98
Alternating Sign Matrices Descending Plane Partitions The ASM-DPP conjecture Proof: determinant formulae Generalizations Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de Physique Th´ eorique des Hautes Energies UPMC Universit´ e Paris 6 and CNRS March 8, 2011 R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

Alternating Sign Matrices and Descending PlanePartitions

R. Behrend, P. Di Francesco and P. Zinn-Justin

Laboratoire de Physique Theorique des Hautes EnergiesUPMC Universite Paris 6 and CNRS

March 8, 2011

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 2: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

Introduction

Plane Partitions were introduced by Mac Mahon about acentury ago. However Descending Plane Partitions (DPPs), aswell as other variations on plane partitions (symmetryclasses), were considered in the 80s. [Andrews]

Alternating Sign Matrices (ASMs) also appeared in the 80s,but in a completely different context, namely in Mills, Robbinsand Rumsey’s study Dodgson’s condensation algorithm for theevaluation of determinants.

One of the possible formulations of the Alternating SignMatrix conjecture is that these objects are in bijection (forevery size n). (proved by Zeilberger in ’96 in a slightlydifferent form)

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 3: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

Introduction

Plane Partitions were introduced by Mac Mahon about acentury ago. However Descending Plane Partitions (DPPs), aswell as other variations on plane partitions (symmetryclasses), were considered in the 80s. [Andrews]

Alternating Sign Matrices (ASMs) also appeared in the 80s,but in a completely different context, namely in Mills, Robbinsand Rumsey’s study Dodgson’s condensation algorithm for theevaluation of determinants.

One of the possible formulations of the Alternating SignMatrix conjecture is that these objects are in bijection (forevery size n). (proved by Zeilberger in ’96 in a slightlydifferent form)

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 4: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

Introduction

Plane Partitions were introduced by Mac Mahon about acentury ago. However Descending Plane Partitions (DPPs), aswell as other variations on plane partitions (symmetryclasses), were considered in the 80s. [Andrews]

Alternating Sign Matrices (ASMs) also appeared in the 80s,but in a completely different context, namely in Mills, Robbinsand Rumsey’s study Dodgson’s condensation algorithm for theevaluation of determinants.

One of the possible formulations of the Alternating SignMatrix conjecture is that these objects are in bijection (forevery size n). (proved by Zeilberger in ’96 in a slightlydifferent form)

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 5: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

Introduction cont’d

Interest in the mathematical physics community because of

1 Kuperberg’s alternative proof of the Alternating Sign Matrixconjecture using the connection to the six-vertex model. (’96)

2 The Razumov–Stroganov correspondence and relatedconjectures. (’01)

A proof of all these conjectures would probably givea fundamentally new proof of the ASM(ex-)conjecture.

J. Propp (’03)

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 6: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

Introduction cont’d

Interest in the mathematical physics community because of

1 Kuperberg’s alternative proof of the Alternating Sign Matrixconjecture using the connection to the six-vertex model. (’96)

2 The Razumov–Stroganov correspondence and relatedconjectures. (’01)

A proof of all these conjectures would probably givea fundamentally new proof of the ASM(ex-)conjecture.

J. Propp (’03)

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 7: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

Introduction cont’d

Interest in the mathematical physics community because of

1 Kuperberg’s alternative proof of the Alternating Sign Matrixconjecture using the connection to the six-vertex model. (’96)

2 The Razumov–Stroganov correspondence and relatedconjectures. (’01)

A proof of all these conjectures would probably givea fundamentally new proof of the ASM(ex-)conjecture.

J. Propp (’03)

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 8: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

Introduction cont’d

Interest in the mathematical physics community because of

1 Kuperberg’s alternative proof of the Alternating Sign Matrixconjecture using the connection to the six-vertex model. (’96)

2 The Razumov–Stroganov correspondence and relatedconjectures. (’01)

A proof of all these conjectures would probably givea fundamentally new proof of the ASM(ex-)conjecture.

