34
Derivatives A. M. Bruckner; J. L. Leonard The American Mathematical Monthly, Vol. 73, No. 4, Part 2: Papers in Analysis. (Apr., 1966), pp. 24-56. Stable URL: http://links.jstor.org/sici?sici=0002-9890%28196604%2973%3A4%3C24%3AD%3E2.0.CO%3B2-%23 The American Mathematical Monthly is currently published by Mathematical Association of America. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/maa.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Mon Jan 14 18:04:50 2008

A. M. Bruckner; J. L. Leonard The American Mathematical ...classicalrealanalysis.info/documents/andy1966.pdf · Derivatives A. M. Bruckner; J. L. Leonard The American Mathematical

Embed Size (px)

Citation preview

Derivatives

A. M. Bruckner; J. L. Leonard

The American Mathematical Monthly, Vol. 73, No. 4, Part 2: Papers in Analysis. (Apr., 1966), pp.24-56.

Stable URL:

http://links.jstor.org/sici?sici=0002-9890%28196604%2973%3A4%3C24%3AD%3E2.0.CO%3B2-%23

The American Mathematical Monthly is currently published by Mathematical Association of America.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available athttp://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtainedprior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content inthe JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained athttp://www.jstor.org/journals/maa.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printedpage of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academicjournals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community takeadvantage of advances in technology. For more information regarding JSTOR, please contact [email protected].

http://www.jstor.orgMon Jan 14 18:04:50 2008

DERIVATIVES

A. 31. B R I J C K N E R AKD J . L. L E O K A R D , IJliiversiry o f California. Sailta Barbara

1. Introduction. In recent \-ears there has been a considerable aii io~int of research devoted to cl~iestions involving the derivative of a f~inction of one real variable and its generalizations. This activity is due, in par t , to the fundaniental role pla?-ed by the derivative in niathenlatics, and , also, to the difficulty of sorile of the interesting unsolved probleiils related to derivatives. I t seems appropriate tha t sollie of the results of this activit)., along \\-it11 sonie of the interesting bu t lot-so-n-ell-k~lo\\-n earlier res~ilts, be brought together and exanlined in one place. This is one of the purposes of the present expository article.

In deciding \\-hich topics to include in this article, \ye have given preference to ones which can be discussed \\-ithout first having to develop a great deal of machiner).. In addition, 11.e have leaned to~vard topics in I\-hich recent \york has been done and for I\-hich unsolvecl problems can be stated.

Froiii the long list of references given a t the end of this article, n-e single out the reference [ 1 9 2 ] .:\Ian>- of the recent n-orlcs on derivatives have their origin in this penetrating stud\- by Zahorslii.

2. Preliminaries. In this section \ye present a fen- of the definitions and con- cepts \\-hich appear in the sequel. T o avoid having this discussion beconle pro- hibitively long, \ye restrict ourselves to those notions n.hich appear pron-iinentl>- later on. For other real variable concepts n-llicli appear in this article (for ex- ample: approxii~late continuit)., F , sets, big and little o notation, densit\- condi- tions) the reader is referred to the texts [ 5 0 , 5 1 , 5 6 , 6 3 , 6 4 , 7 1 , 132 , 133 , 1 7 3 , 1 8 0 1 .

Througl~out this article \ye shall be concerned \\-it11 real valued functions of a real variable, usuall\- delined on an interval [a,b ] . Sucll a function belongs to Baire class 1 if it is the limit of a seclLieiice of con t in~ io~is f~inctions. \Ye define the other Baire classes inductivel!-: if oc is a countable ordinal, then ,I' is in Baire class cc provided it is the liiilit of a sequence of functions each of \\-hich is in a Baire class whose index is less than oc. Detailed studies of the Raise classes can be found in [ 3 , 5 1 , 5 6 , 8 3 , 133 , 1801. 17-e note tha t our definition is 1x11 incli~sive one: if J is in Baire class /3 and oc>p then,/ 'is also in Baire class a. In sonle s t ~ ~ d i e s it is niore convenient to have the Baire classes p;lir\\-ise disjoint. This is the case, for example, in the recent text 11331. I t is clear tha t ever\- derivative is a function in Baire class 1. . X propert\- possessed by every derivative of a continuous function is the

Darboux propert).. T h e function ,f satisfies the Uarboux condition (or j' is a 1)arboux function) on [a,b ] provided the set f [ I ] is connected for every interval I C [a,b ] . This propert\- is often called the i l z t e~ lncd ia t e.~la!i~epiopcrt?l, because a function has the Darboux property if and only if \\-henever XI and x2 are points of [a, B ] and 31is a nuiiiber bet~yeen ,/(.x1) and j'(x2), there is an ,\.a betn-een sl and .xq such tha t f (x j ) =y.

DERIVATIVES 25

Although there are many articles ill research journals ~vhich deal nit11 Darboux functions, a systematic study of such functions has escaped the standard real variable texts. I t is n o r t h noting tha t the Darboux property is far weaker than the property of continuity. Thus, there exist functions 11hich take on every real value on every perfect set [60]. Such a function obviously satisfies the Darboux condition bu t is non here continuous. Another indication of the size of the class of Darboux functions is the fact tha t ever)) function is the liinit of a sequence of Darboux functions [37]. One more reinark: the definition requires tha t the image (not the graph!) of a connected set be connected. There are Darboux-Baire functions whose graphs are not connected [84: p. 821. H o ~ ~ e v e r , it is shon n in [85] tha t i f f is in Baire class 1 , then f satisfies the Darboux condi- tion if and only if the graph off is connected. (See also [24; 62: pp. 289, 290; 84 : p. 811.) ( I t follows t h a t ever)- derivative has a connected graph.) For further remarks on this subject see [107]. T h e reader interested in Darboux functions is referred to the survey article [13].

\Ye end this section by stating for reference the definition of two rather com- plicated density conditions due to Zahorski [192]. \Ye refer to these iinportant conditions in Sections 4, 12, and 14.

DEFINITIOK.A nonempty set EC [a, b ] i s said to be a n 11f4set provided E is o! type I;, and there exists a sequence { I;,,)of closed sets and a seqzlence ( r , , )of nzim- bers, 0 <r,, < 1, such that E = U,:, F,, and for each x E F,,and every c> G there is a number ~ ( x , C)> O enjoying the following property: for any numbers h and hl szich that hhl>O, h / h ~ < c , I h+hll <e(x, c) we have

'\Ye note tha t in this definition I\-e require tha t the numbers r,,can be chosen to be strictl3- positive. If we relax this requirement to allon ing some or all of the r,, to be zero, we arrive a t the definition of an M3set. T h e definition of 111)set can be stated in a different and perhaps simpler form: the set E is an -113set provided t h a t if x E E and {I,)is a sequence of intervals not containing x such tha t {I,,) for all n , then --tx and m(I , ,AE) = O

(The condition ,114 cannot be given in an analogous manner, see Lipilislii [91].)

3. Continuity of the derivative. T h e student who has completed a first course in calculus is often not aTvare of the fact t h a t the derivative of a differentiable function need not be continuous. In a later course he learns t h a t the function j 1

given by fl(x) = x 2 sin ( l / x ) , fl(0) = O is differentiable, b u t fl fails to be con- tinuous a t the origin. He inight never learn, hon-ever, just how badly discon-

2 6 PAPERS I N ANALYSIS

tinuous a derivative can be. In this section TI e consider some questions concern- ing the continuity of derivatives. Our discussion points out , in addition, some of the pathological behavior possible of a derivative.

T o she\\ t h a t not ever) bounded derivative is Riemann integrable, I'olterra [182] gave an example of a function f z ivhose derivative is bounded bu t discon- tinuous on a set of positive (Lebesgue) measure. T o construct such a function, he considered a nolvhere dense perfect set PC [o, 11 of positive measure, and constructed a function ~ v l ~ i c h on each interval contiguous to P behaves, roughly, as the function fl (above) behaves on [O, I ] . This function, f 2 , was pu t together in such a way as to be differentiable on [0, 11 and to produce on all of P the singularity fl exhibits a t the origin. Llore precisely, f; =0 on P, but f; oscillates betvieen -1 and 1 in every neighborhood of an arbitrary point of P. I t follows tha t f; must be discontinuous on P. For a precise formulation of such a function see Goffman [51: p. 2101, Hobson [63. pp. 490, 4911, or Thielrnan [173 : p. 1651. A construction of the t3-pe referred to is possible relative to any non here dense perfect subset P of an interval I . Such subsets can have measure arbitraril3-close to the measure of I, b u t since I-P contains a dense open set, the set P cannot have full measure. I t is natural to ask just how large the set of discon- tinuities of a derivative can be. Does there exist, for example, a derivative nhich is everywhere discontinuous? T o see tha t this question must be ansn-ered in the negative, vie need only observe tha t a derivative f' is of Baire class 1 from n-hich it follox\-s tha t f ' must be continuous on a dense set [133: p. 1431. iVe neaken our requirement: is i t possible for a derivative to be discontinuous except on a de- numerable set? Again the ans\irer is "no." T o see this lve recall first t h a t the set of points of continuity of a n y function must be a Gs.Since this set must also be dense, as was seen above, it cannot be denumerable, for a dense Gs must be non- denumerable. (This fact folloxvs readily from the Baire categor) theorem.)

\Ye next ask TT hether or not i t is possible for a derivative to be discontinuous on a dense set. T o see tha t this question has an affirmative answer, xve use the follon ing approach. IT7e seek a differentiable function ivhose derivative vanishes on one dense set b u t is different from zero on another. Such a derivative must, of course, be discontinuous a t every point a t which it does not vanish. The problem of constructing such derivatives is quite old. In 1887 Kopcke [77] claimed to have given an example of a function f possessing the folloiving prop- erties. (a)f has a bounded derivative f1on [0, 1 ] ; (b) the set on \\ hich f' is posi- tive is dense in [0, I ] ; and (c) the set on xvhich f1 is negative is also dense in [o, I ] . Kopcke's original paper had a flaw which he corrected subsequently [78, 791. There follo\ved a sequence of articles on the subject, culminating in 1915, with a lengthy and penetrating study by Denjoy [31]. In this stud) the author provided a detailed discussion of differentiable functions whose derivatives take on both signs in ever) interval. I-Ie comments on some of the previous norlis on the subject, including Kopcke's, and gives several methods of constructing such functions. Zalcviasser [196] investigated the relative maxima and minima of such functions, obtaining results such as the following: L e t A a n d B be arb i t rary

nonoaer lnpp ing d e n ~ ~ m e r a b l e s i ~ b s e t so j [ a , 111. Tl zen tlzere emis fs a d i . f e r e n t i a b l e j u n c - f i o n f , h a v i n g a bounded der icat ive , such t ha t A i s the set of strict local m a x i m a o j f a n d R i s tlzc set of strict local m i n i m a o f j .

of the Kopcke t>-pe are too complicated to discuss here. I-lo\\-ever, a related kind of function, the so-called function of l'onipeiu 11511, 1s easier to '

understand and still exhibits the propert>- t h a t its derivative vanishes on one dense set b u t is different froin zero on another. A\gain, the derivative of such a f u n c t i o ~ ~is disconti~luous a t every point a t I\-hich it does not vanish. L,et us ob- serve t h a t if d is any real number then the function (.t. -d)1'3 has a finite deriva- tive except a t d , a t I\-hich point the derivative is infinite. L,et ( A , , ) be an>-sequence of positive umbers such t h a t ZA,,< m , and let i d , ) be an>- d e n ~ i n ~ e r - able dense subset of [0, 11. Then the series ZA,,(x-d,,)l:"efines a strictly in- creasing function f.I t can be shon-n t h a t f has a finite positive derivative a t all points for ~vhich the difierentiated series C + ~ , , ( . z . - d , , ) - " ~converges, and an infinite derivative other\\-ise. I t can further be shoxvn t h a t the inverse function

f p l is a strictly increasing differentiable function and its derivative vanishes on a dense set. ;I lengthy and detailed s tudy of such functions can be found in 31arcus [ 1 0 6 , 1131 . See also [ I 11 and [ 9 0 ] for answers to sorile cluestions raised in [ 1 1 3 ] .

Diflerentiable functions \\-hose derivatives are discontinuous on a preassigned den~imerable set i d , , ) (n-hich ma>- be dense) can be constructed by considering any uniformly convergent series of derivatives, X i , , , such t h a t the function f,, is discontinuous only a t d,,. 1-or exanlple, the function j given b>-f ( ? c ) cos ( x - a , , ) - l is a derivative x i t h discontinuities on the set = x:==, ( d , ,) . (See Ilalperin [611].)

l y e have seen t h a t the set of discontinuities of a derivative can be dense, bu t t h a t the set of points of continuity niust also be dense and must be nonde- numerable. Finally, J\-e ask: what are necessary and sufficient conditions 011 a set E t h a t it be the set of discontinuities of a derivative? I t is easy to verify t h a t such a set 111ust be an F, of the first category. C:onversely, if E is a n y first category F,, E C [ a , b], then E can be expressed as the u n i o ~ ~ of an expanding sequence of nowhere dense closed sets E,,. 14-it11 each E,, TI-e associate a "1701terra type" function f, \vith the propert>- t h a t if x c i E E , ,then f?:oscillates hetn-een -1 and 1 in each ~leighhorhood of -2,). I t is not hard to verify tha t the f u n c t i o ~ ~ /' defined by J ( x ) = C f , , ( x )i31Lis differentiable on [ a , b ] and its derivative is con- tinuous a t each point of WE,b u t d i s c o n t i ~ l ~ o ~ s a t each point of E. Thus \\-e have

TEIEOREAI.A zeces sary a n d s l~ f l i c i en t c o n d i t i o n t ha t a set EC [ a , b ] be the set o j d iscont inz t i t ies of" a derielative, i s t ha t E be a n F, of the ,first ca tegory . (-Although lye-imagine t h a t this theorem is knon-11, we have bee11 unable to find a reference.)

111 particular, there are d e r i ~ a t i ~ e s a.e. 01111hich are d i s c o n t i n ~ ~ o ~ i s [ a , b ] . For if to each positive integer n n e 111;llte correspoild a 11011here dense closed sub- set E,, of [ a , b ] having nleasure greater than b - a -1l?z, the11 the set E \\ hich is the union of the E,,'s is a first c a t e g o r ~ F, of me;lsure b-a. T h e result follons fro111 the theorem above.

4. An unsolved problem. -\1311> classes of fu~lctions can be characterized 111

ternis of 11hat the inverse lapping of a function in the class does to cert,iin open sets 'The chart belo\\ suniniari~es some of these c11,~racteri~ations. Let a be a11y real number and let

7 hen f i s if u n d o n l y 1Jfoi (111 reczl a , @

co~ititiuous E,(f) and E a ( j )are ope11 Raire class 1 E,(j) and E a ( j )are sets of type F, Raire class E ( E n cou~itable ord i~ la l ) E a ( J )and E a ( f )are additive Borel class [ if E finite. :+I if E

infinite iri sorne Bnire class E,(f) and E a ( j )are Borel sets upper semi-cont inuo~~s E a ( j )is open lower s e m i - c o ~ l t i ~ ~ ~ ~ o ~ ~ s E a ( j )is open measurable E U ( J )atid E a ( f )are iileasurable approximatel\- contiriuous each . v c E a ( J ) n E p ( f )is a point of density of t h a t set, and

t h a t set is all F,.

I t is ~ la tura l to ask what the correspoildi~lg characterizations are for various classes of derivatives. This question has bee11 studied by Zahorslii [192].111 this I\-ork, he found necessarJ- collditioils and also sufficient coilditio~ls in ter~l ls of the sets Em(!) and Ea(j')for a fu11ctio11 to be a bou~lded derivative, a finite derivative, or a derivative, possibly infinite, bu t he \\-as unable to find character-i z a t i o n s of these classes of derivatives. (See Section 14 for a illore detailed discus- sion of Zahorski's results.) 'The q u e s t i o ~ ~ of characterizatioil of these classes is still open.

