AE57_AC57_AT57

Embed Size (px)

Citation preview

  • 8/13/2019 AE57_AC57_AT57

    1/20

    AE57/AC57/AT57 SIGNALS AND SYSTEMS  JUNE 2013 

    © IETE  1

    Q2 (a) Determine whether the following signals are periodic or not of periodic

    then find its fundamental period

    (i) ( )2n1)n(x   −=  

    (ii)∑

    −∞=

    −δ−=

    )k 2t()1()t(x  

    Answer

    (i) ( )2n1)n(x   −=  

    For given signal to be periodic

    2 Nisx(n)of  period  

    1)1((-1) 2 N

    11(-1) 1 N

    )1(12)1(

     if  periodic)(

    )1.....(....................2)1)((

    2)1()1(

    2)1(

    ))(1()(

    )()(

    442 N

    2n1

    2

    2

    2

    2

    2

    2

    22

    2

    =∴

    =−==

    ≠−==

    −==+−

    +−=+−−=

    ++−=

    +−=+∴

    =+

    ++

    +

    lFundamenta

     for 

     for 

    nN 

    isn x

    nN n x

    nN 

    nN  N 

     N n N n x

    n x N n x

    nnN 

    m N 

     N 

     N n

    n

     

    (ii) ∑∞

    −∞=

    −−=k 

    k  k t t  x )2()1()(   δ   

    For x(t) to be periodic x(t+T)=x(t)

    ∑∞

    −∞=

    −+−=+∴k 

    k k T t T t  x )2()1()(   δ   

    Performing a change of variables

  • 8/13/2019 AE57_AC57_AT57

    2/20

    AE57/AC57/AT57 SIGNALS AND SYSTEMS  JUNE 2013 

    © IETE  2

    4x(t)of  period lfundamenta 4

    22

    )1(1(-1)

     periodic betox(t)

    )1)((

    )1)(2()1(

    )2()1()(

    2

    2

    22

    22

    T

    2

    2

    2

    =∴=

    =

    −==

    −=

    −−−=

    −−=+

    +=

    −=−

    −=−

    −∞=

    −∞=

    +

    mT 

    mT 

      for 

    t  x 

    mt 

    mt T t  x 

    mT 

    mK T 

    mT T 

    m

    m

    m

    δ  

    δ  

     

    Q2 (b) For each of the following systems determine whether it is Memoryless,

    Causal, Stable, Linear and Time invariant.

    (i) )]n(x[log)n(y e=  

    (ii) )n(x)n(y 2=  

    Answer (i) )]n(x[log)n(y e=  

    As the present output depends on the present input only ∴  system is memory less,causal• Assuming that input signal x(n) satisfies the condition |x(n)|  ∞

  • 8/13/2019 AE57_AC57_AT57

    3/20

    AE57/AC57/AT57 SIGNALS AND SYSTEMS  JUNE 2013 

    © IETE  3

    Invariant-Timeis)(y)(ysin

    )]([log)(y

    )]([log

    )]([log)(yi/pshifted toingcorrespond  /

    )()(x/

    )]([log)(y

    Linear - Nonis

    )()()]()([log)]([log)(y

    linear  betosystem

    )()()(x

    )]([log)()(

    )]([log)()(|

    012

    0101

    01

    22

    012

    11

    21

    2133

    213

    222

    111

    systemnnnce

    nn xnn Now

    nn x

    n xn pO

    nn xn pshiftedi

    n x x

    System

    nbynay

    nbxnaxn xn

     for 

    nbxnaxnlet 

    n xn yn x

    n xn yn x

    e

    e

    e

    e

    ee

    e

    e

    ∴ −=

    −=−

    −=

    =

    −=

    =

    +≠+==

    +==

    =↔=

    =↔

     

    (ii) )()( 2n xn y   =  

    • System has memory since the value of output signal y(x) at time n depends on thefuture inputs

    )/)(/)( 2000   n xn ynnn y   ===  

    ∴  It is not memory less• For bounded i/p system gives a bounded o/p ∴ System is BIBO stable.• system is Non-Causal since present value of o/p y(n) depends on the future values

    of input signal x(n)

    • Consider two arbitrary inputs )()()( 2111   n xn yn x   =↔  )()()( 2222   n xn yn x   =↔  

