25
Page 1 Page 1 Page 1 A Monolithic ALE-FEM Technique for Numerical Benchmarking and Optimization of Fluid-Structure Interaction Problems M. Razzaq , S. Turek, Institute of Applied Mathematics, LS III, TU Dortmund http://www.featflow.de M. Razzaq | ALE-FEM for FSI Recent Developments in Fluid Mechanics August 3-5, 2010 Isamabad, Pakistan

A Monolithic ALE-FEM Technique for Numerical Benchmarking ...web.lums.edu.pk/~mudassar.razzaq/presentations/... · Page 17 Quantities of interest M. Razzaq | ALE-FEM for FSI The position

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A Monolithic ALE-FEM Technique for Numerical Benchmarking ...web.lums.edu.pk/~mudassar.razzaq/presentations/... · Page 17 Quantities of interest M. Razzaq | ALE-FEM for FSI The position

Page 1Page 1Page 1

A Monolithic ALE-FEM Technique for Numerical Benchmarking and

Optimization of

Fluid-Structure Interaction Problems

M. Razzaq, S. Turek,

Institute of Applied Mathematics, LS III, TU Dortmund

http://www.featflow.de

M. Razzaq | ALE-FEM for FSI

Recent Developments in Fluid Mechanics August 3-5, 2010

Isamabad, Pakistan

Page 2: A Monolithic ALE-FEM Technique for Numerical Benchmarking ...web.lums.edu.pk/~mudassar.razzaq/presentations/... · Page 17 Quantities of interest M. Razzaq | ALE-FEM for FSI The position

Page 2Page 2

Aim: Featflow with optimization

M. Razzaq | ALE-FEM for FSI

FEM-Multigrid for FEM-Multigrid for Multiphase (FSI) ProblemsMultiphase (FSI) ProblemsWith optimizationWith optimization

Aim:Aim:FSI-modelFSI-modelBenchmark Benchmark OptimizationOptimizationExtensions Extensions

Page 3: A Monolithic ALE-FEM Technique for Numerical Benchmarking ...web.lums.edu.pk/~mudassar.razzaq/presentations/... · Page 17 Quantities of interest M. Razzaq | ALE-FEM for FSI The position

Page 3Page 3

Fluid Structure Interaction (FSI)

M. Razzaq | ALE-FEM for FSI

large deformation of a structure in internal/external flow

aeorelasticity

bioengineering

polymer, food, paper processing

. . .

physical models

viscous fluid flow

elastic body under large

deformations

interaction between the two parts

numerical tasks involved space and time discretization nonlinear system large linear systems

testing and validation accuracy, efficiency, robustnes benchmarking

Page 4: A Monolithic ALE-FEM Technique for Numerical Benchmarking ...web.lums.edu.pk/~mudassar.razzaq/presentations/... · Page 17 Quantities of interest M. Razzaq | ALE-FEM for FSI The position

Page 4Page 4

Problem description

M. Razzaq | ALE-FEM for FSI

Structure part Fluid part

Page 5: A Monolithic ALE-FEM Technique for Numerical Benchmarking ...web.lums.edu.pk/~mudassar.razzaq/presentations/... · Page 17 Quantities of interest M. Razzaq | ALE-FEM for FSI The position

Page 5Page 5

Governing Equations

M. Razzaq | ALE-FEM for FSI

structure part fluid part

interface conditions

( ) sTss

fJt

v Ω+=∂∂ − in F div σ

( ) 1Fdet = sΩin

0 =su

0 =nsσ 3on Γ

( ) f

t

fff

f

fvvt

v Ω+=∇+∂

∂in div σ

0 div =fv

0 vv f =

0 or =nfσ

sf vv = 0on tΓ

0on tΓnn sf σσ =

Page 6: A Monolithic ALE-FEM Technique for Numerical Benchmarking ...web.lums.edu.pk/~mudassar.razzaq/presentations/... · Page 17 Quantities of interest M. Razzaq | ALE-FEM for FSI The position

Page 6Page 6

Arbitrary Lagrange-Euler Formulation

M. Razzaq | ALE-FEM for FSI

Lagrangian description: :