5. Derivatives a.e. and universal generalized antiderivatives. As \Ye san-in Section 4, the problei~i of characterizi~lg derivatives in terms of the sets E a ( f )and/or E,(f) has not yet been resolved. \Ye turn low to the problem of fi~ldi~lg; ~vhich have the prop- such a characterizatioil for the class of fu~lc t io~ls ertj- of being; a l m o s t eoerywhere the derivative of a continuous f u n c t i o ~ ~ . As n e shall see, this requ i re~ue~l t i~nposesvery little restriction on a fu~lction.

14-e first observe tha t every Lebesgue summable fu11ctio11 is al~llost every- nhere the derivative of its integral. The same is true of any fu11ctio11 integrable in the sense of Lknjoy-Perron. (See Section 10.) There are, ho\\-ever, ~lleasurable functio~lsnot integrable in either of the above senses. 111 1915, Lusin [97, 991 published the follo~villg theorenl, \vhich corupletely solves the proble~n of char-acterizing those f u ~ ~ c t i o ~ l s \\-hich are derivatives a.e. of co~l t i~ luousfunctio~ls: E o e r y m e a s u r a b l e f u n c t i o n f ( f ini te a .c . ) i s a l m o s t everywhere tile der ivat ive of a c o n t i n u o u s J u n c t i o n F.The conditio~l of measurability of f as \\-ell as tha t of a.e. finiteness is obvious1~- necessary as \\-ell as sufficient. Thus, the a .e . jiiinite Jzrnction f i s a.e. the der ivat ive of a cont inz tous Jz tnc t ion I: iJ a n d o n l y i f f i s nzea- .s~trnble, or eqzrielalently, iJ a n d o n l y i f each set of the fornz {x:f(m) < a { or of the fornz i z : f(m) > a ) is measl t rable . Of course the fu~lctioil f is not the only one

DERIVATIVES 29

11-hich is a .e , the derivative of F, b u t any other such function is equivalent to j (i.e., agrees n-ith f a.e.).

Let us see what happens if IT e ~veaken the requirement of being a.e. a deriva- tive still further. Let f be an arbitrary function on [a, b ] and suppose there exists a sequence { h,, 1 of numbers n ith h, J 0 and a continuous function E' such tha t

F(x + h,,) - F(x)j(x) = lim n-. rn h n

a.e. on I=[a, b]. Then F may be called a generalized antiderioatioe of f . I t is clear t h a t such an F may be a generalized antiderivative of many fu~lctions not equivalent to f . How many? AIarcinlcie~vicz [101] has proved the follo~ving remarkable theore~n: There exists a continzlozls function I.' which is a generalized antiderivatioe for eoery use. jinite measzlrable function. (Tha t is, F is a universal generalized antiderivative.) I t Ivas also sho~vn in [101] tha t most functions are universal generalized antiderivatives, in tha t the class of colltinuous fullctio~ls which are not universal generalized antiderivatives form a set of the first cate- gory in ~ [ a , b ] . A proof of the theorem of Lusin and mention of the theorem of IIarcinkieTvicz can be found in [157: pp. 215-2183.

Other results of the above type have been obtained bj- Sierpihslci [163] and Eilenberg and Saks [35]. One such result [35] deals ~ v i t h the generalized anti- derivative of arbitrary (not necessarily nleasurable) functions: Let f be any fzlnc- tion defined on an interoal I and let H be any denzlmerable set of real nzlmbers. Then there exists a continzlous function F such that

f (x) = lim F[(x 4- lz,) - ~ ( x ) ] / h , n 3 m

for every null sequence (h,,{ from H. (There is no exceptional set here; the result holds for all x.)

6. Dini Derivatives. *A fu~lction defillecl oil an interval I= [a, b ] has defi~led a t each point of I four Dini derivatives (except a t a and b , a t ~vhich onll- t ~ v o of the Dini derivatives are defined). For example, the upper right Dini derivative of f , D+f , is defined bl-

f (X+ h) - f(x)D+f(x) = lim sup - - s

and the other three are defined in an analogous manner. An elementary result is t h a t if one of the Dini derivatives of f is continuous a t a point xO,then j is differentiable a t xo.

In 1915 Denjoy [30] proved a theorem relating the four Dini derivatives for continuous functions. This \\as generalized to measurable functions bjr Young [189] in 1916 and to arbitrary functions by Salcs [156] in 1924.

30 PAPERS I N ANALYSIS

T I - I E O K E ~ I .Let f the possible exceptio?~ bejinite o?z [a, 1 1 1 . Then, ~ ~ ' i t l l o/' a nu?? set, [a , b ] can be decomposed i?ztojoztr sets:

Al , on which f 1las a jinite (ordinary) deritlatiue, A 2 , o?z wllicll D+f= D-f (j inite), D-f = a,D+f= - a,

A3, on wllicll D+j'= a , D-f = - a , D-j'= D+f (ji?zite), and Ad,on which Dij'= D-f = m , D+f=D-f= - 00.

T h e theorem is valid if one replaces [a, b ] by any set d (not ~lecessaril?; nlea- surable).

So~l leinlnlediate coIlsequeIlces of this theorem are the follon-ing : (1) aA1l increasing function is differentiable a.e. (for the sets A" ,A3, and A 4

are empty i11 this case) ;

( 2 ) fuilctio~l of bounded variation is differentiable a.e. (for such a func-tion is the difference of t~x-o increasing fu~lct io~ls) ;

(3) If f is finite 011 [a , h ] , then the set 011 ~vllichf' is infinite is a 111111 set. ( I t is interesting to observe, by IT-a?; of contrast , t h a t there exist functions n-hich have D+J= rn , even though /' is r ight-co~lti~luous. c a ~ l n o tHere, right-co1lti11uit~- be replaced by continuity. See [7: pp. 125, 126; 124; 1691.)

T h e Denjoy-You~lg-Salts theore111 has bee11 extended by Garg [ 4 2 ] ,1~110

shoived t h a t the exceptio~lal 11~111set also has ail image of measure zero. Garg has also co~lsidered the set a t ~vhich the L3i1li derivatives vanish. Some applicatio~ls of this exte~ls io~l derivatives of may be found i11 [43,44, 451. For results on D i ~ l i IIOIT-heremonoto~lefu~lctions,the reader is referred to Garg [46, 47, 481.

For continuous functions the sets { Dif# D-f ] a~l t l { D+f z D-/'} are sniall ~ I Ithe sense of category. T h e follo~\-i11g result is due to Seugebauer [140]: I f f i s co?zti?zltolts the72 tile sets (Di/'# D-/'] and { D+J# D - f } are of.rirst category. I f in additiox J i s o/' boz~?zded oariatio?~ on eoery closed intertlal, thez these sets are of measlire zero as well. The characteristic fu~lction of the ratio~lals sho~vst h a t con- tinuity ca111lot be dropped fro111 the first statelnent; nor can the h~-pothesis of bou~lded var ia t io~l be dropped fro111 the seco~ld s ta teme~l t , as is sho11-11 b ~ - Ex-ample I11 of Ue~l joy [ S O ] . Seugebauer 's theore~u , as \\-ell as certain related re- sults, is a consequence of a result found ~ I I[203].

AAlthougha Dini derivative does not , in general, satisfJ- the Darboux condi- tio11, s o ~ u e interesting results about the intermediate values take11 011by Dini derivatives have been advanced b?; JIorse [130].One such result is the follo~\-- ing: I f f is conti?zuo~is, - = <X < a,if the set { x : D+f(x) ? A } is dense a d tile set ( x : D+f(x) < A ) is nonenzpty, tlle?z the set ( x : D+f(x) = A ) has the power of tile con f inz~um.

i4derivative (finite or infinite) of a real valuetl function is aln-ays in Baire class 1. 'The correspolldillg statement for Dini derivatives is not valid, even for co~ltilluous functions. F-lo\\-ever, if J is in Baire class a, then the four Dini derivatives are in Baire class a f 2 [162]and if f is measurable, then so are its Dini derivatives [ 4 ] .If f is not measurable, then the same may be true of its Llini derivatives. HOIT-ever, F-ILjek [58]has advanced the surprising result t h a t for any finite f u ~ l c t i o ~ l (nleasurable or not) the extreme Bilateral derivatives

DERIVATIVES 31

a nu st be of Bnire class 2. (The upper b i l~ t e r a l derivative of a function f is defined by

f(x + il) - f(x)J(x) = lirn sup .

?I -0 h

The lo~ver bilateral derivative is defined a~lalogousl>-.) 'This result is the best possible, for there exists a function j' satisfying a Lipschitz co~ltlition, I\-ith $7 not ill Baire class 1 [168].

7. Approximate derivatives. In certain ilistailces a function fails to have a derivative a t a point so ,).et the restriction of the fu~lctioll to a set nhose coniple- nlent is veq- "thin" near scihas a derivative a t s o . If one proper1~- interprets "tliir~"il l ternis of density, then one arri\-es a t the noti011 of an approximate derivative.

~ E ~ I Y I T I O Y . EL e t f br defi?zrd o?z [ a , b ] , a n d let s c i E ( a , b ) . lj thrvr rxzctc n ~ e t ~ Z I C J Z t ha t (1) s o E E , (2.) so i\ n 11olnt o f zevo dmzuzty w i t h r e i p ~ c t to -E, a n d (3)

e x i s t s , .for s vestuicted to E , t h e n t h i s l i m i t is cc~llcd the a,b,bvosiiizntc dcui.itntitlc 0-Fjc ~ t x o a n d i s zauitten Ji,(.xo). (The o l ~ v i o ~ ~ s made s o = a orinodificatio~ls are if x,i = b . )

The lotion of approxi~liate derivative 1~21s illtroduced by L1elljo)- [29] and plays an inlportant role in the theory of the Delljoj--l<hi~ltcl~i~le integral (see Section 10).

The approximate derivative also arises in co~l~ lec t io~l \\-it11 certain cluestio~ls illvolvillg the approximation of f ~ ~ n c t i o n s Th11s, let f beof several real varial~les. defined on, say, the unit square S ill Euclidea~l tn-o-space. According to L11sin's 'Theorem J is riieasurable if and 0111~- if for ever\- E >0 there exists a f~11lctio11g co~l t i~ luous011 S such tha t g=f except 011 solrle set of measure less than E .

Suppose II-e wish to approximate .f in this sense b>- a f~11lctio11 II-hich is not 0111)-continuous, I I L I ~also has a co~l t i~luous andtotal differe~ltial. This is possible if o111y i f f has an approximate total differential al~llost ever>-I\-here [216]. Tha t is, i11 order tha t f have the propert>- that for every E >0 there exists a c o ~ ~ t i ~ l u o u s l ~ -difiere~ltiable f ~ ~ ~ l c t i o l l g s11c11 tha t g =Jexcept oil a set of liieasure less t-llall E , it is necessar>- and sufficient that .f be approxi~natelj- differentiable a.e. 'This last co~ldi t io~lis equivalent to the co~ldi t io~l that the partial approximate deriva- tives o f f exist a.e. 12131, see also 115'9: p. 3001. (\Ye note that the corresponding s t a t e ~ n e ~ l t fu~lc t io~lfor ordi~lai-y partial derivatives is false. There is a co~ l t i~ l r~ous of ~ I I - o variables n-hose partial derivatives exist a.e. bu t n-hose total differential exists ~zozahcvc [213: p. 5151.)

,\pproximate derivatives possess some of the properties of ordinar>- deriva- tives. Thus, if f is approximatel>- tiifferelltiable on [ a , 1 1 1 , the11f:, is of Baire

32 PAPERS IS -%SALISIS

class 1 and possesses the Darboux propertq (see Ichintchine [73, 741 and Tolstoff [174]). For a unified develop~nent of these results, among others, the reader is referred to Goffinan and Seugebauer [53].

If one allons the approxinlate derivative to be infinite, then the situation is a little different. Zahorski [191] has given an example of a function j 11hich has a t every point an approxinlate derivative (finite or infinite), bu t fi, is not of Baire class 1, nor does it satisfq the Darboux condition. In the saine article, honever, he she\\-s tha t i f f has a t each point an approxiinate derivative (finite or infinite), then f:, is of Baire class 2. I n addition, f must be of Baire class 2 a s nell . In case f is approximately continuous and has a t each point a finite or infinite approxinlate derivative, then f:, (as n ell as f ) must be of Baire class 1. (See Tolstoff, 11741.) In addition, f,', nus st satisfl- the Darboux condition in this case 1821. Soine additional results involving the Baire class of approxiinate derivatives can be found in I<rzq zeu ski [81] and JIatl-siak [I191.

I t is of interest to note tha t nhile the set sf discontinuities of a fu~lction having everq nhere a derivative (possiblq infinite) must be denumerable, Lipirislti [92] has s h o ~ ~ n tha t the set of points of approximate discontinuitq of a function having ever)-\\ here an approximate derivative (possibll- infinite) can be nondenumerable, although the set must have zero measure aild be of the first category.

Under certain conditions a point of approxinlate differentiabilit) is actually a point of differentiabilitq . Thus if J is monotonic,j is differentiable \\-herever f is approximately differentiable [73, 741. Ichintchine has also shou n tha t if an approximate derivative (possibll- infinite) is dominated b> an ordinar)- deriva- tive, then this approxinlate derivative is in fact an ordinary derivative. This result has been used bq Tolstoff to prove t h a t i f f is approximately continuous and has a t each point a finite or infinite approximate derivativej;,, then except possibly on a no\\ here dense set, f:, is the ordinarq derivative of f. ( [175]; see also [53].)

111 1916 Denjol- [33] noted the f o l l o ~ ~ of '1 (finite) derivative: ing propertq If a </3 t h e n tize set EaB=[ x :a <f ' ( ~ ) zs eztizer e m p t y ov h a s povztiae rneasutpe. < / 3 } This result \ \as extended bq. Clarlcson [26] to derivatives (nhich might be infinite) of continuous functions. -4 more detailed description of the sets Eap\\.as advanced bq I-Isiang [65]. Finall!, in 1963, ;\Iarcus [lo81 s h o ~ ~ e d tha t the cor- responding results are valid if one replaces "derivative" bq ((approximate derivative" in the hj~pothesis , ~ n d conclusion of Clarltson's theorein. I n case one allons the approximate derivative to be infinite a t some points, additional as- sumptions are necessarl-, As nlentioned in Section 4, Zahorski [192] has obtained results concerning the structure of sets of the forin [ x , f l ( x ) < p } . Correspondiilg results for approxiinate derivatives and Peano derivatives have been advanced bq LYeil [185] and Iculbacka [82].

\T7hether or not a function is approxilnatelq differentiable, it aln aqTs has four extreme unilateral approxiinate derivates. For a detniled studq of these, the redder is referred to Jefferq [71]. Lye mention the interesting fact, 11hich ma>- be

fount1 011 p g e s 198-199 of [ ? I ] , that the theoreni of Dcnjo! -S,ll;s-170u~ig for Dini tieriv,ttives (see Sectio~l 6 above) has a v i r t l ~ a i l ~ide~ltical all,~log~ie. If f happe~lsto be measurable, the11 the sets I! hich correspo~lti to A?and A?(of Sec- tion 6) are 11~111sets. For results on ~lollliieasurnble fullctiolls, see Cho11 [25].

