko b, Heat T ra ns fe r, V ol . I (Wiley, New York, 19 49 ).

2. P. J . Sc hn ei de r, Condu ct ion Heat Trans fer (Addison-Wesley, Reading , 19 55 ) .

3 . V. S . A rp ac i , Conduct ion Hea t Tra nsfe r (Addison-Wesley, Reading , 19 66 ) .4. S . S. Ku ta t e l a dz e and V. M. B or i s ha ns k i i , A Con c i se Encyc loped ia o f Hea t

T ra ns fe r (Pergaiaon, New York , 19 66 ).

5 . J . P. Holman, Heat T ra ns fe r (McG raw-Hill , New Yo rk, 19 63 ).

6. R. B. B ir d , W. E. S te w ar t , and E. M. L ig ht fo ot , T ra ns po rt Phenomena

(W iley, New York, 19 60 ).

7 . E. R. G. E ck er t and R. M. Drake J r . , Heat and Mass T ra ns fe r (Mc Graw -Hill ,

New Y or k, 1959) .

8 . K. A. G ard ne r, " Ef f ic i an cy of Extended S ur fa ce s , " T ra ns . ASHE 67, 621-631

(1945) .

9. H. S. Ca rsla w and J . C. J a e g e r , Condu ct ion of He at In S o l i d s , 2nd Ed.

(Oxford Press , London, 1959).

10. D. Q. Kern and A. D. K ra us , Extended Surfac e Heat Tr an sfe r (McG raw-Hil l ,

New Y ork , 1972) .

1 1 . E. M. Spa rrow and S. H. L in , I n t . J . Heat Mass T ra n sf er 7_, 951-952

(1964) .12. M. P. H e i s l e r, "Tempera tu re Ch a r t s fo r Ind uc t ion and Cons tan t Tempera tu re

H e a t in g ," T ra n s . ASMS 69 , 2.T7-236 C.947).

1 3 . H. G rob er, S . Erk , and U. G r i g u l l , Fundamenta ls of Heat Tran sfer

(Mc Graw -Hill , New York, 19 6 1) .

14. R. E . D. S te w ar t and F. C. W ess l in g J r . , On Heat Conduct ion in S ol id s

Hav ing Tempera tu re Dependen t P rope r t i e s , " Sand ia Labs , A lbuque rque ,

SC-RR-70-334 (1970).

15 . J . H. VanSant and M. B. Lar so n , "Heat Tr an sfe r From a Se : i \ i - Inf i n i te

Rectangular S t r i p , " J . Hea t Tr an s fe r 85 , 191-192 (1 963) .

1 6 . J. H. VanSant and J . H. P i t t s , " V a r i a b l e P r o p e r t y E f f e c t s on t h e I n s i d e

Su rface Temperature of a Heated Tub e ," J . Heat Tr an sf er 88 , 340-341

(1966) .

17 . B. 0 . P e ir c e and R. M. F o s t e r , A Shor t Table of I n te g r a l s (Ginn , Naw York ,

1 9 5 6 ).

18 . E. J a h n k e and F. Emde, T ab les of Fu nc t io ns , 4t h Ed. (Dover, New Yo rk,1945) .

R-l

Page 575: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 575/578

19 . W. M . Rohsenow and J. P. Hart nett, Eds ., Handbook of Heat Transfer

(McGraw-Hill, New Yo rk, 1973) .

">.. G. E . My er s, Analytical Meth ods in Conduction Heat Transfer (McGraw-Hill,

Hew York , 1971) .

21 . W. M. Kays , Convective He at and Mass Transfer (McGraw-Hill, New Yo rk ,

1966) .

22 . J. G. Knudsen and D. L. K a t z , Fluid Dynamics and Heat Transfer

(McGraw-Hill, New York , 1958) .

2 3 . W. H . McAdams, Hea t T ra n sm is s i o n , 3 rd Ed . (M cGr aw-H i l l , New Yor k , 1 9 5 4 ) .

2 4 . I . I . S h e v t s an d E . P. D y b a n , " C o n t a c t H e a t T r a n s f e r B e tw e e n P l a n e M e t s l

S u r f a c e s , " I n t . C hem . E n g . 4_, 6 2 1 - 2 4 1 ( 1 9 6 4 ) .

<J5. H . Fe ne ch and W. H . Rohsenow " P re d i c t i o n o f The rma l Conduc t ane o f M e t a l l i c

S u r f a c e s i n C o n t a c t , " J . H e a t Tr a n s f e r 8 5 , 1 5 - 2 4 ( 1 9 6 3 ) .

2 6 . N . D . F i t z r o y , . E d . , H e a t Tr a n s f e r D a t a B ook ( G e n e r a l E l e c t r i c C o . ,

S c h e n e c t a d y, 1 9 7 0 ) .

