9A. Fracture Gradients - Cont'd

Embed Size (px)

Citation preview

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    1/55

    TAMU - PemexWell Control

    Lesson 9A

    Fracture Gradients

    - contd

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    2/55

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    3/55

    3

    Fig

    . 3.21 - Stress concentrations around a borehole

    in a uniform stress field

    Tension

    Additional

    compression

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    4/55

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    5/55

    5

    Example 3.4

    Given:

    Formation depth = 10,000

    Poissons ratio = 0.22 Pore pressure grad = 0.433 psi/ft

    Hole diameter = 9.0 in

    Mud density = 8.33 ppg

    Overburden stress grad. = 1.00 psi/ft

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    6/55

    6

    Example 3.4 - Part 1

    1. Estimate the horizontal stress if therock behaves in an elastic manner

    Solution:

    H = ( /(1- ))*( ob - pp) + pp .Eq 3.21b

    H = (0.22/(1 - 0.22)) * (1*10,000 -

    0.433*10,000) + 4,330

    H = 5,929 psi

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    7/55

    7

    Example 3.4 Part 1 - contd

    Effective horizontal stress

    eH = H - *pp

    If = 1.0 and pp = 4,330 psig

    Then, He = 5,929 4,330

    eH = 1,599 psi

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    8/55

    8

    Example 3.4 Part 2

    2. Estimate the tangential and radial stresses at theborehole wall if the horizontal stresses are equal.

    r = pw Eq. 3.24

    r = 4,330 psig

    t= H1 + H2 - pw - 2( H1 - H2 ) cos2 ...Eq.

    3.25

    = 5,929 + 5,929 - 4,330 - 0 = 7,528 psig

    rpw

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    9/55

    9

    Example 3.4 Part 2 contd

    The corresponding effective stresses

    are:

    re = 4,330 - 4,330 = 0 psi

    te = 7,528 - 4,330 = 3,198 psi

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    10/55

    10

    Example 3.4- Part 33. What are the radial and tangential stresses

    2.0 ft from the wellbore centerline?

    )psig929,5away,(far

    psig985,5330,40.24

    5.4

    0.24

    5.41929,5

    pr

    r

    r

    r1

    H

    2

    2

    2

    2

    ft2,t

    w2

    2

    w

    2

    2

    wHft2,t

    =

    =

    +=

    +=

    psig873,5330,40.24

    5.4

    0.24

    5.4

    1929,5

    pr

    r

    r

    r1

    2

    2

    2

    2

    ft2,r

    w2

    2w

    2

    2w

    Hft2,r

    =+

    =

    +

    = Radial Stress: Eq. 3.31

    Tangential Stress: Eq. 3.32

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    11/55

    11

    Example 3.4 Part 4

    4. Estimate the tangential and radialstresses at the borehole wall if 0.5 ppg

    overbalance is provided by the mud

    column.

    pw = 4,330 + 0.052 * 0.5 * 10,000

    pw = 4,590 psig = r

    t = H1 + H2 - pw -2( H1 - H2 )cos2

    = (2 * 5,929) - 4,590 = 7,268 psig

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    12/55

    12

    Example 3.4 Part 4 contd

    (0.5 lb/gal overbalance)

    The corresponding effective stresses

    are:

    re = 4,590 - 4,330 = 260 psi

    te = 7,268 - 4,330 = 2,938 psi

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    13/55

    13

    Example 3.4 Part 5

    ( He1 = 3 * He2 )

    5. What are the maximum and minimum

    tangential stresses if

    He2 =1,559 psi

    He1 = 3 * 1,599 = 4,797 psi?

    H1(max) = He1 + pp = 4,797 + 4,330

    = 9,127 psig

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    14/55

    14

    Example 3.4 Part 5 contt

    t,max = 3 H1 - H2- pw

    = 3 * 9,127 - (1,599 + 4,330) - 4,330

    = 17,122 psig

    t,min

    = 3 H2

    - H1-

    pw

    = 3 * 5,929 - 9,127 - 4,330

    = 4,330 psig

    Eq. 3.26

    Eq. 3.27

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    15/55

    15

    te,max = 17,122- 4,330= 12,792 psi

    te,min = 4,330 4,330= 0 psi

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    16/55

    16

    From example 3.4

    The effective radial stress will be zero if

    the wellbore and formation pressures are

    balanced

    The effective radial stress will increase in

    compression as the wellbore pressureincreases

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    17/55

    17

    From example 3.4

    An underbalanced situation will lead to

    inward tensile stress which may tend to

    destabilize the walls of the hole.