[ ] tT Ω×Ω 0, :χ , t

v∂∂= χ , F

X∂∂= χ

[ ] tR RTR 0, : ×ζ ttR Ω⊂ [ ], 0, Tt∈∀ tv R

R ∂∂= ζ

X

RR ∂

∂= ζ F

RRJ F det =

( ) 0 =∫ ⋅−+∫∂∂

∂ t

t

t RRR

R

danvvdvt

ρρ

( ) ( )( ) 0 F div =−+∂∂ −T

RRRR vvJJt

ρρ

Eulerian description

vvJJ RRRR , F, F ===⇒= χζ

( ) 0 =∂∂

Jt

ρ

0 ,1 I, F Id ===⇒= RRRR vJζ

( ) 0 div =+∂∂

vt

ρρ

Fdet=J

Mesh nodes are fixedFluid mechanicsLarge distortion handleNumerical instable for convective term

Mesh nodes are not fixedStructure mechanicsMesh tangleexpensive

Page 7: A Monolithic ALE-FEM Technique for Numerical Benchmarking ...web.lums.edu.pk/~mudassar.razzaq/presentations/... · Page 17 Quantities of interest M. Razzaq | ALE-FEM for FSI The position

Page 7Page 7

Coupling strategies

M. Razzaq | ALE-FEM for FSI

Page 8: A Monolithic ALE-FEM Technique for Numerical Benchmarking ...web.lums.edu.pk/~mudassar.razzaq/presentations/... · Page 17 Quantities of interest M. Razzaq | ALE-FEM for FSI The position

Page 8Page 8

Constitutive equations

M. Razzaq | ALE-FEM for FSI

incompressible Newtonian fluid

hyperelastic material, incompressible

where and

or St. Venant--Kirchhoff material, compressible

where

D2 I νσ +−= pf

,FF

2F I Tf p∂Ψ∂+−=σ 1 det =F

( ) ( ) Hook-Neo3 I F C −=Ψ α

( ) ( ) ( ) ( ) canisotropi Rivlin -Mooney 1 Fe 3 I 3 I F2

3C2C1 +−+−+−=Ψ αααTFF C = trC, IC = ( )( )22

C trC trC2

1 I −=

( )( ) Tsss

JFE ItrEF

1 µλσ +=

( )I FF2

1 E −= T

Page 9: A Monolithic ALE-FEM Technique for Numerical Benchmarking ...web.lums.edu.pk/~mudassar.razzaq/presentations/... · Page 17 Quantities of interest M. Razzaq | ALE-FEM for FSI The position

Page 9Page 9

Discretization in space and time

M. Razzaq | ALE-FEM for FSI

Discretization in space: FEM

Discretization in time: Crank-Nicholson, BE, FS, schemes

discPQQ 122 //

( )[ ] ( )[ ] ,on 0 ,Q | , 12

2

2 Γ=∈∀∈Ω∈= hhThhhh uTTuCuU τ

( )[ ] ( )[ ] ,on 0 ,Q | , 12

2

2 Γ=∈∀∈Ω∈= hhThhhh vTTvCvV τ

( ) ( ) . | , 1

2

hThhhh TTPpLpP τ∈∀∈Ω∈=

Page 10: A Monolithic ALE-FEM Technique for Numerical Benchmarking ...web.lums.edu.pk/~mudassar.razzaq/presentations/... · Page 17 Quantities of interest M. Razzaq | ALE-FEM for FSI The position

Page 10Page 10

Discrete nonlinear system

M. Razzaq | ALE-FEM for FSI

( ) 0 x =R

( ) ( )n

h

n

hh

f

h

s

h vuuLvMk

Mu ,rhs 2

=+−

( ) ( ) ( ) ( ) ( )( ) ( )n

h

n

h

n

hhh

f

h

s

hhhhh

sf pvukBpvSuSk

uvNuvNk

vMM , ,rhs2

,2

1,

2 21 =−+++++ β

( ) 1=+ h

Tf

h vBuC

( ) ( ) ( )