2 7 . J . H . Va n S a n t , "Te m p e r a tu r e V a r i a t i o n s o n t h e S u r f a c e o f a S t r i p - H e a t e d

F l a t P l a t e , " J . H e a t T r a n s f e r 8 9 . 3 7 2 - 3 7 3 ( 1 9 6 7 ) .

2 8 . J . H. Va n S a n t , Te m p e r a t u r e o f a F l a t P l a t e H a v i n g A l t e r n a t i n g A d i a b a t i c

a nd C o n s t a n t H e a t F l u x S t r i p s o n O ne S i d e , L a w r e n c e L i v e rm o r e L a b o r a t o r y,

L iv e r m or e , CA, OCRL-7990 (1 9 6 4 ) .

2 9 . J . H . Va n S a n t , "T he S p o t I n s u l a t e d P l a t e , " N u c . E n g . D e s i g n 8_, 2 4 7 - 2 5 0( 1 9 6 8 ) .

3 0 . N . R . D e s R u i s s e a u a n d R . D . Z e r k l e , " Te m p e r a t u r e i n S e m i - I n f i n i t e a n d

C y l i n d r i c a l B o d i e s S u b j e c t e d t o M o vin g H e a t S o u r c e s a nd S u r f a c e C o o l i n g , "

J . Hea t Tr an s f e r 9 j2 , 45 6 - 46 4 (1970) .

3 1 . K . K o t a n a nd O . A . A r n a r, "On t h e O p t i m i z a t i o n o f t h e D e s i g n P a r a m e t e r s o f

P a r a b o l i c R a d i a t i n g F i n s , " ASME P ap er 6 5- H T- 4 2 ( 1 9 6 5 ) .

3 2 . M. J . P a s c u a l , S . D . B e c k , a n d J . E . Z w e i g , Te m p e r a t u r e F i e l d I n a S l a b

C o n t a i n i n g An I n s u l a t i n g F i l a m e n t , W a t e r v l i e t A r s e n a l , W a t e r v l i e t , N . Y. ,

WVT-6511 (1965) .

3 3 . K . O . B e a t t y , J r. and A . A . Arm s t rong , The Measu rem en t o f The rma l

P r o p e r t i e s o f N o n m e t a l l i o M a t e r i a l s a t E l e v a t e d Te m p e r a t u r e s , U . S . A t o m i c

En erg y Comm., Oak R id g e , TN, ORO-170 ( 1 9 5 6 ) .

3 4 . R . G . W a t t s , " Tem p e ra tu r e D i s t r i b u t i o n s i n S o l i d an d H o l l ow C y l i n d e r s Due

t o a M o v in g C i r c u m f e r e n t i a l R i n g H e a t S o u r c e , '1 J . H e a t Tr a n s f e r 9 1 ,

4 6 5 - 4 7 0 ( 1 9 6 9 ) .

R-2

Page 576: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 576/578

35 . Y. S . Tou louk ian , e t a l . , The rmophysica l P ro p e r t i e s of M a t t e r, V o l s . 1 ,

2, 4 & 5 (IF I/P len um , New Y ork, 197Q).

36 . A. P a r r i s h , Ed . , M echanica l En gi ne er ' s Referenc e Book, 11 th Ed. (CRC

P r e s s , C leve land , 1973) .

37 . R. C. W eas t , Ed . , Handbook of Chem istry and P h y si c s , 5 5th Ed. (CRC P r e s s ,C l e v e l a n d , 1 9 7 4 ) .

3 8 . T. Ba um eis te r, E d . , S tand ard Handbook for M echan ica l En gin eer s , 7 th Ed.

(M cG raw -H ill, Mew Yo rk, 1967) .

39. T. Lyman, Ed . , M eta ls Handbook 8 th Ed. , Vol . 1 , "P ro pe r t ie s and S e l e c t i o n

of M et a ls " (Amer ican S oc ie ty fo r M eta ls , M eta l s Park , OH, 196 1) .

40. D. M. T e l le p , Te mpe rature Respons e of Thin Sk ins Under Low Heat F lux

C o nd i t io ns , Lockheed M is s i l es and Space C o. , Sun nyva le , CA, IAD 349,(1958) .

41 . M, P. H e i s l e r, "Tempera tu re Ch a r t s fo r In t e rn a l Hea t Ge ne ra t ion , " T ra ns .

ASME 78_, 1 18 7-11 92 (1956) .

42 . W. H. Ho l t e r and J . H . G lov e r, " I ns u l a t io n Tem pera tu re fo r t he Tr an s i en t

Hea t ing of an In su la t e d In f i n i t e Me ta l S l a b , " J . ARS 30 , 907-908 (19 60) .

