27
2005 DOE Hydrogen Program Review Advanced MEA’s for Enhanced Operating Conditions, Amenable to High Volume Manufacture Mark K. Debe 3M Company May 23, 2005 Project ID # FC3 This presentation does not contain any proprietary or confidential information

Advanced MEAs for Enhanced Operating Conditions ...3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 12 0 0.4 0.6 0.8 1.0 Technical

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Advanced MEAs for Enhanced Operating Conditions ...3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 12 0 0.4 0.6 0.8 1.0 Technical

2005 DOE Hydrogen Program Review 

Advanced MEA’s for Enhanced  Operating Conditions, Amenable to High 

Volume Manufacture

Mark K. Debe 3M Company May 23, 2005

Project ID # FC3

This presentation does not contain any proprietary or confidential information

Page 2: Advanced MEAs for Enhanced Operating Conditions ...3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 12 0 0.4 0.6 0.8 1.0 Technical

Overview Timeline Barriers 

• Project start 1/1/02 O. Stack Material & Mfg Cost

• Project end 12/31/05 P. Durability

• 80% complete Q. Electrode Performance R. Thermal & Water Mgmt

Budget Targets • Total Project funding

­ $7 million DOE ­ $2 million contractor share

• Cost:  $35/kW,  • Durability:  > 5000 hrs,  • Precious metal loading:  0.2 g/ 

• Received in FY04:  $2 million rated kW

• Projected funding for FY05:  $1.8  For fuel cell stack system for 2010 from HFCIT Multi­Year Plan

million Partners

• Case Western Reserve Univ. • University of Miami • Colorado School of Mines • University of Minnesota • Dalhousie University • VAIREX Corporation • University of Illinois • Collaboration with LBNL and BNL

3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 2

Page 3: Advanced MEAs for Enhanced Operating Conditions ...3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 12 0 0.4 0.6 0.8 1.0 Technical

Objectives

Overall Contract Objective Development of high performance, high durability, lower cost membrane electrode assemblies (MEA’s) qualified to meet demanding system operating conditions of higher temperature, little or no humidification, while using less precious metal catalyst.

Past Year Objectives a) Tasks 1 & 3: Demonstrate PFSA based MEA capability with: 

adequate membrane and catalyst performance to meet 0.2g Pt/kW , durability to potentially operate for 5000 hours in the range of 85 < T < ~ 120ºC under sub­saturated inlet conditions with start­stop cycling, and pilot­scale production levels.

b) Task 2: Development and characterization of new proton conducting electrolytes and incorporation into membranes for operation at T > 120ºC, based on non­aqueous proton conduction mechanisms.

3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 3

Page 4: Advanced MEAs for Enhanced Operating Conditions ...3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 12 0 0.4 0.6 0.8 1.0 Technical

Approach Tasks 1 and 3: 85 < T < 120oC MEA by roll­good processes a) Develop 3M PFSA membranes  for operation at  85 < T < ~ 120ºC, with

enhanced durability operating on low humidification and pilot scale production capability.

b) Developed advanced 3M ­ NanoStructured Thin Film (NSTF) catalysts with high performance at ultra­low Pt loadings having enhanced durability for operation over 85 < T < 120ºC with start­stop cycling, using pilot scale production capability.

c) Match the 3M PEM and 3M NSTF catalyst for optimum performance, durability

d) Advance pilot scale process development for roll­good catalyst coated membrane (CCM) fabrication of the NSTF catalysts and 3M PEM from c).

e) Optimize the MEA GDL for dry operation with the CCM from d).

Task 2: High temperature electrolytes (T > 120oC): a) Develop membranes comprising polymers blended with stable non­volatile 

3M superacids. b) Investigate new heteropolyacid additives for proton transport under hotter, 

drier conditions and methods for stabilizing in presence of water.

3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 4

Page 5: Advanced MEAs for Enhanced Operating Conditions ...3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 12 0 0.4 0.6 0.8 1.0 Technical

Technical Accomplishments Task 1, Task 3:  85 < T < 120oC MEA by roll­good processes ­ New 3M PEM shows greater than 15x increase in lifetime under 90/70/70oC load­

cycling accelerated tests,  compared to standard PFSA membrane. ­ 3M PEM shown to have higher conductivity at lower water­per­sulfonate group. ­ New 3M PEM maintains 25­30 mS/cm conductivity at 120oC and 80oC dewpoint

­ Over 1000 ft of 3M PEM coated at pilot scale. ­ 3M NanoStructured Thin Film catalysts achieved 0.22 g­Pt/kW at 100kPA with

0.12mg­Pt/cm2­MEA; and < 50 mV of mass transport overpotential at 2 A/cm2. ­ 3M NSTF/3M PEM MEA demonstrated over 1000 hour lifetime at 120oC

­ 3M NSTF­ternary catalysts produce 75x less F ­ than Pt/carbon dispersed catalysts at 120oC with same PEM and GDL.

