32
ACF/PACF Estimation and AR/MA models

ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

ACF/PACF Estimation and AR/MA models

Page 2: ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

§2.5 (cont): ACF & PACF Estimation §2.6 MA(∞) and AR(∞) Representations

Outline

1 §2.5 (cont): ACF & PACF Estimation

2 §2.6 MA(∞) and AR(∞) Representations

Arthur Berg ACF/PACF Estimation and AR/MA models 2/ 13

Page 3: ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

§2.5 (cont): ACF & PACF Estimation §2.6 MA(∞) and AR(∞) Representations

Autocovariance Estimation

The sample autocovariance function.

γ̂(h) =1n

n−h∑t=1

(Zt+h − Z̄)(Zt − Z̄)

And compare γ̂(h) with γ(h).

γ(h) = E [(Zt+h − µ) (Zt − µ)]

The following estimator is slightly less biased, but it’s variance is often larger.

ˆ̂γ(h) =1

n− h

n−h∑t=1

(Zt+h − Z̄)(Zt − Z̄)

Arthur Berg ACF/PACF Estimation and AR/MA models 3/ 13

Page 4: ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

§2.5 (cont): ACF & PACF Estimation §2.6 MA(∞) and AR(∞) Representations

Autocovariance Estimation

The sample autocovariance function.

γ̂(h) =1n

n−h∑t=1

(Zt+h − Z̄)(Zt − Z̄)

And compare γ̂(h) with γ(h).

γ(h) = E [(Zt+h − µ) (Zt − µ)]

The following estimator is slightly less biased, but it’s variance is often larger.

ˆ̂γ(h) =1

n− h

n−h∑t=1

(Zt+h − Z̄)(Zt − Z̄)

Arthur Berg ACF/PACF Estimation and AR/MA models 3/ 13

Page 5: ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

§2.5 (cont): ACF & PACF Estimation §2.6 MA(∞) and AR(∞) Representations

Asymptotics of γ̂

When the process {Zt} is Gaussian, Bartlett (1946) derived the followingasymptotics of γ̂k:

cov(γ̂k, γ̂k+j) ≈1n

∞∑i=1

(γiγi+j + γi+k+jγi−k)

var(γ̂k) ≈1n

∞∑i=−∞

(γ2i + γi+kγi−k)

To guarantee γ̂ → 0, the following condition is imposed:

∞∑−∞|γi| <∞

Arthur Berg ACF/PACF Estimation and AR/MA models 4/ 13

Page 6: ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

§2.5 (cont): ACF & PACF Estimation §2.6 MA(∞) and AR(∞) Representations

Asymptotics of γ̂

When the process {Zt} is Gaussian, Bartlett (1946) derived the followingasymptotics of γ̂k:

cov(γ̂k, γ̂k+j) ≈1n

∞∑i=1

(γiγi+j + γi+k+jγi−k)

var(γ̂k) ≈1n

∞∑i=−∞

(γ2i + γi+kγi−k)

To guarantee γ̂ → 0, the following condition is imposed:

∞∑−∞|γi| <∞

Arthur Berg ACF/PACF Estimation and AR/MA models 4/ 13

Page 7: ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

§2.5 (cont): ACF & PACF Estimation §2.6 MA(∞) and AR(∞) Representations

Autocorrelation Estimation and Asymptotics

The sample autocorrelation function is defined by

ρ̂k =γ̂k

γ̂0=∑n−k

t=1 (Zt − Z̄)(Zt+k − Z̄)∑nt=1(Zt − Z̄)2

with asymptotics given by

cov(ρ̂k, ρ̂k+j) ≈1n

∞∑i=−∞

(ρiρi+j + ρi+k+jρi−k

− 2ρkρiρi−k−j − 2ρk+jρiρi−k + 2ρkρk+jρ2i )

var(ρ̂k) ≈1n

∞∑i=1

(ρ2i + ρi+kρi−k − 4ρkρiρi−k + 2ρ2

kρ2i )

?≈ 1

n

(1 + 2ρ2

1 + 2ρ22 + · · ·+ 2ρ2

m)

The second variance approximation holds if ρk = 0 for k > m.Arthur Berg ACF/PACF Estimation and AR/MA models 5/ 13

Page 8: ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

§2.5 (cont): ACF & PACF Estimation §2.6 MA(∞) and AR(∞) Representations

PACF Estimation

The sample partial autocorrelation function is computed via theDurbin-Levinson recursive algorithm (1960).Start with φ̂11 = ρ̂1then recursively compute

φ̂k+1,k+1 =ρ̂k+1 −

∑kj=1 φ̂kjρ̂k+1−j

1−∑k

j=1 φ̂kjρ̂j

andφ̂k+1,j = φ̂kj − φ̂k+1,k+1φ̂k,k+1−j j = 1, . . . , k

Quenouille (1949) showed that for a white noise process the followingapproximation holds

var(φ̂kk) ≈1n

Hence ±2/√

n can be used as critical limits on φkk to test for white noise.

