57
AD-A285 807 TARDEC T---TECHNICAL! REPORT--- 9 No. 3631 z 0 o TARDEC COMPUTER-BASED DYNAMIC AND FINITE ELEMENT ANALYSIS OF THE JOINT SERVICES IMAGERT PROCESSING SYSTEM (JSIPS) TRAILER; MODIFIED M371AI, 22-1/2-TON, FLATBED, SEMI-TRAILER SEPTEMBER 1994 DTIC EL ECTE OCT 3 11994 SMichael K. Pozoio O Stephen G. Lambrecht 0 S ' ? U.S. Army TARDEC -3 ATTN: AMSTA--RY 0 By Warren, MI 48397-5000 z> APPROVE• FOR PUBLIC VILEAFE m-_ DISTFIBUT Oa IS UNLIMITED U.S. Arm-y Tank-Automotive Research. Development, and Engineering Ceniter Detroit A, s.cnal Warren, Michigma 48397-5000 94 10 () 'I" "

AD-A285 807 TARDEC - DTIC · trailer is an M871A1, 22-1/2-ton, flat bed, Semi-Trailer that has been modified by converting the trailer deck and frame into a "gooseneck" configuration

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • AD-A285 807

    TARDECT---TECHNICAL! REPORT---

    9 No. �3631 z

    0

    o TARDEC

    COMPUTER-BASED DYNAMIC AND FINITE ELEMENT ANALYSIS OF THE JOINT• SERVICES IMAGERT PROCESSING SYSTEM (JSIPS) TRAILER; MODIFIED M371AI,

    22-1/2-TON, FLATBED, SEMI-TRAILER

    SEPTEMBER 1994 DTICEL ECTEOCT 3 11994

    SMichael K. PozoioO Stephen G. Lambrecht 0

    S ' ? U.S. Army TARDEC -3ATTN: AMSTA--RY 0

    By Warren, MI 48397-5000

    z>APPROVE• FOR PUBLIC VILEAFE

    m-_ DISTFIBUT Oa IS UNLIMITED

    U.S. Arm-y Tank-Automotive Research.Development, and Engineering CeniterDetroit A, s.cnalWarren, Michigma 48397-5000

    94 10 () • 'I" "

  • Form Approved

    REPORT DOCUMENTATION PAGE OMB No. 0704d;-88Pu~hc reo..n b• for thet 0o41e1.f Of ,Mm at~oftWll • •.tmt ro avra• t ho.•r •r rt~lomE., P•,d/fl9•j 1••' t.4 fo ~r tplq',ewnq emnt! udlorn1, 4atfe n C'(i;el hi q eata tr~teoItheftq an= henan th naeeano the dOte necoOf. Ond nenoitn a•m Jnd rf€Otnq the cofhton of ntfor tO1 o en;t se o, nd oomet sp.rJte of t",,I pO of ,nof matOo. nklud.r" sugitfOn r e'o Irt uo teq tto bArflefl tO wanaa.nqron Uffta.•n¢ C.". Wea, . O*re a'l o r Oftso anto 04at0o. 14 IS )efrfeno,Da-s H,oIhwav. S.4 1204, ArInqtn., VA 22202.4]02. and to t" 0nce )f Mas~q"t..ct and Se."t.~ t.vemeor R64--100 0`l Oet (0704.0 SIU). Washnfqton. r C.. 32$0

    1. AGENCY UjE ONLY (Leav. b•an*) 2. REPCOT DATE "AT TYPEANO DATES COVEREDI September 1994 Final

    4. TITLE AND SUBTITLE S. FUNDING NUMPERS

    Computer-Based Dynamic and Finite Element Analysisof the JSIPS Trailer; Modified M871A: Flatbed Sen'2-Tra iler

    6 AUTHOR(S)

    Michael K. PozoloStephen G. ",arbrecht

    7. PERFORMINC ORGANIZATION NAME(S) AND ADORIESS4ES) S. PERFOPMING ORGAWIZXATIONREPORT NUM3[R

    U'.S. Army :ark-Atomotive Com.,andlSystem Sim..a:,ion and Technology DIvIs:on (AMSTA-R.r) 1363"Warren, M: 4839-5000

    9. SPONSORING /MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING, MONITORING

    " ".S. Army Tank-A.tomorve Com.mand AGENCY REPORT NUMbERSyster Smuilat*o. and Technolcqy D:v:sion (AMSTA-RY,Warren, M: 48397-5000

    11. SUPPLEMENTARY NOTES

    12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODEUnlimited

    13. ABSTRACT (Maximum 200 words)

    This report describes the computer-based, dynamic and finite elementanalysis of the Joint Services imagery Processing System (DSIPS) Trailer.The JSIPS trailer is a modified M871A1, 22-1/2-ton, flatbed, sem.-trailer.The M871A1 deck and frame were converted from a flatbed configuration intoa "gooseneck' configuration. The computer-based dynamic and finite elementanalysis was performed in order to determine what effects the modificationwould have on the structural integrity and/or operational performance ofthe trailer.

    14 SUIJECT TERMS 15, 1 iUMBFR OF PAGES

    Cot-p 2er-3ased S-rulat.•r., .Jy7,armc Mode':, Va.te E.ere __ArnaZys9s, "'e.'ce Per:r-ar7c*e 16 PRICE CO(0

    17 SECURITY CLASSWICATbON jig SECURITY CLASSIIA CAION 19 SECURItY FLA SS-wICATxN 20 LIMNITATiION OF AOSTRACTOF RIPORT OfW THIS PA49( Of ABSTRACT

    a s!ý

    N¶N '¶WJ4O 160 5500 ¶?8d-t '9 V#. .1 l

  • GENERAL INSTRUCTIONS FOR COMPLETING SF 298

    The Report Documentation Page (RDP) is used in announcing and cataloging repor-ts It is importantthat this information be consistent with the rest of the report, particularly the cover and titleŽ page-Instructions dot fifling in each block of the form follow. It is important to stay withis, 4he lines to meetoptical 5canning requirements

    Block I Akgenýý_,Use Qn v(Leaveblankll 7 Blck 1 2a. Distribution/Avaiaiability Statement

    Sl~2 De:Denotes nubtic avatlabil-v' or 4imitations Cite any8Io rDo .e rji ii..in avaltabilitv To Ine puci(: Enter acaitionaiinc~ucng ca -cr-1). arnd rear. I a~ailao-e (e og limitatiors or special rark:nas r' all (apitals (e c;an 88) Must Ct'e at e lt te year ORN EVT)

    Block 3 lpo .pr1and Dates Cove'ec DD SeDDD5 4 - DistributionState whether repor! s interir. for'al, elc if

    appii(able. entef riciusive repori dae', (e q D0ocutr'ients o ehca

    Bl~k 4Tite a Sutite AItiDOE See authoritiesBloc4. itl an Sutite A itl isake) fornNASA Se'e Kandboosk NIID 2200 2

    the part of thir repocrt that provideii Th mos, NTIS Leave blankmneani nqful arJ coinp~eie intformat or. A~hetiareport is prepared , r rrore Ithan one Ye Ik Block 12b, Distribution Coderepeat the primarti ttle, aodo voiume runumber, andinclude subltitle fo r the specific volume Or, Lae ln

    clsiin d dare~'e ent nesh ie(asfcl DOE Enter DOE distribution categoriesfroni tthe Stancard Distribution for

    Block 5. ~Fuldng Numbers To niouoe (oniirac Unclassified tiSentific and Technicaland grant numberi, may .rc'utde programn RePOrelement numrber(s). projeci rurnbenIsý. tas~. NASA Leave blanknumber(s), and twok unit niumbeor(s) Use the NTI s Leave blaroltollowing labels

    C -Contract PR -Project Block 13. Abstract. include abrief (MoximumG -Grant rAt Task 200 words) factual summary of the mostPE -Program WU -Work Unit significant information contained in the repoit-

    Element A,-c, rsion No

    Block 6. AuThorls) Name(s) ofpersitn&;i Block 14. Subject Terms. Keywords or phrasesresponsible for writing !he 'epoct, pertorm~ng identifying major subjects in the report.the research, or o-edlited with the content of thereport. if editor or comotler, this shiould followthe name(s) Block 15. Number of Paes Enter the total

    number of pages.Black 7. Performing Orclanization Name(s) andAddress(es) Self-explanatory Block 16. Price Code. Enter appropriate price

    Bloc', S. Performingi Orcganization Report code (NTIS only).Number. Enter the unique alphanumeric report

    Taumer s) asin g nt e d bypo the. g nzto Blocks 17. -19. Security Classifications. Self-perfrmig th reortexplanatory. Enter U.S. Security Classification in

    Block 9. Sponsoring/Monitoririg Agency Name(s) accordance with U.S. Security Regulations (i.e.,and Adadress~esj Sef-explanatory UNCLASSIFIED). If formt contains classified

    information, stamp classification on the top andBlock 10 ý.ponsoqri!RMoni tort nqAge cy bottorr. of the page,Report Numnte' (if knowan)

    Blork 11 Supuiefrentarj Notes Enter Block 20. Limitation of Abstract This block mnust,ni0(rrndt~r I I' - ~dec ~s~~ such a% be completed to a-ssign a lkmitation to the

    Piear~ C:Oer'.' iii . T'ants of To be abstract. Enter either UL (unlimited) or SAR (samepubiishecl n A t,-'. a report is feiiised. include as report) An entry in th.o block is necessary ifa statemprit VvhPINe !he new revort Supersedes the abstract is to be limited If, blank, the abstract0' %OIP4P''-ý -)p i uP'4a ew'el~ is assumed to be unlimiitted

    Standard Form 298 Back (Rev 2-89)

  • TABLE OF CONTENTS

    1.0 SUMMARY 1

    2.0 INTRODUCTION 12.1 Background 12.2 Analysis 2

    3.0 PROCEDURE 23.1 Dynamic Model 23.1.1 DADS Methodology 23.1.2 M932A1/JSIPS Trailer Computer Model Description 33.1.3 Simulations 33.2 Finite Element Models 43.2.1 Computer Hardware and Software 43.2.2 Models 43.2.3 Material Properties 5

    4.0 RESULTS and DISCUSSION 54.1 Dynamic Analysis 54.2 Finite Element Analysis 64.2.1 Failure Criterion 64.2.2 Simulations 6

    5.0 CONCLUSIONS and RECOMMENDATIONS 75.1 Dynamic Analysis 75.2 Finite Element Analysis 8

    DISTRIBUTION LIST DIST-1

    tor

    Li

    --............ ---.-

    t I.: ;l~on

    P-.vl ability Codes

    IHi-W111 If',/L'; ... .._

  • LIST OF FIGURES

    Figure 1. Finite Element Analysis Results for the JSIPS Trailer FrameSimulating a 6" bump at 20 mph at 2.277 seconds, von MisesStresses (psi). 9

    Figure 2. Finite Element Analysis Results for the JSIPS Trailer FrameSimulating a 6" bump at 20 mph at 2.277 seconds, von MisesStresses (psi), Close-up of Right, Outside Gusset Plate. 10

    Figure 3. Dynamic Model of M932A1/JSIPS Trailer Traversing a 9" bumpat 10 mph. 11

    APPENDICES

    APPENDIX A DADS Formatted File A-1

    APPENDIX B DADS Simulation Time Histories B-1

    i~

  • 1o0 SUMMARY

    The System Simulation and Technology Division (AMSTA-RY), of the U.S. Army Tank-Automotive Research, Development, and Enrgineering Center (TARDEC) was taskedby the Product Manager, Trailers to perform a computer-based simulation of theM932A1, 6x6, 5-ton Semitractor, towing a Joint Services Imagery Processing System(JSIPS) trailer. The JSIPS trailer is an M871A1, 22-1/2-ton, flat bed, semitrailer thathas been modified by converting the trailer deck and frame into a "gooseneck"configuration. PM, Trailers decided to use computer-t-sed analyses to determine ifthe structural integrity and/or operational performance of the trailer would be degradedby these modifications. Computer-based analysis is an efficient, timely and cost-effective means of making such determinations.

