18
1 To the Formation of Ichthyoplankton Assemblages Along the Eastern English Channel French Coast: Numerical Approach Alexei Senchev UMR 8013 “ELICO” Université du Littoral - Côte d'Opale Wimereux, France [email protected] littoral.fr Konstantin Korotenko P.P. Shirshov Institute of Oceanology Moscow, Russia [email protected]

Alexei Senchev UMR 8013 “ELICO” Université du Littoral - Côte d'Opale Wimereux, France

  • Upload
    lamond

  • View
    36

  • Download
    0

Embed Size (px)

DESCRIPTION

To the Formation of Ichthyoplankton Assemblages Along the Eastern English Channel French Coast: Numerical Approach. Alexei Senchev UMR 8013 “ELICO” Université du Littoral - Côte d'Opale Wimereux, France [email protected]. Konstantin Korotenko - PowerPoint PPT Presentation

Citation preview

Page 1: Alexei Senchev UMR 8013 “ELICO” Université du Littoral - Côte d'Opale  Wimereux, France

1

To the Formation of Ichthyoplankton Assemblages Along the Eastern English

Channel French Coast: Numerical Approach

Alexei Senchev

UMR 8013 “ELICO”Université du Littoral - Côte d'Opale

Wimereux, [email protected]

Konstantin Korotenko

P.P. Shirshov Institute of OceanologyMoscow, Russia

[email protected]

Page 2: Alexei Senchev UMR 8013 “ELICO” Université du Littoral - Côte d'Opale  Wimereux, France

2

Acknowledgement

A. Grioche, X. Harlay, P. Koubbi

UMR 8013 “ELICO”

Ichtyoécologie MarineUniversité du Littoral - Côte d'Opale

Wimereux, France

Page 3: Alexei Senchev UMR 8013 “ELICO” Université du Littoral - Côte d'Opale  Wimereux, France

3

Outline: Motivation Biological and hydrological situations Problem definition Model description Numerical experiments Particle and larvae migration Conclusions

Page 4: Alexei Senchev UMR 8013 “ELICO” Université du Littoral - Côte d'Opale  Wimereux, France

4

MotivationEnvironmental problems caused by the increase of pollutant discharge into natural waters require complex studies of physical processes of mixing and dilution, biological and mathematical modeling, data acquisition via remote sensing and in situ measurements. In this context, development of a multi-functional hydrodynamic/transport model which allows to perform fully prognostic computations of coastal water circulation and it application to environmental problems is an important task.

Page 5: Alexei Senchev UMR 8013 “ELICO” Université du Littoral - Côte d'Opale  Wimereux, France

5

Region• Strong tidal and storm activity

• Complex bottom topography

• Important river discharge

5°W 0°

5°W 0°

48°N

50°N

52°N

48°N

50°N

52°N

Zones:

• Offshore

• Near-shore

• Dover Strait

•Hydrological front

Page 6: Alexei Senchev UMR 8013 “ELICO” Université du Littoral - Côte d'Opale  Wimereux, France

6

Hydrological situationSurface salinity

April 11-13, 1995Surface salinity

Mai 2-5, 1995

Temperature profiles (April, 11-13) Salinity profiles

9 9.5 10 10.5

0

5

10

15

20

25

30

35

40

45

Temperature, ° C

Dep

th, m

31.5 32 32.5 33 33.5 34 34.5 35

0

5

10

15

20

25

30

35

40

45

Salinity, psu

Dep

th, m

Page 7: Alexei Senchev UMR 8013 “ELICO” Université du Littoral - Côte d'Opale  Wimereux, France

7

Biological situationPleuronectes flesus larvae distribution for each

development stage and survey (Ind. / 100 m3. Normalized)(Grioche, Koubbi, Sautour, 1997)

Initial conditions: Eggs (April, 11-13) Larvae stage 2 (one week later)

Larvae stage 3 (two weeks later) Larvae stage 3 (tree weeks later: Mai, 3-6)

Page 8: Alexei Senchev UMR 8013 “ELICO” Université du Littoral - Côte d'Opale  Wimereux, France

8

Biological situationPleuronectes flesus larval transfer fromthe spawning grounds to the nurseries

L a rv a

l tr a

n sfe

r

D o v er Sche

ldt f

ront

S p aw n in ga re a

Coa

s t al f

ron t

P lan

kto n

ic p

r od u

c tio

n C o a s t

Opa

le

F lan d e rs

Page 9: Alexei Senchev UMR 8013 “ELICO” Université du Littoral - Côte d'Opale  Wimereux, France

9

Problem

How strong is the influence of hydrodynamics on the larvae migration?