­ 3M NSTF catalysts are ~ 80x more resistant to loss of ECSA via Pt dissolution by CV cycling between 0.6 – 1.2 volts, than Pt/carbon dispersed catalysts.

Task 2 : T > 120oC electrolytes ­ Performance in fuel cell under H2/air at 110oC better than PBI/H3PO4 with 

catalyst loading of only 0.4/0.4 mg/cm2 Pt/Pt (3M acid more ORR compatible). ­ Pulse field gradient spin echo­diffusion measurements show lower activation

barriers for H+ transport of new heteropolyacids, and higher maximum Temps. Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 53

Page 6: Advanced MEAs for Enhanced Operating Conditions ...3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 12 0 0.4 0.6 0.8 1.0 Technical

Technical Accomplishments – 3M PEM Definition The new 3M ionomer has a slightly shorter side chain than standard PFSA membrane ionomer without the pendant ­CF3 group: 

Gives: ­ higher degree of crystallinity, ­ higher modulus, ­ higher Tg at a given equivalent weight (EW).

Allows: ­ lower EW membranes with higher conductivity, ­ improved mechanical properties and durability under hot, dry conditions.

­ enhanced oxidative stability in Fenton’s test

(CF2CF)n(CF2CF2) (CF2CF)n(CF2CF2)m m

OCF 2CFOCF 2CF2 OCF2CF2CF2CF2

CF3 SO3H SO3H

Standard PFSA New  3M Polymer

3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 6

Page 7: Advanced MEAs for Enhanced Operating Conditions ...3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 12 0 0.4 0.6 0.8 1.0 Technical

6

8

10

12

14

Technical Accomplishments – 3M PEM Performance Comparison of conductivity at 30°C vs. hydration state (λ) of 

1000 EW 3M membrane and standard 1100 EW PFSA membrane

3M Membrane (1000 ew, cast)

Std. PFSA (1100 EW, extruded)

0.14

λ (W

ater

 Mol

ecul

es p

er S

ulfo

nate

 Gro

up)

3M Membrane

Std. PFSA

0.12

0.1

σ (S

/cm

)

0.08

0.06

0.04 4

0.02 2

00

0 0.2 0.4 0.6 0.8 1 0 5 10 15 20 25

(% RH) λ (Water Molecules per Sulfonate Group)

3M membrane exhibits lower water  Conductivity  of the 3M membrane uptake for the same water activity  increases more rapidly with number of compared to the standard PFSA  water molecules per sulfonate group than membrane. standard membrane.  This should allow 

T. Zawodzinski et al., CWRU drier operation of the MEA.

3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 7

Page 8: Advanced MEAs for Enhanced Operating Conditions ...3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 12 0 0.4 0.6 0.8 1.0 Technical

Technical Accomplishments – 3M PEM Performance

3M membranes with multiple EW’s have been fabricated and evaluated.

• Conductivity vs. temperature for EW ionomers in 730 – 980 EW range. • The lowest EW ionomer tested so far, 730 EW, shows a conductivity 

of about 25­30 mS/cm at 120˚ C, 80˚ C DP, very dry conditions.

 Proton Conductivity at  80C Dew point

1.00 AC 4­point probe measurement, at ambient 

3M PFSA  730 EW 3M PFSA  830 EW 3M PFSA  900 EW 3M PFSA  980 EW

Con

duct

ivity

, S/c

m

pressure. 0.10

0.01 70 80 90 100 110 120

Temp (˚C)

3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 8

130

Page 9: Advanced MEAs for Enhanced Operating Conditions ...3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 12 0 0.4 0.6 0.8 1.0 Technical

Technical Accomplishments – 3M PEM Durability

0.460 with lower EW under hot, 0.440 dry conditions.

• Lifetime defined as when 0.420

OCV drops below 800mV. 0.400

Lifetime and performance vs. EW under load cycling. /cm2V at 0.5A

3M 1,000 EW  3M 900 EW  3M 800 EW 3M 700EW

• No statistically significant  Normalized lifetime 5 samples each 200lifetime difference between 180

700 to 1,000 EW  160

0.540 • Test run at 90˚C, 28% RH, 0.520 load cycles between OCV 0.500 and 0.5 A/cm2.