J. Propp (’03)

T. Fonseca and P. Zinn-Justin: proof of the doubly refined Alter-nating Sign Matrix conjecture (’08).

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 9: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

Introduction cont’d

Interest in the mathematical physics community because of

1 Kuperberg’s alternative proof of the Alternating Sign Matrixconjecture using the connection to the six-vertex model. (’96)

2 The Razumov–Stroganov correspondence and relatedconjectures. (’01)

A proof of all these conjectures would probably givea fundamentally new proof of the ASM(ex-)conjecture.

J. Propp (’03)

Today’s talk is about the proof of another generalization of the ASMconjecture formulated in ’83 by Mills, Robbins and Rumsey.

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 10: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

Dodgson’s condensationExampleStatistics

Iterative use of the Desnanot–Jacobi identity:

= −

allows to compute the determinant of a n× n matrix by computingthe determinants of the connected minors of size 1, . . . , n.

What happens when we replace the minus sign with an arbitraryparameter?

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 11: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

Dodgson’s condensationExampleStatistics

Iterative use of the Desnanot–Jacobi identity:

= −

allows to compute the determinant of a n× n matrix by computingthe determinants of the connected minors of size 1, . . . , n.

What happens when we replace the minus sign with an arbitraryparameter?

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 12: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

Dodgson’s condensationExampleStatistics

Iterative use of the Desnanot–Jacobi identity:

= + λ

allows to compute the determinant of a n× n matrix by computingthe determinants of the connected minors of size 1, . . . , n.

What happens when we replace the minus sign with an arbitraryparameter?

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 13: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

Dodgson’s condensationExampleStatistics

Theorem (Robbins, Rumsey, ’86)

If M is an n × n matrix, then

detλM =∑

A∈ASM(n)

λν′(A)(1 + λ)µ(A)

n∏i ,j=1

MAij

ij

Here ASM(n) is the set of n × n Alternating Sign Matrices, that ismatrices such that in each row and column, the non-zero entriesform an alternation of +1s and −1s starting and ending with +1.

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 14: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

Dodgson’s condensationExampleStatistics

Theorem (Robbins, Rumsey, ’86)

If M is an n × n matrix, then

detλM =∑

A∈ASM(n)

λν′(A)(1 + λ)µ(A)

n∏i ,j=1

MAij

ij

Here ASM(n) is the set of n × n Alternating Sign Matrices, that ismatrices such that in each row and column, the non-zero entriesform an alternation of +1s and −1s starting and ending with +1.

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 15: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

Dodgson’s condensationExampleStatistics

Example

For n = 3, there are 7 ASMs:

ASM(3) =

1 0 0

0 1 00 0 1

,

0 0 10 1 01 0 0

,

1 0 00 0 10 1 0

,

0 0 11 0 00 1 0

,

0 1 01 0 00 0 1

,

0 1 00 0 11 0 0

,

0 1 01 −1 10 1 0

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 16: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

Dodgson’s condensationExampleStatistics

µ(A) is the number of −1s in A.

ν ′(A) is a generalization of the inversion number of A:

ν ′(A) =∑

1≤i<i ′≤n1≤j ′<j≤n

AijAi ′j ′

In what follows it is more convenient to consider anothergeneralization of the inversion number, namely

ν(A) = ν ′(A)− µ(A) =∑

1≤i≤i ′≤n1≤j ′<j≤n

AijAi ′j ′

Finally, for future purposes define ρ(A) to be the number of 0’s tothe left of the 1 in the first row of A.

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 17: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

Dodgson’s condensationExampleStatistics

µ(A) is the number of −1s in A.

ν ′(A) is a generalization of the inversion number of A:

ν ′(A) =∑

1≤i<i ′≤n1≤j ′<j≤n

AijAi ′j ′

In what follows it is more convenient to consider anothergeneralization of the inversion number, namely

ν(A) = ν ′(A)− µ(A) =∑

1≤i≤i ′≤n1≤j ′<j≤n

AijAi ′j ′

Finally, for future purposes define ρ(A) to be the number of 0’s tothe left of the 1 in the first row of A.

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 18: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

Dodgson’s condensationExampleStatistics

µ(A) is the number of −1s in A.