I t is of i~lterest to note that for fu~lctiolls of s e t l e ~ u lvariables the extren~e ulli-lateral partial approximate derivatives of a function ,f reflect the measurability properties of f , n-hereas the partial Dini derivatives do not. Thus if f is a Le- hesgue (Borel) l ~ ~ e a s ~ ~ r a b l e real valued fullctioll of several variables, the saiile is true of its extrelrle unilateral partial approxilliate derivatives. 011 the other hand, there are Lebesgue (Uorel) nleas~~rable functions of tn-o vnriables n-hose partial Llini derivatives are not Lel~esgue (resp. Borel) ~iieasurable. I t is true, ho\\-ever, that if j'is colltilluous (Bore1 ~lieasurahle), the11 its partial Di~i i cleriva-tives are Uorel measura1)le (resp. Lehesgue measural~le). (For fu~lctions of one real variable, the Dini tierivatives as n-ell as the extreme u~lilateral approxi~ilate derivatives inherit the Lebesgue or Borel nieasurability of the primitive func- tion.) For results of this sort see [83 : p. 3211, [157: pp. 113, 171, 2991, and 12091.

\Ye conclude b ~ - mentioning that the 11-ord "thin" nientioneti in the i~ltroduc- tor)- paragraph can be i~lterpretecl in other I\-a).s, giving rise to different sorts of derivatives. Thus, for exanlpIe, S.:\larcus [ill, 1121 has interpreted "thin" in terms of categor). (rather than nleasure) and arrived a t the notio~l of a clunlitn-tive derivative. The notion of "preponderant" derivative, due to Denjoy [29], is related to the notion of approxiinnte derivative but the complements need not be quite so "thin" for a prepolldera~lt derivative to exist as for an approxililate derivative to exist. For a fuller discussion of this matter in a slight1~- broader context, consult Section 8.

8. Other generalizations of the derivative. I t is scarce1~- surprisiiig tha t such a f u ~ ~ d a ~ ~ i e ~ i t ; ~ lconcept as the derivative has received gelleralizatioil in a nun~ber of different directions for various special purposes. l\lall). gelleralizatio~ls are arrived a t b)- n-ealreni11g the sense i11 I\-hich the liinit of the difference cluotiellt [f(x+Jz) -f (x)],']I is obtained, altho~igh other avenues of definition are soine- times used. Irs11all~- the existence of the generalized tierivative together \\-it11 solrle regularity co~lclitio~l ilnplies the existence of the ordinar\- tierivative, anti the restrictivelless of this regularity collditioll call be used as all intiex of the degree of gelleralizatioll obtaiiied. \There the ordinar!- tierivative exists, it is ecl~ial to the generalizeti tierivative. We shall give the definitions of various gelleralizatiolls a ~ i d discuss l~riefly some of the Inore in~portallt ailloilg then].

The Dini derivates, discussed i11 Sectio~l 6, represent the first ge~leralizatio~l of the ordinary tierivative, in that I\-e do not restrict olirselves to tlie liinit of the difference cluotiellt, ~ ~ h i c h limit niay fail to exist, but rather considcr the one-sitied limit inferior and limit superior. 111 this \\-a>- 11-e are assureti of the existence of these derivatives a t each t\\-o-sided liinit point of the clolnnin of the f~illctio11.\\'e neeti 0111~-1)e given the continl~ity of one Dini derivate a t a point to collcl~ide the existence of the ordillary derivative a t that point.

T h e approximate derivative, discussed i11 Section 7 , is a ~ l a t u r a l ge~lcraliza- tion of the ordi11ar)- tierivative i l l 1\-11ich the liniit of the ciiflere~lce quotiellt is take11i l l the metric se~lsc of the approximate limit. -As poilltccl ou t i11 Section 7 , all approxilnatc1~- co~l t i~ luous XI approxilli;~te derivative every- fl~llctioll r i t h \\-here i l l an interval [ a , B ] possesses an o rd i~ la ry derivative on a set of i~l tcrvals \\-hich is tiense i l l [ a , b ] (see [ 1 7 4 ] ) .

IYeakening the density req~iiremcnts for the existc~lce of a limit i l l the defini- tion of a p p r o x i ~ ~ ~ a t e derivative (see Section 7) to t7zc set E has i v e n v density gventer t h a n 1 ' 2 o n a l l s i~_tj icicntly siizall i.rzter;itnls ii7clildii7g 30, 11-e obtain the prepo.rzdcvant derivates and derivative of Denjo\- [ 2 9 ] .Replacillg iiietric colisiderations \\-it11 the co~lcept of category, one arrives a t the ( zPProx i i i z c~ t~( j i ~ a l i t a t i z ~ cc1eri~-ativc tiefined by S. !\[arcus [ l l l , 1121, \\-here the upper qualitative limit of f at sois defined as inf (31:{ x : j ' ( x )>y ) is first categor)- a t x o ) , tlie lower qualitative limit is similarly de!ined, and these lililiti~lg o p e r a l i o ~ ~ s are applied to the cliflerellce cluotient to yield approximate clualitative clerivntes, 11-hicli share Illany of the properties of the Dini clerivates.

I n taking the liniit of the differellce quotient, I\-e may restrict ol~rselves t o co~lsiderillg olll\- v a l ~ ~ e s belong t o a given set E , 11-11ich set has s,,of su+72 \~-llich a s a limit point. This \\-ill give us the deri;itc~ti.ilc~ E . \Ia11)- of 0.f ,/' vclati;it~ to t he s ~ t the theorems foulld i11 Salis [ 1 5 7 ] hold for this forlll of the derivative. Sii~ii lar i l l

concept is the c o n g r ~ l e n t deri.ilntiilc of Sinclalovsliii [164 , 165, 212 1 , ill 11-11ich the values of h used in forniing the cliffere~lce cluotient arc restricted to belong to 2 set Q,I\-hich has 0 as a linlit point, h u t \\here this cliffcrence q~ lo t i cn t is defined for every .YE[ a , B ] , all\-a\-s using tlie same set Q.T h e idea of passing to the l i ~ n i t I\-hile ~leglectillg values obtai~lecl on "~legligihle" sets h c l o ~ ~ g i ~ i g to a particular family has heen advanced 11)- Csriszrir [ 2 7 ] .

Cha11gi11g the form of the difference cluotient gives rise to man\- generaliza-tions of the derivative. T h e most common is the s \ -m~ne t r i c derivative (also called the Riemann tierivative), clefi~led h\-

This derivative has the virtue of not i~lvolvillg the behavior of f a t the point s itself. I t is witiel~. used in the theor>- of trigonometric series. (See, for example, [198 , 1991.) T h e existence of the s\-mnietric derivative a t all points of a set E implies the existence of the ordinar)- derivative a.e. i l l E [ 7 3 ] .'l'he sj-nlnletric tierivative is nice1)- arrived a t through cleco~nposilig the fuliction j a t .yo into its c i G and odd par ts :

&,(t) = %[f(mo + t ) +S(.~O- t ) ] ,

lbT0( t ) = 3[f(xo + t ) - j ( n . 0 - t ) ] .

T h e differe~ltiahility of the odd par t a t t =O is thell equivale~l t to the existence of the sl-minetric derivative, I\-hile the cliff erentiahilit). of the even par t is ecluiv-

d e n t to the property 01 rvroofllnr.\\ [197, 1391 (see Section 9). 'The higher Riemann derivatives, given b \

extend the s~ ~r~ ine t r i c deriva-deri\r,xti\ e [I$, 20, 72, 1991 'I'lie second I i i e ~ n a n ~ i tive is often c'tlled the Schn nrL d e r i v a t i ~ e .

The difference q~io t ien t ma^ Ije \,tried in other directlo~ls. 'The simplest ~ , i r i a n tis

'This definition \\.as considered 11~- T'eallo 11461, n-ho felt tha t it portra~-ecl tlie concept of the derivative used in the phi-sical sciences more close1~- than does the usual defirlitior~, s i~lcef* and co i~~c ides is all\-a)-s c o ~ ~ t i n u o u s , 11-ithj" \\-ilenever ,f' is continuous. This definition has been recently reconsidered 13)- Esser and Shisha [ 3 6 ] .Another variation is Sindalovslti!'~ derivative [166],

11here I$ is an 'irbitrdr) defined in a neighborhood of the origin, 11hichl u ~ ~ c t i o n , approaclies 0 TI it11 11. l lu rav 'ev [131] dealt \I it11 tlie (;;tte,iux derix a t i ~ e,

\I here f ir differentiable (in the ordinar\ sense) on [a , [ I ] , and n ( ~ )is an) botinded function defi~lecl on [ n , [ I ] . The 1i11r'ir frrllctio~l i n the cienonlin,ttor of the difference quotient 111,x)- be exchanged for nn nrbitrar) function g ( u ) , J-ielding the deriv t~tzve w i t h respect t o g given b).

The physic,il sciences, in particul'ir the r~ l iod>-~ l~~tn ics ,led Hose1 to define n ??zen?zd~vivafive[10].

S ~ r g e n t [IS$] extended this defirlitior~ to p,xrallel the U i ~ i i deriv,ltes, nnd ll~ircinltienicz. ~ n dZl-glnund 11031 extended his res~l l ts to n "sl~iooth Bore1 deriv,~tive,"

I11 ;L master1~- paper, l<hintchine 17'31 co~lsidered various candidates for ;I

"ge~leralized derivative," estahlishi~lg their properties and constructing examples to illustrate a hierarch\- of generalit>-. T h e s>-nimetric derixrative n-as discarded since its existence, save on a 111111 set , implies the existerlce of tile ordinar)- deriva- tive x.e. T h e Rorel derivative generalizes the SJ-mlnctric derivative and laclis this "i-la\\-,"bu t is itself generalized bj- tile approximate derivative. 'The approxi- mate derivative, holyever, is generalized b), In dc'ri~6i. ge'1z6i.ule of J', I\-hich is a fullctiorl J,/ , defined 0111~- x.e., such tha t for an\- E >0,

lf(r + 11) - f(.v) .T : I -------- f; (n.) 1> E 17?z I 11

tends to 0 \\-it1111. T h e existence off(:, a.e, 011an interval implies the existence of ,/'; on the interval, and J;,,=j'!; a iu~lct iona.e. , \\-bile Khintchi~le c o n s t r ~ ~ c t e d .f'

such thxt ,/'I:exists on [O, I ] , and J,:,,0111). 011a null set. Hal\-ever, /',/ bol\-s to la de'riv6c g6fz6rc~lisc'r, , f c i n-hicll is :LII\- function \\-it11 , defined even less u ~ l i q u e l ~ - , the propert>- t h a t , for some sequence ( / I , , ] decreasing to 0 , 71.e have [ f ( s+ i~ , , )- J ' (~) ] , . ' h , ,~ j ' r ; 'a .e. This treatment reflects the generalized antideriva- tive of Section 5. l<llilltchine closed b ~ . co~lstructinga continuous fu~lctiorl \l.hicll fails to have exren a d6riv6r g6?1,6vi~lis&r.

;\ completely different approach, \\-hich yields a genera1iz;~tion of ordinar\- derivatixres of order greater than one, is given b ~ - to apolyliolnial approximatio~l function. If J(.vo+il,) can he expressed as

thc11 the Ji's are referred to ns the ith l'eano derivatives [145] (referred to bj- rlenjoy [32] as differential coefficients, and sometiines called de la 1-allCe r 'ouss i~~derivatixres [181], although this latter tern1 is also used othern-ise 111991). T h e 12th I'eano derixratixrej,, al\\-a\,s ecluals the 12th ordi~lary derivative \\-hen the latter exists. Oliver [143] studied the exact 12th I'eano derivative, I\-hich is one \\.hich exists a t every point of an interxral, and sho\\.ed tha t it is of Baire class 1, enjoys the 1)arboux property and the L)enjo>- propert), of Ems,and coincides 11-ith the ordinnry nth derivative on a dense open set. ;\ side condition for the existence every\\-here of the nth or dinar^- derivative is tha t the 11th I'eano deriva- tive be bounded either above or belon-. If the 12th Kiei l ia~l~l derivative exists ever\-\\-here on a set B of positive measure, then the 72th I'eano derivative exists a.e. on E [103].

C;eneralization of the Peano derixrative leads to the LPderivative: if jELlJ, 1s @5 cc , i11 some neighborl~ood of so,and if a polynonlial

exists such tha t

thenf is said to be differentiable of order ~z a t xo in Lp,and f , is the it11 L' deriva-tive. This generalization n-as introduced b! Calderhn and Zygmu~ld [ZI , 221 because the property of differentiabilitl in L?]a t a point is preserved under vari- ous integral transformations, and \\-as applied to solving partial differential equations. T h e Lp derivative has been used recentlh- to establish the differentia- bility a.e. of functions [136, 138, 1691 (see Sectioil 9). \Yeiss [186] coilsidered the symmetric kth derivative in LJ',and generalized the result tha t the existence of the kth s? mmetric derivative implies the existence of the kth (Peano) deriva- tive a .e . Higher dinlensiolls are considered in [215].

T h e n th T a l l o r derivative also arises out of considerations of polynomial approximation. I t is defined [19, 201 as

where is the ordinar? kth derivative. Butzer [19] and Gorlich and Sessel [55] studied the relationships betneen the Riemann, Peano, T a l l o r , and ordi- narq nth derivatives (listed in order of decreasing generality), \\-here convergence \\-as considered in both the usual metric and in the Lll nornl.

For those interested in further generalizations of the derivative, 11e men- tion the fluents [126] and multiderivative [125, 1271 of l Ienger , the I-Iolder and Cesaro derivatives of order n [152], the fractiollal derivative of Icuttner [86], Alinetti's right oscillatory derivative [128], O'Neill's vorlc on general i~ed derivates [144], and Shultla's on nonsq mmetric differentiabilit? [160, 161 1.

T h e extension of the concept of derivative to spaces other than the real line gives rise to a vast literature, ~ ~ h i c h we 11ill not explore. Iiltroductiolls to this field are provided by Bogel's paper on higher-dimensional differentiation [9] , FrCchet's s tudy [39] of various definitions of differentiabilit? in the plane, and the article of Rinehart and [Yilson on differentiation in algebras [153].

9. Points of differentiability. Since the existence of the derivative of a func- tion f a t a point iinplies a certain degree of good behavior off a t tha t point, i t is most natural to s tudy the set of such points of differentiability. I t is especially desirable to find under n ha t conditions this set is large, and i t is also of interest to Itno\\- something about the size of the image of this set under j.11-e discuss these questions in this section.

I f f ' is defined and finite a t x then x is a point of differentiability of J ;if f' is defined (possibly infinite) a t x , then I\-e call x a point of extended differentia- bility. 11-e let D represent the set of points of differentiabilit?. of j,and D* the points of extended differentiability, and also let S=--D,S*= -D*.

T h e first result encountered is t h a t a function nhich is rnonotonic on an interval has a finite derivative alinost every~vhere on t h a t interval. T h e conclu-

sion carries over easily to functions of bounded variation (Lc1,esgii~'. 'l'!icor.cl~i 1157: p. 223]), and to functions 11-hich are T'BG*. Intieeti, in t l ~ e s c ~cxses, not only is ?nAIT=O,b u t i n j [ S * ] = O . ([157': p. 2301, due originall>. l o T)c.lljo?-and Lusin). -1condition, phrased in ternis of a niore restrictive no ti or^ of absolute continuity, 11-hich is both necessar>- and sufficient for J to be dLitierentiab1e alniost every\\-here, under the restriction tha t , f is continuous, has heen presented 11y Pettineo [149, 1501.

T h e propert>- of smoothness (see Section 8) anti the related propert?. are of interest in investigating the diflerentiahilitl- of a function [197, 138, 1701. T h e function J is sinooth a t xo if

AZ(h )= j(.x + li) +~ ( I C- 11) - 2 j ( . ~ )= o(11) :

f satisfies condition ,I if this A,(iz) =O(i'1). ,A continuous smooth functionJ on (a, b ) has the propert). tha t the set D of its

points of tiifferentiahility has the pol\-er of the continuuili in ever>- sub-iiiterval of (a , h ) [197]. Furtherniore, ,I'' satisiies the r)arhoux contiition oil D. (See [197].) If the continuity off is replaced hy measurability, the result on difierenti- ability still holds, b u t in order to conclude the Llarboux propert\- off' we need to lrnov- tha t D is "sniall" in the sense tha t . ~ n ( D n l ) <i?z(I) for each interval IC((L, 0) [139].