    Let )()()( 213   nbxnaxn x   +=  

    If system is linear them

  • 8/13/2019 AE57_AC57_AT57

    4/20

    AE57/AC57/AT57 SIGNALS AND SYSTEMS  JUNE 2013 

    © IETE  4

    Variant-Timeis

    )()(

    ))((x )(y 

    )()(y

    )()(y i/pshifted toingcorrespond o/p)()(xi/pshifted the

    )()(y*

    linearissystem RHSLHS 

    )(y)(y

    )()()()(y*

    linearisSystem 

    )(

    )()()()(

    )()()(

    012

    20101

    02

    12

    222012

    211

    21

    22

    21

    211

    2)(1

    22

    21

    233

    213

    system

    nn yn y

    nnnn Now

    nn xn

    n xnnn xnconsider 

    n xn

    Since

     RHS nbna

    nbxnaxn xn

     RHS  LHS Since

     RHS nbyay

    nbxnaxn xn y LHS 

    nbynayn y

    n

    −≠∴

    −=−

    −=

    =−=

    =

    ∴=

    =+=

    +==

    ∴=

    =+=

    +====>

    +=

     

    Q3 (a) Find the trigonometric Fourier series for the triangular wave shown in

    Fig.1 and hence plot its line spectrum. 

    Answer

  • 8/13/2019 AE57_AC57_AT57

    5/20

    AE57/AC57/AT57 SIGNALS AND SYSTEMS  JUNE 2013 

    © IETE  5

    Waveform is periodic write period T=2

    & Fundamental FrequencyT 

    wπ 2

    0   =  

    ( ) )

    [ ]

    n

    n

    n

    n

    n

    abnanline

    t t t 

    t nwaat  x

    na

    nn

    n

    t n

    n

    t nt 

    dt t nt 

    dt t nwt  xT a

    t t 

    dt t dt t  xT 

    a

    Thet 

    t t  x

    =+=

    ++++=

    +=∴

    =

    ==

    −=

    −−=

    −=

    ==

    =−=>

    −==

    =∴

  • 8/13/2019 AE57_AC57_AT57

    6/20

    AE57/AC57/AT57 SIGNALS AND SYSTEMS  JUNE 2013 

    © IETE  6

    Q3 (b) A continuous time periodic signal is real valued and has a fundamental

    period T= 8 .The non zero Fourier series coefficients for x(t) are

    2XX 11   ==   − ,  j4XX*

    33   ==   − . Express x(t) in the form

    =

    Φ+ω=

    0n nnn)t(CosA)t(x  

    Answer Given:

    )24

    3cos(8)

    4cos(4)(

    43sin8)4cos(4

    4422

     x(t)have 

    48

    28

    4/34/34

    33

    0

    4

    00

    π π π 

    π π 

    π π 

    π π 

    π    π 

    ++=

     

      

     −=

    −++=

    +=

    ==∴=

    −−

    −∞=

    −−

    −∑

    t t t  x

    t t 

     je jeee

    e X e X we

    wT 

    t  jt  j jt  j

    n

    t w jt  jw

    n

     

    Q3 (c) Find the time domain signal corresponding to following DTFS coefficients

    Answer

     

      

        π+ 

      

        π=11

    6k sin j2

    11

    4k cosXk   

    )9(2

    11)8(11)3(11)2(

    2

    11x(n)

    equationstwoabove  the

    )(

    11

    )1(2

    11)8(11)3(11)2(

    2

    11

    11

    1

    2

    1

    2

    1

    2

    1

    2

    1

    2

    1

    2

    1

    ,21

    0

    11210

    0

    811

    2311

    2911

    2211

    2

    1111

    23.11

    211.11

    2211

    2211

    2

    116

    114

    114 11

    6

    −+−−−+−==

    =

    −+−−−+−=

    −++=

    −++=

    −++=

    ∑−

    =

    =

    −   −

    nnnn

    Comparing

    en x N  X 

    ennnn

    eeee

    eeeee

    eeee

    nk  N 

     j N 

    K k 

    nk  j

    k  jk  jk  jk  j

    k  jk  jk  jk  jk  j

    k  jk  jk  j   k  j

    δ δ δ 

    δ δ δ δ 

    π 

    π 

    π π π π 

    π π π π π 

    π π π    π 

     

  • 8/13/2019 AE57_AC57_AT57

    7/20

    AE57/AC57/AT57 SIGNALS AND SYSTEMS  JUNE 2013 

    © IETE  7

    Q4 (a) State and Prove duality property of Continuous Time Fourier Transform.