ν ′(A) is a generalization of the inversion number of A:

ν ′(A) =∑

1≤i<i ′≤n1≤j ′<j≤n

AijAi ′j ′

In what follows it is more convenient to consider anothergeneralization of the inversion number, namely

ν(A) = ν ′(A)− µ(A) =∑

1≤i≤i ′≤n1≤j ′<j≤n

AijAi ′j ′

Finally, for future purposes define ρ(A) to be the number of 0’s tothe left of the 1 in the first row of A.

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 19: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

Dodgson’s condensationExampleStatistics

µ(A) is the number of −1s in A.

ν ′(A) is a generalization of the inversion number of A:

ν ′(A) =∑

1≤i<i ′≤n1≤j ′<j≤n

AijAi ′j ′

In what follows it is more convenient to consider anothergeneralization of the inversion number, namely

ν(A) = ν ′(A)− µ(A) =∑

1≤i≤i ′≤n1≤j ′<j≤n

AijAi ′j ′

Finally, for future purposes define ρ(A) to be the number of 0’s tothe left of the 1 in the first row of A.

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 20: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

DefinitionStatistics

A Descending Plane Partition is an array of positive integers(“parts”) of the form

D11 D12 . . . . . . . . . . . . . . .D1,λ1

D22 . . . . . . . . . . . .D2,λ2+1. . . · · ·

Dtt . . .Dt,λt+t−1

such that

The parts decrease weakly along rows, i.e., Dij ≥ Di ,j+1.

The parts decrease strictly down columns, i.e., Dij > Di+1,j .

The first parts of each row and the row lengths satisfy

D11 > λ1 ≥ D22 > λ2 ≥ . . . ≥ Dt−1,t−1 > λt−1 ≥ Dtt > λt

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 21: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

DefinitionStatistics

Let DPP(n) be the set of DPPs in which each part is at most n,i.e., such that Dij ∈ {1, . . . , n}.

Example

For n = 3, there are 7 DPPs:

DPP(3) =

{∅, 3 3

2, 2, 3 3, 3, 3 2, 3 1

}

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 22: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

DefinitionStatistics

Let DPP(n) be the set of DPPs in which each part is at most n,i.e., such that Dij ∈ {1, . . . , n}.

Example

For n = 3, there are 7 DPPs:

DPP(3) =

{∅, 3 3

2, 2, 3 3, 3, 3 2, 3 1

}

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 23: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

DefinitionStatistics

Define statistics for each D ∈ DPP(n) as:

ν(D) = number of parts of D for which Dij > j − i ,

µ(D) = number of parts of D for which Dij ≤ j − i ,

ρ(D) = number of parts equal to n in (necessarily the first row of) D.

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 24: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

Simple enumerationCorrespondence of statistics

DPP enumeration

Theorem (Andrews, 79)

The number of DPPs with parts at most n is:

|DPP(n)| =n−1∏i=0

(3i + 1)!

(n + i)!= 1, 2, 7, 42, 429 . . .

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 25: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

Simple enumerationCorrespondence of statistics

The Alternating Sign Matrix conjecture

The following result was first conjectured by Mills, Robbins andRumsey in ’82:

Theorem (Zeilberger, ’96; Kuperberg, ’96)

The number of ASMs of size n is

|ASM(n)| =n−1∏i=0

(3i + 1)!

(n + i)!= 1, 2, 7, 42, 429 . . .

NB: a third family is also known to have the same enumeration asASMs and DPPs: TSSCPPs. In fact, Zeilberger’s proof consists ofa (non-bijective) proof of equienumeration of ASMs and TSSCPPs.

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 26: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

Simple enumerationCorrespondence of statistics

The Alternating Sign Matrix conjecture

The following result was first conjectured by Mills, Robbins andRumsey in ’82:

Theorem (Zeilberger, ’96; Kuperberg, ’96)

The number of ASMs of size n is

|ASM(n)| =n−1∏i=0

(3i + 1)!

(n + i)!= 1, 2, 7, 42, 429 . . .

