28
Mars Telecommunication Relay CubeSat Constellation Concept Rohan Deshmukh Swapnil Pujari Advisor: Professor David Spencer

AIAA Exhibition Presentation_Final

Embed Size (px)

Citation preview

  1. 1. Rohan Deshmukh Swapnil Pujari Advisor: Professor David Spencer
  2. 2. Motivation/ Background Overview Flight System Technical Resource Budgets Summary Future Work About Us Rohan Deshmukh Swapnil Pujari School Georgia Institute of Technology Georgia Institute of Technology Major Aerospace Engineering Aerospace Engineering Hometown Fairfax, VA Alpharetta, GA Year 3rd Year 3rd Year 5/17/2015 2
  3. 3. Motivation/ Background Overview Flight System Technical Resource Budgets Summary Future Work Concept Motivation 5/17/2015 3 Credit: Charles Edwards, JPL
  4. 4. Motivation/ Background Overview Flight System Technical Resource Budgets Summary Future Work Mars Communication Architecture 2025 Dedicated Communications Orbiter (1-3 satellites) 5/17/2015 4 Credit: Charles Edwards, JPL
  5. 5. Motivation/ Background Overview Flight System Technical Resource Budgets Summary Future Work Operational View 5/17/2015 5
  6. 6. Motivation/ Background Overview Flight System Technical Resource Budgets Summary Future Work Video 5/17/2015 6
  7. 7. Motivation/ Background Overview Flight System Technical Resource Budgets Summary Future Work CubeSat Overview 5/17/2015 7
  8. 8. Motivation/ Background Overview Flight System Technical Resource Budgets Summary Future Work Structure/Sizing Deployment Mechanisms: 1. < 3U CubeSat: PPOD (Poly-Pico Satellite Deployer) 2. > 3U CubeSat: CSD (Canisterized Satellite Dispensers) o CSD Limitations for 6U: mass of 12 kg, size of 12 cm x 24 cm x 36 cm 35.7 cm 11.8 cm 22.2 cm Stowed CubeSat Configuration CSD Deployer Mass: 7.9 kg 5/17/2015 8
  9. 9. Motivation/ Background Overview Flight System Technical Resource Budgets Summary Future Work Solar Flux Inverse Square Law Earth Solar Flux: 1370 W/m^2 @ 1AU Mars Solar Flux: 589.1 W/m^2 @ 1.525 AU Power generation is proportional to the inverse square of the distance to the sun Inverse Square Law Drives iterative process of solar array sizing 57% Reduction in Solar Flux Density 5/17/2015 9
  10. 10. Motivation/ Background Overview Flight System Technical Resource Budgets Summary Future Work Power Subsystem Subsystem Component Name Quantity EPS Clyde Space FLEX EPS 1 CS 30 Whr Battery 1 CS Deployable Double Sided 6U Panels 4 CS 2UFixed Solar Panels 1 Clyde Space FLEX EPS Clyde Space 30 Whr Battery CS Deployable Double Sided 6U Panels: 21 cells per face -> 42 cells on one panel -> 84 cells one side Solar Cell Efficiency: 28.3% Area of one solar cell: 0.00275 m2 Total Solar Cell Area: 0.231 m2 CS 2U Body-Mounted Solar Panels 5/17/2015 10
  11. 11. Motivation/ Background Overview Flight System Technical Resource Budgets Summary Future Work Satellite Communication Bands UHF X-Band Ka-Band Space Communication Usage Used between landers, rovers, and orbiters Current Standard in long range communication s (rovers Earth) Developing Standard Advantages Less prone to atmospheric interference Long Range Communication Greater Data Transmission Disadvantages Smaller Distance coverage Requires Line of Sight, More power Development & Testing Stages, Large Propagation Losses Common Uses Broadcast TV, Cell Phones Radar, Deep Space Network Radar, Deep Space Network 5/17/2015 11