    Dynamic Analysis and Design System (DADS) software was used to create a three-dimensional, rigid-body model of the M932A1/JSIPS trailer system. This model servedtwo purposes. The first was to simulate a series of driving maneuvers to test thestabiiity of the truck/trailer system. The second purpose was to simulate thetruck/trailer system encountering severe obstacles in order to induce dynamic forcesinto the structural members of the trailer frame. These forces, along withaccelerations and displacements of various points on the trailer, were used as inputfor a finite element analysis of the structural integrity of the modified trailer frame. Adetailed finite element model of the trailer frame was developed for this purpose.

    The results of the analysis indicate that the modifications made to the M871A1 trailerdo not degrade the dynamic performance or stability of the M932A1/JSIPS trailersystem. The modifications should also not have a detrimental effect on the structuralintegrity of the system when performing its normal operating mission. However, it isrecommended that extreme caution be used if forced to operate this system in amanner beyond its normal requirements.

    2.0 INTRODUCTION/OBJECTIVE

    2.1 Background

    The System Simulation and Technology Division, of the U.S. Army Tank-AutomotiveResearch, Development, and Engineering Center was tasked by the Product Manager,Trailers to perform a computer-based simulation of the M932AI, 6x6, 5-tonSemitractor, towing a Joint Services Imagery Processing System trailer. The JSIPStrailer is an M871A1, 22-1/2-ton, flat bed, Semi-Trailer that has been modified byconverting the trailer deck and frame into a "gooseneck" configuration. Thegooseneck was added to the trailer in order to raise the kingpin height of the trailerfrom 50 inches to 60 inches above the ground so that the trailer would be operationalwith the M931, M931A1, M932, and M932A1 tractors. The simulation included the

    1

  • development and analysis of a fun-scale dynamic model of the M932A1/JSIPS trailrcombination and several finite element models of the JSIPS trailer frame. Thedynamic model was used to determine if the change in kingpin height on the JSIPStrailer would have any detrimental effect on the stability and performance of thetruck/trailer combination. 'The dynamic model was also used to generate a variety ofreaction forces, displacements, and accelerations at the kingpin, support gussets, andtrunnion attachment points. The reaction forces at these points were applied to thefinite element models. Static-linear finite element analyses were run to determine theover-all structural integrity of the JSIPS semitrailer.

    2.2 Analysis

    A computer-based dynamic model of the M932A1/JSIPS trailer combination wascreated using Dynamic Analysis and Design System software. The DADS software isa set of general-purpose computer programs that can be used to model and predictthe motion of a variety of vehicle systems. DADS builds a mathematical model of thevehicle system that calculates positions, velocities, and accelerations of the variousparts of the system , as well as resultant forces that act within the system.

    A finite element model and analysis of the trailer frame was also performed for thisproject. The finite element mthod is an analysis technique for solving the differentialequations of complex problems. The method has become a valuable tool for modelingstructural, mechanical, thermal, and fluid systems. In finite elemeni analysis, astructure is broken down into simple discrete regions, or finite elements. These simplestructural elements, which can be beams, shells, or solids, have elastic behavior thatcan be formulated mathematically. They are then assembled to form the overallstructure of the item being analyzed. It is mandatory that the behavior of the modelclosely exhibits the behavior of the actual physical structure, in order to obtain realisticresults and verity the model.

    3.0 PROCEDURE

    3.1 Dynamic Model

    3.1.1 DADS Methodology

    DADS contains a large library of mechanical -:.ements that can be used to build athree-dimensional model of vehicle systems. These include rigid and flexible bodies.joints, constraints, force and torque-producing elements, as well as control andhydraulic elements.

    Once a model has been defined from tW, liLrary of 3-D elements, the data set Isprocessed by the DADS analysis program and the model is mathematicallyassembled. The equations of motion for the various bodies in the model are

    2

  • automatically generated and numerically solved. Results of the simulation are thepositions, velocities, and accelerations of all bodies in the vehicle system. Alsoincluded are various data on any force elements in the model and the internal reactionforces due to any joints or constraints in the model.

    A dynamic analysis was performed on the model of the M932A1/JSIPS trailercombination that was created for this project. In a dynamic analysis, the motion of thebodies is calculated from the forces acting upon them and the mass properties of thebodies themselves. These forces include gravity and any external forces specified bythe user. The equations of motion are defined in terms of the masses and forces.The resulting second-order differential equations are then integrated numerically usinga variable step and order algorithm.

    3.1.2 M932A1/JSIPS Trailer Computer Model Description

    A DADS, rev. 6.0, format file of the computer-based M932A1/JSIPS trailer model isshown in Appendix A. The M932A1 Tractor was modeled as rigid body. The leafspring suspension was modeled as a series of translational spring damper actuators(TSDA) attaching the tractor body to the front and rear axles. The axle motion wasconstrained to ailow only vertical translation and longitudinal rotation. A user-definedsubroutine was used to calculate the individual spring displacements, roll stiffness, andthe relative spring displacements in the rear bogey, where two axles share the sameleaf spring, The trailer suspension was modeled similarly. The tractor/trailer 5th-wheel/kingpin interface was modeled as three revolute joints in order to limit theallowable pitch, roll, and yaw motion of the trailer at the interface. A user-definedsubroutine was used to control the system's steering and velocity. The trailer wasmodeled as three rigid bodies (front deck, rear left deck, rear right deck) connectedtogether at the gooseneck location with two bracket joints. Bracket joints remove thesix degrees-of-freedom of one body relative to another. Using the bracket jointspermitted the three rigid bodies to dynamically behave as one, but .lso permitted therecording of the reaction forzes generated at the attachment points during thesimulations. These reaction forces, along with those at the kingpin and trunnionattachment points, were used as the input loads for the finite element model of thetrailer frame and gussets.

    3.1.3 Simulations

    TARDEC's Cray 2 super computer was use to run a series of dynamic simulations ofthe M932A1/JSIPS trailer performing the following:

    1) Traversing a driver side, 6" bump, at 20 mph.2) Traversing a driver side, 9' bump, at 5 mph.3) Traversing a driver side, 9g bump, at 10 mph.4) Traversing a driver side, 6" pothole, at 5 and 10 mph.

    3

  • 5) Traversing a driver side, 9E pothole, at 5 and 10 mph.6) Traversing an altemating, 20% side slope course at 10 and 20

    ,nph.7) Perfrorming a 120 ft X 11 ft, Slalom maneuver at 30 and 40

    mph.8) Traversing Belgian block at 20 mph.9) Traversing Perryman Course # 1, unimproved cross-country, at

    30 mph.

    The cross country/Belgian block simulations were based on therequirements of MIL-M-8090F, Roadability Tests, para 4.5.12, Type V,group D mobility. The truck/trailer combination was simulated at themaximum allowable sDeeds for these test courses. MIL-M-8090F, TABLE III, requiresType V, group D vehicles to negotiate an 11.5-degree side slope. The ,ombinationwas simulated running through a much more severe, alternating driver ý,ode and curbside, 20-degree side slope course. The slalom maneuver simulations were done totest the stability of the truck/trailer combination.

    The bump and pothole simulations were done primarily to generate loading inputs forthe finite element structural analysis of the JSIPS trailer gooseneck. The JSIPS trailerwas modeled with a payload of 3,000 pounds on the forward portion of the deck and22,000 pounds on the portion of the deck rearward from the gooseneck This payloadconfiguration was specified in paragraph 1 of the Purchase Description for the JSIPStrailer modifications.

    3.2 Finite Element Models

    3.2.1 Computer Hardware and Software

    PATRAN is the pre/postprocessing software package used to visually create the finiteelement models (FEM). PATRAN's postprocessor allows the analyst to view theresults of the analysis in graphical form. PATRAN version 3.0 was used on a SiliconGraphics Personal Iris workstation.

    ABAQUS is a large-scale, general-purpose finite element analysis program capable ofanaiyzing complex structures. ABAQUS was developed by Hibbitt, Karlsson, &Sorensen, Inc. ABAQUS version 5.2, which resides on TARDEC's Cray-2Supercomputer, was used for this project.

    3.2.2 Models

    The finite element model contains all the information needed to run the analysis. Themodel defines the actual shape and dimensions of the trailer, the materials used and

    4

  • their properties, and any boundary conditions and force loadings.

    A beam finite element model of the entire JSIPS semitrailer frame was created for thisproject using PATRAN. The entire frame was modeled since the loads were notsymmetric and there were no indicated areas of interest. The JSIPS FEM contains354 elements and 535 nodes, giving 2,549 degrees of freedom (DOF). Two nodedB31 beam elements and four/three noded S4R5/STR135 shell elements were used.There are 21 different beam cross-sectional properties which are defined in theABAQUS 5.2 input file.

    Items such as the payload and suspension are not physically modeled but were addedto the FEM as mass loads. Also, items such as the spare tire and carrier, mud flaps,and hydraulic lines, which add no structural rigidity to the trailer, were not included inthe FEM. A payload of 22,000 pounds was applied to the rear of the trailer and a3,000-pound payload is over the front portion of the trailer.

    3.2.3 Materi:,' Properties

    The JSIPS semi-trailer is constructed primarily of ASTM A572 Grade 50 and ASTMA36 structural steal. The material properties are given in the table below.

    Properly ASTM A572 ASTM A36Young's Modulus 29.0 x 106 psi 29.0 x 106 psiDensity 0.284 lb/in3 0.284 lb/in 3

    Poisson's Ratio 0.30 0.30Yield Strength* 50 ksi 36 ksiUltimate Strength* 65 ksi 58 ksi

    * Minimum values listed

    These material properties were usea in the finite element analysis and the yieldstrength was used to quantify the results.

    4.0 RESULTS and DISCUSSION

    4.1 Dynamic Analysis

    Appendix B (B-3 through B-15) contains the time history responses of the pitch, roll,and yaw angles of the JSIPS trailer frame for each of the simulations performed. Thetruck/trailer combination did not show any tendencies toward instability throughout theseries of maneuvers simulated, as indicated by the plots. The most severe dynamicreaction of the JSIPS trailer occurred when responding to the 9-inch bump at thespeeds of 5 and 10 mph (B-2,B-3). The trailer rolled to a maximum angle of

    5

  • approximately 9.50 but returned to a stable condition. The side slope coursesimulations (B-8,B-9) show that the JSIPS trailer, as modeled, can sustain at least a12.50 roll angle without overturning. The trailer did not show any unstableperformance characteristics when performing the pothole (B-4 thru B-7), slalom (B-10,B-11), or cross-country (B-12,B-13) simulations.

    Plots B-16 and B-17 show the time history response of thi vertical accelerations (g's)into the trailer deck both fore and aft of the gooseneck for the Belgian block courseand the Perryman Course #1 simulations respectively. These plots indicate amaximum vertical acceleration of approximately 1.25 g's into the forward deck, andapproximately 1.5 g's into the rear deck during the Belgian block simulations. Themaximum vertical accelerations for the Perryman 1 course simulations were under 1 gfor both the forward and rear decks.

    4.2 Finite Element Analysis

    Several finite element analyses were run simulating different terrain and drivingscenarios. Reaction forces, displacements, and accelerations were obtained from thedynamic simulations. These values, at specified time steps, were used in thestatic-linear finite element analyses. The time steps were picked based on maximumforces at the gussets or tle suspension. For some analyses, multiple time steps wereinvestigated in order to capture the "worst case' loads.

    4.2.1 Failure Criterion

    The Maximum Distortion Energy criterion was used to quantify the finite elementanalysis results for this project. According to this criterion, also known as the vonMises criterion, a given structural component is safe, as long as the maximum value ofdistortion energy per unit volume in that material remains smaller than the distortionenergy per unit volume required to cause yield in a tensile test specimen of the samematerial. For this project, the von Mises stress, which also takes into account theshear effects, was compared to the yield strength of the material.