If J satisiies condition ,I,then I\-e may s ta te a necessary and sufficient condi- tion for the differentiahility of /' a.e. : ,4 .~ncasiiic~l~lr /' sutis/'yi.rzg condition jltnctio?~ ,I at racl~ point oJ u .~nrus~iic~blr srf E is d$frrr?zfiahlc a.e, on E L/' und only iJjor uli?zosf ezlriy xEE fi'lerc is a?z 7, sztcll that llrl[A,(ll)]' i s s?t?n?nablc ovcr (0, 7,). T h e necessitj- is due to :\larcinliie\\-icz [102], and the sufficient>- to Stein and 2)-gniunti [169]. T h e sumnlabi1it)- of i'lrl to the exis- [A,(/?)]' a.e. is e q ~ ~ i v a l e n t tence of the L v e r i v a t i v e a.e. [169].

T h e contiition ,Iis tiispensed \\-it11 in a siniilar result due to Seugehauer [136]: A mras?tiablc fzlnction J is cqz~ivalcnt to a jlinctio?~ dilfrrrnfiablc a.c. o?z a mrusziiablr set E iJ und only if jor ali?zosf czlcry s E B tllcic is un q,> 0 S I L C ~ Itilat [A,(i1)]"i1"4(i'~-lA,(l~)) ozlci (0, r ,) , \\-here the function 4 is given is s i t ~ n ~ n a l ~ l r 11y $(x) = 1- I x ( in ( - 1, I ) , +(x) =0 else\\-here.

Properties I\-hich are relevant to a discussion of differentiahilit\- are Banach's contiitions (TI) and (T'?)and 1,usin's condition (5).For J deiined on I= la, b ] and y ~ j [ l ] , \\-e call the set { s :f(x) =y] a level set o f f . \Ye say tha t f satisfies condition (TI)if, for alnlost all ~EJ'LI],the level sets are iinite, and ( 7 . 4 if the level sets are a t niost denunlerahle. 'The contiition (S)is satisfieti if R C I and ?nPL3=0 imply tha t ? H J L R ] =Q also.

Alarchaud [100] she\\-ed t h a t if each level set of a continuous function /' is finite, then J is tiifierentiable allllost every\\-here. Iosifescu [68] has given n direct demonstration of this theorem, and has extended the result to discon- tinuous functions for 71-hich the set of points of nonnlonotonicity (i.e., points having no neighborhood on 11~11ich the function is monotonic) has measure zero. If the finiteness of the level sets is extended to denunlerability, the result is al-

DERIVATIVES 39

most totally lost, for Iosifescu has given a construction of such a function f,,for 1~11ich?n,D< E , \\-here E is any arbitrarily preassigned positive number [67].

If f is continuous and satisfies propert\- (_\-),then a theoreill of U;~I~;LCII'S [157 : p 2861 assures us tha t D has positive ineasure. 1I7eal.;ening the hypothesis b?-replacing (S)\\-it11(TI),11-e can conclude only tha t S* has an image of measure zero (a propert\- tha t characterizes continuous functions TT-hich are (TI)1157: p. 2781).Still further \\-ealcening the 115-pothesis to ( I . ? ) , \\-e call conclude only tha t D* is nolldenuinerahle, hu t can sa\- nothing ahout its ineasure.

Finally, IT-e ltnol\- tha t it is possible for a continuous function to be so badl\- behaved ns to be nol\-here differentiable. I t ilia>- he t h a t D is eiilpt!. b u t D* is not elrlpt~., as in Cellerier's exaniple 1231, or 7j.e even have D* ei11pt:-, as ill Keierstrass' function [184], \\-hich does, hon-ever, atilllit one-sided derivatives on a dense set. Even this last remnant of gooti behavior can be renioved, as in Resicovitcli's example 16, 1471, ~1-hic11 a t no point has even a unilateral deriva- tive (even infinite). These are all discussed in Jeffery 1'71 1 . I.'unctions such as Hesicovitch's are "nluch rarer" than those of 1Yeierstrass' example, in the sense t h a t the foriner collstitute a first category set i l l ~ [ a ,]11 11-hile the latter forill the complement of a first categorlT set [ 5 , 123, 1551.

11-e pass from the s t ~ c l ~ . the size of theof D and S to considerations of structure of these sets. Through use of the concept of convergence classes [62: p. 3001 one can prove tha t D is an FCa.'The same is true oi the set oi points oi left-tiifferentiabilie or points oi right-differentiability I t is not the case, 11o\~-- ever, t h a t each G6, is the set S for sotne function j.Zallorslii 1190, 1931 s h o \ ~ e d for continuous functions tha t the set S is the union of a G6 \\-it11 a null Ga, and t h a t any set of this forill is the set of points of iloildiffere~itiability for some continuous functioil. Exactl\- the same statement is true of _\-*. For a function of bountieti variation, the Ga is dropped from the theorem. Urudno [ i '? ] ex-tended the results to arbi t raq- functions, 11-it11 exact1~- the ::~~iirconditions hold- ing. Zahorski's proof has been siliiplifieti b>- Il'iranian [21 I ] .

Since the distinction bet\\-eel1 having a derivative (possibly infinite) and hav- ing a finite derivative is so often critical (see, for exainple, Section 10 on inver- sion of derivatives), it is of interest to ltnon- just here a derivative ma\-take on infinite values. 17-e ltno~\- fro111 our discussion of 1)enjoy's theorein oil Diili derivatives tha t the set { x: f'(x) is infinite ] has measure zero. Conversel~., for any set E of imeasure zero, there is a sinlple construction of a continuous, in- creasing function jE \\-it11 j h = +a 011 E (see [132 : p. 2 141). Jarnilr ['70] gave a construction of a continuous fuilctioil \\-it11 ail illfiilite derivative on ail arbi- trari1~-given ilull Gsand \\-it11 finite Zlini derivatives elsen-here, and Zahorski (1951 i~nprovecl this result to preseilt an every\\-here differentiable (in the ex- tended sense) function \\-it11 this propert!,. For other results of this nature see 13ojarslti (2001, Lipilislii (2081, 11arcus [116], and Piranian [2 101.

T h e lllost coniplete result in this direction is clue to Tzodilts [177, 198, 1'391 : For a -f inite f u n c t i o n J,necessary a n d s ~ t ~ f i c i e n t cond i t i ons .Tor tile sets El a n d E2 to be sets wheve = + a n d j'= - a respectiaely a r e : ( 1 ) El a n d E2 be F,J's wit11

??zeaszrrez e r o , aizd ( 2 ) tizere e.vist disjoiizt F,'s H I and He, wit/l E ~ C H I ,E2CHZ. Other results c o ~ ~ c e r n i ~ l g derivatives are given ill Filipczak [38, 2041, i~lf i~l i te (I;arg (491, I<rollrod [80], Landis [$'$I, A\l arcus [109, 1161, and _\l arczen-ski [ a 181.

10. Inversion of derivatives. \T'e shall be coilceriled in this sect1011 I\ it11 tha t half of the f u n d a n ~ e ~ l i a l nhicll, r o u g h l ~ tl~eorein of c , i lc~~lus , rec,~ptures,i f u ~ l c -tion from its derivative. T h e forin 1\-11icl1 this theorein u s u a l l ~ tahes ill eleiile~l- tar? calculus is. Let f be contzn~to~i>/y 1'1zc.ntd~jereiztzable on (a , h ]

the integral being talre~l ~ I Ithe sense of Ii ieina~ln. T h e requireinellt tha t f 1 he contilll~ous is us11all~- I\-ealrened i l l a course ill advanced calc\llus to the require- 11lent tha t 1' be Rie111an11 integrable. 'The example of \'oltcrra cited in Section 3 s11o11-s tha t this latter restriction ca~lllot be \\-e;~lre~led to insisting merel\- tha t ,fl be bounded. KO\\- a desirable propert\- of an integral is tha t the f ~ ~ ~ l d a n l e n t a l ecluation (*) hold for any derivative , f l , irrespective of 11-hether or not , f l is con- t i~luousor boullcled. T h e above collsicleratio~l s11o11-s tha t the Iiie111an11 integral does not have this propert\-, even for bounclecl clerivati\~es. T h e Lehesgue inte- gral does a little better. T h e relevant theorem for 1,ebesgue integrals asserts tha t (*) holds \\-henever J1 is summable. 111 particular, (*) l~olcls for 1,ebesgue integrals ~\-he~lever might fail to be ,fl is bo~lndecl. If f' is not hou~lclecl, tllell f 1

summable. The function j(.v) =.ye sin s- .~J ( 0 ) = O ;,I, af ~ ~ r ~ l i s l l e sexa~nple of clitierentiable fullction on (0, 11 11-11ose derivative is not summable over any interval colltai~lillg tile origin. T h e difficult?-, of course, lies in the fact tha t Sj" = ~ 1 3 over all!, s~1c11interval. I t is of interest to note tha t eve11 derivatives which are "tied don-11" b\. vanishing on a dense set of points (see Section 3) can 1,e so large else\\-here tha t .fl fails to be s u ~ n ~ n a b l e . llave(See [I1] and [go].) \\'e seen tha t equation (*) is not valid for Lehesgue integrals i l l general.

Perroll [148] and De~ljoj- (28, 341 illclependelltly defined integrals, both Illore general than the integral of Lebesgue's, I\-hic11 completel\- solved the prob- lem of recapturing a function from its (finite) derivative; more precisel!., of i~ltegratillg arbitrar\- derivatives so tha t (*) l~olds. ,Al tho~~gh the nlethocls of De~l joy and Perroll \\-ere elltirell. tlifferellt i l l approach, 1-Ialie [59], AAlexanclroti (1, 21, and 1,oomall (961 proved tha t these t\\-o integrals were entirel!. equiv:~-lent: i.e., if a function is integrable in one of the t11-o senses, it is integrable in the otl;er, and the t\\-o integrals are equal. Thus, this integral is usual1~- calletl tile Denj o~r-Perron integral.

111 1016 Ti l l i~l tc l~i~le [75,761 inoclified the 1 )enjoy ronstructioll to give rise to a more general integral, 1lo11- referred to as the Denjo!--1ihintclli11e integral, IT-hic11 integrated arbitrary approxiinate cleri\iati\ies of ccnti~luous fu~lctions. Descriptive clefi~litiolls of the Denjoy-I'erron and L3elljo\.-Ii11i1ltcl1ine integrals

DERIVATIVES 41

\\-ere advanced b\r Lusin [98]. For a developnlent of the Perroil integral and both the constructive and descriptive definitions of the Denjol-Perron and 1lenjo~-Ichintchine integrals, see Salrs [157]. ,An elegant development of the I'erron and the Denjoy integrals, along 11ith a proof of their equivalence, can be found in Katanson [133; Chap. 161. X detailed discussion of holy a function may be recaptured froin its derivative in a countable number of steps is given in Jeffery [7'1].

For purposes of conlparison I\-e s ta te the descriptive definitions of the Lebesgue, Denjoy-Perron, and Denjoy-Ichintchine integrals. 11-e begin 11 ith the definitions of four generalizations of the notion of absolute continuit). of a func- tion defined on an interval [a, b ] : Let I;be continuous on [a , b] and let E C [a , b ] . 'Then F is called A C(.4 C,) on E provided t h a t for any 6> 0 there exists a 6 > 0 such t h a t if ( [a , , b:,] ) is an) secluence of nonoverlapping intervals \\-it11 end- points in E and n i th E ( b , - a i ) < 6, then f(b:) -j(a:) I < E ( x u : < e , \\-here uh denotes the oscillation off on [a:, b, 1). If [a , b ] = UE:, such tha t F is .4 C ( 4 Cr) on each set EL, then F is called .4 CG(.4 CG,) on [a , b].

Descriptive definition of the Lebesgue integral: The function F is called the Lebesgue integral of a function j provided tha t :

(a) F is absolutely continuous on [a, b], and (b) F' =f a.e.

Descriptive definition of the Denjoy-Perron integral: T h e function 1; is called the Denjoy-Perron integral of a function f provided t h a t :

(a) F is ACG, on [a , b ] , and (b) F'=f a.e.

Descriptive definition of the Denjo)--1chintchine integral: T h e function F is called the Denjoy-Ichintchine integral of a function f provided:

(a) F is A CG on [a, b j, and (b) FA,=f a.e.

For a detailed develop~nent of the relevant concepts, the reader is referred to Salts [157 1.

\Ye conclude by observing tha t the derivatives considered in this section are talren to be finite. This requireillent cannot be ent i re l~. deleted, for there exist tn-o continuous functions F and G, such tha t F1=G1, yet F-G is not constant. These derivatives are equal to + co on the Cantor set , and finite else!! here. T h e difference F - G is the Cantor function. T h e first to notice the existence of t\\-o such functions was Hahn [57]. See, also, Ruzie~vicz [154], and Salrs [157: pp. 205, 2061.

11. Stationary sets and determining sets. standard theorem of elernentar)- calculus asserts tha t if the derivative of a differentiable function vanishes on an interval, then the function is constant. One might ask the question: ' ( a n 11011 large a set nlust the derivative be line\\-n to vanish, before i t is knou-n to vanish identicall)-?" This leads us to the notion of a stationaq- set for a class of func- tions.

4 2 P A P E R S I N LINLILBSIS

L ~ E F I X I T I O X . L e t e be a collection q / . / i rnc t ions de j i z ed o n [ a , 111. A s ~ l b s e tE o,f [ a , 111 w i t h tile p roper t y t ha t w l ~ e n e v e r e i s coizsfnizt o n E , tkeiz f m u s t be co i z s tn~z f o n [ a , O ] , i s sa id to be (1 s tatioiznry set jor e .

For example, if e consists of t h e continuous fullctions on [a,I ) ] , the11 the s t a - t ionary sets fo r e are the dense sets, 11-llile if (2 consists of t h e anal>-tic functions, then t h e statio11ar)- sets for e are those ~~-1l ich contai11 a t least one limit point.

If t h e collection of functions e is closed uilcler t h e operation of s u b t r a c t i o ~ ~ , then every s ta t ionary set for e is also a d e t e r m i n i n g set for e. T h a t is, tn-o mein- bers of e ~ ~ - h i c h nus st agree on all of [ a , 1 1 1 .agree on this set

111 recent years, t he s ta t ionary sets and t h e determining sets for various classes of derivatives, as T\-ell as certain related classes of functions, have heen characterized. See Roboc a n d l l a r c u s [81, Bruck~le r[ 1 2 ] ,Bruck~le ralld Leonard [ 1 6 ] , Goffman and K e ~ ~ g e b a u e r [ 5 2 ] , .\Iarcus [ 1 0 4 , 1 0 5 , 1 1 0 , 1 1 4 , 1 1 5 , 1171 , Neugebauer [ 1 3 4 ] ,S L I I ~ J - ~ SHalaguer [ 1 7 1 , 1721. T h e results of those investiga- tions n-hicll bear directly on 011s suhject are t a b ~ ~ l a t e c l in tile char t be lo\^-, ~ \ - l ~ i c l ~ lists t h e cllaracterizations of stationar). sets and deternlining sets for v a r i o ~ ~ s classes of f ~ ~ n c t i o n s on [ a , O ] . If A is a set tile11 n z l ( A ) denotes its 1,ebesgue clefi~led inner measure and card ( & 4 )i ts carcli~lality,

12. Intervals of constancy. A11 interesting functioll encounterecl b)- stuclents of a course in real variables is t he Cantor function f.This function is detined 011

[O,11 \\-it11j(O)= 0 , ] ( I ) = i t is continuous 1. I t has tile propert). t h a t a l t l l o ~ ~ g l l and nondecreasing on [ o , 11 , it is constant on ever). interval c o n t i g u o ~ ~ s to the Cantor set P. Tllus j' = ho\~-ever , fails0 except on P. I t can h e s l l o \ ~ - ~ l , t h a t f t o have a cleri \~ati \~e,finite or infinite, on a non-denulnerahle se t . X natura l cluestion to asli is \\-hetiler one call ill sonle Tva)' "smootlle" the Calltor f ~ ~ n c t i o n to arrive at a clifferentiahle f ~ ~ n c t i o l l ./ sucll t h a t . / ( 0 ) =0 , , f ( l ) = 1 , and , f l =0 on -P.T h e a~ l s~ \ -e r is in t h e negative, in vien- of tile follon-i11g result due to Zallor- ski [ 1 9 2 : p. 2 1 1 : I J n contiiziio2ts i zoncons tant f ~ t n c t i o n ./ o j l~ountdetd vnrintioiz i l c ~ s

a l inos t everyzulzere n vuizi.slziizg der ivat ive , t hen j , f a i l s to be d<fere?z t iabl t~ oiz a n Lriz- co~i7ztable set.