  12. 12. Motivation/ Background Overview Flight System Technical Resource Budgets Summary Future Work Todays Mars Relay Network Testing Ka-Band 5/17/2015 12 Credit: Charles Edwards, JPL
  13. 13. Motivation/ Background Overview Flight System Technical Resource Budgets Summary Future Work Tomorrows Mars Relay Network MAVEN Agency: NASA Launch: Nov 18, 2013 Orbit: 150 x 6,200 km elliptical 75 deg inclination Non-sun-synchronous Deep Space Link: - Band X-band - Power Amplifier 100 W TWTA - High Gain Antenna 2 m HGA (body fixed) Proximity Link: - Transceiver Electra (single string) - Protocol CCSDS Proximity-1 - Antenna Quadrifilar Helix - Forward Link - Frequency 435-450 MHz - Data Rate 8, 32, 128 kbps - Coding (7,) Convolutional - Return Link - Frequency 390-405 MHz - Data Rate 1, 2, 4, , 2048 kbps - Coding (7,) Convolutional, LDPC - Other 8-bit I/8-bit Q open loop recording Suppressed Carrier Modulation Adaptive Data Rates ExoMars/TGO Agency: ESA Launch: Jan 7-27, 2016 Orbit: 400 km circular 74 deg inclination Non-sun-synchronous Deep Space Link: - Band X-band - Power Amplifier 65 W TWTA - High Gain Antenna 2.2 m HGA Proximity Link: - Transceiver Electra (dual string) - Protocol CCSDS Proximity-1 - Antenna Quadrifilar Helix (2) - Forward Link - Frequency 435-450 MHz - Data Rate 8, 32, 128 kbps - Coding (7,) Convolutional - Return Link - Frequency 390-405 MHz - Data Rate 1, 2, 4, , 2048 kbps - Coding (7,) Convolutional, LDPC - Other 8-bit I/8-bit Q open loop recording Suppressed Carrier Modulation Adaptive Data Rates 5/17/2015 13 Credit: Charles Edwards, JPL
  14. 14. Motivation/ Background Overview Flight System Technical Resource Budgets Summary Future Work Telecommunications Subsystem Component Name Quantity Telecom IRIS Transponder 1 KaPDA 1 AX5042 UHF Transceiver 1 UHF 4 Monopole Antenna (ISIS) 1 IRIS Transponder (NASA JPL): Currently: X-Band (Rx/Tx) Under Development: Ka Band receiver & exciter Future Development: UHF transponder BPSK Modulation AX5042 UHF Transceiver: PSK Modulation Max 600 kbps Ka-band Parabolic Deployable Antenna (KaPDA): UHF 4-Way Monopole Antenna5/17/2015 14
  15. 15. Motivation/ Background Overview Flight System Technical Resource Budgets Summary Future Work Full Equipment List Subsystem Component Name Quantity Dimensions (l x w x h) mm ADCS BCT-XACT Module 1 100x100x50 Telecom IRIS Transponder 1 400x100x100 KaPDA 1 150x100x100 AX5042 UHF Transciever 1 5x5x1 UHF 4 Monopole Antenna (ISIS) 1 98x98x7 Propulsion Aerojet MRS-142 1 100x100x100 Structures 6U Cubesat Structure 1 100x226x340 C&DH Tyvak Computer 1 83x94x10 EPS Clyde Space FLEX EPS 1 95x90x16 CS 30 Whr Battery 1 95x90x20 CS Deployable Double Sided 6U Panels 4 200x300x1.6 CS 2UFixed Solar Panels 2 200x100x1.6 5/17/2015 15