Arthur Berg ACF/PACF Estimation and AR/MA models 6/ 13

Page 9: ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

§2.5 (cont): ACF & PACF Estimation §2.6 MA(∞) and AR(∞) Representations

PACF Estimation

The sample partial autocorrelation function is computed via theDurbin-Levinson recursive algorithm (1960).Start with φ̂11 = ρ̂1then recursively compute

φ̂k+1,k+1 =ρ̂k+1 −

∑kj=1 φ̂kjρ̂k+1−j

1−∑k

j=1 φ̂kjρ̂j

andφ̂k+1,j = φ̂kj − φ̂k+1,k+1φ̂k,k+1−j j = 1, . . . , k

Quenouille (1949) showed that for a white noise process the followingapproximation holds

var(φ̂kk) ≈1n

Hence ±2/√

n can be used as critical limits on φkk to test for white noise.

Arthur Berg ACF/PACF Estimation and AR/MA models 6/ 13

Page 10: ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

§2.5 (cont): ACF & PACF Estimation §2.6 MA(∞) and AR(∞) Representations

PACF Estimation

The sample partial autocorrelation function is computed via theDurbin-Levinson recursive algorithm (1960).Start with φ̂11 = ρ̂1then recursively compute

φ̂k+1,k+1 =ρ̂k+1 −

∑kj=1 φ̂kjρ̂k+1−j

1−∑k

j=1 φ̂kjρ̂j

andφ̂k+1,j = φ̂kj − φ̂k+1,k+1φ̂k,k+1−j j = 1, . . . , k

Quenouille (1949) showed that for a white noise process the followingapproximation holds

var(φ̂kk) ≈1n

Hence ±2/√

n can be used as critical limits on φkk to test for white noise.

Arthur Berg ACF/PACF Estimation and AR/MA models 6/ 13

Page 11: ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

§2.5 (cont): ACF & PACF Estimation §2.6 MA(∞) and AR(∞) Representations

PACF Estimation

The sample partial autocorrelation function is computed via theDurbin-Levinson recursive algorithm (1960).Start with φ̂11 = ρ̂1then recursively compute

φ̂k+1,k+1 =ρ̂k+1 −

∑kj=1 φ̂kjρ̂k+1−j

1−∑k

j=1 φ̂kjρ̂j

andφ̂k+1,j = φ̂kj − φ̂k+1,k+1φ̂k,k+1−j j = 1, . . . , k

Quenouille (1949) showed that for a white noise process the followingapproximation holds

var(φ̂kk) ≈1n

Hence ±2/√

n can be used as critical limits on φkk to test for white noise.

Arthur Berg ACF/PACF Estimation and AR/MA models 6/ 13

Page 12: ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

§2.5 (cont): ACF & PACF Estimation §2.6 MA(∞) and AR(∞) Representations

PACF Estimation

The sample partial autocorrelation function is computed via theDurbin-Levinson recursive algorithm (1960).Start with φ̂11 = ρ̂1then recursively compute

φ̂k+1,k+1 =ρ̂k+1 −

∑kj=1 φ̂kjρ̂k+1−j

1−∑k

j=1 φ̂kjρ̂j

andφ̂k+1,j = φ̂kj − φ̂k+1,k+1φ̂k,k+1−j j = 1, . . . , k

Quenouille (1949) showed that for a white noise process the followingapproximation holds

var(φ̂kk) ≈1n

Hence ±2/√

n can be used as critical limits on φkk to test for white noise.

Arthur Berg ACF/PACF Estimation and AR/MA models 6/ 13

Page 13: ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

§2.5 (cont): ACF & PACF Estimation §2.6 MA(∞) and AR(∞) Representations

PACF Estimation

The sample partial autocorrelation function is computed via theDurbin-Levinson recursive algorithm (1960).Start with φ̂11 = ρ̂1then recursively compute

φ̂k+1,k+1 =ρ̂k+1 −

∑kj=1 φ̂kjρ̂k+1−j

1−∑k

j=1 φ̂kjρ̂j

andφ̂k+1,j = φ̂kj − φ̂k+1,k+1φ̂k,k+1−j j = 1, . . . , k

Quenouille (1949) showed that for a white noise process the followingapproximation holds

var(φ̂kk) ≈1n

Hence ±2/√

n can be used as critical limits on φkk to test for white noise.