This theorem does not e l i~n ina te t h e possibilit). t ha t a nonconstant function be differentiable on a11 interval , J-et constant on each i n t e r ~ a l of a set of intervals \\-hose union is dense in [o , I ] . Such functions have actual1)- bee11 constructed: see Zahorslri [ 1 9 4 ] . I n fac t , t h e f o l l o ~ i n g s t a t emen t is valid [ 1 9 2 : p. 4 3 1 : A izecessnry a n d s~cgicieizt co izd i t ion t ha t E 11e the set o / zeroes o j n bolrnded tderivntive i s t ha t -E be n?z J14 set. I-sing this theore111 one can prove tile fol1o11-ing [ 1 5 ]: Le t G be a n ope^ deizse sllbset o j [ a , b ] aizd let T= NG, &4izecessury an t i s i t f i c i en t coiztditioiz t / lnt tilere be a d l f e re i z t i nb l e Jzrnction , f tdqliized o n [ a , 2 1 1 szlcil t11at , f i s constnizt 07% each conzponent in terval of G,bzlt n o t coizstnnt 07% a n y o p e n i?zterzlal coiz- t a i n i n g p o i n t s o j P,i s ilznt tile i?zter.scction o,f P zilit/l a n y a rb i t ra ry o p e n iizterval i s

. . ei ther e m p t y or h a s posztztle ineaslire.

DERIVATIVES 43

E IS A STATIONARY SET E I S A DETERII IKIKG SET

I F A;\-D OKLY I F IF A;\-D Oh-LY I F

I . Derivatives Derivatives (possibly infinite) E = [a , b ] E = [ a , b ] Derivatives (possibly infinite) of nz,( W E ) = 0 nz,( W E ) = 0

continuous functions Finite derivatives N Z ~ (-E) = 0 nz,( W E ) = 0 Bounded derivatives nz,( -E) = 0 n7,( W E ) = 0 Riemann integrable derivat~ves E is dense E is dense Bounded semicontinuous derivatives nz,( WE) = 0 m,( -E) = 0

11. A p p ~ o s i m a t e derivatives Approximate derivatives (possibly E = [a , b ] E = [a , b ]

infinite) Approximate derivatives (possibly (See S o t e Below) E = [a , b ]

infinite) of Darboux functions Approximate derivatives (possibly m,( W E ) = 0 m,( -E) = 0

infinite) of approximately con- tinuous functions

Approximate derivatives (possibly mi( -E) = 0 nzi( W E ) = 0 infinite) of continuous functions

Finite approximate derivatives in<( WE) = 0 nzi( W E ) = 0

I I I . Dini derivatives Dini derivatives of Darboux Baire E meets every perfect set E = [a , b ]

functions Dini derivatives of continuous E meets every perfect set E meets every perfect set

functions Finite Dini derivatives of continuous E meets every perfect set E meets every perfect set

functions

IV. Darbourc fzlnctions Darboux functions card ( W E ) < c E = [a , b ] Zleasurable Darboux functioils E meets every uncount- E = [a , b ]

able measurable set Darboux Baire functions E meets every perfect set E = [a , b ] Darboux Baire class 1 functions E meets every perfect set E = [a,b ] Lower semicontinuous Darboux E meets every perfect set E meets every perfect set

functions Approximately continuous lower

semicontinuous functions

.,ITote.A necessary condition for E to be a statiouary set for the class of approximate derivatives (possibly infinite) of Darboux functions is tha t n7,( -E) = O ; a sufficient condition is tha t E meet every perfect set [ 1 2 ] .

IS-e also uote that the stationary sets and the determining sets for both the class of approxi- mately derivable functions and the uniform closure of this class are the sets which are dense in the interval [ a , b ] [134] .

44 PAPEIIS I N ANALYSIS

13. Monotonicity. Accorclis~g to a theores11 of elernentar>- c,tlculus, n differ-entiable function f \\ hose clerivative is nonnegative on an interv,tl I must be ~ l o n d e c r e ~ t s i ~ ~ gon t h a t interval. This theorem llns bee11 ge~leral i~et l in m,tn>. \\ a>.s. For example, the differentinbilit> of J llas heen replaced b> ,t 11ealrer regularit>- co~lclition, the derivative h ~ s been replaced b>. v,trious t> pes of gen- e rn l i~ed derivative, and the set 011 11hich the derivative is assumed to exist, as n ell as the set on which it is assuliiecl to be ~ lo~lnega t lve , has been assumed to be less than all of the i~ltervnl I, For example, the s ta~ ldard lnonotonicit~ theorem IT l1ic11 ~tppears in the tlleory of Lehesgue i~ltegration asserts tha t a function \\ hich is ahsolutel>- conti~luous and llas a ~lonnegative derivative a e. 111ust be ~lonclecreasi~lg.A sisnilar theorem involvi~lg the ,tpproxilnnte derivative nppe,irs in connection 11it11 the integral of I>e~l jo> -Khi~ltchine.

I n this section 11e cons~cler several tl~eoresns n hose conclusions are t h a t .t

f u n c t i o ~ ~ 11-e hegin nit11 a theorem of [54] and is ~lo~lclecrensi~lg. (;oldo\\slii 'Tonelli [176] (see also [157; p. 2061).

'I'I-IEOIIERZf 011 tile ~lzterz 'nl L e t be n fu?zctlofz untlcfyilzg tile fo l lowl fzg ~o?zdi t zo izs I :

(i) f c ,zs c o f z t i ? z ~ ~ o u (ii) f f euzcts (fi?zzte or z?zjl i~zte) , e v c c j ~ t p e r h a p s o?z a dc?zl~nzcrable se t ,

(iii) f f 2 0 n.e.

T h w z f i s ?zofzdecvensifzg olz I .

11-e note tha t condition (ii) cannot be ~ ~ e a k e l ~ e d to the condition tha t the derivative exists except perh,tps on a 11~111set. This can be seen 11) consicler~ng the negative of the Cantor fu1lctio11.

I n 1939 Tolstoff [I?$] obtai~lecl an isnprovenient of the theorem of (;olclo\\- ski-'I'onelli.

THEOIIERZ.L e t f be n Jq~?zctio?z sn t i s fy i l zg tile Jollozvilzg ro?zd~t io fzs o?z n?z z?ztcvvnl I :

(i) f i s a p p r o . ~ i ? ~ z n t c l y colz t i l zuoz~s , (ii) f : , e x i s t s (.fwi f e or i?zjilzzte) except per i lnps o?z a dc?z~~nzcrnb lc se t ,

(iii) jip 2 0 n.e.

T h w z f n f zd ?zofzdecv~nsz?zg ofz I .i s c o ? z t i ? z z ~ o ~ ~ s

LAnother ge~leralization of the Goldo\\ slri-Tonelli theorem 11as o l ~ t ~ t i n e d 11) Zahorslti [192: p 191 in 19.50.

'I'EIEOIIEAI.L e t J be a fufzctzo?~ satl.>fyilzg tile fol lowifzg colzditio?zs olz a f z ilztertlnl I .

(i) f i s a D a v b o z ~ x Jzt?zctiofz, (ii) f e . ~ i s t s (j-ifzite OY iiz,fi?zite) except per i lups o?z n d e ~ z ~ ~ n z e ~ n b l e se t ,

(iii) f f 2 0 a . c

IT7e note t h a t Znhorski's Theorem is stronger than Tolstoff's in so f,tr as Zaho~slri nss~l~uecl on11 Ilarhoux continuit\ instead of approximate c o ~ l t i ~ l u i t ~ off On the other hand, his theoren1 is 11ealrer in so f,tr as conditions (ii) ,tnd (iii) ~nvolyethe orclinnr! derivative i~ls tead of the approximate derlyatiye. \Ye ould lilie a theorem n hicll implies both Tolstoff's Theorem and Zdhorslri's 'Theorem -Anol~vious candidate for s u c l n theorem is obt,tined 11) coilsideriilg the 11ealrer of the corresponding conditions of the trio theorems. T h a t is, must a I>arho~lx f u ~ l c t i o ~ l lng conditions (ii) slid (iii) of Tolstoff's l'heorem be nonclecreas- sa t l s f~ ing) 'This questioil is ansv ered in the negative, as can be seen b~ considering the example helow. 'This example is sllght modification of an exanlple fouild in [ B ~ Y: pp. 32 1, 3221

E t n m p l e . Let f be a function sa t i s f~ ing the follov i11g conditions on the inter- val (0, I ) .

(i) If ( a , b) is nn interval contiguo~ls to the Cantor qet then f(n) = O , f ( b ) = 1 ,tnd f 1s co~l t i~ luous onand n~ndecre~ ts ing [ a , b ]

(ii) If v is a t n o sided li~lli t point of the Cantor set the i l j ( r ) = 1 (iii) 13ver~ t\\ o sided limit point of the Cantor set is a point of densit! of the

set { r : f ( ~ ) = t ] . Lt is not difficult to verify t h a t this f~lnction has the recluirecl properties

So our first a t tempt to obtain s i i n u l t d ~ l e o ~ ~ s the t n o CL ge1lerali7ation of ~heorenls fails. IYllat next ' 1T.e note tha t h~ pothesis (I) of Tolstoff's Theorem implies t h a t f be in Baire cl,tss I . The same is true of 11) pothesis (ii) in Zahorslri's Theoreni. (The function in our example is in Baire class 2 , b u t not in B,tire cl,iss 1 ) \T7h,tt h,tppennf \\ e add the requireme~lt t h ~ t f he in Raire class I ? Thnt is, if f is n Darhouu function in Raire class 1 nild satisfies conditions (ii) n11d (iii) of 'Tolstoff's Theorem, nu st f be nondecreasing? 'This question \ \as aslied 11) Zahorslri [192. p. 81. I t turns out tha t this question has an affirmative ,tns\\er [201, 202, 2141, thus providiilg a tlleore~n nhich includes both the theorem of 'Tolstoff and the theorem of Zahorslri. I n fact, the folloning more general theorem is v,tlid [201, 2021

THEOREM. be f~ roper tg s u l f i c ~ c n t l y strofzg t o z m p l g L e t @ n f~ inc t zo?z - t i~eore t~c (a) d f z y D a r b o l ! x J ~ ! n c t z o f z zn Bazrc clasc. 1 W / L Z C / Lun f z~ f zec .f ~ r o f ~ e v t g6 o n a n

z?ztevval Izc. T'HG o?z I [157: p. 2211. (h) i l ~ yc o f z t z f z l ~ o l ~ s z'nrintzofz W / L Z C ~ @f z !nc t ion o f b o u ~ ~ d e d satlsjiec. j ~ r o j ~ e v f g

o n I ic. nondecveas lng o n I . T h e n a f z y D a r b o ~ ! . c R n z r e 1 t z ~ n c t z o n wi?zcir safzs$es p roper t y @ o n 1 ic. contznzl-

0117 n fzd ~zondecrcnc.l fzg o n I

'To see tha t this theore111 provides an afir1natix.e ansner to the question raised b j Z,thorslri, n e let @ be the propert>- of having, except perhaps on a denurner,tl~le set , a11 ,tpproximate deriv,ttive (finite or ~nfinite) TI hich is non- negative a.e. Condition (a) follo\\s fro111 10.8 of [157: p 2371 ,tnd co~lclition (b) is a consequence of Tolstoff's Theorenl

Roughly spealriilg, the theorem states tha t if one \\-ishes to shon- t h a t x con-ditioli is strong enough to guaraniee tha t ever). L)nrt~oux Hail-e I i i ~ n c t i o ~ isatis-f~ . ing the condition is nondecreasing, one need 0111)- s h o \ ~ t h a t ever!- corltilluous function of bounded \.ariation \\-hich satisfies the conditio11 is ~ioridecreasi~ig. (Condition (a) is likely to bc satisiied if the conclitioii is at all "reasonable.") ]:or exa~nple , one can use the theoreni to slio~v 11i;tt TolstoX's Theoren1 remains valid if approx i~nr~ tecon ti nu it^- is replaced by prepolidei-ant continuity ;ind the approximate derivative is replaced 11y the prepol~derant derivative / 207 ] .

\I7e conclude this section x i t h t \ ~ o theorems concerning IDini derivatives.

Let J' be ( L j '~~v,rfio?lc i e j i ~ e don [a,b ] wlziciz scztis$e.s (a) 1i1n S L I ~ ~ - + ~ - I , ( [ ) j'or all .YEj(()s j ( x ) 5 lini S L I ~ ~ . + ~ ~ - [a,1 1 1 , (11) D+i'zO a.e. o n [a,b ] , und (c) D+f > - C X C C ~ ~ deiz l i i?ze~( ibl~3 ~ . p o ~ s i b l y011 (1 i-et. l'i~e,v2.j i s nondecvec~siizg.

'I'his theoren1 is clue to G81 1411.()lice more, lione oi' the hypotheses of tile theoreln can be deleted \\-it11 the conclusion still valid. Other theorems oi this t!-pe, dealing n-it11 co11ti1luo11s functions, have beell advallced by (;arg [43 ] and \Yaie\\-ski [183]. 11.e state one such [43] : L e i j he n c o i ~ i i ~ i i i o i ! s , I ~ t i 7 i - t i o i ~,l '~i(t i l l ing 13c~naclz's condifioiz (I'.) (see Section 0). Lr~tQ = 1s:D-?(s) <0 . I f iizJ(Q) =0, t h e n 1 is noizdccrcnsi?ag.

14. Derivatives and Darboux functions of Baire class 1. I t was nleiitio~letl in Section I! t h a t every tlerivative belongs to Uaire class 1 and possesses the Iljar- boux propert>.. The converse is ~ ~ o t valid. 'l'hus tlie rerluirel~ielit tha t a iu11ctio11 f be a derivative is n~oi-e stringerit t l ~ a n the recli~irenient tha t j' be a I l a r l~oux Waire class I fu~lction. IIon- much more stringent? 011 the one hand, \I:ixirlloff 11201 has she\\-11 t h a t the derivatives and the i~inct ions in 1)arboux Baire c1:iss 1 are topologically equi\ralent in the sense that :rri\. Ijarboux Baire class 1 function defined on [ a ,b ] can he transt'ormed into a d e r i v ~ ~ t i v e 113. suitably t r a n s f o r m i ~ ~ g [a, D ] onto itself topologically. (See also [24, 113].) ( ) I ] the other h;~nci, the t\\-o classes of functions exhibit quite different properties. \Ye turn lo\\- to a con- sideration of sollie of these difterences.