    Using it, find the Fourier Transform of following signals 

    (i) jt1

    1)t(g

    +=  

    (ii) 2t1

    1

    )t(x +=  

    Answer

    )(2

    1

    1

    )(2 jt1

    1

    x(-w)2x(t)

    duality to

     jt1

    1  x(t)& )(a)(

     jw1

    1  x(w)& )(a)(

    1

    1)(a

    1a 

    1)(e 

    g(t)of expressionin thet with w& jw1

    1 x(w)

     jt1

    1g(t) (i)

    x(-w)2x(t) 

    )]([x(-w)2 

    )(x(-w)2 

    w.and tvariables the

    )(x(-t)2 

    t- bytReplace 

    )(x(t)2 

    )(2

    1x(t) -: proof 

    x(-w)2then x(t)

    x(w)x(t)of  property

    w

    t-

    t-

    at-

    wue

      jt 

      f  

    wue

     According

    wuw x 

    t ut  x 

      jwt u

    ingSubsititut   jwa

    t u

    replace Define

    t  x F 

    dt et  x 

    ing Interchang

    dwew x 

    dwew x 

    dwew x 

     Duality

    w

    w

      jwt 

      jwt 

      jwt 

      jwt 

    −=

    +

    −↔+

    +=−=−

    +==

    +↔

    =

    +↔

    +=

    +=

    =

    =

    =

    =

    =

    ∞−

    ∞−

    ∞−

    ∞−

    π   

    π   

    π   

    π   

    π   

    π   

    π   

    π   

    π   

    π   

     

  • 8/13/2019 AE57_AC57_AT57

    8/20

    AE57/AC57/AT57 SIGNALS AND SYSTEMS  JUNE 2013 

    © IETE  8

    ||

    2

    ||

    2

    ||

    2

    |-|-w

    2

    |-|-w

    2

    |t|a-

    2

    |t|a-

    2|t|a-

    22

    |t|a-

    2

    .1

    1

    .t1

    1

    2

    1.2

    t1

    1

    x(-w)2X(t)

    Duality .

    e2

    1

    1

    1  x(t)e

    2

    1)(

    1

    1 x(w)and  e

    2

    1)(

    1

    1e

    2

    1 2e 1a 

    2e ,have  we

    t1

    1  x(t))(

    w

    w

    w

    et 

    e

    e

    to Acc

    t w x

    wt  x

    w

    wPut 

    wa

    a

    ii

    =

    +=

    ↔+

    =

    ↔+

    =

    =

    +==−

    +==

    +↔

    +↔=

    +↔

    +=

    π 

    π 

    π 

    π 

     

    Q4 (b) Consider a stable LTI system characterized by the differential equation

    )t(x2dt

    )t(dx)t(y3

    dt

    )t(dy4

    dt

    )t(yd 2

    2

    +=++  

    (i) Find the frequency response )(H ω  and impulse response h(t) of thesystem.

    (ii) What is the response of this system if the input )t(ue)t(x t−=  

    Answer 

    )t(x2

    dt

    )t(dx)t(y3

    dt

    )t(dy4

    dt

    )t(yd 

    2

    2

    +=++  

    Taking Fourier Transform on both sides

  • 8/13/2019 AE57_AC57_AT57

    9/20

    AE57/AC57/AT57 SIGNALS AND SYSTEMS  JUNE 2013 

    © IETE  9

    )(2

    1)(

    2

    1h(t)

    Transformfouriesinverse3

    1.

    2

    1

    1

    1.

    2

    1)(

    )3)(1(

    2

    34)(

    2

    )(

    )()(

    )(2)()(3)(4)()(

    3

    2

    2

    t uet ue

     Jaking

     jw jww H 

     jw jw

     jw

     jw jw

     jw

    w x

    w yw H 

    w xw jwxw yw jwyw y jw

    t t    −− +=

    ++

    +=

    +++

    =++

    +==

    +=++

     

    Q5 (a) Suppose that a system has the response )n(u)4

    1( n to the input

    )n(u)2

    1)(2n( n+ .If the output of this system is )n(u)

    2

    1()n( n−−δ ,what

    is the input?