Arthur Berg ACF/PACF Estimation and AR/MA models 6/ 13

Page 14: ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

§2.5 (cont): ACF & PACF Estimation §2.6 MA(∞) and AR(∞) Representations

Outline

1 §2.5 (cont): ACF & PACF Estimation

2 §2.6 MA(∞) and AR(∞) Representations

Arthur Berg ACF/PACF Estimation and AR/MA models 7/ 13

Page 15: ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

§2.5 (cont): ACF & PACF Estimation §2.6 MA(∞) and AR(∞) Representations

Herman Ole Andreas Wold (1908-1992)

Theorem (Wold Decomposition)A stationary time series Zt that is purelynondeterministic can always beexpressed in the form

Zt = µ+ at + ψ1at−1 + ψ2at−2 + · · ·

= µ+∞∑

j=0

ψjat−j

where ψ0 = 1, {at} is a zero meanwhite noise process, and

∑∞j=0 ψ

2j <∞.

Moreover, this decomposition is unique.

Arthur Berg ACF/PACF Estimation and AR/MA models 8/ 13

Page 16: ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

§2.5 (cont): ACF & PACF Estimation §2.6 MA(∞) and AR(∞) Representations

Backshift and Difference OperatorsDefinition (Backshift Operator)The backshift operator, B, is defined by

BZt = Zt−1

and repeated backshift operations are represented by

BkZt = BB · · ·B︸ ︷︷ ︸k times

Zt = Zt−k

Definition (Difference Operator)The difference operator, ∆, is defined by

∆Zt = (1− B)Zt = Zt − Zt−1

and repeated d times is called differences of order d which represented by

∆d =

d times︷ ︸︸ ︷(1− B)(1− B) · · · (1− B) Zt

Arthur Berg ACF/PACF Estimation and AR/MA models 9/ 13

Page 17: ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

§2.5 (cont): ACF & PACF Estimation §2.6 MA(∞) and AR(∞) Representations

Backshift and Difference OperatorsDefinition (Backshift Operator)The backshift operator, B, is defined by

BZt = Zt−1

and repeated backshift operations are represented by

BkZt = BB · · ·B︸ ︷︷ ︸k times

Zt = Zt−k

Definition (Difference Operator)The difference operator, ∆, is defined by

∆Zt = (1− B)Zt = Zt − Zt−1

and repeated d times is called differences of order d which represented by

∆d =

d times︷ ︸︸ ︷(1− B)(1− B) · · · (1− B) Zt

Arthur Berg ACF/PACF Estimation and AR/MA models 9/ 13

Page 18: ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

§2.5 (cont): ACF & PACF Estimation §2.6 MA(∞) and AR(∞) Representations

Moving Average Model — MA(q)

Definition (Moving average model — MA(q))The moving average model of order q is defined to be

Zt = µ+ at + θ1at−1 + θ2at−2 + · · ·+ θqat−q

where θ1, θ2, . . . θq are parameters in R.

The above model can be compactly written as

Zt = µ+ θ(B)at

where θ(B) is the moving average operator.

Definition (Moving Average Operator)The moving average operator is

θ(B) = 1 + θ1B + θ2B2 + · · ·+ θqBq

Arthur Berg ACF/PACF Estimation and AR/MA models 10/ 13

Page 19: ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

§2.5 (cont): ACF & PACF Estimation §2.6 MA(∞) and AR(∞) Representations

Moving Average Model — MA(q)

Definition (Moving average model — MA(q))The moving average model of order q is defined to be

Zt = µ+ at + θ1at−1 + θ2at−2 + · · ·+ θqat−q

where θ1, θ2, . . . θq are parameters in R.

The above model can be compactly written as

Zt = µ+ θ(B)at

where θ(B) is the moving average operator.

Definition (Moving Average Operator)The moving average operator is

θ(B) = 1 + θ1B + θ2B2 + · · ·+ θqBq

Arthur Berg ACF/PACF Estimation and AR/MA models 10/ 13

Page 20: ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

§2.5 (cont): ACF & PACF Estimation §2.6 MA(∞) and AR(∞) Representations

Moving Average Model — MA(q)

Definition (Moving average model — MA(q))The moving average model of order q is defined to be

Zt = µ+ at + θ1at−1 + θ2at−2 + · · ·+ θqat−q

where θ1, θ2, . . . θq are parameters in R.

The above model can be compactly written as

Zt = µ+ θ(B)at

where θ(B) is the moving average operator.