• Performance increases 

Nor

mal

ized

 Life

time

Vo

lts

0.480

membranes in this test. 140

120

• All MEA’s tested with  100

dispersed Pt/C ink  80

60electrodes with 0.4/0.4 mg 40

Pt / cm2. 20

0 3M 1,000 EW  3M 900 EW  3M 800 EW 3M 700EW

3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 9

Page 10: Advanced MEAs for Enhanced Operating Conditions ...3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 12 0 0.4 0.6 0.8 1.0 Technical

Performance and lifetime during accelerated durability testing

Technical Accomplishments – 3M PEM Durability

Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 10

00.10.20.30.40.50.60.70.80.9

1

0 0.2 0.4 0.6 0.8 1 1.2

Current Density

Volta

ge

0.060.070.080.090.10.110.120.130.14

mO

hms­

cm2

StartAfter 2800 hoursAfter 3500 hoursResistance Start Resistance 2800 hoursResistance 3500 hours

3500>50017.078.1

2800>5003.4102.9

0>5004.2178.3

Testing Time

Short Resistance 

(OHM­CM2)

H2Crossover (mA/cm2)

Pt/Carbon SEF 

(M2/M2)

• 3M membrane with additives shows  >15 X increase in lifetime (4 cell average ~ 4100 hrs) vs. 50 micron extruded standard PFSA membrane under load cycling tests at 90oC, w/70oC dewpoints.• Accelerated durability testing was stopped periodically and sample was tested at 70˚C 100%RH.  ­ No increase in crossover or shorting was detected before 3500 hours.  ­IR change of PEM was minimal.­ Most performance loss due to loss of catalyst surface area or mass transport. 

3

Page 11: Advanced MEAs for Enhanced Operating Conditions ...3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 12 0 0.4 0.6 0.8 1.0 Technical

[111]

1 nm1 nm

Technical Accomplishments – NSTF Fundamentals

Relating fundamental catalyst morphology to enhanced properties. Scanning Transmission  Surface free energy of crystallites 

3M Scanning  Electron Microscopy images  are minimized by  truncating a [111] Electron Micrographs from U. of Illinois faceted pyramid with a [100] top.

[100]

10 nm10 nm

1 nm1 nm

a

b

Experimentally measured values of a ~ 2nm, b~ 6nm or a/b=1/3.

Calculated energy minimized when r = a/b ~ 0.33.

“Whiskerettes” growing on the sides of the larger whiskers as pyramidal crystallites with fcc(111) side facets and fcc(100) truncated top. (L. Gancs, A. Wieckowski)

Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 263 11

Page 12: Advanced MEAs for Enhanced Operating Conditions ...3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 12 0 0.4 0.6 0.8 1.0 Technical

Technical Accomplishments – NSTF Catalyst Devel. PtAxBy NSTF ternary catalyst development 

­ 113 different compositions/structures fabricated, all by roll­good process. ­ Specific activities in 50 cm2 cells depend on a structure factor, and composition ­ Best performances obtained for most durable catalysts (see later slides) and their performance is insensitive to structure factor, implying a large process window

Best PtCD NSTF ternary Summary of NSTF Ternary  Cathode loading:  0.1 mg­Pt/cm2 Catalyst Specific Activities Anode loading: 0.15 mg/cm2

Spe

cific

 Act

ivity

 (A/c

m2

Pure Pt 0

1

0 1

(

3

H2/air

PDS(0.85,0.25,0.048,10s/pt)

Cel

l vol

tage

 (V)

­rea

l)

0.000

0.010

0.020

0.030

PtCx2Dy2 PtCx4Dy4 PtAx2Dy2 PtAx4Dy4 PtDx1By1 PtAx2By2 PtAx3By3 PtCx1By1 PtCx2By2

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8 1.2 1.4

Structure Factor S.F.) = 1.2

S.F.=2.1 S. F. =

75C cell, 0/0 psig inlet, 

CF800/1800 sccm, Humidity: 66%/45%

0.5 1 1.5 2 2.5 3

NSTF Structure Factor  J  (A/cm2)

3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 12

0

Page 13: Advanced MEAs for Enhanced Operating Conditions ...3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 12 0 0.4 0.6 0.8 1.0 Technical

0.4

0.6

0.8

1.0

Technical Accomplishments – NSTF Catalyst Loadings NSTF Catalysts with Ultra­low Pt Loading Continue to Improve

• Little effect of anode loading over range of 0.05 to 0.2 mg Pt/cm2 above 0.6 V in MEA’s having  PtC Dy ternaries (0.1mg Pt/cm2 ) on the cathode.x

• 3M record performance achieved by better matching NSTF  ternary catalyst and whisker support size and density, in  MEA’s having 0.060 mg­Pt/cm2 on A/C.