    Answer

    )(4

    1

    2

    1

    4

    1y(t)

    Transformfouriesinverse 

    )3(

    1

    4

    1

    )1(

    1

    2

    1

    1

    1

    4

    1)(

    )3()1(

    2)3)(1(

    2

     jw1

    1x(w).H(w))(

     jw1

    1)  x(w 

    )(eGiven x(t) )(

    3

    2

    2

    -t

    t uetee

    Taking

     jw jw jww y

     jw jw

     jw jw jw

     jww y

    t uii

    t t t 

    −+=

    +−

    ++

    +=

    +++

    ==>

    ++

    +

    +

    ==

    +=

    =

    −−−

  • 8/13/2019 AE57_AC57_AT57

    10/20

    AE57/AC57/AT57 SIGNALS AND SYSTEMS  JUNE 2013 

    © IETE  10

      jw

      jw

      jw

      jw

    n

      jw

      jw

      jw

      jw  jw

      jw

      jw

    n

      jw

      jw

      jw  jw

      jw

    nn

    n

    e

    e

    e

    e y

    nuGiven

    e

    e

    e x 

    e y

    e H 

    e

    e y

    nuGiven

    e

    e

    ee

    e

    Taking

    nnn

    nuGiven

    −−

    +=

    +−=

     

      

     −=

     

      

      −

     

      

      −

    ==

    −=

     

      

     =

     

     

     

      −

     

      

      −=

    −+

     

      

      −

    =

     

      

     + 

      

     =

     

      

     +=

    2

    11

    2

    1

    2

    11

    11)(

    )(2

    1-(n)y(x)

    4

    112

    2

    11

    )(

    )(

    )(

    4

    11

    1)(

    )(4

    1 y(n)

    2

    11

    4

    112

    2

    11

    12

    2

    11

    2

    1

    )x(e

    equationabovetheof DTFT 

    )(42

    12)(4

    2

    1

    )(2

    13)(n) that x(n

    2

    2

    2

     jw

    δ  

     

  • 8/13/2019 AE57_AC57_AT57

    11/20

    AE57/AC57/AT57 SIGNALS AND SYSTEMS  JUNE 2013 

    © IETE  11

    )(2

    1

    4

    1)1(

    2

    1

    8

    3)1(

    2

    1

    8

    3x(n)

    DTFTinverse

    2

    11

    81

    2

    11

    83

    2

    11

    83

    2

    11

    2

    11

    4

    11

    2

    11

    2

    1

    2

    11

    4

    112

    )(

    2

    11

    4

    112

    )(

    11

    2

    2

    2

    2

    2

    2

    nunnunu

    Taking

    e

    e

    e

    e

    e

    e

    ee

    ee

    e

    e

    e

    e

    e y

    e

    e

    e x

    nnn

     jw

     jw

     jw

     jw

     jw

     jw

     jw jw

     jw jw

     jw

     jw

     jw

     jw

     jw

     jw

     jw

     jw

     

      

     +−

     

      

     +−

     

      

     −=

     

      

     −

    +

    +

    +

    =

     

      

     +

     

      

     −

     

      

     −

    =

    +

    =

     

      

     −

      

       −

    =

    =

     

      

     −

     

      

     −

    =

    −−

    −−

    −−

     

    Q5 (b) State and Prove convolution property of Discrete Time Fourier

    Transform. Using it determine the convolution )n(x)n(x)n(x21

      ∗=  of

    the sequences, where

    )1n()n()1n()n(x)n(x 21   −δ+δ++δ==  

    Answer 

    Convolution property:

    If

  • 8/13/2019 AE57_AC57_AT57

    12/20

    AE57/AC57/AT57 SIGNALS AND SYSTEMS  JUNE 2013 

    © IETE  12

    [ ] [ ]

    )

    [ ]

    [ ]