  16. 16. Motivation/ Background Overview Flight System Technical Resource Budgets Summary Future Work Mass Budget Subsystem Component Name Mass (g) Contingency Total Mass (g) ADCS BCT-XACT Module 850 10% 935 Telecom IRIS Transponder 400 10% 440 AX5042 UHF Transceiver 1 10% 1.1 UHF Monopole Antenna (ISIS) 100 10% 110 KA Antenna 1000 25% 1250 Propulsion Aerojet MRS-142 1574 10% 1731.4 Structures 6U CubeSat Structure 1100 20% 1320 C&DH Tyvak Computer 55 10% 60.5 EPS Clyde Space FLEX EPS 173 10% 190.3 CS 30 W-hr Battery 260 10% 286 CS Deployable Double Sided 6U Panels 290 30% 1508 CS 2U Fixed Solar Panels 67 10% 73.7 Total Mass 7906 Total Allowed Mass 12000 Margin 52% 5/17/2015 16
  17. 17. Motivation/ Background Overview Flight System Technical Resource Budgets Summary Future Work Mars Ephemeris Data Analysis Max Phase Angle (): 46.594 Max Earth-Mars Distance (AU): 2.64 Min Earth-Mars Distance (AU): 0.41 0.00 0.50 1.00 1.50 2.00 2.50 3.00 0 5 10 15 20 25 30 35 40 45 50 58500 59000 59500 60000 60500 61000 Mars-EarthDistance(AU) SMEPhaseAngle(deg) Modified Julian Date SME Phase Angle & Mars-Earth Distance from 2020-2025 SME phase Angle (deg) Mars-Earth Dist (AU) 5/17/2015 17
  18. 18. Motivation/ Background Overview Flight System Technical Resource Budgets Summary Future Work Power Budget Subsystem Component Name Contingency (%) Maneuvering Power Draw (mW) Safe Mode Power Draw (mW) Operation Power Draw (mW) ADCS BCT-XACT Module 10% 1479.50 740 1480 Telecom UHF Monopole Antenna (ISIS) 15% 74.01 74 1480 AX5042 UHF Transceiver 10% 90.09 90 90 IRIS Transponder 15% 601.68 602 12034 Propulsion Aerojet MPS 10% 2200.00 0 0 C&DH Tyvak Computer 10% 550.00 550 550 EPS Clyde Space FLEX EPS 10% 165.00 165 165 CS 30 Whr Battery 10% 55.00 55 55 Total (W) 5.215 2.276 15.853 Margin 291% 797% 29% Power Generated by Solar Cells (W) Worst-Case With Shading 20.416 5/17/2015 18
  19. 19. Motivation/ Background Overview Flight System Technical Resource Budgets Summary Future Work Battery Charge Cycle: Operation Mode 5/17/2015 19
  20. 20. Motivation/ Background Overview Flight System Technical Resource Budgets Summary Future Work Link Budget Best Case Scenario Assumptions Units Data Rate kbps Transmission Time/Orbit sec Data Throughput/ Orbit kiloBits Megabits Gigabits 4-Sat Constellation Total (Megabits) 5250.77km (periapsis MAVEN) Cubesat -> Orbiter Orbiter -> Cubesat 1.07 2.14 1267.67 1267.67 1356.54 2713.09 1.36 2.71 0.00 0.00 5.43 10.85 Latitude 0 Cubesat -> Surface Surface -> Cubesat 199.70 203.69 349.00 349.00 69695.61 71089.52 69.70 71.09 0.07 0.07 278.78 284.36 0.41AU Cubesat -> Earth Earth -> Cubesat 87.05 26985.78 4446.13 4446.13 387039.73 1.20E+08 387.04 119982.32 0.39 119.98 1548.16 479929.26 12010.34km (apoapsis MAVEN) Cubesat -> Orbiter Orbiter -> Cubesat 0.20 0.41 1267.67 1267.67 259.28 518.56 0.26 0.52 0.00 0.00 1.04 2.07 Latitude 20 Cubesat -> Surface Surface -> Cubesat 199.70 203.69 215.00 215.00 42935.69 43794.40 42.94 43.79 0.04 0.04 171.74 175.18 2.68AU Cubesat -> Earth Earth -> Cubesat 2.04 631.34 4446.13 4446.13 9054.94 2807029.86 9.05 2807.03 0.01 2.81 36.22 11228.12 Worst Case Scenario Assumptions Units Data Rate kbps Transmission Time/Orbit sec Data Throughput/ Orbit kiloBits Megabits Gigabits 4-Sat Constellation Total (Megabits) 5/17/2015 20