NSTF MEA (3M PEM and GDL) Performances with Different Anode Pt Loading (.05 to 0.2 mg Pt/cm2)

Cathode: PtAB ternary w/0.1 mg Pt/cm20.12 mg Pt/cm2 total per MEA 

V (v

olts

)

2 each

75o2

2

/) ( )

0.4

0.5

0.6

NSTF Loading: A/C = 0.060 mgPt/cm

C cell. Ambient Pressure, H /Air CF: 800/1800 sccm, 50 cm Humidity: 66% 45% PDS(0.85,0.25,0.048,10s , PSS 0.4V,5min3M­PEM 1000 EW, 30 microns

0.8

0.7

, 1

0.9 / /45%

/ /72% / /72% / /72%

/ 2/air / l

i/ )

5 min)

FC9321­495, 0.15 mg Pt cm2,  66%FC9497­483, 0.2 mg Pt cm2, 72%FC9498­572, 0.1 mg Pt cm2, 72%FC9499­318, 0.05 mg Pt cm2, 72%

75C cell, 00 psig inlet, HCF8001800 sccm, counterfow. Humdity: as stated PDS(0.85,0.25,0.048,10spt , PSS(0.4V, C

ell V

olta

ge (V

)

0.3

0.2

0.1

0

2)J (A/cm0.0 0.2 0.4 0.6 0.8 1.0 1.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

FC10206­graph1 J (A/cm2)

3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 13

0.0

0.2

Page 14: Advanced MEAs for Enhanced Operating Conditions ...3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 12 0 0.4 0.6 0.8 1.0 Technical

Technical Accomplishments – NSTF electrode Mass transport overpotential (MTO) correlated to NSTF electrode thickness 

M­T

 Ove

rPot

entia

l at 2

 A/c

m2  (m

V)

0

20

40

60

80

2

600 800 1000

2 possible for Pt ternary constructions w/ 0.1mg­Pt/cm2

thicknesses from known loadings 

porosity is ~ 75%, filled with ionomer.

HFR

45 mV

TcelloC

H2 i /2.5 H2/

i

70 mV/decade

E(V

) and

 Ei

(V)

100

120

140

160

180

200

FC8565

FC8749

FC8876

FC8752

M­T

 Ove

rPot

entia

l at 2

 A/c

m (m

V)

1200 1400 Catalyst Volume/Unit Area (Angstroms)

• MTO < 50 mV at 2A/cm

• SEM thicknesses agree with calculated 

• Allows determination that electrode 

0.0

0.2

0.4

0.6

0.8

1.0

IR­corrected

Measured

Not X­over corrected

 = 80/air Sto ch = 2.0air pressure = 30 psig

Humid ty: 60%/60% RH

reference line

r­fre

e

200

180

160 . 140

120

100

80

60

40

20

0

FC8565­graph 16 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.1 Corr­Maa Xfer Loss vs Cat Vol ­ graph 4 i (A/cm2)

1 Electrode Layer Thickness by SEM (µm)

3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 14

Page 15: Advanced MEAs for Enhanced Operating Conditions ...3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 12 0 0.4 0.6 0.8 1.0 Technical

0 4 8 12 16 20 24 280

20

40

60

80

100

120

140

160

180

Const Volt. = 0.4 VT = 90oCA/C RH = 100% A/C P = 200kPaA/C FR = 800/1800 SCCMSame 3M­PEM and 3M­GDL

PtCD

PtAD

FC9xxx­ F­ Release Summary ­ Graph 19

 

 

Cat

hode

 F­  R

elea

se (n

g/m

in­5

0cm

2 )

NSTF Ternary Structure Factor

Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 153

• F­ release rates (by IC) measured for a series of PtAxDy and  PtCxDyNSTF ternary catalysts under a fixed protocol.  

• F­ release( peroxide generation) rate is a function of NSTF construction.

• NSTF catalysts do not contain carbon, so any peroxides generated on carbon of carbon­supported dispersed Pt is eliminated.