∂∂+

∂+∂

+∂∂++

∂∂+

∂++∂

=∂∂

0

22

1

2

1

02

2

2

121

Tf

h

h

fs

h

f

h

fs

h

hh

fs

sf

Bvu

BB

kBv

SNk

v

NMMp

u

Bk

u

SSN

Mk

Lk

M

XX

R

T

T

β

( ) hhhhhh PVUpvux , , ××∈=

Page 11: A Monolithic ALE-FEM Technique for Numerical Benchmarking ...web.lums.edu.pk/~mudassar.razzaq/presentations/... · Page 17 Quantities of interest M. Razzaq | ALE-FEM for FSI The position

Page 11Page 11

Discrete nonlinear system

M. Razzaq | ALE-FEM for FSI

Typical discrete saddle-point problem

( ) ( )n

h

n

hh

f

h

s

h vuuLvMk

Mu ,rhs 2

=+−

( ) ( ) ( ) ( ) ( )( ) ( )n

h

n

h

n

hhh

f

h

s

hhhhh

sf pvukBpvSuSk

uvNuvNk

vMM , ,rhs2

,2

1,

2 21 =−+++++ β

( ) 1=+ h

Tf

h vBuC

=

pTfv

Tsu

vvvu

uvuu

fp

v

u

BcBc

kBSS

SS

u

u

f

f

0

0

( ) 0 x =R ( ) hhhhhh PVUpvux , , ××∈=

Page 12: A Monolithic ALE-FEM Technique for Numerical Benchmarking ...web.lums.edu.pk/~mudassar.razzaq/presentations/... · Page 17 Quantities of interest M. Razzaq | ALE-FEM for FSI The position

Page 12Page 12

Challenges Nonlinear Solvers

M. Razzaq | ALE-FEM for FSI

Solve for the residual of the nonlinear system algebraic equations

Use Newton method with damping results in iterations of the form

Continuous Newton: on variational level (before discretization)

The continuous Frechet operator can be analytically calculated

Inexact Newton: on matrix level (after discretization)

The Jacobian matrix is approximated using finite differences as

( ) ( )pR v,u, x ,0 x ==

( ) ( )n1n

nn1n xx

x x x R

R−

+

∂∂+= ω

( ) ( ) ( )ε

εε2

e x e x

xnnn

jiji

ij

RR

x

R −−+≈

∂∂

Page 13: A Monolithic ALE-FEM Technique for Numerical Benchmarking ...web.lums.edu.pk/~mudassar.razzaq/presentations/... · Page 17 Quantities of interest M. Razzaq | ALE-FEM for FSI The position

Page 13Page 13

Multigrid Solver

M. Razzaq | ALE-FEM for FSI

standard geometric multigrid approach smoother by local MPSC-Ansatz (Vanka-like smoother

full inverse of the local problems by LAPACK (39 x39 systems) alternatives: simplified local problems (3x3 systems) or ILU(k) combination with GMRES/BiCGStab methods possible full (canonical) FEM prolongation, restriction

Very accurate, flexible and highly efficient FSI solver

( FSI Benchmarks)

=

Ω

ΩΩ

ΩΩΩ

ΩΩ

+

+

+

iPatch

1

||

|||

||

1

1

1

def

def

0

0

l

p

l

v

l

u

T

fv

T

su

vvvu

uvuu

l

l

l

l

l

l

defBcBc

kBSS

SS

p

v

u

p

v

u

ii

iii

ii

ω

Page 14: A Monolithic ALE-FEM Technique for Numerical Benchmarking ...web.lums.edu.pk/~mudassar.razzaq/presentations/... · Page 17 Quantities of interest M. Razzaq | ALE-FEM for FSI The position

Page 14Page 14

Applications

M. Razzaq | ALE-FEM for FSI

1st step: Identification of appropriate FSI settings for numerical benchmarking and calculate

If done 2nd step

2nd step: Extension to FSI-Optimisation benchmark settings

• Data files are available onhttp://featflow.de/beta/en/benchmarks.html

Page 15: A Monolithic ALE-FEM Technique for Numerical Benchmarking ...web.lums.edu.pk/~mudassar.razzaq/presentations/... · Page 17 Quantities of interest M. Razzaq | ALE-FEM for FSI The position