  21. 21. Motivation/ Background Overview Flight System Technical Resource Budgets Summary Future Work Concept Summary An equatorial constellation of 4 low-cost CubeSats in Mars orbit Augments telecom relay capability for landed assets and a current/future orbiter This concept is targeted for the 2020/2022 timeframe, deploying as a secondary payload on Mars 2020 or a future Mars orbiter 5/17/2015 21
  22. 22. Motivation/ Background Overview Flight System Technical Resource Budgets Summary Future Work Concept Summary Optimized Mass/Structure to fit CSD Deployer Requirements Sufficient margin for future iterations of spacecraft development Performed Telecommunications Link Budget: 1) Cubesat Earth: Ka-Band 2) Cubesat Ground: UHF 3) Cubesat Orbiter: UHF Optimized to meet power requirements of spacecraft bus Considered body & shadow shading effects Analysis based on Sun-Mars-Earth Angle 5/17/2015 22
  23. 23. Motivation/ Background Overview Flight System Technical Resource Budgets Summary Future Work Future Work Data Volume Analysis Thermal Analysis Trajectory/Delta-V Analysis Risk Management Assessment Cost Assessment End of Life Assessment 5/17/2015 23
  24. 24. Questions?
  25. 25. Backup Slides
  26. 26. Motivation/ Background Overview Flight System Technical Resource Budgets Summary Future Work Cost Budget (FY14) Subsystem Component Name Quantity Cost ($FY14) Contingency Total Cost $ (FY14) ADCS BCT-XACT Module 1 0 10% $0.00 Telecom IRIS Transponder 1 0 10% $0.00 KaPDA 1 0 10% $0.00 AX5042 UHF Transceiver 1 5000 15% $5,750.00 UHF Monopole Antenna (ISIS) 1 4948.43 20% $5,938.12 Propulsion Aerojet MRS-142 1 0 15% $0.00 Structures 6U Cubesat Structure 1 8082.43 10% $8,890.67 C&DH Tyvak Computer 1 30000 15% $34,500.00 EPS Clyde Space FLEX EPS 1 10550 10% $11,605.00 CS 30 Whr Battery 1 3850 10% $4,235.00 CS Deployable Double Sided 6U Panels 4 14300 40% $80,080.00 CS 2UFixed Solar Panels 1 4525 10% $4,977.50 Margin 25.00% Margin Total Cost/Cubesat $194,970 Margin Total Cost of Constellation $779,881.45 5/17/2015 26
  27. 27. Motivation/ Background Overview Flight System Technical Resource Budgets Summary Future Work Solar Cell Shading Analysis SME Worst Angle (46.6) Max Shading Effects (~6) 5/17/2015 27
  28. 28. Motivation/ Background Overview Flight System Technical Resource Budgets Summary Future Work Future Missions to Mars: 2013 - 2023 J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D Orbiters: ODY MEX MRO MAVEN ExoMars TGO Landers: Opportunity Curiosity InSight ExoMars 2016 EDM ExoMars 2018 Lander ExoMars 2018 Rover Mars 2020 Rover 202320172016201520142013 20222021202020192018 ... ... ... L M 18 Nov 22 Sep ... E E 28 Sep 19 Oct L 4 Mar - 26 Mar L 7 Jan - 27 Jan ... ... 19 Oct L 7 Jan - 27 Jan M ... E 15 Feb- 12 Feb L 26 Jul - 14 Aug E 17 Jan L 5 May - 28 May ... ... ... ... Cruise' Aerobraking' Primary'Science' Phase' Funded'Extended'' Mission'Phase' L' M E' Launch' MOI' EDL' Unfunded'Extended'' Mission'NoBonal'Plan' Legend:' 5/17/2015 28 Credit: Charles Edwards, JPL