    4.2.2 Simulations

    9-inch bump at 10 mph: This was considered to be the worst case scenario theJSIPS trailer could possibly witness. The dynamic analysis simulates the truck/trailergoing 10 mph while the left tires go over a 9 inch bump. The reaction forces in thegooseneck gusset area were highest at 4.257 seconds into the dynamic run. Thereaction forces, accelerations, and displacements at this time step were used in thestatic finite element analysis. 'The resultant stresses were greater than the yieldstrength of the material, indicating plastic deformation. Under this condition, the traileris unsafe and would fail, however, the extent of failure is unknown. The highest stressoccurs in the outside gusset plate.

    6

  • 9-inch bump at 5 mph: The 9" bump dynamic simulation was run at a slower speedof 5 mDh. A time step of 9.372 seconds was used. The stresses were in the sameoi'tside gusset plate location but were lower. The max von Mises stress was 32,900psi which is below the yield strength of the material.

    6-inch bump at 20 mph: For this analysis, two time steps were looked at, 2.277 and2.739 seconds. For the 2.277-second case, the maximum von Mises stress was45,200 psi and occurred in the outside gusset location. The gusset is constructed ofASTM A572 Grade 50 steel, which has a yield strength of 50 ksi. Figures 1 and 2depict the color stress plot for this analysis. The second time step was 2.739seconds. The maximum von Mises stress for this case was 32,900 psi, and occurredat a lateral C-channel crossmrember near the suspension. This stress is also belowthe yield strength of the material, and is considered safe.

    6-inch pothole at 5 mph: A time step of 8.778 seconds was used for this analysisThe stresses were well below the yield strength of the ASTM A572 material. Themaximum von Mises stress was 27,900 psi and was in the outside gusset platelocation.

    Belgian Block at 20 mph: A time step of 7.557 seconds was used for this analysis.The maximum von Mises stress was 28,900 psi and was located in a lateralcrossmember near the suspension of the trailer. This stress is welK below the yieldstrength of the material, and is considered safe.

    Perryman-1 at 30 mph: This analysis simulated a cross-country road with small hills.Two different time steps were investigated. The first was at 2.739 seconds into thedynamic analysis. The FEA results at this time show a maximum von Mises stress of23,500 psi which is located on the outside gooseneck gusset plate. The second timestep used was 5.445 seconds. The maximum stress was 26,200 psi and was locatedin the main center longitudinal rails, just rearward of the gooseneck. The stresses forboth these analyses are below the yield strength of the steel.

    5.0 CONCLUSIONS and RECOMMENDATIONS

    5.1 Dynamic Analysis

    The simulations performed for the dynamic analysis porlion of this project weremore severe than what the JSIPS trailer is likely to experience in actual use, due to itslimited mission and the sensitivity of the electronic equipment it will transport. Itshould also be noted that the JSIPS trailer was modeled with a payload of 3,000pounds on the forward portion of the deck and 22,000 pounds on the portion of thedeck rearward from the gooseneck. These loads are greater than the payload data

    7

  • I= =

    provided by the Army Space Program Office. Based on the analysis performed, themodification of the M871A1 trailer will not have a detrimental effect on the overallstability or dynamic performance of the trailer.

    5.2 Finite Element AnalyL;;

    The results of this report are based on a trailer in "like new" condition with no rust orother damage. Also, no fatigue analysis or prototype test were performed for thisproject.

    The finite element analyses indicate no problems with the modified M871A1 trailer withone exception. The 9-inch bump at 10 mph simulation produced high stresses in thegooseneck region of the trailer that exceed the yield strength of the material. Asmentioned previously, it is not likely that such a severe obstacle would be encounteredduring the normal mission of the JSIPS trailer. However, it is recommended thatextreme caution be used when towing the JSIPC 'railer through obstacles of thismagnitude. For aNl other simulations, the stres-s were below the material yieldstrength.

    8

  • If-

    If~ >

    w D

    PT 4-ri

    64-

    A, A

    S w 'r o O Jn , r. .~ . .. . .

    + + ++ + ++ +

  • Q/C

    /r a/CI

    /t

    Q -ý

    iuc

    I I0

  • Mi l I

  • A-2

  • APPENDIX A

    DADS Formatted File

  • ** .*****************************************************************************

    **** M932A1 5-ton Semi-Tractor

    **** Towing Modified M871 20 ton (JSIPS Trailer)

    **** The Payload consists of 22,000 lbs on the bed and 3,000 lbs on the ******** gooseneck.

    **** Mike Pozolo 4/25/94** * ** * ************ ********* ****************** ** ** ** ** *** * *** ** **8* * ** * *** ** ** ** *

    SYSTEM INCHES DYNAMIC FULL TRUE GLOBAL TRUE386.08800000000 0.00000000000000E+000.00000000000000E+00-1.00000000000001.0000000000000 0.00000000000000E+00 10.000000000000 0.33000000000000E-01

    o.100000000000OOE-110.100000000000OOE-02FALSE BINARYDYNAMIC TRUE INTERPOLATED GLOBAL0.500000CO0000OOE-010.10000000000000E-020.10000000000000E-03

    *** *********** ******************************************************************

    FRONT AXLE**** Front axle to chassis connection modelled as two distance constraints at**** leaf spring location. One constraint in center of axle to center of chassis***• to :emove axle rotational degree of freedom. And one constraint extending**** 100 inches out to the right side to remove lateral degree of freedom.*********** *********************************************************************

    **** constraints at leaf sprinq locations

    DISTANCE TA1WBL.DC TCH.BOD TAI.BOD 0 0-16.490000000000 24.250000000000 39.650000000000-16.490000000000 0.00000000000000 22.500000000000-16.490000000000 24.250000000000 40.650000000000

    -16.490000000000 0.00000000000000 23.500000000000.- 15.490000000000 24.250000000000 39.650000000000-15.490000000000 0.00000000000000 22.50000000000029.701600000000

    DISTANCE TAIWBR.DC TCH.BOD TAI.BOD 0 016.490000000000 24.250000000000 39.65000000000016.490000000000 0.00000000000000 22.50000000000016.490000000000 24.250000000000 40.65000000000016.490000000000 0.00000000000000 23.50000000000017.490000000000 24.250000000000 39.65000000000017.490000000000 0.00000000000000 22.50000000000029.701600000000

    **** constrains rotation of fronit axle

    DISTANCE TA1TR.DC TC11.BOD TA1.BOD 0 00.0000000000000 -24.250000000000 41.6500000000000.0000000000000 0.00000000000000 41.6500000000000.0000000000000 -24.250000000000 42.6500000000000.0000000000000 0.00000000000000 42.6500000000001.0000000000000 -24.250000000000 41.6500000000001.0000000000000 0.00000000000000 41.650000000000

    24.250000000000

    **** tractor axle lateral constraint between front axle and chassis

    A-3

  • DISTANCE TA1PB.DC TCH.BOD TA1.BOD 0100.00000000000 0.00000000000000 41.650000000000

    0.00000000000000 0.00000000000000 41.650000000000100.00000000000 0.00000000000000 42.650000000000

    0.00000000000000 0.00000000000000 42.650000000000101.00000000000 0.00000000000000 41.6500000000001.0000000000000 0.00000000000000 41.650000000000100.00000000000

    **v* centerlink between front wheel steering knuckles

    DISTANCE TA1CL.DC TA1LS.BOD TAIRS.BOD 0 0-39.000000000000 -10.430000000000 16.310000000000

    39.000000000000 -10.430000000000 16.310000000000-39.000000000000 -10.430000000000 17.310000000000

    39.000000000000 -10.430000000000 17.310000000000-38.000000000000 -10.4300J0000000 16.310000000000

    40.000000000000 -10.430000000000 16.31000000000078.000000000000

    END of FRONT AXLE********* ***********************************************************************

    ***** ** ******************************** *************** *** *** ***** ****** ****** ** ** *

    REAR AXLES**** Rear axle to chassis connection modelled as two distance constraints at**** leaf spring locations. Actual suspension has two lower suspension**** members on each side of leaf spring mount to the center beam.**** It also has a singla suspension member above the axle. With this***• suspension configuration, an extra lateral constraint must be added**** to remove the extra lateral degree of freedom.

    **** constraints at leaf spring locations

    DISTANCE TA2WBL.DC TCH.BOD TA2.BOD 0 0-18.690000000000 -163.68000000000 12.670000000000-18.690000000000 -140.00000000000 13.560000000000-18.690000000000 -163.68000000000 13.670000000000-18.690000000000 -140.00000000000 14.560000000000-17.690000000000 -163.68000000000 12.670000000000-17.690000000000 -140.00000000000 1.3.560000000000

    23.696700000000DISTANCE TA3WBL.DC TCH.BOD TA3.BOD 0 0-18.690000000000 -170.32000000000 12.670000000000-18.690000000000 -194.00000000000 13.56000000C000-18.690000000000 -170.32000000000 13.670000000000-18.690000000000 -194.00000000000 14.560000000000-17.690000000000 -170.32000000000 12.670000000000-17.690000000000 -194.00000000000 13.560000000000

    23.696700000000DISTANCE TA2WBR.DC TCH.BOD TA2.BOD 0 0

    18.690000000000 -163.68000000000 12.67000000000018.690000000000 -140.00000000000 13.56000000000018.690000000000 -163.68000000000 13.67000000000018.690000000000 -140.00000000000 14.56000000000017.690000000000 -163.68000000000 12.670000000000

    A-4

  • 17.690000000000 -140.00000000000 13.5600U000000023.696700000000

    DISTANCE TA3WBR.DC TCH.BOD TA3.BOD 0 018.690000000000 -170.32000000000 12.67000000000018.690000000000 -194.00000000000 13.56000000000018.690000000000 -170.32000000000 13.67000000000018.690000000000 -194.00000000000 14.56000000000017.690000000000 -170.32000000000 12.67000000000017.690000000000 -194.00000000000 13.56000000000023.696700000000

    ***** rear suspension arrangement to control lateral motion

    DISTANCE TA2TR.DC TCH.BOD TA2.POD 0-22.640000000000 -166.00000000000 41.470000000000-22.640000000000 -140.00000000000 41.470000000000-22.640000000000 -166.00000000000 40.470000000000-22.640000000000 -140.00000000000 40,470000000000-21.640000000000 -166.00000000000 41.470000000000-21.640000000000 -140.00000000060 41.470000000000

    26.000000000000DISTANCE TA3TR.DC TCH.BOD TA3.BOD 0 0-22.640000000000 -168.00000000000 41.470000000000-22.640000000000 -194.00000000000 41.470000000000-22.640000000000 -168.00000000000 40.470000000000-22.640000000000 -194.00000000000 40.470000000000-21.640000000000 -168.00000000000 41.470000000000-21.640000000000 -194.00000000000 41.470000000000

    26.000000000000DISTANCE TA2PB.DC TCH.BOD TA2.BOD 0 0

    100.00000000000 -140.00000000000 40.2600000000000.0000000000000 -140.00000000000 40.2E0000000000100.00000000000 -140.00000000000 41.2600000000000.0000000000000 -140.000001)00000 41.260000000000i01.000000OLOOO -140.00000000000 40.2600000000001.0000000000000 -140.00000000000 40.260000000000100.00000000000

    DISTANCE TA3PB.DC TCH.EOD TA3.BOD 0 0100.00000000000 -194.00000000000 40.2600000000000.0000000000000 -194.OOOOOOOCOO 40.260000000000100.00000000000 -194.00000000000 41.2600000000000.0000000000000 -194.00000000000 41.260000000000101.00000000000 -194.00000000000 40.2600000000001.0000000000000 -194.00000000000 40.260000000000100.00000000000

    END of REAR AXLES

    ***** Curves to include bump steer eifectz ufrcll.f uses RSDA #1,2 to Steering.

    RSDA TAILSBS.RSDA TA1LKP.REVTSBSL.CUR NONE NONE0.00000000000000 O.O0000000GO0000 0.00000000000000 0.00000000000000RSDA TA1RSBS.RSDA TAIRKP.REVTSBSR.CUR NONE NONE0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000