1;or a 3 real ~lr~i l lber = 1 x: ,/'(.\-)and 1an>-,function defined on [a,b ] let Em(.[) >a \ and Ea(J )= im:J(s)< a ) .\ITe i i~ent io~led con-in Section 4 tha t Zahors1;i sidered s ~ l c h sets in tr!.ing to ch:iracterize deril-atil-es. 1 le \\-as able to sho~\- t h a t :L necessary and sufficient co~ldition t h a t J be a Darboux R < ~ i r e class 1 f~lnction is tha t each such set be an I:, set ~vitl i the propert>. tha t each point of the set be a bilateral point of conclensatio~~ the set (he called this conditioli (~)nof ?I/l).

t h e other hand, a ner-essary condition for a furiction ,f to he a derivative (possibly infinite) of a conti~iuous function is t h a t for ever>- a , Eu(J) and E a ( j )be sets satisfying tlie condition n-liich he called (A set E satisfies A/? if L;: is an F,, and every one-sided ~leighborhood of each point i11 E intersects 15 is a set of posi- ti,,, n1e;~sure.) This condition is not sufficient. Thus, each set of the t>-pe & ( j ) and Eo(j') inust be considerablg- "more dense" near its ~ i ~ e n l b e r s in order for 1'

DERIVATIVES 47

to be a derivative (possihl?- infiiiite) than iii order for j to be inere1~- a Ilarboux Uaire class 1 fl~~lctioii .Uy recjuiring even more de~isi ty of the sets E, , ( f ) and Ea(f) , Zahorski manageti to find necessary coiiditio~ls for a f u ~ i c t i o ~ ~ ato be finite derivative (co~iditioii JI , ) . 'I'he analogous necessary co~lditioii for f to be rt bo~t?ldedderivative is the still inore strillgent density co~iditioil that the sets E,(f) and EcY( / );ill be 1111 sets (see Section 4 for a defiilitio~l of J/, and sets). A sli-[ficieizt tie1isit~- co~ldi t io~ltha t the bouiitied functioii J be a derivative is that for eT7er;. a , every poilit of E,(f)(Eu(J)) be a point of (u~i i t ) density of EU('') (resp. Ea(J)) . This amounts to s a~ - ing that the fuilctioil is approxilnate1~- con-ti~luous. The converse is, of course, not true; there exist bol~ilded derivatives ~vllich are not approximately contiiluous. ITo\vever, a partial converse, 11-11ich characterizes approxi1nate1~- contiiluous functio~ls, has beell given by I>ipifislii [94] : l'ize J!l~~cfiofz /' is trppvo.vi?~int~ly iJ atzd otzlj i,fjor eeery r~ a?rd 2,colztilzlio~~s tile J Z L I Z C ~ ~ O ? ?fub( .v ) =max ( a , mi11 [ b ,J(x) ] ) is tr derivative.

We mentioned in Section 4 that the cluestioil of cizavacfevizi?rg the class of derivatives i ~ i terins of the set E, and E m has not yet been resolved. In this con- nection it should he me~lt io~ied tha t for the case of bounded derivatives 110 char-acterizatioil solely i l l t e r~nsof the structure of the individual sets E m and E, is possible. This can he seen ill the folio\\-ing I ~ J - .Zahorslii she\\-ed [192: pp. 45-47 that there are fuilctioils /, 11-11ich are not bounded derivatives, hu t such that for all a the sets Ea(,f) and E,( j ) are _114sets. Thus, if there \\-ere a condi-tion of the type de~i red , it ~vould have to be more stri~igent than the coilditioil -V4. On the other hand, on page 35 one finds the result that for every set E there exists a bou~ided derivative J and a ilu~nhera such that E =Ea(j ') . Thus the desired c o ~ i d i t i o ~ ~ calz~zot be Inore striilgeilt than J14.

So~rle ;tdditional results concer~ii~lg the sets Ea( f ) and E,(j') and _\I,sets. k = 2 , 3,4, can be found in I>ipifislii 191, 93, 951. The results of Zahorslii con- cerning the sets E,( j ) and Ea(j ' )for Darboux Eltire 1 fu~lct io~ishave been ex- tended to more general spaces by AJi6ili [129].

,Another lii~ld of comparison iilvolviilg co~iverge~it interval fuilctioils n a s advanced h ~ - Keugebauer [135]. TII this article the author gives characteriza- tions of each of the tv.0 classes prese~itlJ- under coilsideratio~i. This is done in such a \yay as to allolv ail iilterestiilg cornparis011 he t \ vee~~ classes. TTYO the t ~ v o conditio~isare stated. The first one is necessary and sufficie~it for a functioil to be a Darhoux fu~lc t io~l coilditioils together are of Baire class 1, nhereas the t ~ v o necessary and sufficient for a f u ~ i c t i o ~ ~ to be a derivative. Thus, it is precisely the second coilditioil which she\\-s how niuch lilore striilgeilt a require~nent it is for a f u ~ l c t i o ~ ~ j to he a derivative than it is for f to he a Baire class 1 Darboux fuilction. X precise formulati011 of the releveilt theorems \\-ould require liiore space than is appropriate here, so n-e omit the details.

As n-e sa\v in Section 11, a necessary and sufficieilt coilditioil that a set E be stationary for the class of derivatives is that --E have iililer measure zero [ I 171, \\-hereas a necessary and sufhcie~lt conditio~i that E be stationary for the class of Darhoux Raire class 1 fuilctioils is tha t --E be totally imperfect [as], that

48 PAPERS I N ANALYSIS

is, thrlt --E coiltail1 110 ~lollelllpt?. perfect subset. For purposes of co~ilparisoli, \ye ~lle~ltioil that every totally iniperfect set i i~ust have zero iiliier Illc,iiLir.e. 11i1i

the converse stxtemeilt is false. I t is possible, ho11-ever, for :I to~;ill!- i~nperfect set to have positive outer ~neas l~re . O ] rail I-~e decom- 111 fact, the interval [(z, posed into t\\-o no11-overlnppi~lg totall). imperfect sets [83; p. & ? I ] . i t is clear that each of these sets inust have outer measure equal to b- -a . Siniilarl?., the deternlini~ig sets for the clttss of derivatives are those 11-hosc. c-o~il~lerne~its have zero iililer Irleasure, \\-hereas the only determi~i i~lg set for the 1)arhoux Uaire class 1 fu~lctioils is the i~iterval [ a , b ] .

The renlairiirig con~parisolls i~lvolve the algehrriic ;uld topological structures of the t\\-o classes. \Ye begin by olxervi~ig that the suin of t\\-o derivatives is again a derivative. The correspoildi~ig statelneilt is not valid for the 1~)arhoux fu~lctioils of Haire class 1. Thus let j(.v) =sin (1 . v ) , ,T(C) = 1 and l e ~ g(s) =

-sill (l,/s), g ( 0 ) = 1. Then ( j '+g) (.v) =(I. ( f + g ) (0)= ,/' and g2 . .fhe f u ~ l c t i o ~ ~ s are i ~ i the required class, but their sulu is not.

011the other hand, if J is a Baire class 1 Darhoux f ~ ~ ~ i c t i o n , the11 so is ,f". This f o l l o ~ ~ s of a Haire f~~ilctioli pre-fro111 the facts tha t a conti~iuous f l ~ ~ i c t i o ~ ~ serves the Baire class and a co~itiiluous fuilctio~l of a L)arboux fun(-tion is again L3arbou.r. Rut the correspoildillg stateilie~it is not valid for derivatives. In fact if f' is a square sum~rlahle derivative, then /" is a derivative if and 0111)- if

1 J ( t ) - J(r) 1 (211 = O for all .c..

(See Iosifescu [ 6 6 ] . )S o ~ n einterestiilg related results lila>- be found i ~ iMruzka [ 2 0 51 , Iosifescu [206], Tosifescu 2nd :\ Iarcus [ 6 9 1 , Seugehal~er[ 1 3 7 ] ,Skliva~ioff [ 1 4 9 ] .IYilliosz [ I871 and \Yolff [1881 .

For ho l~~ lded aye bol~tzded fuilctio~is T\-e cttil state a sinipler result: I f f atzt-E f 2

on [ t r , 1 1 1 , f i ic~?~ are dev i~ la f i z~es co?~-hoth j~~.lzctio?rs q a ? r d ou ly i J J is a f~ f i ros i rna te l~ l ~ ~ I Z L L O L L S[ 1 8 7 ] .These results she\\- that the square of a derivative (even a bounded derivative) need not he a derivative. \Ye also see that even tho~lgh a coilti~iuous functio~iof a Darboux Baire class 1 fu~ictioli is still in that class, the correspond- ing result for derivatives is not valid. X sufhcie~lt coilditioil for such a coliiposi-tioil can be found in Chocluet [ 2 4 :p. 8 9 1 : q g i s a lo.i;lci seitzico?rti?ri~o~is dciielaficr. a11d f is a c o ~ z f i ~ z z i o ~ ~ , ~ o/ b o ~ ~ t z d c d ( - = , = ) , ti~r11t 1 1 c j ~ ~ 7 l c t i o nJ ' ~ ~ ? r c f i o n eltriitrtio?~071

f o g i s a deiicatiee. Tt is true that this theorem puts coilsiderahle restrictioils on both / and g. I t 71-ould be of interest to lino\v just 1101~much these restrictioils call be \T-eakened. To give some slight i~idicat io~l of the dif'ficulties that arise if n-e put 110restrictions (other than that of being a derivative) 011 g, 77.e state the follo\ving result found in [24; p. 891 : Ijf i s ~zo?rdecrca,si?~g a n datzd co?zti?zi~oris, szici~ t i ~ a f for r7z'r7i)1 dcriz'atiee g file / '~~tzctio?r o g is still a dciiz 'aticc, tliclz fbo~i~zdr~-E f inlist bc l i ~ z e a i .

certain other colnpariso~i has, to the best of our lalo\vledge, not yet beell resolved. Let {/,, ) be a secluence of conti~iuous fu~lctioils converging poilit\\-ise to a limit fu~lctioil/. IT-e lalo\\- tha t if each J7,is continuous and the convergence

is z ~ ~ z i f o r r n ,then f is also contiiluous. Uniform convergence is, of course. not necessav)I for the limit fuilctio~i to be conti~iuous. I t has heel1 kno\\-i1 for a long time tha t a necessary and sufficient coilditio~i for the limit function to be con- t i~iuousis tha t the convergence be quasi-u~iiform (see Hahn [56] for the relevant defi~iit io~l t ~ - p e s conver-and theorelii). One might asli for the correspo~idi~lg of gence for the class of derivatives and for the class of Darhoux Raire 1 fu~ic t io~ is : If ( J , , } is a sequence of derivatives (respectively Darboux Raire 1 fu~lctions) co~lvergiilg point\\-ise to a liniit f u n c t i o ~ ~ J, then \\-hat additio~ial restrictio~i oil the convergence is necessary and sufficieilt to guarantee tha t j also be a deriva- tive (respectively L3arboux Raire 1 function)? In this coililectioil 1T.e ~ l i e ~ i t i o ~ i t h a t uiliforin convergeilce is sufficient i l l each case, bu t not necessary. The proof for derivatives is straight for^^-ard, and the proof for L)arboux Uaire 1 functioils can be found in [14]. T h e relevant k i ~ l d of convergence for fu~ictions in Uaire class a (for fixed a ) has beell obtained h ~ - Gagaeff [$o]. The results of Oeco- nomidis [1411. 1421 are relevant to this questioil for derivatives.

\Ye coilclude \T it11 ,I precise statement of l\I,tximofi's deep theorem n hicli ~ \ ementioned a t the h e g i ~ i ~ l i ~ l g of this section. (See also r2.8: p. 901.)

THEOREM.L e t f be a , f ini te Dtrrboilx Jz[zi??ction of Ijtrire c lass 1 o n tile i~z tevcal [o, 11. T h e n there ex i s t s tr s t r ic t ly i?rcreasitzg co t z t i n~ lo i i s , f l r~zc t ioug s~iciz t ha t g(,O) =0,g(1) = 1 a?rd f o g i s a derielatiee. (See [120, 1221.)

I l a rcus [113] and 1,ipihslii 1891 consider some coilsecluences of this theoren,. 111 [121], \Iaxi~nofi shoved tha t the nard "den\ nti\ e" c a ~ i be replaced h~

the TI ords ' 'approxin~atrly co~ltinuous f u ~ l c t i o ~ i " the c o ~ i c l u s i o ~ ~ il l of the theo- rem.

111 I\-riti~ig this article the authors benefited fro111 discussioils 2nd correspoild- elices v i t h several nlathematicia~is. Particular thttillis are due to Professor Johli 011nsted for discussioils n ,he~i the project \\-as in its initial stages, and to Profes- sor Solo111o11 \Iarcus for mail>- valuable suggestio~ls concerni~lg relevant articles of n liich the ,luthors 11ere o r ig i~ ia l l~ un,ln are.

T h c firit author was supported in part 11)- K S F Grant GP 1592 'The sccond au thor was ail Y S F Cooperative Gradilatc E'cllo\\-.

References

1. P. Alexandroff, 12'irit6yration au scns d e hI . r)enjo)- considcrie commc rcchcrchc des fonc- t i o ~ i i pri~nit ivcs, Kcr. \ l a th . Soc. 112th. \Ioscou, 31 (1924) 465-176.

i h c r die dcs u n d Denjoyschcn.~cl ,~iv:~lenz Perronschcn des I~itcgr~~lheg-riiTcirci, \ l a th . %., 20 (1924) 2 1 3 2 2 2 .

3. R. Bairc, Sur lei fonctioni d 'unc vnl-i:~ble rtcllc, .Anliali di \Iatciiintica, i ? ) 3 (18991. 4. S. Hanach, Sur les fonctions d i r iv ie i des fonctioni niesi~rablcs, I'ulid. LInth., 3 (1922) 128-

132. 5. ------, i'bcr die B:~ire'sche Knteyorie gewisscr F u ~ ~ l ; t i o n e i i ~ ~ ~ e ~ l g c ~ i ,I I n t h . , 3 (1931)S t i ~ d i n

174-179, 6. .A. Bcsicovitch, Llisliursion dcr stctigcn Fun1;tioncn im Zusnmmcnhn~ig Illit dcr 1-rag-e iihcr

ihrc L)ificrc~iticrharkeit, Bull. LAcad. Sci. dc liussie, 19 (1925) 527-540.

-, 2.

.j0 PAPERS I N ANALYSIS

7. R.P. Boas, &4 primer of real fulictions, Carus i\Iathernatical LIonograph No. 13, hI;l=\, 1960.

8. N.Boboc and S , i\Iarcus, Sur la d6ter1nination d'une fo~iction par les valeurs prises sur un ccrtain cnscmble, Ann. Sci. l?colc Korm. Sup. (3), 76 (1959) 151-159.

9. I<. Bb;gcl, iibcr dic mchrdirncnsionale Llifierentiation, Jbcr. Llcutsch. i\Iath.-Ycrcin, 65 (1962) 45-71,

10. E. Borcl, i\lodelcs arithmitiqucs ct alialytiques de l'irriversihiliti apparcnte, C.R. &4cad. Sci. Paris, 145 (1912) 1148-1151.

11. &4. Bruclincr, On derivatives ~ i t ha dcnse set of zeros, Rev. hlath, Purcs -4ppl., 10 (1965) 149-153.

12. ---, Stationary sets for certain classes of derivates of Darboux functions, AIich. 3Iath. J . , 11 (1964) 305-309.

13. A.Bruck~ier and J . Ceder, Darboux continuity, Jber. Deutsch. >lath.-\-erein., 67 (1965) 93-117.

14. -1. Bruck~ier, J . Ceder, and 11. I\-eiss, On urliform limits of Darboux fu~ictiorls, Colloq. bIath., (to appear).

15. A.Bruck~ler, and J. Leonard, On diRerentiable fu~ictiorls having an everywhere dense set of irltervals of co~istancy, Canad. AIath. Bull., 8 (1965) 73-76.

16. --, Stationary sets and determini~lg sets for certain classes of Darboux functions, Proc. Amer. i\Iath. Soc., 16 (1965) 935-940.

1'7. A. Brudno, Continuity and diRere~ltiability, Rec. 1Ia th . (1Iat . Sbornil:) N.S., 13(55) (1943) 119-134. (Russian; Erlglish summary.)