• NSTF catalysts have 5x higher specific activity than Pt/Carbon, implying less H2O2production

NSTF catalysts and H2O2 production and F­ release ratesTechnical Accomplishments – NSTF MEA Durability

Page 16: Advanced MEAs for Enhanced Operating Conditions ...3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 12 0 0.4 0.6 0.8 1.0 Technical

Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 163

• Same 3M PEM• Same 3M GDL

Technical Accomplishments – NSTF Durability120oC Stress tests of MEA and catalyst surface area durability­ CJ = 0.4 A/cm2, 100 cm2 cell, 300kPa H2/air, A/C inlet % RH = 61%/84%­ 18 – 66 hrs at 120oC, water collected for F­ release, then 6 hrs at 75oC for 

ECSA, H2 cross­over, short resistance measurements.  Cycle repeated.Recent results comparing NSTF and Dispersed Pt/Carbon (Neat 3M PEM)­ reversible impurity adsorption during each 18 hr cycle (cleans up during CV)­ NSTF MEA lifetimes 15­20 x longer than dispersed Pt/Carbon catalyst MEA.­ MEA lifetime scales with F­ release.  NSTF F­ release ~ 75 x less than Pt/C.

Lifetime versus F- ion release rate for NSTF and Dispersed Pt/C MEA’sVoltage vs time for NSTF and Pt/C MEA’s at 120oC

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 18000.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Same 3M­PEM and 3M­GDL on all MEA's.

Pt/Carbon #2: 0.2 mg/cm2

Pt/Carbon #1: 0.4 mg/cm2

NSTF PtCx2Dy2, 0.1 mg/cm2

Total time on test = ~1825 hoursTime at 120°C = ~1082 hours

Stress Conditions:  120°C Cell, Water Balance ~1.1, 30psig, CF723/CF1330, H2/Air

V at

 0.4

 J (A

/cm

2 )

  

 

FC9824Menomonie­graph4Time (hours)0.1 1

0

200

400

600

800

1000

1200

# 2# 1

Pt/CarbonNSTF PtAx1Dy1

NSTF PtCx2Dy2

NSTF PtCx2Dy2(Still Operating 04/20/05)

FC9824Menomonie­graph 5

 

 

Life

time 

Hou

rs a

t 120

o C

F­ Ion Release Rate (µg/min)

Page 17: Advanced MEAs for Enhanced Operating Conditions ...3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 12 0 0.4 0.6 0.8 1.0 Technical

Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 173

0 5 10 15 20 25 30 35 40 45 500.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Total F­ Release (µg/min)

1824 hourson Station

576 hourson Station

1082 hoursat 120°C

982 hourson Station

Slope of line = ­0.00314 V/Stress Test Number                  = ­0.077 mV/Hour on Station

Stress Test conditons:  120C, water balance ~1.1, 30psig

FC9824Menomonie­graph3

 

 

Pea

k Vo

ltage

 Afte

r Eac

h R

esta

rt (V

)

Stress Test Number

NSTF peak voltage and F- ion release rateduring 1825 hr test, 1080 hrs at 120oC.

To – date : Best NSTF MEA = NSTF ternary PtCx2Dy2 (0.1 mg Pt/cm2)

+ Neat 3M PEM (no additives, or edge protection tested yet)+ 3M GDL

­ Cathode and anode surface area losses stabilize to ~ 40% and 50% of initial value. ­ Shorting and H2 cross­over values remain stable and low until end of life.­ F­ ion release rate at 120oC  remains < 24 nanogram / hr­ cm2 over 1800 hours.­ Decay rate of peak voltage is ~ 77 microvolts/hr over 1800 hr lifetime.

Technical Accomplishments – NSTF Durability

0 200 400 600 800 1000 1200 1400 1600 18000

2

4

6

8

10

12

14

16

18

20

FC9824menomonie­graph2

 Anode ECSA Cathode ECSA Cathode H2 Crossover (mA/cm2, not measured with anode overpressure) Cathode Short Resistance (Kohm­cm2, not measured with anode overpressure)

Stress Test conditons:  120C, water balance ~1.1, 30psig

 

 

EC

SA

, H2 C

ross

­ove

r, S

hort 

Res

ista

nce

Time (hour)

Surface areas, short resistances, and H2-cross-over of NSTF PtCD MEA at 120oC.

Page 18: Advanced MEAs for Enhanced Operating Conditions ...3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 12 0 0.4 0.6 0.8 1.0 Technical

CV cycling stability of catalyst surface area as a function of temperature for one NSTF PtCD ternary versus Pt/Carbon catalysts.

CV cycling stability of catalyst surface area at 80oC for NSTF Pt and best NSTF ternary

versus Pt/C and Pt/graphitic carbon.