    **** M932AI Super Singles, 14R20, LOAD J, Ply Rating 18, All-Terrain

    A-5

  • TIRE TA1L.TIRE TA1LW.BOD TA1LS.BOD FULLTIRELS.CUR NONE NONE NONE-39.000000000000 0.00000000000000 22.670000000000

    24.450000000000 0.00000000000000 8.00000000000003500.00000000000 108861.98107486 0.000000000000000.80000000000000TIRE TAIR.TIRE TA1RW.BOD TAIRS.BOD FULLTIRELS.CUR NONE NONE NONE

    39.000000000000 0.00000000000000 22.67000000000024-,450000000000 0.00000000000000 2.0000000000000

    3500.0000000000O 108861.98107486 0.000000000000000.80000000000000TIRE TA2L.TIRE TA2LW.BOD TA2.8OD FULLTIRFLS.CUR NONE NONE NONE-40.656250000000 -140.00000000000 22.670000000000

    24,450000000000 0.00000000000000 8.00000000003003500.00000000000 108861.98107486 0.000000000000000.80000000000000TIRE TA2R.TIRE TA2RW.BOD TA2.BOD FULLTIRELS.CUR NONE NONE NONE

    40.656250000000 -140.00000000000 22.67000000000024.450000000000 0.00000000000000 8.0000000000000

    3500.00000000000 108861.98107486 0.00000000000000.80000000000000TIRE TA3L.TIRE TA3LW.BOD TA3.BOD FULLTIRELS.CUR NONE NONE NONE-40.656250000000 -194.00000000000 22.67000000000024.450000000000 0.00000000000000 8.0000000000000

    3500.00000000000 108861.98107486 0.000000000000000.80000000000000TIRE TA3R.TIRE TA3RW.BOD TA3.BOD FULLTIRELS.CUR NONE NONE NONE

    40.656250000000 -194.00000000000 22.67000000000024.450000000000 0.00000000000000 8.0000000000000

    3500.00000000000 108861.98107486 0.000000000000000.80000000000000

    **** Tractor springs controlled from ufrclo.f**** First group of 6 TSDAs used to measure relative distance between right**** and left spring displacements on common axles and to average the**** displacement of the rear springs which share the same axle.

    TSDA TA1LSPR.TSDA TCH.BOD TAI.BOD 0 0NONE NONE NONE-16.490000000000 0.00000000000000 122.50000000000-16.490000000000 0.00000000000000 22.500000000000-16.490000000000 0.00000000000000 123.45000000000-16.490000000000 0.00000000000000 23.450000000000-i5.490000000000 0.00000000000000 122.50000000000-15.490000000000 0.00000000000000 22.5000000000000.00000000000000 100.00000000000 0.00000000000000 0.00000000000000TSDA TA2LSPR.TSDA TCH.BOD TA2.8OD 0 0NONE NONE NONE-18.690000000000 -140.00000000000 122.50000000000-18.690000000000 -140.00000000000 22.500000000000-1h.r90000000000 -140.00000000000 123.45000000000-18.690000000000 -140.00000000000 23.450000000000-17.690000000000 -140.00000000000 122.50000000000-17.6q0000000000 -140.00000000000 22.5000000000000.00000000000000 100.00000000000 10.0000000000000 0.00000000000000

    A-6

  • TSDA TA3LSPR.TSDA TCH.BOD TA3.BOD 0 0NONE NONE NONE-18.690000000000 -194.00000000000 122.50000000000-18.690000000000 -194.00000000000 22.500000000000-18.690000300000 -194.30000000000 1.23.45000000000-18.690000000000 -194.00C00000000 23.450000000000-17.690000000000 -194.00000000000 122.50000000000-17.690000000000 -194.0000000n000 22.5000000000000.00000000000000 100.00000000000 10.0000000000000 0.00000000000000TSDA TA1!SPR.TSDA TCH.B3L) TA1.BOD 0 0NONE NONE NONE

    16.490000000000 0.00000000000000 122.5000000000016.490000000000 0.00000000000000 22.50000000000016.496000000C00 0.00000000000000 123.4500000000016.490000000000 0.00000000000000 23.45000000000015.490000000000 0.00000000000000 122.5000000000015.490000000000 0.00000000000000 22.500000000000

    0.00000000000000 100. 00000000000 0.00000000000000 0.G0000000000000TSDA TA2RSPR.TSDA TCH.BOD TA2.BOD 0 0NONE NONE NONE

    18.690000000000 -140.00000000000 122.5000000000018.690000000000 -140.00000000000 22.50000000000018.690000000000 -140.0n00000000 123.4500000000018.690000000000 -140.00000000000 23.45000000000017.690000000000 -140.00000000000 1;2.5000000000017.69C000000000 -140.0000000000C 22.500000000000

    0.00000000000000 100.00000000000 10.0000000000000 0.00000000000000TSDA TA3RSPR.TSDA TCH.BOD TA3.BOD 0 0NONE NONL NONE

    18.690000000000 -194.00000000000 122.5000000000018.690000000000 -194.00000000000 22.50000000000018.690000000000 -194.00000000000 123.4500000000018.690000000000 -194.0000000000 23.45000000000017.690000000000 -194.00000000000 122.5000000000017.690000000000 -194.00000000000 22.500030000000

    0.00000000000000 100.00000000000 10.oo000000000000 0.00000000000000

    **** Spring forces applied by sencond group of 6 TSDAs

    TSDA TA1LSP.TSDA TCH.BOD TAI.EOD 0 0TBSTOP.CLtU NONE NONE-16.490000000000 0.00000000000000 122.50000000000-16.490000000000 0.00000000000000 22.500000000000-16.490000000000 0.00000000000000 123.45000000000-16.490000000000 0.00000000000000 23.450000000000-15.490000000000 0.00000000000000 122.50000000000-15.490000000000 0.OOOC0000000000 22.5n00000000002271.00000000000 100.000000000000 0.00000000000000 0.00000000000000TSDA TA2LSP.TSOA TCH.BOD TA2.BOD 0 0TBSTOP.CUR NONE NONE-18.690000000000 --140.00000000000 122.50000000000-18.690000000000 140.00000000000 22.500000000000-18,690000000000 -140.00000000000 123.45000000000-18.690000000000 -140.00000000000 23.450000000000-17.690000000000 -140.00000000000 122.50000000000-17.690000000000 -140.00000000000 22.500CO00000005983.00000000000 100.000000000000 10,0000000000000 0.00000000000000TSDA TA3LSP.TSDA TCH.BOD TA3.BOD 0 0TBSTOP.CUR NONE NONE-18.690000000000 -194.0000000000 122.50000000000

    A-7

  • -18.690000000000 -194.00000000000 22.500000000000-18.690000000000 -194.00000000000 123.45000000000-18.690000000000 -194.00000000000 23.450000000000-17.690000000000 -194.00000000000 122.50000000000-17.690000000000 -194.00000000000 22.5000000000005983.00000000000 100.000000000000 10.0000000000000 0,00000000000000TSDA TAIRSP.TSDA TCH.BOD TA1.BOD 0 0TBSTOP.CUR NONE NONE

    16.490000000000 0.00000000000000 122.5000000000016.490000000000 0.00000000000000 22.50000000000016.490000000C00 0.00000000000000 123.4500000000016.490000000000 0.00000000000000 23.45000000000015.490000000000 0.00000000000000 122.5000000000015.490000000000 0.00000000000000 22.500000000000

    2271.00000000000 100.000000000000 0.00000000000000 0.00000000000000TSDA TA2RSP.TSDA TCh.BOD TA2.BOD 0 0TBSTOP.CUR NONE NONE

    18.690000000000 -140.00000000000 122.5000000000018.690000000000 -140.00000000000 22.50000000000018.690000000000 -140.00000000000 123.4500000000018.690000000000 -140.00000000000 23.45000000000017.690000000000 -140.00000000000 122.50000000000

    -. 690000000000 -140.00000000000 22.5000000000005-3.0G000000000 100.000000000fn0 10.0000000000000 0.0000000CO00000TSDA IIA3RP.]bLA TCH.BOD TA3.BOD 0 0TBSTOP.CUR NONE NONE

    18.690000000000 -194.00000000000 122.5000000000018.690000000000 -194.00000000000 22.50000000000018.690000000000 -194.00000000000 123.4500000000018.690000000000 -194.00000000000 23.45000000000017.690000000000 -194.00000000000 122.5000000000017.690000000000 -194.00000000000 22.500000000000

    5983.00000000000 100.000000000000 10.0000000000000 0.00000000000000

    REVOLUTE TAILKP.REV TAI.BOD TAILS.BCD 0 0-39.000000000000 0.00000000000000 22.670000000000-39.000000000000 0.00000000000000 22.670000000000-39.000000000000 0.00000000000000 23.670000000000-39.000000000000 0.00000000000000 23.670000000000-38.000000000000 0.00000000000000 22.670000000000-38.000000000000 O.OOOOUOOOOOOOOO 22.670000000000REVOLUTE TAIRXP.REV TA1.BOD TAIRS.BOD 0 0

    39.000000000000 0.00000000000000 22.67000000000039.000000000000 0.00000000000000 22.67000000000039.000000000000 0.000000000000, J 23.67000000000039.000000000000 0.00000000000000 23.67000000000040.000000000000 0.00000000000000 22.67000000000040.000000000000 0.00000000000000 22.670000000000

    *** tractor axle to wheel revolute joints

    REVOLUTE TAILW.REv TA1LS.BOD TAILW.BOD 0 0-39.000000000000 0.00000000000000 22.670000000000-39.000000000000 0.OOOuOOOOOOOOOO 22.670000000000-38.000000000000 0.00000000000000 22.670000000000-38.000000000000 0.00000000000000 22.670000000000-39.000000000000 0.00000000000000 23.670000000000-39.000000000000 0.00000000000000 23.670000000000REVOLUTE TAIRW.REV TA1RS.BOD TA1RW.BOD 0 0

    A-8

  • 39.000000000000 0.00000000000000 22.67000000000039.000000000000 0.00000000000000 22.670U0000000040.000000000000 0.00000000000000 22.67000000000040.000000000000 0.00000000000000 22.67000000000039.000000000000 0.00000000000000 23.67000000000039.000000000000 0.00000000000000 23.670000000000

    REVOLUTE TA2LW.REV TA2.BOD TA2LW.BOD 0 0-39.000000000000 -140.00000000000 22.670000000000-39.000000000000 -140.00000000000 22.670000000000-38.000000000000 -140.00000000000 22.670000000000-38.000000000000 -140.00000000000 22.670000000000-39.000000000000 -140.00000000000 23.670000000000-39.000000000000 -140.00000000000 23.670000000000REVOLUTE TA2RW.REV TA2.BOD TA2RW.BOD 0 0

    39.000000000000 -140.00000000000 22.67'000000000039.000000000000 -140.00000000000 22.67000000000040.000000000000 -140.00000000000 22.67000000000040.000000000000 -140.00000000000 22.67000000000039.000000000000 -140.00000000000 23.67000000000039.000000000000 -140.00000000000 23.670000000000

    REVOLUTE TA31Tq. REV TA3.BOD TA3LW.BOD 0 0-39.0000000000 ) -194.00000000000 22.670000000000-39.000000000000 -194.00000000000 22.670000000000-38.000000000000 -194.00000000000 22.670000000000-38.00000000u000 -194.00000000000 22.67UU00000000-39.000000000000 -194.00000000000 23.670000000000-39.000000000000 -194.00000000000 23.670000000000REVOLUTE TA3RW.REV TA3.BOD TA3RW.BOD 0 0

    39.000000000000 -194.00000000000 22.67000000000039.000000000000 -194.00000000000 22.67000000000040.000000000000 -194.00000000000 22.67000000000040.000000000000 -194.00000000000 22.67000000000039.000000000000 -194.00000000000 23.67000000000039.000000000000 -194.00000000000 23.670000000000