18. P . Bullen, Co1istructio11 of primitives of generalized derivatives r i t h applicatio~ls to trigonometric series, Canad. J . J Ia th . , 13 (1961) 48-58.

19. P.Butzer, Beziehu~igen z~vischen deli Riemanrlsche11, Taylorschen u11d ge~vohnlichen .ibleitungen reelwertiger Fu~ lk t io~ le~ i , LIath. Ann., 144 (1961) 275-298.

20. P . Butzer and \I-. Kozakielvicz, On the Riemann derivatives for integrable furlctio~is, Carlad. J . AIath., 6 (1954) 572-581.

21. A. Calderbn and A.Zyg~nu~ ld ,Local properties of solutions of elliptic partial difiererltial equatio~ls, Studia >lath. , 20 (1961) 171-225.

22. -, A note on local properties of solutions of elliptic difiere~itial equatiorls, Proc. Nat. h a d . Sci. U.S.i\., 46 (1960) 1385-1389.

23. Cellerier, Bull. Sci. >Iath., (2) 14 (1890) 152. 24. G. Choquet, Application des proprie'te's descriptives de la fonctio11 corlti~lge~lt i la th6orie

des fo~lctio~is de variable rielle et 2 la gbome'trie diRirentielle des vari6te's cart6sien1ies, J. 1Ia th . Pures Appl., (9) 26 (1947) 115-226.

25. S. Chow, 011approximate derivatives, Bull. Amer. 1Ia th . Soc., 54 (1948) 793-802. 26. J . Clarkson, A property of derivatives, Bull. r\mer. AIath. Soc., 53 (1947) 124-125. 27. -1. Csiszir , Sur une ge'1ibra1isation de la 1lotio11 de d6riv6e, Acta Sci. 1Ia th . , (Szeged) 16

(1955) 137-159. 28, '4. Denjoy, Calcul de la primitive de la forlction d6rivte la plus ge'rlCrale, C. R.Acad. Sci.

Paris, 154 (1912) 1075-1078. 29. ------, lI61noire sur la totalisatio~i des nonlbres de'rivk rlo~i-sommables,~ \ I ~ I I .Bcole.

Norm. Sup., 33 (1916) 127-236; 34 (1917) 181-238. 30. --, i\Ie'moire sur les notnbres dc'rivhs des fonctiorls contirlues, J . AIath. Pures Xppl.,

(7) 1- (1915) 105-240. 31. --, Sur les fo~lctions dc'riv6es so~nmables, Bull. Soc. 1Ia th . France, 43 (1915) 161-

248. 32. ------, Sur l'int6gratio1i des coefficients diR6rerltiels d'ordre sup6rieur, Fund. >Iath. ,

25 (1935) 273-326. 33. --, Sur une propri6tG des fonctions dGrivtes, Enieigne~nent i\I,lth., 18 (1916) 320-

328.

34. A.Denioy, Une extension de l'integrale de 31. Lebesgue, C. R. &ad. Sci. Paris, 154 (1912) 859-862.

35. S. Eilenberg and S. Salts, Sur la derivation des fonctions dans des ensembles denombrables, Fund. 1\Iath., 25 (1935) 264-266.

36. n/I. Esser and 0. Shisha, i\ modified diRerentiation, this R~OXTRLY, 71 (1964) 904-906. 37. H. Fast , Une remarque sur la proprietC de IYeierstrass, Colloq. l l a t h . , 7 (1959) 75-77. 38. F . Filipczak, On the derivative of a discontinuous function, Bull. Acnd. Polon. Sci. SCr.

Sci. Math. Ast rono~r~. Phys., 12 (1964) 535-537. 39. hI. Frechet, Sur diverses dCtinitions de In diRCrentiabilit6, Enseignement AIath., (2)

10 (1964) 177-228. 40. B. Gagaeill, Sur les suites converger~tes de for~ctions ~r~esurables B, Fund. l l a t h . , 18 (1932)

182-188. 41. I. G&l, On the funda~rlental theorems of the calculus, Trans. i\mer. Rlath. Soc., 86 (1957)

309-320. 42. I<. Garg, .An analogue of Denjoy's theorem, Gnnita, 12 (1961) 9-14. 43. -, .Applications of Denjoy analogue I. (Sufficient conditio~is for n function to be

~uonotone),.Ann. Polon. l l a t h . , 15 (1964) 159-165. 44. --, Xpplicatior~s of Der~joy ar~alogue 11. (Local structure of level sets 2nd Dini

derivates), Acta l l a t h . .Acad. Sci. Hurlgar., 14 (1963) 183-186. 45. --, Applicatior~s of Delijoy a~ialogue 111. (Distribution of various typical level sets),

Acts l l a t h . .Acad. Sci. Hurlgar., 14 (1963) 187-195. 46. -, On nowhere monotone functions, I (Derivates a t a residual set) , Ann. 17niv. Sci.

Budapest, Eotvos Sect. Math. , 5 (1962) 173-177. 47. -- functions, I1 (Derivates a t sets of power c, On nowhere ~ r ~ o ~ i o t o ~ i e and a t sets of

positive measure), Rev. l l a t h . Pures Appl., 7 (1962) 663-671. 48. -- On nowhere ~r~onotone , functions, I11 (Functions of the first and secor~d species),

Rev. AIath. Pures Appl., 8 (1963) 83-90. 49. -, On the derivability of functions discontinuous a t a dense set, Rev. ;\'lath. Pures

Appl., 7 (1962) 175-179. 50. B. Gelba~im and J. Ol~rlsted, Counterexa~rlples in analysis, Holden-Day, San Francisco,

1964. 51. C. Goffman, Real functions, Rinehart, New York, 1960. 52. C. Goffman and C. Neugebauer, Linear continuous functions, Proc. Xmer. Rlath. Soc.,

12 (1961) 997-998. 53. ---, On approxi~r~ate derivatives, Proc. .Amer. hlath. Soc., 11 (1960) 962-966. 54. G. Goldo~vski, Note sur les d6rivCes exactes, Rec. LIath. Soc. Math. 1\Ioscou, ( l l a t .

Sbornilc), 35 (1928) 35-36. 55. E.Gorlich and R. Nessel, iiber Peano-i\bleittinge~~ in der Norm ( to appear). 56. H. Hahn, Reele Funktionen, Chelsea, New York, 1958. 57. ---, Eber den Fundame~italsatz der Integralrechnung, L'lonatshefte Math. Phys.,

16(1905) 161-166. 58. 0 . Hi jek , iYote sur la mesurabilite B de la dbrivCe supbrieure, Fund. AIath., 44 (1957)

238-240. 59. H . Hake, Eber de la \-allbe Poussins Ober- und Unterfunktionen einfacher Integral und

die Integraldefinition von Perroll, LIath. :inn., 83 (1921) 119-142. 60. I . Halperin, Disconti~iuous functions with the Darboux property, this AIONTHLY, 57 (1950)

539-540. 61. ---, Discontinuous functions with the Darboux property, Canad. hIath. Bull., 2 (1959)

111-118. 62. I;.Hausdorff, Set theory, Chelsea, New York, 1957. 63. E . Hobson, Theory of functions of a real variable, Vol. 1, Dover, S e w York, 1957. 64. ---, Theory of functions of a real variable, 1-01. 2 , Dover, New York, 1957.

5 2 P A P E R S I N ANALYSIS

65. F.Hsiang, On differentiable functions, Bull. Amer. Math. Soc., 66 (1960) 382-383. 66. hl . Iosifescu, Conditions that the product of two derivatives be a derivative, Rev. Math.

Pures Appl., 4 (1959) 641-649. ( I n Russian.) 67. ---, Sur les fonctions continues dont les ensembles de niveau sont au plus de'nombrables,

Rev. Math. Pures Appl., 3 (1958) 439-441. 68. -, Sur un thCorkme de A. hlarchaud, Com. Acad. R . P . Romine, 6 (1956) 1169-

1171. (Romanian; Russian and French summaries.) 69. hl . Iosifescu and S. Marcus, Sur un probleme de P. Scherk, concernant la somme des

carre's de deux de'rive'es, Canad. Math. Bull., 5 (1962) 129-132. 70. V. Jarnik, Tohoku Math. J . , 37 (1933) 248. 71. R. Jeffery, The theory of functions of a real variable, I\.Iathematical Expositions No. 6,

University of Toronto Press, 1962. 72. C. Kassimatis, Functions which have generalized Riemann derivatives, Canad. J . Math.,

10 (1958)413-420. 73. A. Khintchine, Recherches sur la structure des fonctions mesurables, Fund. Math.,

9 (1927) 212-279. 74. ---, Recherches sur la structure des fonctions mesurables, Recueil Mathe'm., 31 (1924)

265-285, 377-433. (Russian.) 75. -, Sur le procede d'inte'gration de M . Denjoy, Rec. Math. Soc. Math. ;lloscou, 30

(1918) 543-557. 76. ---, Sur une extension de l'intigrale de M . Denjoy, C. R . Acad. Sci. Paris, 162 (1916)

287-291. 77. A. ICGpcke, Uber Differentierbarkeit und Xnschaulichkeit der stetigen Funktionen,

LIath. Ann., 29 (1887) 123-140. 78. ---, ~ b e reine durchaus differentierbare stetige Funktion mit Oscillationen in jedem

Intervalle, Math. Ann., 34 (1889) 161-171. 79. -, Kachtrag zu dem Aufsatze "Uber cine durchaus differentierbare stetige Funktion

mit Oscillationen in jedem Intervalle," Math, Ann., 35 (1890) 104-109. 80. A. Kronrod, Sur la structure de l'e~lsemble des points de disco~itinuite' d'une fonction

dCrivable en ses points de continuitC, Bull. Acad. Sci. URSS SCr. Math., (1939) 569-578. 81. K.Krzyzewski, S o t e on approximate derivatives, Colloq. Math., 10 (1963) 281-285. 82. LI. Kulbacka, Sur certaines propriCtCs des dCrivCes approximatives, Bull. Acad. Polon.

Sci. SCr. Sci. Math. Astronom. Phys., 12 (1964) 17-20. 83. C. Kuratowski, Topologie I , 4th ed., Monografie Matematyczne 20, LYarszawa, 1958. 84. -, Topologie 11, 3rd ed., lLIonografie hlatematyczne 21, Ii'arszawa, 1961. 85. -and \Y.Sierpidski, Les fonctions de classe 1 et les ensembles connexes putictiformes,

Fund. Math., 3 (1922) 303-313. 86. B. Kuttner, Some theorems on fractional derivatives, Proc. London &lath Soc., (3) 3

(1953) 480-497. 87. E. Landis, On the set of points of existence of an infinite derivative, Dokl. Xkad. Nauk

SSSR (N.S.), 107 (1956) 202-204. (Russian.) 88. J. Liberman, ThCorkme de Denjoy sur la dirive'e d'une fonction arbitraire par rapport B

une fonction continue, Rec. Math. (Mat . Sbornik) K.S. , 9 (1941) 221-236. 89. J . Lipidski, Mesure et derive'e, Colloq. Math., 8 (1961) 83-88. 9.0. -, Sur les dCrivCes de Pompeiu, Rev. Math. Pures Appl., 10 (1965) 447-451. 91. -, Sur certains problkmes de Choquet et de Zahorski concernant les fonction derivCes,

Fund. Math. , 44 (1957) 94-102. 92. -, Sur la discontinuite' approximative e t la de'rivCe approximative, Colloq. Math.,

10 (1963) 103-109. 93. ---, Sur les ensembles { f l ( x ) > e ] , Fund. Math., 45 (1958) 254-260. 94. ---, Sur les fonctions approximativement continues, Colloq. hlath., 5 (1958) 172-175. 95. -, Une proprie'tb des ensembles ( f ' ( z )>a ] , Fund. Math., 42 (1955) 339-342. 96. H. Looman, Uber die Perronsche Integraldefinition, Math. Ann.,93 (1925) 153-156.

DERIVATIVES 53

97. S . Lusin, Sur la rlotion de l'intL:grale, Annali Mat. Pura e t :\ppl., (3) 26 (1917) 77-129. 98. ---, Sur les propri6t6s de i1int6grale de 11. Tlenjoy, C. R . Acad. Sci. Paris, 155 (1912)

1475-1478. 99. ---, 'rrigorlotr~etric integrals and series, RIoscow, 1915. (Russiar~.\ 100. A. Marchaud, Sur une cond i t i o~~ hlath. , 20 (1933) 105-116. de quasi-rectificabilitc', 1:und. 101. J. hlarciilkiewicz, Sur les ~lollibres dCrivls, Fund. Math. , 24 (1935) 305-308. 102. --, Sur queiques inte'grales du type de Iliili, ; i n n . de la Soc. Pol, de &lath. , 17 (1938)

42-50. 103. J. 3~Iarci1lkiea.i~~ On the diillerentiability of functio~ls and sumtr~ability and :\. Zygtr~u~id,

of trigo~lotuetrical series, Fu11d. RIath., 26 (1936) 1-43. 104. S. hIarcus, Les e~isetr~bles statiorlnaires de certaines cla+ses de fonctions, C. K. Acad.

Sci. Paris, 254 (1962) 1186-1188. 105. ---, 1,es en-embles stntionnaires de certnines classe- de fonctions dhivc'ei, Atti

:\ccad, Naz. Lincei Rend. Cl. Sci. 1;ii. J I a t . \ a t . , 32 (1962) 484-487. 106. ---, 1,es fo~ictions de Pompeili, Ac;id. K.P. Tiomlne Stud. Cerc. M'it., 5 I 1954) 413-

119. (Roln:itlian; Ru->inn and French si~mmnriei.) 107. ---, Functiorli with the Darboux property and functions with connected graphs,

hIath. Ann. , 141 (1960) 311-317. 108. ---, On a theorell1 of Denjoy and on approximate deriv;itives, Mon;itih. Math .

66 (1962)435-440. 109. -Points of disco~lti~luity , and points a t which the derivative is infinite, Rev. Slath.

Pures :\ppl., 7 (1962) 309-318. (Russian.) 110. -, Retuarques sur les fonctions intCgrables au sens de liiemann, Bull. Slath. Soc.

Sci. Math. Phys. R. P . Ro~rmaine, 2 (50) (1958) 433-439. 111. -, Sur la dCrivCe approximative qllalitative, Corn. :\cad. K.P.Rotr~ine,3 (1953)

361-364. 112. -, Sur In litr~ite approxi~liative qualitative, Corn. :\cad. R.P. l io~nine , 3 (1953)

9-12. 113. ---, Sur les d6rivCes dont les z6ros forment ur1 ensetr~ble frontikre partout dense,

lielid. Circ. hIat . Palerrno, (2) 12 (1963) 1-36. 114. ---, Sur les ensetr~bles determinant de i dCrivCes iipproximatives, C. T i . :\ccrd. Sci.

Paris, 255 (1962) 1685-1687. 115. ---, Sur les eniemhlei stationnaires de fonctioni d(riv6es-finies ou iniiniei, Com.

Acad. l i . P . Romi~ie, 12 (1962) 399-402. ( l ioma~l inn;Russian and French summariei.) 116. --, Sur un problkme de Z. Zahorsiri concernant lei points 02 la d6rivi:e e-t inii~iie,

Atti Accad. S a z . Li~lcei Rend. CI. Sci. Fi,. Slat . Xat., 29 11960) 176-180. 117. --- de quaii-analyticit6, C. R.Acad. Sci. Paris, , Sur urle gCrl6ralisation de la ~ io t io~ i

254(1962)985-987. 118. E. Slarczewsl;i, Remar1;s on sets of measure zero and the derivability of tr~onotonic

functions, Prace Mat . , 1 (1955) 141-144. (Polish; English and 1iu;sian siim~naries.) 119. A. Matysiair, 0gra~iicach i pochodnych nproltsytr~atyrvnch, thesis, Lbdz, 1960. (Polish.) 120. I . Maxitr~off-', transformation of some functions into an ordinary derivative, On co~itinuous

i\nrl. Scliola So rm. Sup. Pisa., 12 (1943) 147-160. 121. ---, Sur la tra~liformation continue de fonctions, B1111. Soc. Ph\-s. hIath. I<;izati,

(3) 12 (1940) 9-41. ( l iusiian; Frerlch s~rmmary.) 122. Sur In trallsformatio~l continue de quelclues fonctioni en dfirivdes exactes, Bull.