0 3000 6000 9000 12000 150000.01

0.1

1

CV cycling data­graph 13

Pt/Graph C(0.4 mg Pt/cm2)

Pt/Carbon (0.4 mg Pt/cm2)

Four NSTF Pt and PtAB ternary (0.10 mg Pt/cm2)

 

Nor

mal

ized

 EC

SA

Number of CV Cycles at 80oC

20 mv/secA/C: H2/N2RH:100/100%

• Same 3M PEM• Same 3M GDL

• NSTF catalysts are much more resistant to loss of  surface area from high voltage cycling  than are dispersed Pt/Carbon or Pt/graphitic­carbon catalysts.  • NSTF catalysts should be more robust against shut down/start­up, and local H2

starvation.  70% of NSTF ECSA remains after 12,000 cycles to 1.2 volts at 80oC.

Technical Accomplishments – NSTF Durability

Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 18

CV cycling measurements from 0.6 – 1.2 V  test stability against Pt dissolution

0 3000 6000 9000 12000 150000.01

0.1

1

Pt/CNSTF­90oC

NSTF­85oC

NSTF­75oC

NSTF­75oC

NSTF ­ 95oC

65oC

Pt/C­80oC

Pt/C ­ 95oC

CV cycling data­graph 14

 

Nor

mal

ized

 EC

SA

Number of CV Cycles

• Same 3M PEM• Same 3M GDL

3

Page 19: Advanced MEAs for Enhanced Operating Conditions ...3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 12 0 0.4 0.6 0.8 1.0 Technical

30 40 50 60 70 80 90 100 1100.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

90/0/0oC85/0/0oC

80/0/0oC

75/0/0oC

70/0/0oC

70­90C cell0/0% Inlet RH

15/15psig H2/AirCS2/2

GSS(0.4, 120min)

HFR

 (ohm

­cm

2 )

Outlet RH (%)

Technical Accomplishments – Thermal ­ Water Manag.Dry operation –GDL Screening and Optimization• Operation with totally dry inlet H2/air is possible at 75oC and 200kPa with no loss 

of performance for some GDL/NSTF combinations. (1000 EW 3M PEM)• Introducing some inlet RH allows operation at higher ToC.• Further optimization necessary for both hot dry and cold start.• All GDL’s are roll­good fabricated, like NSTF and 3M­PEM.

Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 193

Cell voltage operation at 15 psig and 0%/0% RH inlet humidification with varying temperature for different GDL’s.

30 40 50 60 70 80 90 100 1100.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

90/0/0oC

85/0/0oC 80/0/0oC

75/0/0oC 70/0/0oC

70­90C cell0/0% Inlet RH

15/15psig H2/AirCS2/2

GSS(0.4, 120min)

Cel

l V (V

olts

) @ G

SS(0

.4)

Outlet RH (%)

High frequency impedance changes at 15 psig and 0%/0% RH inlet humidification for varying temperature (70­90oC) with different GDL’s.

2 hrs stabilization time/point

Page 20: Advanced MEAs for Enhanced Operating Conditions ...3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 12 0 0.4 0.6 0.8 1.0 Technical

Technical Accomplishments – Performance Targets

Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 203

• NSTF Pt specific power density is < 0.3 gPt/kW for cell voltages < 0.70 Vfor conditions shown. Entitlement may be lower still due to:

- Opportunity to increase mass activity by optimizing support whisker- Opportunity to further reduce impedance of electrode and GDL

• NSTF catalyst based MEA’s with 3M PEM clearly show potential toreach 5000 hours of lifetime for 80oC < T < 120oC, due to:

- Enhanced stability and lower F- release rates of NSTF catalyst, - Enhanced stability, mechanical properties of 3M PEM

• Stable operation with totally dry input gases is possible under conditions near water balance –requires optimization of the GDL and further gains matching lower EW PEM to NSTF catalysts.

• All 3M PEM, NSTF catalyst, and GDL are currently fabricated using scalable, cost-effective, roll-good fabrication processes.

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.850.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.06mgPt/cm2 on cathode0.06mg Pt/cm2 on Anode.

100kPa H2/air, CF 800/1800sccm

0.10mgPt/cm2 on cathode0.05mg Pt/cm2 on Anode.300kPa H2/air, CS 2.0/2.5

DOE 2005 Targetat rated power

DOE 2010 Target

NSTF Pt-Specific Power Densities (gPt/kW)

FC8565 - graph 32

g-Pt

/ kW

Cell Voltage (V)

Page 21: Advanced MEAs for Enhanced Operating Conditions ...3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 12 0 0.4 0.6 0.8 1.0 Technical

0.001

0.01

0.1

1

80 90 100 110 120 130

Temperature, C

Con

duct

ivity

S/c

m

Acid A Acid B Acid CPBI Phos acid 1:6

Technical Accomplishments – Electrolytes for T > 120oC

Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 213

• Temp/RH dependence was significantly lower for polymer swollen with Acid A than with Acid B or C measured by AC impedance. Conductivity was measured with an 80˚C dew point.