    A positive differential pressure reduces

    the induced circumferential stress, whilea negative differential pressure

    increases the compression.

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    18/55

    18

    From example 3.4

    In part (2) (isotropic), a wellbore

    pressure in excess of 7,528 psi will

    place the rock grains in tension and afracture will initiate if the tensile strength

    is nil.

    Being higher than the far field stress, this

    fracture will propagate out into the rock

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    19/55

    19

    From example 3.4

    An effective horizontal stress ratio of

    three exactly reduces the minimum

    effective tangential stress to zero.

    Any borehole pressure slightly over and

    above the pore pressure in this case

    would place the wellbore in tension and

    likely create a fracture. No extension!

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    20/55

    20

    Stress anisotropies

    Borehole caliper logs

    may help in determining

    significant stress

    anisotropies.

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    21/55

    21

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    22/55

    22

    Example 3.5 Part 1 - fractures

    Eatons overburdent gradient at12,000 ft = 0.961 psi/ft. ts = 0

    ( )D

    gggg tsppobfi+

    =

    1

    2Fracture Initiation

    Eq. 3.41

    ( ) ftpsigfi /698.00465.0465.0961.019.01

    19.0*2 =

    ( ) ppobfp gggg + = 1( ) ftpsigfp /581.0465.0465.0961.0

    19.01

    19.0 =

    Fracture Propagation

    Eq. 3.42

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    23/55

    23

    Example 3.5 Part 2: gp = 0.779 psi/ft

    At 12,000 ft, gob = 0.961 psi/ft. ts = 0

    ( )D

    gggg tsppobfi+

    = 12 Fracture Initiation

    Eq. 3.41

    ( ) ft/psi864.00779.0779.0961.019.01

    19.0*2gfi =++

    =

    ( ) ppobfp gggg + = 1( ) ftpsigfp /822.0779.0779.0961.0

    19.01

    19.0 =

    Fracture Propagation

    Eq. 3.42

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    24/55

    24

    Example 3.5 Part 3:

    gfi at 500 ft = ?

    At 500 ft, gob = 0.855 psi/ft. (Eaton)

    Shallow, so the fracture gradient is that

    required to lift the overburden

    ftpsiggg obfpfi /855.0

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    25/55

    25

    Example 3.5 Part 4: ts = 300 psig

    Impact of tensile strength on gfi is what?

    At 500 ft,

    Predicted breakdown pressure at 500 ft is ~ 1.5psi/ft! Lifting the overburden is probably easier

    At 12,000 ft:

    ( )D

    gggg tsppobfi+

    = 12

    ftpsiD

    ts /025.0000,12

    300 =

    ftpsiDts /60.0

    500

    300 = ft/psi46.1gfi =

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    26/55

    26

    Offshore/On Land

    Higher overburden gradient

    Higher fracture gradientLower overburden gradient

    Lower fracture gradient

    See Eatons paper

    gob = (psw+ s)/D= (psw+ s)/(Da+Dsw+Ds)

    gob = s/D= s/(Da+Ds)

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    27/55

    27

    From Eatons paper

    Try to duplicate this

    0.90.6

    7,0

    00

    1,0

    00

    Water Depth, ftFig. 3

    Overburden Gradient, psi/ft

    TVD

    bel o

    w

    RKB,

    1,000

    ft

    TVD Water ob

    Depth

    11,000 1,000 0.9

    11,000 7,000 0.6

    0.9 psi/ft = 17.3 lb/gal

    0.6 psi/ft = 11.5 lb/gal

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    28/55

    28

    Poissonsratio

    fromEaton

    Deep Water

    Original

    Poissons Ratio

    TVD

    bel o

    w

    RKB ,

    1,000ft

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    29/55

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    30/55

    30

    Inclined wellbores

    In general, such wellbores tend to have

    lower fracture gradients.