    **** model of the 5th wheel hitch point

    REVOLUTE HITCH I HITCH1.BOD TCH.BOD 0 00.0000000000000o -162.81000000000 47.6200000000000.00000000000000 -162.81000000000 47.6200000000001.00000000000000 -162.81000000000 47.6200000000001.00000000000000 -162.81000000000 47.6200000000000.00000000000000 -162.81000000000 48.6200000000000.00000000000000 -162.81000000000 48.620000000000REVOLUTE HITCH 2 HITCHI.BOD HITCH2.BOD 0 00.00000000000000 -162.81000000000 57.1875000000000.00000000000000 -162.81000000000 57.1875000000000.00000000000000 -161.81000000000 57.1875000000000.00000000000000 -161.81000000000 57.1875000000001.00000000000000 -162.810C0000000 57.1875000000001.00000000000000 -162.81000000000 57.187500000000REVOLUTE HITCH 3 HITCH2.BOD F DECK.BOD 0 00.00000000000000 -162.81000000000 57.1875000000000.00000000000000 -162.81000000000 57.1875000000000.00000000000000 -162.81000000000 58.1875000000000.00000000000000 -162.81000000000 58.1875000000001.00000000000000 -162.81000000000 57.1875000000001.00000000000000 -162.81000000000 57.187500000000

    RSDA HITCH ROLL HITCH 2

    A-9

  • BLOCKS IN NONE NONE0.0000000000000 0.00000000000000 0.00000000000000 0.00000000000000

    **** tractor body # 1 Path control frcll.f uses the body location to find path

    BODY TCH.BOD POSITIVE PARAMETERSFALSEFALSEFALSENONE NONE NONENONE NONE NONE0.00000000000000 -117.50000000000 37.7000000000000.00000000000000 0.00000000000000 0.00000000000000

    29.466200000000 175998.39510000 15889.746100000 175998.395100000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000

    **** tractor axles

    BODY TA1.BOD POSITIVE PARAMETERSFALSEFALSEFALSENONE NONE NONENONE NONE NONE0.00000000000000 0.00000000000000 22.6700000000000.00000000000000 0.OOCOOOOOOOOOOO 0.00000000000000

    6.7614000000000 3600.0000000000 2400.0000000000 3600.00000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.OOC1O00000000000.00000000000000 0.00000000000000 0.00000000000000BODY TA2.B0D POSITIVE PARAMETERSFALSEFALSEFALSENONE NONE NONENONE NONE NONE0.00000000000000 -140.00000000000 22.6700000000000.00000000000000 0.00000000000000 0.00000000000000

    7.0120000000000 3600.0000000000 2400.0000000000 2400.00000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000BODY TA3.BOD POSITIVE PARAMETERSFALSEFALSEFALSENONE NONE NONE-NONE NONE NONE0.00000000000000 -194.00000000000 22.6700000000000.00000000000000 0.O0000000CO0000 0.00000000000000

    ,7.2710000000000 36(0.0000000000 2400.0000000000 240C.00000000000.00000000000000 0.00000000000000 0.000000000000000.00u00000000000 0.0000000000000m) 0..000000000000000.00000000000000 0.00000000000000 0.00000000000000

    **** steering knuckles

    BODY rAlLS.BuD POSITIVE PARAMETERSFALSEFALSEFAT.SENONE NONE NONENONE NONE NONE-29.000000000000 0.00000000000000 22.6700000000000.00000000000000 0.0000000000000 0.000000000000000.i00000000000COE-01 1 000000000C000 1.0000000000000 1.00000000000000.00000000000000 0.0000000000C000 0.000000000000000.00000000000000 0.00000000000000 0.000000000000000.000000000C0000 0.O000CO00000000 0.00000000000000BODY .I L.A 0D POSITIVE PARAMETERSFALSEFALSEFALSENONE NONE NONENONE NONE NONE

    39.00000:)000000 ý.0000000000000C: 2Z.670000000000

    A-10

  • 0.00000000000000 0.00000000000000 0.000000000000000.10000000000000E-01 1.0000000000000 1.0000000000000 1.0000000000000O.000C0000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000

    **** tractor wheels

    BODY TA1LW.BOD POSITIVE PARAMETERSFALSEFALSEFALSENONE NONE NONENONE NONE NONE-39.000000000000 0.0000nO00000000 22.6700000000000.00000000000000 0.00000000000000 0.000000000000000.89000000000000 225.00U00000000 133.00000000000 133.000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000BODY TA1RW.BOD POSITIVE PARAMETERSFALSEFALSEFALSENONE NONE NONENONE NONE NONE

    39.000000000000 0.00000000000000 22.6700000000000.o0000000000000 0.00000000000000 0.000000000000000.89000000000000 225.00000000000 133.00000000000 133.000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000BODY TA2LW.BOD POSITIVE PARAMETERSFALSEFALSEFALSENONE NONE NONENONE NONE NONE-40.656250000000 -140.00000000000 22.6700000000000.00000000000000 0.00000000000000 0.000000000000000.89000000000000 225.00000000000 133.00000000000 133.00000000000000000000000000 0.00000000000000 0.000000000000000.000C0000000000 0.00000000000000 0.000000000000000.000CCO00000000 0.00000000000000 0.00000000000000BODY TA2RW.BOD POSITIVE PARAMETERSFALSEFALSEFALSENONE NONE NONENONE NONE NONE

    40.655250000000 -140.00000000000 22.6700000000000.00000000000000 0.00000000000000 0.000000000000000.89000000000000 225.00000000000 133.00000000000 133.000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.000000000O0000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000BODY TA3LW.BOD POSITIVE PARAMETERSFALSEFALSEFALSENONE NONE NONENONE NONE NONE-40.656250000000 -194.00000000000 22.6700000000000.00000000000000 0.00000000000000 0.O0000OU00000000.S9000000000000 225.00000000000 133.00000000000 133.000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.0000000000000 0.000000000300000.0000000000000 0.00000000000000 0.00000000000000BODY TA3RW.BOD POSIrIVE PARAMETFRSFALSEFALSEFALSENONE NONE NONENONE NONE NONE

    40.656250000000 -394.O0000000000 22.6700000000000.00000000000000 0.00000000000000 0.O000000CO0000000.89000000000000 225.00000000000 133.00000000000 133.000000000000.00000000000000 0.00000000000000 0.00000000000000

    A-11

  • O.OOOOOOOOOOOOCO 0.00000000000000 0.00000000000000

    0.00000000000000 0.00000000000000 0.00000000000000

    **h* 5th wheel hitch bodies

    BODY HITCH1.BOD POSITIVE PARAMETERSFALSEFALSEFALSENONE NONE NONENONE NONE NONE

    0.0000000000000 -162.81000000000 47.6200000000000.00000000000000 0.00000000000000 0.000000000000000.26000000000000 1.0000000000000 1.0000000000000 1.00C00000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 O.O0000000000O00.00000000000000 0.00000000000000 0.00000000000000BODY HITCH2.BOD POSITIVE PARAMETERSFALSEFALSEFALSENONE NONE NONENONE NONE NONE

    0.0000000000000 -162.81000000000 57.1875000000000.00000000000000 0o00000000000000 0.000000000000000.26C00000000000 1.0000000000000 1.0000000000000 1.00000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000u00000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000

    **** Intial conditions on tractor

    INITIAL TCHO.IC TCH.BOD NONENONE ORIENTATION 00.00000000000000 0.00000000000000 0.00000000000000 0.000000000000000.0000C000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000INtTIAL TCHX.IC TCH.BOD NONENONE X 00.00000000000000 0.00000000000000 0.00000000000000 0.0000000000000O.OOOOOOOOOOOOUO 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000INITIAL TCHY.IC TCH.BOD NONENONE Y 00.00000000000000 352.000000000000 0.00000000000000 0.000000000000000.00000000000000 3.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000INITIAL TCHZ.IC TCH.BOD NONENONE Z 00.00000000000000 0.00000000000000 0.OOOOOUOOOOOOO O.O.00COOGO0000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 C.00000000000000 0.00000000000000INITIAL TAIZ.I'- TA1.BOD NONENONE Z 00.00000000000000 0.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000INITIAL TA2Z.IC TA2.BOD NONENONE Z 00.00000000000000 0.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 3.O00000000000000.00000000000000 0.00000000000000 0.00000000000000INITIAL TA3Z.TC TA3.BOD NONENONE Z 00.000000000000G0 0.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000

    A-12

  • 0.00000000000000 0.00000000000000 0.00000000000000INITIAL TAIE2.IC TA1.BOD NONENONE E2 00.00000000000000 0.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.000000000000000,00000000000000 0.00000000000000 0.00000000000000INITIAL TA2E2.IC TA2,BOD NONENONE E2 00.00000000000000 0.00000000000000 0100000000000000 0.000000000000000.00000000000000 0.00000000000000 0.OOOOOOOOOOOOO0. 0000000000u0o 0.00000000000000 0.00000000000000INITIAL TA3E2.IC TA3.BOD NONENONE E2 00.00000000000000 0.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.000000000000000.O00000000000OO 0.00000000000000 0.00000000000000INITIAL TA1LW.IC TAILW.BOD NONENONE El 00.00000000000000 0.00000000000000 0.0000000c000000 0.000000000000000.00000000000000 3.00000000000000 0.000000000000000.00000000000000 0.00000000000000 O.C0000000jO0000INITIAL TAIRW.IC TAIRW.BOD NONENONE El 00.00000000000000 0.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 O.O00G0000000000 0.00000000000000INITIAL TA2LW.IC TA2LW.BOD NONENONE El 0C.00000000000000 0.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.O000000000oooo 0.00000000000000O.OG000000000000 0.00000000000000 0.00000000000000INITIAL TA2RW.IC TA2RW.BOD NONENONE El 00.00000000000000 0.00000000000000 0.0000000000000u 0.000000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.000o0000000000INITIAL TA3LW.IC TA3LW.BOD NONENONE El 00.00000000000000 0.00000000000000 0.00000000000000 0.000000000000090.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000INITIAL TA3RW.IC TA3RW.BOD NONENONE El 00.00000000000000 0.00000000000000 0.00000000000000 0.000000000000300.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000INITIAL TAlLS.IC TAlLS.BOD NONENONE E3 00.00000000000000 0.00000000000000 0.0O0000CO00000O 0.000000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000INITIAL TAlRS.IC TAIRS.BOD NONENONE E3 00.00000000000000 0.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000INITIAL HITCH1.IC HITCH1.BOD NONENONE El 00.00000000000000 0.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000

    A-13

  • 0.00000000000000 0.00000000000000 0.00000000000000* * ********** **** * ** ** *********** ******************** ** * ** * ***** ** * ** ** * ** **** * ** ** ********************************************************,*********************************************************************************,~**********************

    ****************** JSIPS TRAILER; Modified M871 **************************** * * *** * * *********** ******************************* ******* ** ** * ** *** ** * ** ** * ** ************************** * ** * ******************* ****** ** ** ** * ** * ** ** ** ***** ** ** * ***

    **** Rear suspension is a walking beam style with no torque rods, only the**** spring resists brake torques**** Each side of the suspension is modeled as axles connnected to a center**** body. This body in turn is connected to the chassis by revolute joints*~** at the axle trunnion. This is an approximation of trying to simulate**** the behavior of the leaf spring.

    center body

    **** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

    TSDA &&& TSDA**** &&&

    distance &&& constraints---------- && && ---------- *

    *** axle * && && * axle2---- --- --- && && - - - - -

    trunnion

    ****************************************** ** *************************************

    *** trailer lateral constraint for axles

    DISTANCE TFAXLE LAT RR DECK.BOD TFAXLE 0 0500.00000000000- -401.81000006000 20.500000000000

    0.00000000000000 -401.81000000000 20.500000000000500.00000000000 -400.81000000000 20.500000000000

    0.00000000000000 -400.81000000000 20.500000000000500.00000000000 -401.81000000000 21.500000000000