NB: a third family is also known to have the same enumeration asASMs and DPPs: TSSCPPs. In fact, Zeilberger’s proof consists ofa (non-bijective) proof of equienumeration of ASMs and TSSCPPs.

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 27: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

Simple enumerationCorrespondence of statistics

A more general result was conjectured by Mills, Robbins andRumsey in ’83:

Theorem (Behrend, Di Francesco, Zinn-Justin, ’11)

The sizes of {A ∈ ASM(n) | ν(A) = p, µ(A) = m, ρ(A) = k} and{D ∈ DPP(n) | ν(D) = p, µ(D) = m, ρ(D) = k} are equal forany n, p, m and k.

Equivalently, if one defines generating series:

ZASM(n, x , y , z) =∑

A∈ASM(n)

xν(A) yµ(A) zρ(A)

ZDPP(n, x , y , z) =∑

D∈DPP(n)

xν(D) yµ(D) zρ(D)

then the theorem states that ZASM(n, x , y , z) = ZDPP(n, x , y , z).

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 28: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

Simple enumerationCorrespondence of statistics

A more general result was conjectured by Mills, Robbins andRumsey in ’83:

Theorem (Behrend, Di Francesco, Zinn-Justin, ’11)

The sizes of {A ∈ ASM(n) | ν(A) = p, µ(A) = m, ρ(A) = k} and{D ∈ DPP(n) | ν(D) = p, µ(D) = m, ρ(D) = k} are equal forany n, p, m and k.

Equivalently, if one defines generating series:

ZASM(n, x , y , z) =∑

A∈ASM(n)

xν(A) yµ(A) zρ(A)

ZDPP(n, x , y , z) =∑

D∈DPP(n)

xν(D) yµ(D) zρ(D)

then the theorem states that ZASM(n, x , y , z) = ZDPP(n, x , y , z).

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 29: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

Simple enumerationCorrespondence of statistics

Example (n = 3)

ASM(3) =

1 0 0

0 1 00 0 1

,

0 0 10 1 01 0 0

,

1 0 00 0 10 1 0

,

0 0 11 0 00 1 0

,

0 1 01 0 00 0 1

,

0 1 00 0 11 0 0

,

0 1 01 −1 10 1 0

DPP(3) =

{∅, 3 3

2, 2, 3 3, 3, 3 2, 3 1

}ZASM/DPP(3, x , y , z) = 1 + x3z2 + x + x2z2 + xz + x2z + xyz

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 30: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

Strategy: write the two generating series as determinants:

ZASM(n, x , y , z) = det MASM(n, x , y , z)

ZDPP(n, x , y , z) = det MDPP(n, x , y , z)

LGV

modified Izergin

and transform one matrix into another by row/columnmanipulations.

In what follows, we only give the proof in the “unrefined” casez = 1.

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 31: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

Strategy: write the two generating series as determinants:

ZASM(n, x , y , z) = det MASM(n, x , y , z)

ZDPP(n, x , y , z) = det MDPP(n, x , y , z)

LGV

modified Izergin

and transform one matrix into another by row/columnmanipulations.

In what follows, we only give the proof in the “unrefined” casez = 1.

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 32: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

Strategy: write the two generating series as determinants:

ZASM(n, x , y , z) = det MASM(n, x , y , z)

ZDPP(n, x , y , z) = det MDPP(n, x , y , z)

LGV

modified Izergin

and transform one matrix into another by row/columnmanipulations.

In what follows, we only give the proof in the “unrefined” casez = 1.

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 33: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

Strategy: write the two generating series as determinants:

ZASM(n, x , y , z) = det MASM(n, x , y , z)

ZDPP(n, x , y , z) = det MDPP(n, x , y , z)

LGV

modified Izergin

and transform one matrix into another by row/columnmanipulations.

In what follows, we only give the proof in the “unrefined” casez = 1.

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 34: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

Let 6VDW(n) be the set of all configurations of the six-vertexmodel on the n × n grid with DWBC, i.e., decorations of the grid’sedges with arrows such that:

The arrows on the external edges are fixed, with thehorizontal ones all incoming and the vertical ones all outgoing.