    They often have more compressive

    stability problems than comparable,

    near-vertical wells in the same area.

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    31/55

    31

    Max. prin. Stress dir.

    Wellbore direction

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    32/55

    32

    E

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    33/55

    33

    Example 3.6 Inclination = 70 deg

    Azimuth = N88E TVD = 14,000

    Maximum in situ stress

    is vertical

    Minimum horiz. Stress

    grad. = 0.739 psi/ft

    Salt dome intrusion has

    created an incrementalhorizontal stress of 0.061

    psi/ft in the S42E direction

    Pore Pressure

    = 12.0 ppg

    Poissons ratio = 0.25

    Assume elastic

    behavior

    Estimate the

    fracture pressure

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    34/55

    34

    Example

    3.6

    AWELL = N88E

    S42E

    IWELL = 70 deg

    = 50 deg

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    35/55

    35

    Example 3.6

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    36/55

    36

    Example 3.6 contd

    Eq. 3.47

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    37/55

    37

    Example 3.6 contd

    Eq. 3.48

    Eq. 3.49

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    38/55

    38

    Example 3.6 contd

    Eq. 3.50

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    39/55

    39

    Example 3.6 contd

    Eq. 3.51

    Eq. 3.52

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    40/55

    40

    Example 3.6 contd

    is the hole position (Fig. 3.28)

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    41/55

    41

    *

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    42/55

    42

    Continued iterations show that gfi = 0.695 psi/ft

    In a vertical well gfi = 0.794 psi/ft

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    43/55

    43Vary to find the minimum value of 3

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    44/55

    44

    Next, gradually increase the wellbore pressure

    until the effective minimum principal stress at

    the wellbore vanishes.

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    45/55

    45

    Borehole

    instability

    Lost

    circulation

    Maximum (theoretical) safe inclination

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    46/55

    46

    Effect of mud filtrate loss

    Pore Pressure near wellbore is increased

    Effective tangential stress is reduced

    Therefore fracture initiation

    pressure is reduced

    Eff f d fil

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    47/55

    47

    Effect of mud filtrate 1. Most of the poccurs across the filter

    cake

    2. Lower pore

    pressure than in high

    flow case

    3. Effective hoop

    stress is higher

    4. Fracture

    resistance is higher

    5. High quality mud isimportant

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    48/55

    48

    Oil Base Muds

    Are more prone to lost circulation than

    water based muds!

    Why?

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    49/55

    49

    Oil Base Muds

    Rheology - Oil base muds tend to be

    more viscous at low shear rates than

    comparable water base muds, thus

    yielding higher ECD

    Oil muds tend to be more compressible,

    thereby yielding higher densities andhigher pressures

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    50/55

    50

    Oil Base Muds

    But

    oil muds also have higher relativethermal expansions

    temperature changes when circulation

    stops

    so, wellbore pressures change

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    51/55

    51

    Mud Temperature < Rock Temperature

    in lower part of hole

    Mud Temperature > Rock Temperature

    in upper part of hole

    Mud

    Temperature in

    Annulus

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    52/55

    52

    As the oil mud heats up, the density drops

    This results in a drop in BHP

    Better filter cake increases the

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    53/55

    53

    Better filter cake increases the

    fracture resistance of the rock.

    E l 3 7

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    54/55

    54

    Example 3.7

    At 80

    o

    F formation temperature thefracture gradient is 0.864 psi/ft

    = 0.19 D = 500

    While drilling deeper, the temperature in

    the vicinity of the wellbore increases to 90

    deg F.

    What is the new fracture gradient?

    Assume E = 2.5* 106 = 8.0*10-6/oF

  • 8/9/2019 9A. Fracture Gradients - Cont'd

    55/55

    Example 4.7

    ( et )T = E T/(1- )

    ( et )T =(2.5*106)(8.0*10-6)(90-80)/(1-0.19)

    ( et )T = 247 psi

    New gfi = 0.864+(247/500) = 1.358 psi/ft

    This helps explain why gfi may increase with

    time.

    Eq. 3.62