    0.00000000000000 -401.81000000000 21.50000000000050L 00000'00000

    DISTANCE TRAXLE LAT RR DECK.BOD TRAXLE 0 0500.00000000000- -452.81000000000 20.500000000000

    0.00000000000000 -452.81000000000 20.500000000000500.00000000000 -451.81000000000 20.500000000000

    C.00000000000000 -451.81000000000 20.500000000000500.00000000000 -452.81000000000 21,500000000000

    0.00000000000000 -452.81000000000 21.500000000000500.00000000000

    **** trailer front axle constraints

    DISTANCE DIST RF L RR DECK.BcD TFAXLE 0 018.295000000000 -427.06000000000 34.22160000000018.295000000000 -40.1.81000000000 23.16120000000019.295000000000 -427.06000000000 34.22160000000019.295000000000 -401.81000000000 23.161200000000

    A-14

  • 18.295000000000 -427.0600000000b 35.00000000000018.295000000000 -401.81000000000 35.00000000000027.566200000000

    DISTANCE DIST LF L RL DECK.BOD TFAXLE 0 0-18.295000000000 -427.06000000000 34.2U1600000000-18.295000000000 -401.81000000000 23.161200000000-17.295000000000 -427.06000000000 34.221600000000-17.295000000000 -401.81000000000 23.161200000000-18.295000000000 -427.06000000000 35.000000000000-18.295000000000 -401.81000000000 35.000000000000

    27.566200000000

    DISTANCE DIST RF U RR DECK.BOD TFAXLE u 00.00000000000000 -427.06000000000 29.2216000000000.00000000000000 -401.81000000000 17.738800000000

    1.0000000000000 -427.06000000000 29.2216000000001.0000000000000 -401.81000000000 17.738800000000

    0.00000000000000 -427.06000000000 30.0000000000000.00000000000000 -401.81000000000 30.000000000000

    27.738400000000

    **** trailer rear axle constraints

    DISTANCE DIST R.R L RR DECK.BOD TPAXLE 0 018.295000000000 -427.56000000000 34.22160000000018.295000000000 -452.56000000000 23.16120000000019.295000000000 -427.56000000000 34.22160000000019.295000000000 -452.56000000000 23.16120000000018.295000000000 -427.56000000000 35.00000000000018.295000000000 -452.560C0000000 05.00000000000C27.337381882000

    DISTANCE DIST LR L ItL DECK.BOD TRAXLE 0 0-18.295000000000 -427.56000030000 34.221600000000-18.295000000000 -452.56030000000 23,161200000000-17.295000000000 -427.56000000000 34.221600000000-17.295000000000 -452.56000000000 23.161200000000-18.295000000000 -427.56000000000 35.000000000000-18.295000000000 -452.56000000000 35.00000000000027.337381882000

    DISTANCE DIST RR U !ýR DECK.BOD TRAXLE 0 00.OUOOOOOOOOOOO -427.56000006000 29.2216000000000.00000000000000 -452.56000000000 17.738800000000

    1.0000000000900 -427.56000000000 29.2216000000001.0000000000000 -452.96000000000 17.738800000000

    0,00000000000000 -427.5600C000000 30.0000000000000.00000000000000 -452.56000000000 30.000000000000

    27.510992272900

    **** trailer tiras

    TIRE RF~rIRE RFWhL RRDECK.BOD FULLNONE NONE NONE NONE

    37.090000000000 -401.81000U00000 20.50200000000021.2C0000000000 0.00000000000000 10.0000000000005000.0000000000 859426.69269624 0.00000000000000

    0.8000000000000")TIRE RRTIRE RRWHL R.RDECK.BOD FULLNONE NONE NONE NONE

    37.000000000000 -452.81000000000 20.502000000000

    A-15

  • 21.200000000000 0.00000000000000 10.0000000000005000.0000000000 859436.69269624 0.00000000000000

    0.80000000000000TIRE LFTIRE LFWHL RLDECK.BOD FULLNONE NONE NONE NONE-37.000000000000 -401.81000000000 20.502000000000

    21.200000000000 0.00000000000000 I0o.0000000000005000.0000000000 859436.69269624 0.00000000000000

    0.80000000000000TIRE LRTIRE LRWHL RLDECK.BOD FULLNONE NONE NONE NONE-37.000000000000 -452.81000000000 20.502000000000

    21.200000000000 0.000CO000000000 10.0000000000005000.0000000000 859436.69265624 0.00000000000000

    0.80000000000000

    **** trailer leafsprings

    TSDA RF SPRING TrAXLE R SPRING 0 0BSTOP NONE NONE

    21.505000000000 -401.81000000000 20.50000000000021.505000000000 -401.81000000000 31.27000000000022.505000000C00 -401.81000000000 20.50000000000022.505000000000 -401.81000000000 31.27000000000021.505000000000 --401.81000000000 22.27000000000021.505000000000 --401.91000000000 32.2700000C00008772ý0000000000 11.000000000000 20.0000000000000 0.00000000000000

    TSDA RRSPRING TRAXLE RSPRING 0 0BSTOP NONE NONE2'.505000000000 -452.81000000000 20.50000000000021.505000000000 -452.81000000000 31.27000000000022.505000000000 -452.81000000000 20.50000000000022.505000003000 --452.81000000000 31.27000000000021.505000000000 -452.81000000000 22.270000000001M1.505000000000 -452.81000000000 32.2700000000008772.0000000000 11.000000000000 20.0000000000000 0.00000000000000

    TSDA LF SPRING TFAXLE L SPRING 0 0BSTOP NONE NONE-21.505000000000 -- 401.81000000000 20.500000000000-21.505000000000 -401.81000C00000 31.270000000000-22.505000000000 -401.81000000000 20.500000000000--22.505000000000 -401.81000000000 31.270000000000-21.505000000000 -401.61000000000 22.270000000000-21.505000000000 -401.8100G000000 32.2700000000008772.0000000000 11.000000000000 20.0000000000000 0.00000000000000

    TSDA LRSPRING TRAXLE L SPRING 0 0BSTOP NONE NONE-21.505000000000 -452.81000000000 20.500000000000-21.505000000000 -452.81000000000 31.270000000000-22.505000000000 -452.81000000000 20.500000000000-22.505000000000 -452.81000000000 31.270000000000-21.503000000000 -452.81000000000 22.2'0000000000-21.505000000000 -452.81000000090 32.2700000000008772.0000000000 11.000000000000 20.0000000000000 0.00000000000000

    **** springs between the LSPRING & RSPRING and M871

    TSDA RFSPRINGDAMP RR t;ECK.BOD RSPRING 0 0BSTOP NONE NONE

    21. 05000000000 -401.81000000000 20.500000000000

    A-16

  • 21.505000000000 -401.81000000000 31.27000000000022.505000000000 -401.81000000000 20.50000000000022.505000000000 -401.81000000000 31.27000000000021.505000000000 -401.81000000000 22.27000000000021.505000000000 -401.81000000000 32.27000000000020.000000000000 11.000000000000 10.0000000000000 o.OooooooOOOOOOC

    TSDA RRSPRINGDAMP RRDECK.BOD RSPRING 0 0BSTOP NONE NONE

    21.505000000000 -452.81000000000 20.50000000000021.505000000000 -452.81000000000 31.27000000000022.505000000000 -452.81000000000 20.50000000000022.505000000000 -452.81000000000 31.27000000000021.505000000000 -452.81000000000 22.27000000000021.505000000000 -452.81000000000 32.27000000000020.000000000000 11.000000000000 10.0000000000000 0.00000000000000

    TSDA LFSPRINGDAMP RLDECK.BOD LSPRING 0 0BSTOP NONE NONE-21.505000000000 -401.81000000000 20.500000000000-21.505000000000 -401.81000000000 31.270000000000-22.505000000000 -401.81000000000 20.500000000000-22.505000000000 -401.81000000000 31.270000000000-21.505000000000 -401.81000000000 22.270000000000-21.505000000000 -401.81000000000 32.27000000000020.000000000000 11.000000000000 10.0000000000000 0.00000000000000

    TSDA LRSPRINGDAMP RLDECK.BOD LSPRING 0 0BSTOP NONE NONE-21.505000000000 -452.81000000000 20.500000000000-21.505000000000 -452.81000000000 31.270000000000-22.505000000000 -452.81000000000 20.500000000000-22.505000000000 -452.81000000000 31.270000000000-21.505000000000 -452.81000000000 22.270000000000-21.505000000000 -452.81000000000 32.27000000000020.000000000000 11.000000000000 10.0000000000000 0.00000000000000

    **** payload bracketed to frame to allow for ease of movement of payload

    BRACKET PAYLOAD_1.BRACK PAYLOAD1.BOD F DECK.BOD 0 00.00000000000000 -191.56000000000 65.5000000000000.00000000000000 -191.56000000000 65.5000000000000.00000000000000 -191.5600000C000 66.5000000000000.00000000000000 -191.56000000000 66.5000000000001.0000000000000 -191.56000000000 65.5000000D00001.0000000000000 -191.56000000000 65.500000CD0000

    BRACKET PAYLOAD 2.BRACK PAYLOAD2.BOD RR DECK.BOD 0 024.0000000000000 -343.70000000000 55.00000000000024.0000000000000 -343.70000000000 55.00000000000024.0000000000000 -343.70000000000 56.00000000000024.0000000000000 -343.70000000000 56.000000000000

    25.000000000000 -343.70000000000 55.00000000000025.000000000000 -343.70000000000 55.000000000000

    BrACKET PAYLOAD 3.BRACK PAYLOAD3.BOD RL DECK.BOD 0 0-24.000000000000 -343.70000000000 55.000000000000-24.000000000000 -343.70000000000 55.000000000000-24.000000000000 -343,70000000000 56.00000000,000-24.000000000000 -343.70000000000 56.000000000000

    -23.00000000000 -343.70000000000 55.000000000000-23.00000000000 -343.70000000000 55.000000000030

    * Bracket Joints used to generate reaction forces at gussets for*** FFA.

    A-17

  • BRACKET L GUS. BRACK RLDECK. BOD FDECK. BOD 0 0-48.000000000000 --252,31000000000 55.000000000000-48.000000000000 -252.31000000000 55.000000000000-48.000000000000 -252.31000000000 56.000000000000-48.000000000000 -252.31000000000 56.000000000000

    -47.00000000000 -252.31000000000 55.000000000000-47.00000000000 -252.31000000000 55.000000000000

    BRACKET R GUS.BRACK RRDECK.BOD F DECK.BOD 0 048.000000000000 -252.31000000000 55.00000000000048.000000000000 -252.31000000000 55.00000000000048.000000000000 -252.31000000000 56.00000000000048.000000000000 -252.31000000000 56.00000000000049.00000000000 -252.31000000000 55.00000000000049.00000000000 -252.31000000000 55.000000000000

    **** joints which attach center body (leaf spring) to trailer chassis

    REVOLUTE RTRUNNION RRDECK.BOD RSPRING 0 021.505000000000 -426.81000000000 33.04910000000021.505000000000 -426.81000000000 33.04910000000022.505003000000 -426.81000000000 33.04910000000022.505000000000 -426.81000000000 33.04910000000021.505000000000 -426.81000000000 34.04910000000021.505000000000 -426.81000000000 34.049100000000

    REVOLUTE LTRUNNION RLDECK.BOD L-SPRING 0 0-21.505000000000 -426.81000000000 33.049100000000-21.505000000000 -426.81000000000 33.049100000000-22.505000000000 -426.81000000000 33.049100000000-22.505000000000 -426.81000000000 33.049100000000-21.505000000000 -426.81000000000 34.049100000000-21.5050000000U0 -426.81000000000 34.049100000000

    **** trailer wheel hubs revolute joints

    REVOLUTE RF REV RFWHL TFAXLE 0 037.000000000000 -401.81000000000 20.50000000000037.000000000000 -401.81000000000 20.50000000000038.000000000000 --401.81000000000 20.50000000000038.000000000000 -401.81000000000 20.50000000000037.000000000000 -401.81000000000 21.50000000000037.000000000000 -401.81000000000 21.500000000000