Definition (Moving Average Operator)The moving average operator is

θ(B) = 1 + θ1B + θ2B2 + · · ·+ θqBq

Arthur Berg ACF/PACF Estimation and AR/MA models 10/ 13

Page 21: ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

§2.5 (cont): ACF & PACF Estimation §2.6 MA(∞) and AR(∞) Representations

MA(1)

Consider the mean zero MA(1) process

Zt = at + θat−1

Then the autocovariance function is computed as

γ(h) = cov(Zt+h,Zt)

= E [(at+h + θat+h−1)(at + θat−1)]

= E(at+hat)︸ ︷︷ ︸h=0

+θ E(at+h−1at)︸ ︷︷ ︸h=1

+θ E(at+hat−1)︸ ︷︷ ︸h=−1

+θ2 E(at+h−1at−1)︸ ︷︷ ︸h=0

=

(1 + θ2)σ2, h = 0θσ2, |h| = 10, |h| > 1

Arthur Berg ACF/PACF Estimation and AR/MA models 11/ 13

Page 22: ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

§2.5 (cont): ACF & PACF Estimation §2.6 MA(∞) and AR(∞) Representations

MA(1)

Consider the mean zero MA(1) process

Zt = at + θat−1

Then the autocovariance function is computed as

γ(h) = cov(Zt+h,Zt)

= E [(at+h + θat+h−1)(at + θat−1)]

= E(at+hat)︸ ︷︷ ︸h=0

+θ E(at+h−1at)︸ ︷︷ ︸h=1

+θ E(at+hat−1)︸ ︷︷ ︸h=−1

+θ2 E(at+h−1at−1)︸ ︷︷ ︸h=0

=

(1 + θ2)σ2, h = 0θσ2, |h| = 10, |h| > 1

Arthur Berg ACF/PACF Estimation and AR/MA models 11/ 13

Page 23: ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

§2.5 (cont): ACF & PACF Estimation §2.6 MA(∞) and AR(∞) Representations

MA(1)

Consider the mean zero MA(1) process

Zt = at + θat−1

Then the autocovariance function is computed as

γ(h) = cov(Zt+h,Zt)= E [(at+h + θat+h−1)(at + θat−1)]

= E(at+hat)︸ ︷︷ ︸h=0

+θ E(at+h−1at)︸ ︷︷ ︸h=1

+θ E(at+hat−1)︸ ︷︷ ︸h=−1

+θ2 E(at+h−1at−1)︸ ︷︷ ︸h=0

=

(1 + θ2)σ2, h = 0θσ2, |h| = 10, |h| > 1

Arthur Berg ACF/PACF Estimation and AR/MA models 11/ 13

Page 24: ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

§2.5 (cont): ACF & PACF Estimation §2.6 MA(∞) and AR(∞) Representations

MA(1)

Consider the mean zero MA(1) process

Zt = at + θat−1

Then the autocovariance function is computed as

γ(h) = cov(Zt+h,Zt)= E [(at+h + θat+h−1)(at + θat−1)]

= E(at+hat)︸ ︷︷ ︸h=0

+θ E(at+h−1at)︸ ︷︷ ︸h=1

+θ E(at+hat−1)︸ ︷︷ ︸h=−1

+θ2 E(at+h−1at−1)︸ ︷︷ ︸h=0

=

(1 + θ2)σ2, h = 0θσ2, |h| = 10, |h| > 1

Arthur Berg ACF/PACF Estimation and AR/MA models 11/ 13

Page 25: ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

§2.5 (cont): ACF & PACF Estimation §2.6 MA(∞) and AR(∞) Representations

MA(1)

Consider the mean zero MA(1) process

Zt = at + θat−1

Then the autocovariance function is computed as

γ(h) = cov(Zt+h,Zt)= E [(at+h + θat+h−1)(at + θat−1)]