Page 15Page 15

Numerical FSI

M. Razzaq | ALE-FEM for FSI

Realistic materials

• incompressible Newtonian fluid, laminar flow regime• elastic solid, large deformations

Comparative evaluation• setup with periodical oscillations • non-graphically based quantities

Computable configurations• laminar flow• reasonable aspect ratios • simple geometry (2D)

Mainly based on validated CFD benchmarks, but also close to experimental set-up

Page 16: A Monolithic ALE-FEM Technique for Numerical Benchmarking ...web.lums.edu.pk/~mudassar.razzaq/presentations/... · Page 17 Quantities of interest M. Razzaq | ALE-FEM for FSI The position

Page 16Page 16

Material parameters

M. Razzaq | ALE-FEM for FSI

solid fluid

density density

Poisson ratio kinematic viscosity shear modulus

Parameter polybutadiene & glycerine polypropylene & glycerine

0.91 incompressible 0.50 0.53

1.1 compressible 0.42 317

1.26

1.13

1.26

1.13

Parameter FSI1 FSI2 FSI3

1 0.4 0.5

1 0.4 0.5

10.42.0

11

11

11

0.2 1 2

Parameter FSI1 FSI2 FSI3

10.4

10.4

10.4

20

0.2

100

1

200

2

sρ fρsν fνsµ

]kg/ms10[ 26sµsν

]kg/m10[ 33sρ

]kg/m10[ 33fρ]/m10[ 23 sf −ν

]kg/ms10[ 26sµ

sν]kg/m10[ 33sρ

]kg/m10[ 33fρ]/m10[ 23 sf −ν

]m/[ sU

f

s

ρρβ =

2

E Ae

Uf

s

ρ=

]m/s[U

f

dU

ν Re =

Page 17: A Monolithic ALE-FEM Technique for Numerical Benchmarking ...web.lums.edu.pk/~mudassar.razzaq/presentations/... · Page 17 Quantities of interest M. Razzaq | ALE-FEM for FSI The position

Page 17Page 17

Quantities of interest

M. Razzaq | ALE-FEM for FSI

The position of the end of the structure Pressure difference between the points A(t) and B

Forces exerted by the fluid on the whole body, i.e. lift and drag forces acting on the cylinder and the structure together

Frequency and maximum amplitude Compare results for one full period and 3 different levels of spatial

discretization h and 3 time step sizes

( ) ( ) ( )( )tytxtA , =

( ) ( ) ( ) ( )tptptp tABAB −=∆

( ) ∫ ∫=∫ +=∫=2 01

, |

S S

Sf

S

f

SLD dSnndSndSdSnFF σσσσ

t∆

Page 18: A Monolithic ALE-FEM Technique for Numerical Benchmarking ...web.lums.edu.pk/~mudassar.razzaq/presentations/... · Page 17 Quantities of interest M. Razzaq | ALE-FEM for FSI The position

Page 18Page 18

FSI1: steady, small deformations

M. Razzaq | ALE-FEM for FSI

Parameter FSI1 FSI2 FSI3

10.40.5

10.40.5

10.42.0

11

11

11

0.2 1 2

Parameter FSI1 FSI2 FSI3

10.4

10.4

10.4

200.2

1001

2002

FSI1 2.270493 8.208773 14.2942 0.76374

ux of A [ m] uy of A [ m] drag lift410 −×510 −×

]kg/m10[ 33sρsν

]kg/ms10[ 26sµ

]kg/m10[ 33sρ]s/m10[ 23−sν

]s/m[U

f

s

ρρβ =

sν2

E Ae

Uf

s

ρ=

f

dU

ν Re =

]s/m[U

Page 19: A Monolithic ALE-FEM Technique for Numerical Benchmarking ...web.lums.edu.pk/~mudassar.razzaq/presentations/... · Page 17 Quantities of interest M. Razzaq | ALE-FEM for FSI The position

Page 19Page 19

FSI2: large deformations

M. Razzaq | ALE-FEM for FSI

Test ux of A [ m] uy of A [ m] drag lift

FSI2

310 −× 310 −×]86.3[70.1285.14 ±− ]93.1[7.8130.1 ± ]86.3[65.7706.215 ± ]93.1[8.23761.0 ±