    REVOLUTE RR REV RRWHL TRAXLE 0 037.000000000000 -452.81000000000 20.50000000000037.000000000000 -452.81000000000 20.50000000000038.000000000000 -452.81000000000 20.50000000000038.000000000000 -452.81000000000 20.50000000000037.000000000000 -452.81000000000 21.50000000000037.020000000000 -452.81000000000 21.500000000000

    REVOLIJTE LFREV LFWHL TFAXLE 0 6-37.000000000000 -401.81000000000 20.500000000000-37.000000000000 -401.81000000000 20.500000000000-38.000000000000 -401.81000000000 20.500000000000-38.000000000000 -401.81000000000 20.500000000000-37.000000000000 -401.81000000000 21.500000000000-37.000000000000 -401.81000000000 21.500000000000REVOLUTE LR RF•V LRWHL TRAXLE 0 0-37.000000000000 -452.81000000000 20.500000000000-37.000000000000 -452.81J00000000 20.500000000000-38.000000000000 -452.81000000000 20.500000000000

    A-18

  • -38.000000000000 --452.81000000000 20.500000000000-37.000000000000 -452.81000000000 21.500000000000-37.000000000000 -452.81000000000 21.500000000000

    **** trailer chassis

    BODY FDECK.BOD POSITIVE PARAMETERSFALSEFALSEFALSENONE NONE NONENONE NONE NONE0.00000000000000 -191.56000000000 62.7500000000000.00000000000000 0.00000000000000 0.000000000000006.9551920000000 7484.0000000000 5359.0000000000 12808.000000000

    0.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000BODY RL DECK.BOD POSITIVE PARAMETERSFALSEFALSEFALSENONE NONE NONENONE NONE NONE-24.000000000000 -343.70000000000 50.0000000000000.00000000000000 0.00000000000000 0.00000000000000

    13.910384000000 69413.105000000 2786.0000000000 71968.0000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000BODY RRDECK.BOD POSITIVE PARAMETERSFALSEFALSEFALSENONE NONE NONENONE NONE NONE24.0000000000000 -343.70000000000 50.0000000000000.00000000000000 0.00000000000000 0.00000000000000

    13.910384000000 69413.105000000 2786.0000000000 71968.0000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000

    **** trailer axles

    BODY TFAXLE POSITIVE PARAMETERSFALSEFALSEFALSENONE NONE NONENONE NONE NONE0.00000000000000 -401.81000000000 20.5000000000000.00000000000000 0.00000000000000 O.OOC00000000000

    1.9C67000000000 64.920000000000 1564.0000000000 1564.00000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000BODY TRAXLE POSITIVE PARAMETERSFALSEFALSEFALSENONE NONE NONENONE NONE NONE0.00000000000000 -452.81000000000 20.5000000000000.00000000000000 0.00000000000000 0.000000000000001.9067000000000 64.920000000000 1564.0000000000 1564.0000000000

    0.00000000000000 0.OOOOOOOOO00000 0.000000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000

    **** trailer wheel hubs

    BODY RFWHL POSITIVE PARAMETERSFALSEFMLSEFALSEqONE NONE NONENONE NONE NONE

    A-19

  • 37.000000000000 -401.81000000000 20.5000000000000.00000000000000 0.00000000000000 0.000000000000000.39000000000000 44.000000000000 24.500000000000 24.5000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 o.ooooooooooooCo 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000BODY RRWHL POSITIVE PARAMETERSFALSEFALSEFALSENONE NONE NONENONE NONE NONE

    37.000000000000 -452.81000000000 20.5000000000000.00000000000000 0.00000000000000 0.000000000000000.39000000000000 44.000000000000 24.500000000000 24.5000000000000.00000000000000 0.00000000000000 C.000000000000000.00000000000000 0.00000000000000 0.000000000000000,00000000000000 0.00000000000000 0.00000000000000BODY LFWHL POSITIVE PARAMETERSFALSEFAISEFALSENONE NONE NONENONE NONE NONE-37.000000000000 -401.81000000000 20.5000000000000.00000000000000 0.00000000000000 0.000000000000000.39000000000000 44.000000000000 24.500000000000 24.5000000000000.OOOOOOOOOOOOO 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000BODY LRWHL POSITIVE rARAMETERSFALSEFALSEFALSENONE NONE NONENONE NONE NONE-37.000000000000 -452.81000000000 20.5000000000000.00000000000000 0.00000000000000 0.000000000000000.39000000000000 44.000000000000 24.500000000000 24.5000000000000.00090000000000 0.00000000000000 0.000000000000000.00000000000C00 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000

    **** center body to simulate leafspring coupling between axles

    BODY RSPRING POSITIVE PARAMETERSFALSEFALSEFALSENONE NONE NONENONE NONE NONE

    21.505000000000 -426.81000000000 28.9252000000000.00000000000000 0.00000000000000 0.000000000000000.52000000000000 25.000000000000 1.0000000000000 25.0000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000BODY LSPRING POSITIVE PARAMETERSFALSEFALSEFALSENONE NONE NONENONE NONE NONE-21.505000000000 -426.81000000000 28.9252000000000.00000000000000 0.00000000000000 0.000000000000000.52000000000030 25.000000000000 1.0000000000000 25.0000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000

    **** trailer payload: Front and Rear differ. ***

    BODY PAYLOADi.BOD POSITIVE PARAMETERSFALSEFALSEFALSENONE NONE NONENONE NONE NONE0.00000000000000 -191.56000000000 84-000000000000

    A-20

  • 0.00000000000000 0.00000000000000 0.000000000000007.77121541809000 59007.8100000000 44762.2000000000 85865.1300000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000BODY PAYLOAD2.BOD POSITIVE PARAMETERSFALSEFALSEFALSENONE NONE NONENONE NONE NONE-24.000000000000 -343.70000000000 96.0000000000000.00000000000000 0.00000000000000 0.0000000000000028.4944565330000 165581.000000000 43767.0000000000 165681.000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.OCOOOOOOOOOOOO 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000BODY PkYLOAD3.BOD POSITIVE PARAMETERSFALSEFALSEFALSENONE NONE NONENONE NONE NONE24.0000000000000 -343.70000000000 96.0000000000000.00000000000000 0.00000000000000 0.0000000000000028.4944565330000 165581.000000000 43767.0000000000 165581.000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000

    **** trailer initial conditions

    INITIAL FDECKO.INIT TFAXLE NONENONE ORIENTATION 00.00000000000000 0.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000

    INITIAL TFAXLE-Z.IC TFAXLE NONENONE Z 00.00000000000000 0.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000INITIAL TFAXLE-Z2.IC TFAXLE NONENONE E2 00.00000000000000 0.000OJ000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000INITIAL TRAXLE-Z.IC TRAXLE NONENONE Z 00.00000000000000 0.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000INITIAL TRAXLE-E2.IC TRAXLE NONENONE E2 00.00000000000000 0.00000000000000 O.OOOOCOOOOOOOOO 0.000000000000000.00000000000000 0.00000000000000 0.0000C0000000000.00000000000000 0.00000000000000 0.00000000000000INITIAL LFWHL-EI.IC LFWHL NONENONE El 0J.00000000000000 0.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000INITIAL RFWHL-EI.IC RFWHL NONENONE El 00.00000000000000 0.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000

    A-21

  • 0.00000000000000 0.00000000000000 0.00000000000000INITIAL LRWHL-El.IC LRWHL NONENONE El 00.00000000000000 0.00000000000000 0.10000000000000 0.000000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000INITIAL RRWHL-El.IC RRWHL NONENONE El 00.00000000000000 0.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000ROAD ROAD NONE 0.000000000000000.00000000000000 0.00000000000000 0.00000000000000 0.000000000000000.00000000000000 0.00000000000000 0.O00000000000000 0.00000000000000

    201.000000000000 20.0000000000000 0.50000000000000 3.0000000000000.3

    **** tractor tire lateral stiffness curve

    CURVE TIRELS.CUR PAIRED.XY 13 1

    0.12500000000000 0.50000000000000E-020.10000000000000E-01 1.0000000000000

    0.00000000000000 0.00000000000000 CUBIC

    0.00000000000000 0.00000000000000 4.0000000000000 0.50000000000000

    10.000000000000 0.70000000000000 15.000000000000 0.80000000000000

    20.000000000000 0.90000000000000 30.000000000000 0.85000000000000

    40.000000000000 0.82000000000000 50.000000000000 0.80000000000000

    60.000000000000 0.78000000000000 70.000000000000 0.75000000000000

    80.000000000000 0.73000000000000 90.000000000000 0.70000000000000

    100.00000000000 0.65000000000000

    **** bump steer curvesCURVE TSBSL.CUR PAIRED.XY 13 3

    0.00000000000000 50000.000000000 0.17500000000000E-01 1.0000000000000

    0.00000000000000 0.00000000000000 LINEAR

    38.000000000000 0.00000000000000 38.400000000000 0.00000000000000

    38.600000000000 0.00000000000000 38.700000000000 0.00000000000000

    38.800000000000 600.00000000000 38.900000000000 1800.0000000000

    39.000000000000 3700.0000000000 39.100000000000 6500.0000000000

    39.200000000000 10150.000000000 39.300000000000 15000.000000000

    39.400000000000 20000.000000000 39.600000000000 30000.000000000

    40.000000000000 50000.000000000CURVE TSBSR.CUR PAIRED.XY 13 4

    50000.000000000 0.00000000000000 0.17500000000000E-01 1.0000000000000

    0.00000000000000 0.00000000000000 LINEAR

    -31.000000000000 -50000.000000000 -30.600000000000 -30000.000000000

    -30 4Q0000000000 -20000.000000000 -30.3000U0000000 -15000.G00000000

    -30.200000000000 -10150.000000000 -30.100000000000 -6500.0000000000

    -30.000000000000 -3700.0000000000 -29.900000000000 -1800.0000000000

    -29.800000000000 -600.00000000000 -29.700000000000 0.00000000000000

    -29.600000000000 0.00000000000000 -29.403000000000 0,00000000000000

    -29.000000000000 0.00000000000000CURVE TBSTOP.CUR PAIRED.XY 2 6

    50000.0000000000 50000.000000000 1.0000000000000 1.0000000000000

    0.00000000000000 0.00000000000000 LINEAR

    -3.0000000000000 0.OOOOCOOOOOOOOO 3.0000000000000 0.00000000000000

    **** trailer bump stop curve

    CURVE BSTOP PAIRED.XY 4 10

    17544.0000000000 17544.000000000 1.0000000000000 1.0000000000000

    O.00000000000000 0.00000000000000 LINEAR

    0.0000000000000 -9500.0000000000 0.5000000000000 9400.00000000000

    1.0000000000000 17800.000000000 1.5000000000000 25600.0000000000

    A-22

  • CURVE BSTOP2 PAIRED.XY 3 100.00000000000000 5000.0000000000 1.0000000000000 1.00000000000000.00000000000000 0.00000000000000 LINEAR-10.000000000000 0.00000000000000 5.0000000000000 0.00000000000000

    15.000000000000 75000.000000000

    **** hitch roll curves ****CURVE BLOCKSOUT PAIRED.XY 7 100.00000000000000 5000.0000000000 1.0000000000000 1.00000000000000.00000000000000 0.00000000000000 LINEAR-0.1745000000000 -100000.00000000 -0,122200000000 0.00000000000000-0.0698000000000 0.0000000000000 0.000000000000 0.000000000000000.0698000000000 0.0000000000000 0.122200000000 0.000000000000000.1745000000000 100000.00000000

    CURVE BLOCKSIN PAIRED.XY 2 10100000000.00000 100000000.00000 1.0000000000000 1.0000000000000

    0.00000000000000 0.00000000000000 LINEAR-10.000000000000 -100000000.00000 10.000000000000 100000000.000000USERFORCE 352.