• Polymer swollen with Acid C retained acid much better when immersed in water than PBI/H3PO4 as shown by pH versus time.

• Even though Acid C had lower conductivity, Fuel cell performance was higher, presumably due to better cathode kinetics.

H2/Air, 110/80/80, 0.4/0.4 mg/cm2 Pt/Pt

00.10.20.30.40.50.60.70.80.9

0 0.2 0.4 0.6A/cm2

V

Acid CMembranePBI Phos acid1:6

0

1

2

3

4

5

6

0.0 1.0 2.0 3.0 4.0 5.0 6.0Time (min.)

pH

Acid C membrane

PBI Phos acid 1:6

Page 22: Advanced MEAs for Enhanced Operating Conditions ...3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 12 0 0.4 0.6 0.8 1.0 Technical

Technical Accomplishments – Electrolytes for T > 120oC

Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 223

Pulse Field Gradient Spin Echo –Diffusion Measurements

• Preliminary measurements on dry membranes

• Control Ea = 27.5 KJ mol­1, Most HPA doped around 15 KJ mol­1

0

2

4

6

8

10

12

0 20 40 60 80 100 120 140T (oC)

D x

 107

 cm

2s­1

Control dryPFSA­1% HPA Y dryPFSA­5% HPA Y dry

SAXS• Two scattering domains:• hydrophilic   <D> 1.7, d 3.1 nm – dry

<D> 3.8, d 5.1 nm – wet• hydrophobic <D> 8, d 14 nm – wet or dry• HPA – higher scattering intensity, larger 

distribution of scattering domains and a Bragg peak corresponding to HPA crystallites

0

1

10

100

0.1 1 10q (nm­1)

SA

XS

 Inte

nsity

3M ionomer Dry

3M ionomer in H2O

3M ionomer+1%HPA X Dry

3M ionomer+1%HPA X in H2O

3M ionomer+5%HPA X Dry

3M ionomer+5%HPA X in H2O

A. Herring,  Colorado School of Mines

Page 23: Advanced MEAs for Enhanced Operating Conditions ...3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 12 0 0.4 0.6 0.8 1.0 Technical

Response to 2004 Reviewers’ Comments 1. “I have mixed reactions to 3M’s claims re: less fluoride generation by their 

new membranes.  Are these results because of mismanufacturing of Nafion­based MEA’s?”

* F­ release rates from new 3M PEM are well documented and correlate with much longer lifetimes under accelerated testing.  

* 3M has sold over 200,000 MEA’s using Nafion based ionomers andhas optimized the manufacturing process.

* 3M’s NSTF catalysts can lower F­ rates even further with 3M PEM.

2. “Stay the course but do accelerate the outside collaborations with industry.” * 3M will introduce the new 3M PEM to selected customers 2nd quarter 2005, and NSTF ternary MEA’s to selected customers end of 2005.

3. “Conductivity and fuel cell polarization measurements should be extended  down to 20oC, perhaps even down to –20oC.”

* Low temperature testing is outside the scope of the project and DOE targets for the contracted work.

* However, cold start and freeze tolerance are very important and are being studied at 3M.

3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 23

Page 24: Advanced MEAs for Enhanced Operating Conditions ...3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 12 0 0.4 0.6 0.8 1.0 Technical

Future Work

Completion of Task 3: Advanced MEA Development for 85< T < 120oC: ­ MEA pilot level scale­up and large area stack testing.

• M1 – down­selection of final x/y values for PtCxDy ternary and loading • M2 – down­selection of final 3M­PEM properties for durability, ramp­up • M3 – down­selection of final GDL for reduced IR loss and dry operation • M4 – CCM process transfer to new pilot scale equipment • M5 – Statistical validation of pilot scale roll­good fabricated CCM’s • M6 – MEA fabrication for designated stack testing (312 cm2) • M7 – Short stack testing (~ 3­5 kW) • M8 – Testing customized Vairex air management systems w/NSTF MEA.

Completion of Task 2: High Temp. Electrolytes for T > 120oC.

• Further characterization of polymer/acid combinations focused on membrane conductivity and stability.

• Moving to immobilized heteropolyacids for fuel cell testing.