4 3 . J . H. Grover and W. H. H o l t e r, "S olu t ion of th e T ra ns ie n t Heat Con duct ion

E q u a t i o n f o r an I n s u l a t e d I n f i n i t e M e t al S l a b , " J e t P r o p u l s i o n 2 7 ,

1249-1252 (1957).44. R. D . Ze rk le and .7. E . Su nde r l a nd , "The T ra ns i e n t Tempera tu re D i s t r ib u t i o n

in a S l ab Subje c t t o Thermal R ad ia t i on ," J . H eat Tr an sfe r 87 , 117-133

(1965) .

4 5 . D. L . A ye rs , "Tr an s ie n t Cool in g of a Sphere in Sp ac e ," J . Heat Tra ns fe r

£ 2 , 180-182 (1970).

46 . N. Ko nopl iv and E. M. Spar row , "T ran s ie n t Heat Condu ct ion i n

NonH mogeneous Sp he ri ca l S ys te m s," Warme-und Sl of fu be rtr ag un g 3» 197-2100 ) .

47 . h. B. Newman, "The Tem perature -Tim e R e la t i on s R e su l t in g From the

E l e c t r i c a l He at ing of t h e Face of a S la b ," Tr a n s. AICHE 3_, 598-613 (1934)

4 8 . M. D. Mikhaylow, "T ra ns ie n t Tem pera ture F ie ld s i n S h e l l s , " NASA,

Wash ing ton D .C . , TT F- 55 2 , ( 19 69 ) .

49 . C . D . C o u l b e r t e t a l . , Te m p e r a t u r e R e sp on s e o f I n f i n i t e P l a t e an d S l a b s

to He a t Inpu t s o f Sh or t D ura t ion a t One Su r fa ce , D ep t . Eng . , Un iv. Ca l i f . ,

Los A nge les (195 1).

R-3

Page 577: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 577/578

0 . J. A. Kuhn, Temperature Distribution in a Finite Slab Caused by a Heat

Rate of the Form q(9)=( q /2) (1-Cos w6 ) , Lockheed Miss iles andmax

Space Co. , Sunnyval e, CA, TXN/548 (1961).

51. A. R. Mend elso hn, "Transient Temperature of a Porous-Cooled Wall ,"

J. AIAA 1, 1449-1451 (1963).

52. H. Halle and D.E. Taylo r, Transient Heating of Two-Element Slabs Exposed

to a Plane Heat Sourc e, Chicago Midway Labs , Chicago, CML-59-M-1

(1959).

53. P. J. Schneider and C.F. Wilson Jr ., "Pulse Heating and Equilibration of

an Insulated Substructure ," Spacecraft and Rockets 7, 1457-1460 (1970).

54. H. C. Hottel and C. C. Williams II I, "Transient Heat Flow in Organic

Materials Exposed to High-Intensity Thermal Radiation," ASME Heat Transfer

and Fluid Mechanics Institute (1954) .

55. A. L. London and R. A. Seban, "Rate of Ice Formation," Tran s. ASME 65 ,

771-778 (1943).

56. R. R. Cullom and W . H. Robins, One-Dimensional Heat Transfer Analysis of

Thermal-Energy Storag e for Solar Direct-Energy-Conv ersion Systems, NASA,

Washington D.C., TN D-2110 (1964).57. J. E. Sunderland and R. J. Gros h, "Transient Temperatures in a Melting

solid," J. Heat Transfer 83 , 409-414 (1961).

58. H. G. Landau, "Heat Conduction in a Melting Solid," Qua rt. Appl . Ma th . 8_,

8194 (1950).

59. J. W. Tatom, "Shell Radiation," ASM E Paper 60-WA-234 (1960).

60. S. Katsoff, Similitude in Thermal Model s of Spacecraft, NASA ,

Washington D.C., TN D-1631 (1963).

6 1 . E. L. Knuth, "An Engineering Approximat ion for Resistance of Certain Two-

Dimensional Con ductor s," Int. J. H ea t Mass Transfer T_, 270-272 (1964).

62 . J. G. Bar tas , "Gas Side-Wall Temper ature in Rib-Backed Liquid-Cooled

Combustion C hamber s," Jet Propulsion 27 , 784-786 (1957).

63 . J. E. Schmidt and G. Sonnemann, "Transient Temperatures and Thermal

Stresses in Hol lo w Cylinders Due to Hea t Generation," J. He at Transfer 82 ,

273-279 (1960).

64 . E. M. Sparrow, "Temperature Distrib ution and Heat-Transfer Results for an

Internally Coo led , Heat-Generating Solid," J. Heat Transfer j}2, 389-392

(1960).

Page 578: 6224569

8/10/2019 6224569

http://slidepdf.com/reader/full/6224569 578/578

. D. R. Bur net t, "Transient Temperature Measurement Errors in Heated Slabs

for Thermoco uples Located at the Insulated Su rfaces," J. Heat Transfer 83 ,

505-506 (1961).

6. J. J. Brogan and P. J. Sc heid er, "Heat Conduction in a Series CompositeWall " J Heat Transfer 83 506-507 (1961)