Mean ± amplitude[frequency]

Page 20: A Monolithic ALE-FEM Technique for Numerical Benchmarking ...web.lums.edu.pk/~mudassar.razzaq/presentations/... · Page 17 Quantities of interest M. Razzaq | ALE-FEM for FSI The position

Page 20Page 20

FSI3: large deformations

M. Razzaq | ALE-FEM for FSI

Test ux of A [ m] ux of A [ m] drag lift

FSI3

310 −×310 −×]93.10[72.288.2 ±− ]46.5[99.3447.1 ± ]93.10[74.275.460 ± ]46.5[91.15350.2 ±

Mean ± amplitude[frequency]

Page 21: A Monolithic ALE-FEM Technique for Numerical Benchmarking ...web.lums.edu.pk/~mudassar.razzaq/presentations/... · Page 17 Quantities of interest M. Razzaq | ALE-FEM for FSI The position

Page 21Page 21

FSI Optimization

M. Razzaq | ALE-FEM for FSI

The main design aims could be

I) Drag/Lift minimization

II) Minimal pressure loss

III) Minimal nonstationary oscillations To reach these aims, we might allow

1. Boundary control of inflow section

2. Change of geometry: elastic channel walls or length/thickness of elastic beam

3. Optimal control of volume forces Optimal control of nonstationary flow might be hard for the starting Results for the moment are combination of I)-III) with 1)-3).

Page 22: A Monolithic ALE-FEM Technique for Numerical Benchmarking ...web.lums.edu.pk/~mudassar.razzaq/presentations/... · Page 17 Quantities of interest M. Razzaq | ALE-FEM for FSI The position

Page 22Page 22

Nelder Mead algorithm

M. Razzaq | ALE-FEM for FSI

B= Best

G=Good

W=Worst

Mid, reflect point Reflect, extend point

Contraction pointshrink

Page 23: A Monolithic ALE-FEM Technique for Numerical Benchmarking ...web.lums.edu.pk/~mudassar.razzaq/presentations/... · Page 17 Quantities of interest M. Razzaq | ALE-FEM for FSI The position

Page 23Page 23

FSI Optimization

M. Razzaq | ALE-FEM for FSI

controlled flow

Aim:

w.r.t V1, V2.

V1 velocity from top

V2 velocity from below

ux of A [ m] uy of A [ m] drag lift310 −×310 −×

FSI1 0.0227 0.8209 14.295 0.7638

h=0.04

( )22 minimize Vlift α+

Page 24: A Monolithic ALE-FEM Technique for Numerical Benchmarking ...web.lums.edu.pk/~mudassar.razzaq/presentations/... · Page 17 Quantities of interest M. Razzaq | ALE-FEM for FSI The position

Page 24Page 24

FSI Opt1

M. Razzaq | ALE-FEM for FSI

TESTS for FSI 1 (Boundary control)

level 1 level 2

Iter steps

extreme point drag Lift

1e0 57 (3.74e-1,3.88e-1) 1.5471e+01 8.1904e-1

1e-2 60 (1.04e0,1.06e0) 1.5474e+01 2.2684e-2

1e-4 73 (1.06e0,1.08e0) 1.5474e+01 2.3092e-4

1e-6 81 (1.06e0,1.08e0) 1.5474e+01 2.3096e-6

Iter steps

extreme point drag Lift

59 (3.66e-1,3.79e-1) 1.5550e+01 7.8497e-1

59 (1.02e0,1.04e0) 1.5553e+01 2.1755e-2

71 (1.04e0,1.05e0) 1.5553e+01 2.2147e-4

86 (1.04e0,1.05e0) 1.5553e+01 2.2151e-6

α

Level 1 Level 2

Page 25: A Monolithic ALE-FEM Technique for Numerical Benchmarking ...web.lums.edu.pk/~mudassar.razzaq/presentations/... · Page 17 Quantities of interest M. Razzaq | ALE-FEM for FSI The position

Page 25Page 25

Summary-Outlook

M. Razzaq | ALE-FEM for FSI

Numerical benchmarks (tests, comparisons) Optimization test case definition and results

Biomedical application

like

Hemodynamics(aneurysm)