3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 24

Page 25: Advanced MEAs for Enhanced Operating Conditions ...3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 12 0 0.4 0.6 0.8 1.0 Technical

Publications & Presentations 1. “Dissolution of Fe and Ni in Combinatorially Sputtered Pt 1­x Fe and Pt 1­x Nix(0<x<1) Electrocatalysts,” A.x

Bonakdarpour, J. Wenzel, D. A. Stevens, S. Sheng, T. L. Monchesky, R. T. Atanasoski, A. K. Schmoeckel, G. D. Vernstrom, M. K. Debe and J. R. Dahn, presented at the First International Conference on Fuel Cell development and Deployment, March 7­10, 2004, Connecticut Global Fuel Cell Center, Stores, CT.

2. “Studies of Transition Metal Dissolution from Combinatorially Sputtered, Nano­Structured Pt 1­x Mx (M=Fe, Ni;0<x<1) Electrocatalysts for PEM Fuel Cells,” A. Bonakdarpour, J. Wenzel, D. A. Stevens, S. Sheng, T. L. Monchesky, R. Lobel, R. T. Atanasoski, A. K. Schmoeckel, G. D. Vernstrom, M. K. Debe and J. R. Dahn, J. Electrochemical Society, Vol. 152 (1), 2005, A61­A72.

3. “In­situ Vibrational Spectroscopy with Fuel Cell Catalysts,” Andrzej Wieckowski, Lajos Gancs, Matthew McGovern, Guo­Qiang Lu, Radoslav Atanasoski, and Mark K. Debe, presented at the American Chemical Society meeting, Anaheim, CA, March 29­April 2, 2004.

4. “Advanced MEA’s for Enhanced Operating Conditions,” 2004 DOE Hydrogen Fuel Cells and Infrastructure Technologies Annual Review, Philadelphia, PA, May 24-27,2004.

5. “Advanced MEA’s for Enhanced Operating Conditions,” submitted for 2004 Hydrogen Program Annual Report, July, 2004.

6. “NanoStructured Thin Film, Thin Layer Electrodes Optimized for PEM Fuel Cell Performance at High Current Density,” 2005 Fuel Cell Seminar, San Antonio, TX, Nov. 1­5, 2004.

7. “Corrosion of Transition Metals in Pt 1­xMx (M=Fe, Ni, Mn) Proton Exchange Membrane Fuel Cell Electrocatalysts,” A. Bonakdarpour et al., presented at the Fall 2004 Electrochemical Society Meeting, Honolulu, HI, USA.

8. “64­Channel Fuel Cell for Testing Sputtered Combinatorial Arrays of Oxygen Reduction Catalysts,“ D. A. Stevens et al., presented at the Fall 2004 Electrochemical Society Meeting, Honolulu, HI, USA.

9. “Combinatorial PEM Fuel Cell Studies of Binary Platinum Alloys,” D. A. Stevens et al., presented at the Fall 2004 Electrochemical Society Meeting, Honolulu, HI, USA.

10. “The Search for Higher Temperature Proton Conductors for the PEM Fuel Cell,” J. Woods Halley, Symposium on Fuel Cells, MRS Meeting, Boston, MA, December 1, 2004,

11. "The Development of New Membranes for PEM Fuel Cells", Steve Hamrock, Advances in Materials for Proton Exchange Membrane Fuel Cell Systems, Asilomar Conference Grounds, Pacific Grove, CA, February 21, 2005.

Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 253

Page 26: Advanced MEAs for Enhanced Operating Conditions ...3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 12 0 0.4 0.6 0.8 1.0 Technical

Hydrogen Safety

The most significant hydrogen hazard associated with this project is: 

• Accidental H2 release in cylinder closet  leading to ignition from: ­ H2 line or manifold breach ­ Accident during replacement of cylinders

3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 26

Page 27: Advanced MEAs for Enhanced Operating Conditions ...3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 12 0 0.4 0.6 0.8 1.0 Technical

Hydrogen Safety

Our approach to deal with this hazard is: • Design

­ Hydrogen cylinder closet and gas distribution system adhere to codes. ­ Reduction in number of cylinders in the closet ­ 2­step regulators (less susceptible to failure and designed to fail closed) ­ H2 sensors in all labs and cylinder closet, alarm system ­ Automatic shut­off of H2 gas supply if sensors detect H2 release

• Procedures ­ SOP’s for cylinder changing, alarm responses, test station operation ­ Cylinder changing restricted to highly trained personnel ­ Regular maintenance checks – sensors, leak check of valves etc.

• Installing H2 Generator (in non­inhabited mechanical room) to significantly reduce total volume of H2 in facility

3 Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 27