= E(at+hat)︸ ︷︷ ︸h=0

+θ E(at+h−1at)︸ ︷︷ ︸h=1

+θ E(at+hat−1)︸ ︷︷ ︸h=−1

+θ2 E(at+h−1at−1)︸ ︷︷ ︸h=0

=

(1 + θ2)σ2, h = 0θσ2, |h| = 10, |h| > 1

Arthur Berg ACF/PACF Estimation and AR/MA models 11/ 13

Page 26: ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

§2.5 (cont): ACF & PACF Estimation §2.6 MA(∞) and AR(∞) Representations

MA(1) — ACF Computation

Therefore

ρ(h) =

1, h = 0θ

1+θ2 , |h| = 1

0, |h| > 1

Note that when θ = 1θ′ , we have

ρ(h) =

1, h = 0θ′−1

1+θ′−2 = θ′

θ′2+1 , |h| = 1

0, |h| > 1

Arthur Berg ACF/PACF Estimation and AR/MA models 12/ 13

Page 27: ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

§2.5 (cont): ACF & PACF Estimation §2.6 MA(∞) and AR(∞) Representations

MA(1) — ACF Computation

Therefore

ρ(h) =

1, h = 0θ

1+θ2 , |h| = 1

0, |h| > 1

Note that when θ = 1θ′ , we have

ρ(h) =

1, h = 0θ′−1

1+θ′−2 = θ′

θ′2+1 , |h| = 1

0, |h| > 1

Arthur Berg ACF/PACF Estimation and AR/MA models 12/ 13

Page 28: ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

§2.5 (cont): ACF & PACF Estimation §2.6 MA(∞) and AR(∞) Representations

Invertibility

Recall the MA(q) process:

Zt = µ+ at + θ1at−1 + θ2at−2 + · · ·+ θqat−q

We wish MA(q) processes to be uniquely determined by their ACFs.Invertibility guarantees this.

Definition (Invertibility)An MA model process is called invertible if Zt has the AR(∞) representation

Zt =∞∑

j=0

πjZt−j + at

In the MA(1) case, this amounts to |θ| < 1.We later see an easy way of determining whether a given MA model is invertiblebased on the roots of the MA operator.

Arthur Berg ACF/PACF Estimation and AR/MA models 13/ 13

Page 29: ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

§2.5 (cont): ACF & PACF Estimation §2.6 MA(∞) and AR(∞) Representations

Invertibility

Recall the MA(q) process:

Zt = µ+ at + θ1at−1 + θ2at−2 + · · ·+ θqat−q

We wish MA(q) processes to be uniquely determined by their ACFs.Invertibility guarantees this.

Definition (Invertibility)An MA model process is called invertible if Zt has the AR(∞) representation

Zt =∞∑

j=0

πjZt−j + at

In the MA(1) case, this amounts to |θ| < 1.We later see an easy way of determining whether a given MA model is invertiblebased on the roots of the MA operator.

Arthur Berg ACF/PACF Estimation and AR/MA models 13/ 13

Page 30: ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

§2.5 (cont): ACF & PACF Estimation §2.6 MA(∞) and AR(∞) Representations

Invertibility

Recall the MA(q) process:

Zt = µ+ at + θ1at−1 + θ2at−2 + · · ·+ θqat−q

We wish MA(q) processes to be uniquely determined by their ACFs.Invertibility guarantees this.

Definition (Invertibility)An MA model process is called invertible if Zt has the AR(∞) representation

Zt =∞∑

j=0

πjZt−j + at

In the MA(1) case, this amounts to |θ| < 1.We later see an easy way of determining whether a given MA model is invertiblebased on the roots of the MA operator.

Arthur Berg ACF/PACF Estimation and AR/MA models 13/ 13

Page 31: ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

§2.5 (cont): ACF & PACF Estimation §2.6 MA(∞) and AR(∞) Representations

Invertibility

Recall the MA(q) process:

Zt = µ+ at + θ1at−1 + θ2at−2 + · · ·+ θqat−q

We wish MA(q) processes to be uniquely determined by their ACFs.Invertibility guarantees this.

Definition (Invertibility)An MA model process is called invertible if Zt has the AR(∞) representation

Zt =∞∑

j=0

πjZt−j + at

In the MA(1) case, this amounts to |θ| < 1.We later see an easy way of determining whether a given MA model is invertiblebased on the roots of the MA operator.

Arthur Berg ACF/PACF Estimation and AR/MA models 13/ 13

Page 32: ACF/PACF Estimation and AR/MA models · 2008-01-14 · §2.5 (cont): ACF & PACF Estimation§2.6 MA(1) and AR(1) Representations PACF Estimation The sample partial autocorrelation

§2.5 (cont): ACF & PACF Estimation §2.6 MA(∞) and AR(∞) Representations

Invertibility

Recall the MA(q) process:

Zt = µ+ at + θ1at−1 + θ2at−2 + · · ·+ θqat−q

We wish MA(q) processes to be uniquely determined by their ACFs.Invertibility guarantees this.

Definition (Invertibility)An MA model process is called invertible if Zt has the AR(∞) representation

Zt =∞∑

j=0

πjZt−j + at

In the MA(1) case, this amounts to |θ| < 1.We later see an easy way of determining whether a given MA model is invertiblebased on the roots of the MA operator.

Arthur Berg ACF/PACF Estimation and AR/MA models 13/ 13