Can we identify relationships between tidal motions, wind forcing and P.flesus larvae drift?

Method

Numerical modeling

Page 10: Alexei Senchev UMR 8013 “ELICO” Université du Littoral - Côte d'Opale  Wimereux, France

10

Tracer

Page 11: Alexei Senchev UMR 8013 “ELICO” Université du Littoral - Côte d'Opale  Wimereux, France

11

ApproachCombined use of

2D finite element tidal model

3D Princeton Ocean Model

Particle transport model

Page 12: Alexei Senchev UMR 8013 “ELICO” Université du Littoral - Côte d'Opale  Wimereux, France

12

Particle transport model(Korotenko, JMS, 1999)

Output:3D particle displacement

Method:random walk in the horizontal random buoyancy in the vertical

Input:velocity diffusivity coefficients water density

Page 13: Alexei Senchev UMR 8013 “ELICO” Université du Littoral - Côte d'Opale  Wimereux, France

13

Circulation model Princeton Ocean Model (POM) Blumberg, Melor (1977-87), Mellor (1996)

3-D Primitive equation, time-dependent Sigma coordinate Prognostic temperature and salinity

fields Free surface k-kl turbulent closure scheme 22 km regular grid Real bottom topography

Forcing Tidal forcing Wind forcing Fresh water discharge

Page 14: Alexei Senchev UMR 8013 “ELICO” Université du Littoral - Côte d'Opale  Wimereux, France

14

Data assimilationTidal Model

Finite-Element Tidal Model (Le Provost, Poncet, IJNME, 1978)

2D Spectral Barotropic shallow water equation Quadratic parameterisation of bottom friction Depth depended grid ranging from 0.5 to 5 km Real bottom topography Tidal forcing at the open boundaries Numerical solution for individual tidal constituents

0° 1°E 2°E

50°N

51°N

Augmented Lagrangian function method (Sentchev, Yaremchuk, CSR, 1999)

Observations: 13 sea level observations1039 tidal current velocity ellipses

Control variables:65 boundary conditions

Results:Optimized boundary conditions for individual tidal constituents

Assimilation technique

Page 15: Alexei Senchev UMR 8013 “ELICO” Université du Littoral - Côte d'Opale  Wimereux, France

15

Numerical experiments

Surface salinity Salinity at 5 m

Sea surface elevation and surface velocity after 10 days run

Page 16: Alexei Senchev UMR 8013 “ELICO” Université du Littoral - Côte d'Opale  Wimereux, France

16

Features of Tidal Turbulence1. Bottom-friction-generated;

2. Spatial and temporal inhomogenuity;

3. Strong horizontal intermittency along the French coast;

4. Suppressed in river discharging areas;

Page 17: Alexei Senchev UMR 8013 “ELICO” Université du Littoral - Côte d'Opale  Wimereux, France

17

Concentration EvolutionSpatial distribution of particles as

a function of time (0, 1, 2, 3 weeks )

expressed in terms of concentration

(nb. of particles in a unit column)

The implemented complex numerical approach allowed predicting larvae assemblage in the Eastern English Channel

Page 18: Alexei Senchev UMR 8013 “ELICO” Université du Littoral - Côte d'Opale  Wimereux, France

18

Conclusions I. A use of the coupled flow/transport modeling is a powerful tool to study tracer dispersion.

II. Numerical experiments conducted in the eastern English Channel revealed the following features of tracer dynamics: The joint effect of tidal motions and river discharge gives rise to local concentrations of particles in the

frontal zone. Particles - initially homogeneously distributed . Turbulent diffusion is the second factor contributing to particle concentration in the vicinity of the front.

In areas with low turbulence, suppressed by fresh water discharge, vertical mixing is considerably reduced. Particles continue to move in the upper layer and are blocked by the fresh water discharge in their movement toward the French coast.

Effect of the bottom topography on the tracer dynamics has been recognized.

III. Experiments with particles representing P.flesus larvae provided the following results: The coupled flow/transport model reproduced the major features of the larvae migration under the

influence of different forcing terms. Combined effect of tidal motions (M2 constituent) and river discharge creates favorable conditions for larvae drift toward the French coast. Introducing of the mean sea level and more tidal constituents generates a steady larvae drift to the North along the coast.

IV. Residence times of water for three specific zones were estimated for the case without wind forcing. There were found to be equal to: 5 days for waters in the Strait of Dover; 7 days for offshore waters; 14 days for near-shore waters.

Wind events can affect these estimations.