At each internal vertex, there are as many incoming asoutgoing arrows.

The latter condition is the “six-vertex” condition, since it allowsfor only six possible arrow configurations around an internal vertex:

a1 a2 b1 b2 c1 c2

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 35: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

Let 6VDW(n) be the set of all configurations of the six-vertexmodel on the n × n grid with DWBC, i.e., decorations of the grid’sedges with arrows such that:

The arrows on the external edges are fixed, with thehorizontal ones all incoming and the vertical ones all outgoing.

At each internal vertex, there are as many incoming asoutgoing arrows.

The latter condition is the “six-vertex” condition, since it allowsfor only six possible arrow configurations around an internal vertex:

a1 a2 b1 b2 c1 c2

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 36: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

Let 6VDW(n) be the set of all configurations of the six-vertexmodel on the n × n grid with DWBC, i.e., decorations of the grid’sedges with arrows such that:

The arrows on the external edges are fixed, with thehorizontal ones all incoming and the vertical ones all outgoing.

At each internal vertex, there are as many incoming asoutgoing arrows.

The latter condition is the “six-vertex” condition, since it allowsfor only six possible arrow configurations around an internal vertex:

a1

0

a2

0

b1

0

b2

0

c1

1

c2

-1

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 37: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

The bijection from 6VDW(n) to ASM(n)

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 38: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

The bijection from 6VDW(n) to ASM(n)

0 1 0 0

0 0 1 0

1 -1 0 1

0 1 0 0

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 39: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

The bijection from 6VDW(n) to ASM(n)

0 1 0 0

0 0 1 0

1 -1 0 1

0 1 0 0

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 40: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

The bijection from 6VDW(n) to ASM(n)

0 1 0 0

0 0 1 0

1 -1 0 1

0 1 0 0

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 41: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

The bijection from 6VDW(n) to ASM(n)

0 1 0 0

0 0 1 0

1 -1 0 1

0 1 0 0

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 42: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

The bijection from 6VDW(n) to ASM(n)

0 1 0 0

0 0 1 0

1 -1 0 1

0 1 0 0

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 43: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

The bijection from 6VDW(n) to ASM(n)

0 1 0 0

0 0 1 0

1 -1 0 1

0 1 0 0

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 44: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

The bijection from 6VDW(n) to ASM(n)

0 1 0 0

0 0 1 0

1 -1 0 1

0 1 0 0

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 45: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

The bijection from 6VDW(n) to ASM(n)

0 1 0 0

0 0 1 0

1 -1 0 1

0 1 0 0

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 46: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

The bijection from 6VDW(n) to ASM(n)

0 1 0 0

0 0 1 0

1 -1 0 1

0 1 0 0

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 47: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

The bijection from 6VDW(n) to ASM(n)

0 1 0 0

0 0 1 0

1 -1 0 1

0 1 0 0

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 48: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

Statistics

Statistics also have a nice interpretation in terms of the six-vertexmodel: if A ∈ ASM(n) 7→ C ∈ 6VDW(n),

µ(A) =1

2((number of vertices of type c in C )− n)

ν(A) =1

2(number of vertices of type a in C )

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 49: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

Define the six-vertex partition function of the six-vertex model withDWBC to be:

Z6VDW(u1, . . . , un; v1, . . . , vn) =∑

C∈6VDW(n)

n∏i ,j=1

Cij(ui , vj)

where the ui (resp. the vj) are parameters attached to each row(resp. a column), and Cij is the type of configuration at vertex(i , j).

a(u, v) = uq− 1

vq, b(u, v) =

u

q−q

v, c(u, v) =

(q2− 1

q2

)√u

v

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 50: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

Based on Korepin’s recurrence relations for Z6VDW, Izergin foundthe following determinant formula:

Theorem (Izergin, ’87)

Z6VDW(u1, . . . , un; v1, . . . , vn) ∝det

1≤i ,j≤n

(1

a(ui , vj)b(ui , vj)

)∏

1≤i<j≤n

(uj − ui )(vj − vi )

Problem: what happens in the homogeneous limitu1, . . . , un, v1, . . . , vn → r?