    }1,2,,3,2,1{

    )2()1(2)(3)1(2)2()(

    232

    )()2(3

    (2w)cos2wcos43

     wcos21

    )().()()(xF

     property,conditionUsing

     wcos21 

    )()()(

    )1()()1(}"{")()()()()()(

    )()()()(

     term bracketed theo property tshiftingtime

    )()(

    summationof orderthe

    ()(

    )(x)()(x)(f  -: proof 

     )()()(x)(then

    )()(  x)()(

    22

    22

    2

    2121

    1

    1

    121

    21

    2121

    2112

    21

    21

    2121

    2121

    2211

    =−+−+++++==

    ++++=

    ++++=

    ++=+=

    =+

    +=++=

    =

    ==

    −+++=↑==↔×=

    ==

     

      

     −=

     

     −=

    +=+

    ↔+

    ↔↔

    −−

    −−

    −=

    −∞

    −∞=

    −∞=

    −∞

    −∞=

    −∞

    −∞=

    −∞=

    −∞

    −∞=

    ∑∑

    ∑ ∑∑

    nnnnnn x

    eeee

    eeee

    e xe xn xn

    ee

    e

    en xe xe x

    nnnn xn x

    e xe xn xn x

    e xe xe xe x

     Apply

    emn xm x

    ing Interchang

    emn xm x

    enn xnn x

    e xe xnn x

    e xne xn x

    w j jw jww j

    w jw j jw jw

     jw jw

     jwn jwn

    n

     jwn

     jwn

    n

     jw jw

     jw jw

     jw jw jw jw

    n

     jwn

    m

     jwn

    n m

     jwn

    n

     jw jw

     jw jw

    δ δ δ δ δ 

    δ δ δ 

     

    Q6 (a) Determine the conditions on the sampling interval TS so that each x(t) is

    uniquely represented by the discrete time sequence x(n) = x(nTS). (i) )t4sin()t2sin(3)tcos()t(x   π+π+π=  (ii) )t2(csin)t6sin(3)t(csin)t2cos()t(x   π+π=  

    Answer )4sin()2sin(3)cos()(   t t t t  x   π π π    ++=  

  • 8/13/2019 AE57_AC57_AT57

    13/20

    AE57/AC57/AT57 SIGNALS AND SYSTEMS  JUNE 2013 

    © IETE  13

    Comparing it with

    4

    1T intervalsampling 

    4max2f  

    sec/82wfrequencySampling

    2

    2

    f or4

    4,2,

    )sin()sin(),cos(,)(

    s

    s

    maxs

    maxmox3

    321

    3322

    =≥

    =≥∴

    ====

    ===

    ++=

     Hence

     Hz f or 

    rasw

    wwW 

    www

    t w At w At w At  x

    mox

    π 

    π π 

    π π π 

     

    [ ]

    [ ] [ ]

    8

    1T IntervalSampling 

    82f freq.Sampling 

    42

    wf or8wisfreq.Maximum 

    )8cos()4cos(4

    3)sin()3sin(

    t2

    2

    )2sin()6sin(3)sin()3sin(

    )2(

    2

    )2sin()6sin(3

    )sin()2cos( 

    )2(sin)6sin(3)(sin)2cos()(Given)(

    s

    maxs

    moxmaxmox

    =≥

    ===

    −+−=

    +−=

    +−

    =

    +=

     Hz f 

    t t t 

    t t 

    t t t t 

    t t 

    t t 

    t ct t ct t  xii

    π π 

    π π π 

    π π π 

    π 

    π π π π 

    π 

    π 

    π π 

    π 

    π π 

    π π 

     

    Q6 (b) A causal LTI system is described by the differential equation

    )t(x)t(y2dt

    )t(dy=+  

    Determine:

    (i) The frequency response of the system

    (ii) The group delay associated with the system

    (iii) Output of the system to the input x(t)=e-tu(t)

    (iv) Output of the system if the input has its fourier transform

    )2 j(1 j) jw(X

    +ω +ω= 

    Answer (i) Taking F.transform both the sides of given equ

  • 8/13/2019 AE57_AC57_AT57

    14/20

    AE57/AC57/AT57 SIGNALS AND SYSTEMS  JUNE 2013 

    © IETE  14

    { }

    [ ]

    [ ] )(4ey(t) transformfouriesinverse

    )2(

    1)().()(

    )(eey(t)

     transformfouriesinverse

    2)(jw

    1

    1)(jw

    2)1)(jw(jw

    1(jw)H(jw)y(jw) 

    1 jw

    1 x(jw) 

    )(e  x(t))(

    4

    2

    2

    1.