Soc. Phys LIath. Kazan, (3) 12 (19-10) 57-81. i l i~issian;Fre~lch i ~ ~ r n i i i a r ~ - . ) 123. S. Mazlirlrie~\-icz, Sur les fo~lctions 11011-dc'rivablcs, Studia Math. , 3 (1931) 92-94. 124. ---, LIath., 2.3 (1934) 9-10. Stir les rlombrei dhrivls, F L I ~ I ~ . 125. I<. Me~iger, hIu1tiderivatives and multi-irltegrali, this I \ I o s r ~ i r . ~ , 65 (1957) 58-70. 126. ---, Rates of change and derivatives, Fund. J Ia th . , 46 (1958) 89-102. 127. I<. LIe~lger and S. Shu, Generalized derivatives and expa~isions, Proc. l a t . Acad. Sci.

U.S.A., 41 (1955) 591-595.

5 4 PAPERS I N ANALYSIS

128. S. Minetti, Sull'operazione di derivazione, Atti Acad. Naz. Lincei Rend. CI. Sci. Fis. hlat . Nat. , ( 8 ) 8 ( 1 9 5 0 ) 27-31.

129. L. MiIiSik, c b e r die Funktionen der ersten Baireschen Klasse mit der Eigenschaft von Darboux, Mat . Fyz. Casopis Sloven. Akad. Vied., 14 ( 1 9 6 4 ) 44-49.

130. A. Morse, Dini derivatives of continuous functions, Proc. Amer. Math. Soc., 5 ( 1 9 5 4 ) 126-130.

131. P . Murav'ev, A generalized derivative and its application to ordinary differential equa- tions, Izv. VysS. UEebn. Zaved. Matematika, l ( 2 6 ) ( 1 9 6 2 ) 89-100. (Russian.)

132. I. Satanson, Theory of functions of a real variable, Vol. 1 , Ungai, i iew York, 1961. 133. --, Theory of functions of a real variable, Vol. 2 , Ungar, Kew York, undated. 134. C. Neugebauer, A class of functions determined by dense sets, Arch. LIath., 12 ( 1 9 6 1 )

206-209. 135. ---, Darboux functions of Baire class 1 and derivatives, Proc. Amer. Math . Soc.,

13 ( 1 9 6 2 ) 838-843. 136. --, Differentiability almost everywhere ( to appear). 137. --, On a paper by M.Iosifescu and S. Marcus, Canad. LIath. Bull., 6 ( 1 9 6 3 ) 367-371. 138. -, Smoothness and differentiability in L,, Studia Math. , 25 ( 1 9 6 4 ) 81-91. 139. ---, Symmetric, continuous, and smooth functions, Duke Math. J . , 31 ( 1 9 6 4 ) 23-32. 140. --, X theorem on derivatives, Acta Sci. Math. (Szeged), 23 ( 1 9 6 2 ) 79-81. 141. N. Oeconomidis, Sur les nombres derives d'une suite de fonctions reelles, C. R. Acad.

Sci. Paris, 256 ( 1 9 6 3 ) 3229-3232. 142. ---, Sur les valeurs limites e t les nombres derives d'une suite de fonctions reelles,

C. R. Acad. Sci. Paris, 256 ( 1 9 6 3 ) 1208-1211. 143. H.Oliver, The exact Peano derivative, Trans. Amer. Math. Soc., 76 ( 1 9 5 4 ) 444-456. 144. A. O'iieill, Contributions to the theory of derivatives, Duke Math. J. , 12 ( 1 9 4 5 ) 89-99. 145. G. Peano, Sulla formula di Taylor, Atti della Accad. delle Scienze di Torino, 27 ( 1 8 9 1 )

40-46. (=Opere scelte, V. 1, Edizioni Cremonese, Roma, 1957, pp. 204-209.) 146. ---, Sur la dCfinition de la dCrivCe, hIathesis, ( 2 ) 2 ( 1 8 9 2 ) 12-14. ( =Opere scelte,

V . 1, Edizioni Cremonese, Rome, 1957, pp. 210-212.) 147. E . Pepper, On continuous functions without a derivative, Fund. Math. , 12 ( 1 9 2 8 )

244-263. 148. 0. Perron, Eber den Integralbegriff, S. B. Heidelberg, Xkad. Ii'iss., 16 ( 1 9 1 4 ) . 149. B. Pettineo, Quelques observations sur les fonctions dirivables presque partout, C. R.

Acad. Sci. Paris, 248 ( 1 9 5 9 ) 518-520. 150. -, Sulla derivazioile delle funzioni continue, Atti Xccad. Sci. Lett . Arti Palermo,

Parte I , 4 ( 1 9 5 6 / 7 ) 211-238. 151. D. Pompeiu, Sur les fonctions de'rivCes, Math. Ann., 63 ( 1 9 0 6 ) 326-332. 152. K . Popoff, Eber die verallgemeinerten Ableitungen, die durch ein Iteratio~lsverfahren

gebildet sind, Abh. Preuss. Xkad. \Viss. i\/Iath. Kat . Kl., 1942, No. 2 , 19 pp. 153. R. Rinehart and J. IVilson, Two types of differentiability of functions on algebras,

Rend. Circ. Mat . Palermo, ( 2 ) 11 ( 1 9 6 2 ) 204-216. 154. S. Ruziewicz, Sur les fonctions qui ont la m&me derivee e t dent la difference n'est pas

constante, Fund. Math. , 1 ( 1 9 2 0 ) 148-151. 155. S.Saks, On the functions of Besicovitch in the space of continuous functions, Fund.

Math. , 19 ( 1 9 3 2 ) 211-219. '156. ---, Sur les nombres dCrivCs des fonctions, Fund. Math. , 5 ( 1 9 2 4 ) 98-104. 157. --, Theory of the integral, h'Ionografie Matematyczne 7 , li'arszawa-Lwbw, 1937. 158. \V.Sargent, The Borel derivatives of a function, Proc. London Math. Soc., ( 2 ) 38 ( 1 9 3 5 )

180-196. 159. ii. SClivanoff, Note sur les fonctions derivCes, Bull. Math. Mech. Inst. Univ. Tomsk,

3 ( 1 9 4 6 ) 125-127. 160. U. Shukla, On points of non-symmetrical differentiability of a continuous function I.,

Ganita, 2 ( 1 9 5 1 ) 54-61.

5 5 DERIVATIVES

161. U. Shukla, O n points o f non-symmetrical differentiability o f a continuous function I I . , Ganita, 4 (1953) 139-141.

162. LV. Sierpidski, Sur les forictions de'rivCes des fonctions discontinues, Fund. Math., 3 (1922) 123-127.

163. -, Sur une propriCtC de fonctions quelconques d'une variable rCelle, Fund. Math. , 25 (1935) 1-4.

164. G.H . Sindalovskil, Congruent and asymptotic differentiability, Dokl. Akad. S a u k , SSSR , 150 (1963) 995-997. (Russian.)

165. ----, Continuity and differentiability with respect t o congruent sets, Dokl. Akad. Nauk SSSR , 134 (1960) 1305-1306. (Russian; translated in Soviet Math. Dokl., 1 (1961) 1217- 1218.)

166.-, On a generalization o f derived numbers, Izv. Akad. Nauk S S S R Ser. Mat., 24 (1960) 707-720. (Russian.)

167. A . Singh, On infinite derivatives, Fund. Rlath., 33 (1945) 106-107. 168. J . Staniszewska, Sur la classe de Baire des dCrivCes de Dini, Fund, Math., 47 (1959)

215-217. 169. E.Stein and A . Zygmund, On the differentiability o f functions, Studia Math., 23 (1964)

247-283. 170.---, Smoothness and differentiability o f functions, Ann. Univ. Sci. Budapest.

Eotvos Sect. Math. , 3-4 (1960-61) 295-307. 171. F . Sunyer Balaguer, Sobre la determinacibn de una funcibn mediante sus nfimeros

derivados, Collect. Rlath., 10 (1958) 185-194. 172. --, Sur la dCtermination d'une fonction par ses nombres dCrivCs, C . R . Acad. Sci.

Paris, 245 (1957) 1690-1692. 173. H.Thielman, Theory o f functions o f a real variable, Prentice-Hall, E~~glewood Cl i f f s ,

S. J . , 1953. 174. G . Tols to f f , Sur la dCrivCe approximative exacte, Rec. Math. ( M a t . Sbornik) N.S. ,

L (1938) 499-504. 175.-, Sur quelques propriCtCs des fonctions approximativement continues, Rec. Math.

( M a t . Sbornik) S . S . , 5 (1939) 637-645. 176. L.Tonelli, Sulle derivate esatte, Memorie della Accademia delle Scienze dell'lnstituto

Bologna, ( 8 ) 8 (1930-31) 13-15. 177. V. Tzodiks, On sets o f points where the derivative is + m or - m correspondingly,

Dokl. Akad. S a u k , S S S R ( S . S . ) , 113 (1957) 36-38. (Russian.) 178.---, On sets o f points where the derivative is finite or infinite correspondingly,

Dokl. Akad. Nauk, S S S R ( N . S . ) , 114 (1957) 1174-1176. (Russian.) 179. ---, On sets o f points where the derivative is equal t o + m or - m respectively,

Mat. Sbornik. N.S. , 43 ( 8 5 ) (1957) 429-450. (Russian.) 180. C. de la VallCe Poussin, IntCgrales de Lebesgue. Fonctions d'ensembles. Classes de Baire,

Gauthier-Villars, Paris, 1916. 181. ---, Sur l'approximation des fo~lctions d'une variable rCelle et leurs dCrivCes par les

polynBmes et les suites limitdes de Fourier, Bull. Acad. Royale de Belgique, (1908), 193-254. 182. V . Volterra, Sui principii del calcolo integrale, Giorn. di Battaglini, 19 (1881) 333-372. -183.T . Li'aiewiski, Sur une condition nCcessaire et suffisante pour qu'une fonction continue

soit monotone, Ann. Soc. Polonaise Math. , 24 (1951) 111-119. 184. K. Li'eierstrass, Zur Funktionenlehre, Rlonatsb. Akad. LViss. Berlin, August 1880,

719-743. ( I n LVerke, V. 2.) 185. C . Li'eil, On properties o f derivatives, Trans. Amer. hIath. Soc., 114 (1965) 363-376. 186. Rl. Li'eiss, On symmetric derivatives in LP,Studia Math., 24 (1964) 89-100. 187. Li'. Li'ilkosz, Some properties o f derivative functions, Fund. IkIath., 2 (1921) 145-154. 188. J . Li'olff, O n derived functions o f a real variable, Proc. Royal Acad. Amsterdam, 28

(1924) 282-285.

56 PAPERS I N -ANAL\ SIS

189. G. Young, On the derivntei of a function, Proc. London l I n t h . Soc., (2 ) 15 (1916) 360-384.

190. %. Zahoriki, Pl~nlctmengen in n-elchem eine stetige Fl~nl;tion nicht differeli~ierbar ist, liec. l l n t h . ( l l n t . Sborliilc), ( 9 ) 51 (1941) 487 510. (lius,i;ln; German iurnmar>..)

191. ---, S a r la c l ~ s e d e R,iil-e des dCl-ivce. nppt-oxim,xtives d ' ~ i n e fonction rjuelconque, .Ann. Soc. Polon. lI:~t11., 21 (1948) 306-323.

192. ----, Sur la pre~z~ikre dPrivi:e, 'l'rans. .Amer. l l n t h . Soc., 69 (1950) 1-54. 193. Sur l'ensemble de i points d e noli-dCrivabilitL' d ' l ~ n e Bull. Soc. ionciion c o n t i n ~ ~ e ,

Rlath. France, 74 (1946) 147-178. 194. --- , Uber die Tionstruletion eilier diflerelizierbarell monotolien, nicht l ionstm~ten

I'l~nlction nlit i~beral l dichter l Ienge voli l iol i i tan~interv,rI len, C. R.SociCti de Science; e t Lettres de \'nrbovie, Classe 111, 30 (1937) 202-206.

195. i iber die I lenge der Funlcte i l l \I-elchen die -4bleit~1ng unendlich ist, 'I'oh3lil1 l l n t h . J . , 48 (1941 1 321-330.

196. Z. Zalc\vasser, Sur les fonctions de Kiipcl~e, Prnce Rlat. 17iz., 35 (1927-28) .i7-99. (Polish; French suiz~rnarq-.)

197. .A. Zl,gmund, Smooth f l~nctionz, I3~1lce l l a t h . J . , 12 (1945) 47 76. 198. --, Trigono~netr ic Series, 1-01,1, I-niversitl- Press, Cambridge, 1959. 199. ---, 'l'rigonometric Series, \.ol. 2, Uliiveriity PI-ess, Cambridge, 1959.

200. B. Bojnrslii, Sur la ddrivt:e d'une fonction diicontinue, Ann. Soc. Polon. I l n t h . , 24 (1953) 190-191.

201. .A. Bruclcner, A n a f i r ~ n a t i v e answer to n problem of Zahorslci and some consecluences, l l i c h . l l a t h . J . ( t o appear).

202. --, .A theorelil on monotonicit>- and a sollltion to n problem of Znhorilci, Bull. .Ailier. l l a t h . Soc., 71 (1965) 713-716.

203. a n d C. Goffillnn, T h e boundary behavior of real f ~ ~ n c t i o n i in the upper half plane, Rev. I I a t h . Fares .Appl. ( t o nppenr).

204. F. Filipczalc, On the derivative of a discont in~~ous Colloq. RIath., 13 (1964) f ~ ~ n c t i o n , 73-79.

205. 1.. HruSIra, Une note sur les foncliol~s aux valeurs internlidinires, ensopis PCst. RIat., 71 (1946) 67-69.

206. 11. Iosifesca, On the product of two derivatives, Corn. Xcnd. I i . F.Itornine, 7 (1957) 319-32 1. (Rolzlanian.)

207. J. Leonard, Some conditions iinplq-ing the m o ~ ~ o t o n i c i t y of n real fuliction ( t o appear). 208. J. I,ipikki, Sur quelques problkmei tie S. hlarcus relatifs ii la ddrivbe d 'une fonction

monotone, I iev. RIath. Pures Appl., 8 (1963) 449-454. 209. >I. S e u b a ~ ~ e r , Funktionen, LIonatsh. I I a t h . , Uber die partiellen Derivierten ~ ~ n i t e t i g e r

38 (1931) 139--146. 210. G . Piranian, The derivative of n monotonic discontinuous function, Proc. . h e r . hlnth.

Soc., 16 (1965) 243-244. 211. ----, T h e set of nondifferentiabilit>. of n continuoui function, ( t o nppenr). 212. G. Sindalovsliii, 12ifferenti:rbility n-ith respect to congruent iets , Iav. Akad. Y a ~ ~ l i SSSlZ

Ser. l l a t h . , 29 (1965) 11-40. 213. TI'. Stepanoff, Sur les conditions d e l'exiitelice de la diffbrentielle totale, Rec. l I a t h . Soc.

l l a t h . l Ioscou (RIat. Sb.) , 32 (1925) 511-526. 214. T. S~~~i%tI ro~vs lc i , liionotonicity of fuilctions, Fund. I I a t h . ,On the conditions of 59

( t o appear) . 215. XI. \\.eisi, Total aiid partial differe~itinbilit>- in L,, S t ~ l d i a XIath., 25 (1964) 103-109. 216. H. T\.hitne>., 0 1 1 totally differentiable and smooth functioils, Pacific J , XIath., 1 (1951)

143-159.