    A-23

  • APPENDIX B

    DADS Simulation Time Histories

  • B-2

  • 611, Q20 -,h

    0.60

    0.40

    P

    -0.40

    -0 .80 " -- --

    - 0. 9. 1.0 2. .0 3.0 4.0 S. ,r 6.0 7.0 8.0 9.0 10.00E 0

    6" 0 u, @3 20 ,oPh

    E EOt C- 0

    5.0

    4.0 -T A A -"

    3.0

    2.0 -1 -J I 11R

    II

    1.0 -

    0.0- -

    -3.0

    ---,0 -- J0.0 1.0 2.0 3.0 4.0 S.0 6.0 7.0 8.0 9.0 10.0

    E 0

    .60",E 0

    Soo0.400

    S10. 200Ii I-0.700V 7 '

    0..4.0 Ll -...... . .0.0 1.0 2.0 3.0 4.0 5,0 6.0 :'.0 8.0 ?.0 10,0

    E 0

    B-3

  • E 0

    0.40 - - -

    0.20 -

    p 0.00

    -0.20

    -0.40

    S 0.80 - --

    -1.20

    -1.400.0 1.0 2.0 3,0 4.• . 0 G.0 7.g S. 0 9.0 10.0 31.o 12.0

    E 0

    .E 010.0 ""

    8.0

    4.0-

    -4.0 -----.-------- ----

    0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 3.0 10.0 1.0 12.0E 0

    9, B, @ S

    0.40

    " -0.20

    -0.80 - ---

    -0.60

    00. 1.09 .0 3,0g 4.0 5,k] E,.o 7.0 8.

  • 9" F.,, a 10 ..•hSE 00.60

    0.4O 0-

    0.20--'° - -

    p 0.00 --

    -0.20 -

    -0.40

    .6.0

    6!.0

    48.02.0 -

    6.00.0

    0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

    1.. E~ 0

    0.000

    3 0-40 1 .~

    • E 0

    0.60,. 51- F -

    -•( . 2 -I-i i.z, 5, .• , . 9 z•.o I

    220 ~----~ ------ - -

  • J . i~~ ~ ~ 0 'Jol . c*0.60 -

    0.200k-- _

    -0 .0 VL

    -0.? 80-t

    0. 0 P.7 ?0 3. 0 48 C .0 6. 7 08.0 9.010.0

    E- J

    .E 01.010 --

    0-0

    -0.00

    0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0E 0

    61 Potl+oI. @ S ýp1

    'E6 0

    0. 100 -*-- .2.C050

    0. 0t

    -0. . .'L

    0 1.2 -. 0 4.01 0 6 .1 0 i 0. 7ý.0 10.0

    B-6

  • 6" PoU,oI. 2 10 Qh0.80

    0.60 .f

    0.40-0.20

    1A

    -0.40 v Yv ivvl•VS-0.60 -- - ]

    -0.80

    -1.00 L0.0 1.0 2.0 3.0 4.0 S.0 6.0 7.0 8.0 9.0 10.0,E 0

    6 Pod.hol. 2 0 -phE 0

    4.00 1

    2.00 -

    2.00

    g -. 00 --

    -2.00 1 -

    -3.00 -

    0.0 1.0 2.0 3.0 4.0 5 60 r.0 7.0 6.0 9.0 10.0

    E 0

    0 . 400 -- - - - -- - - - ... . ..- ,

    0.360 .3- -

    0.200

    -0. v, . .

    ý0.2 100 -- )-- -- -.- -= ,.

    0 - . 3V. -......

    ~/

    0.6 Q' I . .0 3.0) 4.0 5.0 6.0 7.0 6.0 9.0 10.0

    B-7

    B-7

  • 9" P,,j-oI. a S .,,E 0

    0.8Ž0 - -------0.60

    P 1.20 I- z-10.40

    0.10 2. . . 6 8e

    -0.00

    -0 .20 V 1vI V

    .-E 0

    r, •2.0 ' - --- - - -/- -

    -0.60

    -09

    o -4.0 ----- -

    -6.00

    -8.0 - .1....0.0 1.•2 .0 3.0 4.0 S.0 6.0 7.0 8.0 9.0 10.0

    ,E 0

    to

    ., 0

    -0.0 ------ --_t-0. 0-

    e. , 1.0 2.0 3.0 4,.0 S.0 6.0 7.0 8.0 9.0 10.0E 0

    BY Pk-8.Sp

  • 1.501.00 --

    0.50

    0.0

    1 so-0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

    rE 0

    9" P 10hoI. • 20

    .E 05.0

    4.0 i f -

    2.0 - ^

    0.0

    9I0 -2.0

    -3.0 ---- -

    -4.0

    -5.00.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

    .E 0

    9' Pekho1. 8 20

    0.60ry 11-

    0.40

    0.30, -y

    Y' 0 . 2 0 A

    0.00 --

    -0.10 <

    -0.20 - - p --0.30 -

    -0.400.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 3.0 9.0 10.0

    .E 0

    B-9

  • . E 0

    0.180 --

    0. 160

    0.4 v-

    p 0.120

    "0.080 A'lA I.0.060

    0.020

    0.000

    -0.0 5.0 10.0 1s.0 20.0 25.0 30.0 35.0 40.0E 0

    20% •I6erot;n S;de Sio C-,- to O¶ hSE 0I.80

    10.0 '

    0.0

    -S.0 .. . .

    "0.0 5.0 10.0 ¶5.0 20.0 25.0 30.0 35.0 40.0

    20% •lt -,,;n, S;d. Slop-e C-,- @, 10 -,oh

    0.300 - _ _ _

    0.2 ---- ----

    0.200 - - -I0. Ise$,

    0.100

    -0. 0r_,

    0.1000 - ~ --

    -0.0so

    -- p 20e

    -0. 300 -0.0 S.0 20.0 15.0 Co.0 2.5e0 10.0 3. 0 Nf. 0

    FO 0

    B -11

  • 20*1 S d. Sloý C--. ii 20 4E 0

    0.400

    e. 180 A_0.160

    0.140-

    0.120

    0.080 1111 I N Illl v) vv ,0.060

    0.040

    0.020 - - -

    -0.040 - I I - L-0.0 2.0 6.0 8.0 10.0 12 0 24.0 16.0 28.0 20.0

    .E 0

    20% S;d, Sb 0 . Co,--... 8 20 ,4.E 0

    10.0

    1S.0r

    0.0

    -5.0

    -10.0 - i-15,0 --Lii V.... ..

    0,0 2O, 4.0 E.0 8.0 10.0 2Q.0 14.0 16.0 10.0 ?0.0E 0

    20/ Sd6. Coo.. R 20 ,K

    0.1300 - ..

    -v. i0]0.2p3

    -0 .. L0 .. .. .. . .. .. . . ..... . .- . . . . . .. . . .

    0. 0 0.. 6. ' 8.0 10.0 1?.0 14.0 ILO 28.03 10.0

    B-II

  • 120' II' Stoto, M ý , @ 30 -,Pl•E 00.050 -0 ow

    -0. - -OSO - -

    -0.05 so __ - - - -

    - ° , , I , Il _ _p -0.200 L7- - - ____

    -0.250 _ _

    -0.300

    -0.350

    • -0.400

    _2 0

    1.06 ' -t1- _o-- @ 30

    0.00

    -0.50 __

    0.0 2.0 4.0 E.0 8.0 0. 20 140 16.0E 0

    120' . 11' SIL ~ .. ~. 30

    .60

    4.0 ~7

    2.0

    C.0 2.0 4.0 6.0 8.0 10.0 ;2.0 .0 a.S0

    B-12

  • 120' 1'1 St.I0, M ý -, Q40 ph.E 00.200

    0.200 -

    0.000

    -0.1200

    11 Al till

    0I

    -0.6 00 -

    -0.7000.3 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

    E 0

    t!

    120' 11' Sto- loM.• , a 40 ph3 002.S2

    2.0 .

    1.50 . . ...

    0.0 2o ao 6080 1 . 1H. I4. r1nV

    P 2 -i-- -... - -

    -0.50

    01.00 1-1.50-- _ _

    -2.0 2.

    -2.50 - -

    0.0 2.0 4.0 6.0 8.0 10.0 12.2 14.0 16.0

    1?2' 1 1 Stt- M .--- 3 40 ,,

    4.0

    ( 2 .0 --

    -4.0 .~

    0.p 2.0 . . 8.0 10.0 12.0 14.02 il

    B-13

  • • E 0

    2.00

    I.S

    1.00

    -I~ ~ ..$1 .

    0.0

    -0.00

    0.0 2.0 4.0 6.O 8.0 10.0 22.0 14.0 16,3 18.0 20.0E 0

    Belg;on Block o j 20 .h,E 0

    8.0

    6.0

    4.0 ----R

    2.0 -

    S 0.0

    -2.0 ----

    -4.0 -

    0.0 2.0 4.0 6.0 8.0 0 2. 0 20 4.0 160 18.0 20.0.F- 0

    BA.6

    K' - - --.- --"0'. GO(

    0.30

    tt ,

    0.0 -1-e. IL

    -0.30 II-0.ý 40

    0. W0.0 ?. .0 0 6 0 .l~0

    il 0

    B-14

  • SPý , ,o I Co u.e 2 30 v

    i • E 0

    'I 1-0.0 P.,0 4.0 E.0 8.0 10.0 12.0 14.0 16.0 1- .0 20A

    50E 0-1...- a-3

    P I Cyo, .1 -.u • 30 @0kE 0

    i.00

    0.00 1

    I

    _

    0.1 P . 0 4. 0 6.0 V!.0 10 ,.0 12.0 14.0 16.0, 18.0 20.0

    B-15

  • B0(Ig;- 8l( 20 F• F-6 Dýi

    1.50 -

    1.00

    -0.50 N

    -1.00

    Y -2.50

    -3.00 - I-3.SO --

    -4.00 -- -- --]

    -4.500.0 2.0 4.0 6.0 9.0 10.0 !2.0 14.0 16.0 18.0 20.0

    .E 0

    60giQ. 6Ioc; 9 20 c'b -,c1.. D-

    2.00 _

    100

    0.0

    1.. o,,

    r---

    T- -iik--B-10

    3. . 4°0 6°3 ,0 0•0 12.0 14.0 16.0 18.0 cO0.0.E 0

    B-I E

  • 1.00 - T -...- - . ., E . ,0

    0.00

    *2.00 - --3.00

    S-5.00

    -6.00 ii l I0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 38,0 20.0SE j

    .- 6 1 C - - a 30 h

    1.00

    0.0 -

    o.,-o

    0. 0

    -0.20

    -0.40

    -0.80 ....- - - -{-- -0.0 2.0 4.0 6.0 8.0 ý0.0 12.0 14.0 6b.0 18.0 20.0

    , E 7t. ~

    B- 17

  • DISTRIBUTION LIST

    Copies

    Commander 2Defense Technical Information CenterBldg. 5, Cameron StationATTN: DDACAlexandria, VA 22304-9990

    Manager 2Defense Logistics Studies Information ExchangeATTN: AMXMC-DFort Lee, VA 23801-6044

    Commander 2U.S. Army Pank-Auzomotive CouammadATIN: ASQNC-TAC-DIT (Tcchnical Library)Warren, MI 48397-5000

    CommanderU.S. Army Tank-Automotive CommandATTN: AMSTA-CF (Mr. W`-heelock)Warren, M1 48397-5000

    DirectorU.S. Army Materiel Systems Analysis ActivityATTN: AMXSY-MP(Mr. Cohen)Aberdeen proving Ground, MD 210'G05.5071

    Commander 5U.S. Army Tank-Automotive CommandAttn: AMSTA-RYC (Mr. Pozolo)Warren, MI 48397-5009

    Commander 2U.S. Army Tank-Automotive CommandAttn: AMCPM-T (Mr. Ostrowski)Warren, MI 48397-5000

    Dist- 1