    21

    1

    2tan)()(

    2-tanH(jw) )(

    2

    1

    x(jw)

    y(jw)H(jw)

    x(jw)2y(jw)y(w) 

    22t-

    2

    2t-t-

    t-

    22

    1

    1-

    t te

    Taking

     jw

     jw jw X  jw H iv

    t u

    Taking

    t uiii

    ww

    w

    dw

    d  jw H 

    dw

    d wT 

    wii

     jw

     jw

    t −

    −=

    +

    +=

    −=

    +−

    +=

    ++=×=

    +=

    =

    +=

     

      

     +

    =

     

      

     −−=∠−=

     

      

     =∠

    +==

    =+

     

    Q7 (a) Consider the signal )1t(ue)t(x t5 −=   −  and its Laplace Transform be X(s)

    (i) Evaluate X(s) and find its ROC

    (ii)  Determine the values of the finite numbers A and t 0 such thatthe Laplace transform G(s) of )tt(uAe)t(g 0

    t5

    −−=

      −

     has thesame algebraic form as X(s).What is the ROC corresponding

    to G(s)? 

    Answer

    (i) By definition

  • 8/13/2019 AE57_AC57_AT57

    15/20

    AE57/AC57/AT57 SIGNALS AND SYSTEMS  JUNE 2013 

    © IETE  15

    {

    [ ]

    -5R{s}R.O.C 5

    )55(

    )55(0)5(

    1)55(

    )55(

    1

    )55(1

    1)(

    1t 01t 1

    )1(

    )1()(

    )()5(

    >+

    +−

    =

    +−−+−=

    +−

    +−=

    ∫∞

    +−=∫∞

    −−=

    <>=−

    ∫∞

    ∞−

    −−−=

    ∫∞

    ∞−

    −=

    s

    t e

    t es

    t e

    dt t 

    edt st 

    est 

    es

     x 

    t u

    dt st 

    et ust 

    es x 

    dt st 

    et  x  x 

     

    { } 5sR  R.O.C

    -1.to-1,A 

    )8()8(..........5

    )(

    5

    )(

    00)0(0

    00)0(1)(

    )(

    )()(

    )(

    0

    0

    0

    )5(

    0)5(

    0

    )5(5

    0

    0

    5

    −<

    ==

    =+

    −=

    +

    −=

    ==

    −>→ 1

    (ii) Re{s} < - 2

    (iii)  -2 < Re{s} < 1

    Answer

  • 8/13/2019 AE57_AC57_AT57

    16/20

    AE57/AC57/AT57 SIGNALS AND SYSTEMS  JUNE 2013 

    © IETE  16

    { } 1)(

    12)(

    )1(

    1

    )1(

    1

    )1)(2(

    3)(

    >

    −−

    +=

    −+

    −=

    s ROCR

    iand haspolesat s X 

    ss

    sss X 

     

    Is to the right of the eight most poles so both poles correspond to casual signals.

    1}{2)(

    )()(-e)(

    1

    1)(e-

    2

    1)(e-

    signalsanticasualtocorrespond  poles bothso poleleftmostof leftthetois2)(

    )(

    )()()(

    1

    1)(

    2

    1)(

    2t-

    t-

    2t-

    2

    2

  • 8/13/2019 AE57_AC57_AT57

    17/20

    AE57/AC57/AT57 SIGNALS AND SYSTEMS  JUNE 2013 

    © IETE  17

    Q8 (a) Determine the signal x(n) whose z-transform is given

    by az),az1log()z(X 1 >+=   −  

    Answer

    11

    1)

    )((

    1

    )(),1log()(

    1

    2

    1

    −+

    −−=−

    +

    −=

    >+=

    az

    az

    dz

     zdx  Z 

    az

    az

    dz

     zdx a zaz z X 

     

    Take inverse Z-transform

    ||||1

    )()(

    ||||1

    1)()(

    1

    1)(

     

    1)(

    11

    1)()(

    1

    1

    1

    1

    11

    11

    a zazanuaa

    a Z 

    aznua

    aznua

    knowwe

    az

    az znnx

    az

    az z

    dz

     zdx z

    n

    n

    n

    >+↔−

    >+

    ↔−

    −↔

    +

    −=

    −+

    −−=

    =−=

    −−

    −−

     

    Using time –shifting property,

    )1()1(1

    )1()(

    )(

    )1()()(

    ||||1

    )1()(

    ||||1

    )1()(

    1

    1

    1

    1

    11

    −−=−−−

    =

    −−−=

    >+

    ↔−−−

    >+

    ↔−−

    +

    −−

    nuan

    nun

    an x

    nuannx

    lyconsequent 

    a zaz

    aznua

    a zaz

    aznuaa

    nnn

    n

    n

    n

     

  • 8/13/2019 AE57_AC57_AT57

    18/20

    AE57/AC57/AT57 SIGNALS AND SYSTEMS  JUNE 2013 

    © IETE  18

    Q8 (b) Find the inverse z-transform of1

    1

    z)3/1(1

    z1)z(X

    +=  

    When,

    (i) ROC: |z| > 1/3

    (ii) 

    ROC : |z| < 1/3, using power series expansion

    Answer

    ......27

    4

    9

    4

    3

    41

    ....,.........27

    4,

    9

    4,

    3

    4,0)(

    ......27

    4

    9

    4

    3

    41)(

    27

    27

    4

    9

    94 

    9

    4

    3

    4

    3

    11

    13/11

    321

    321

    3

    32

    2

    21

    1

    11

    ++++

    =∴

    +++=∴

    +−

    −−

    −−−

    −−

    −−

    −−

     z z z

    n x

     z z z z x

     z

     z z

     z

     z z

     z

     z z

     

    .....36z-12z-3-

    36z 

    36z-12z 

    12z 

    12z-4 

    3

    113

    1

    )(

    2

    2

    2

    1

    11

    +

    ++−−

    −−

     z

     z z

    ii

     

  • 8/13/2019 AE57_AC57_AT57

    19/20

    AE57/AC57/AT57 SIGNALS AND SYSTEMS  JUNE 2013 

    © IETE  19

    Q9 (a) A random variable X has the uniform distribution given by

    ( )

    π≤≤π=

    otherwise0,

    2x0for ,2

    1xf X  

    Determine its mean and variance

    Answer

    [ ]

    33

    4

    ][][var 

    34

    321

    21

    2

    1.)(][

    22

    1.

    2

    1

    2

    1.)(

    222

    222

    2

    2

    0

    32

    0

    2

    2

    0

    222

    2

    0

    22

    0

    2

    0

    π π π 

    π π π 

    π 

    π π π 

    π 

    π 

    π 

    π 

     ρ π 

    π 

    =−=

    −=

    ===

    ==

    ===

    ==

    ∫∫

    ∫∫

    ∞−

    ∞−

     x E  x E iancex

     xdx x

    dx xdx x fx x x E 

     xdx x

    dx xdx x xfxm x

     

    Q9 (b) A WSS random process X(t) with autocorrelation function ||aX e)(R   τ−=τ  

    where a is a real positive constant is applied to the input of LTI system

    with impulse response h(t) = e-bt

     u(t) where b is real positive constant.

    Find the autocorrelation function of the output Y(t) of the system.

    Answer Frequency response H/W of the system

    H (W) =F [h(t)]=1/jw+b

    Power spectral density of X(t) isSx (w) = F [Rx(z)]= 

    ( ) 

     

      

     

    +−−

     

      

     

    +−=

     

      

     

    +

     

      

     

    +==

    +

    22222222

    2222

    2

    22

    22

    )(

    21)(|)(|)(

    2

    aw

    a

    bba

    b

    bw

    b

    bba

    a

    bw

    a

    bwwsxw H wsr 

    aw

     

    Taking inverse Fourier transform on both sides

    [ ]|||/22 )(

    1)(   eaeb beae

    bbac R

      −− −+

    =λ 

  • 8/13/2019 AE57_AC57_AT57

    20/20

    AE57/AC57/AT57 SIGNALS AND SYSTEMS  JUNE 2013 

    © IETE  20

    Text Books

    1. Signals and Systems, A.V. Oppenheim and A.S. Willsky with S. H. Nawab,

    Second Edition, PHI Private limited, 2006.

    2. Communication Systems, Simon Haykin, 4th Edition, Wiley Student Edition, 7th

    Reprint 2007.