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 51: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

Based on Korepin’s recurrence relations for Z6VDW, Izergin foundthe following determinant formula:

Theorem (Izergin, ’87)

Z6VDW(u1, . . . , un; v1, . . . , vn) ∝det

1≤i ,j≤n

(1

a(ui , vj)b(ui , vj)

)∏

1≤i<j≤n

(uj − ui )(vj − vi )

Problem: what happens in the homogeneous limitu1, . . . , un, v1, . . . , vn → r?

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 52: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

The “naive” homogeneous limit:

Z6VDW(r , . . . , r ; r , . . . , r) ∝ det0≤i ,j≤n−1

∂ i+j

∂ui∂v j

(1

a(u, v)b(u, v)

)|u,v=r

∝ det0≤i ,j≤n−1

∂ i+j

∂ui∂v j

(1

uv − q2− 1

uv − q−2

)|u,v=r

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 53: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

Define Lij to be the n × n lower-triangular matrix with entires(ij

),

and D to be the diagonal matrix with entries(

qr−q−1r−1

q−1r−qr−1

)i,

i = 0, . . . , n − 1.

Proposition (Behrend, Di Francesco, Zinn-Justin, ’11)

Z6VDW(r , . . . , r ; r , . . . , r) ∝ det

(I − r2 − q−2

r2 − q2DLDLT

)Proof: write the determinant as det(A+ − A−), note that A± is upto a diagonal conjugation 1

r2−q±2 D±LD±LT , pull out det A+ and

conjugate I − A−A−1+ . . .

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 54: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

Define Lij to be the n × n lower-triangular matrix with entires(ij

),

and D to be the diagonal matrix with entries(

qr−q−1r−1

q−1r−qr−1

)i,

i = 0, . . . , n − 1.

Proposition (Behrend, Di Francesco, Zinn-Justin, ’11)

Z6VDW(r , . . . , r ; r , . . . , r) ∝ det

(I − r2 − q−2

r2 − q2DLDLT

)Proof: write the determinant as det(A+ − A−), note that A± is upto a diagonal conjugation 1

r2−q±2 D±LD±LT , pull out det A+ and

conjugate I − A−A−1+ . . .

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 55: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

Rewriting the previous proposition in terms of Boltzmann weightsa, b, c , and then switching to x = (a/b)2, y = (c/b)2, we finallyfind ZASM(n, x , y , 1) = det MASM(n, x , y , 1) with

MASM(n, x , y , 1)ij = (1− ω)δij + ω

min(i ,j)∑k=0

(i

k

)(j

k

)xk y i−k

with i , j = 0, . . . , n − 1 and ω a solution of

yω2 + (1− x − y)ω + x = 0

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 56: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 57: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 58: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 59: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 60: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 61: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 62: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 63: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 64: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 65: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 66: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 67: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 68: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 69: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 70: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 71: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 72: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 73: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 74: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 75: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 76: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 77: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 78: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 79: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

3

1

44

2

5

666

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 80: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

3

1

44

2

5666

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 81: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

3

1

44

2

5666

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 82: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

3

1

44

2

5666

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 83: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

31

442

5666

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 84: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

3 1

44 2

5666

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 85: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

3 1

44 2

5666

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 86: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

3 144 2

5666

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 87: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

3144

25666

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 88: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

3

144

25666

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 89: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

Statistics

Statistics also have a nice interpretation in terms ofNonintersecting lattice paths (NILPs):

D =

S1

E1

S2

E2

S3

E3

3

1

44

2

5

666

ν(D) = 7

µ(D) = 2

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 90: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

LGV formula / free fermions

NILPS are (lattice) free fermions:

Number of NILPs from Si to Ei , i = 1, . . . , n

= deti ,j=1,...,n

(Number of (single) paths from Si to Ej)

and similarly with weighted sums.

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 91: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

LGV formula / free fermions

NILPS are (lattice) free fermions:

Number of NILPs from Si to Ei , i = 1, . . . , n

= deti ,j=1,...,n

(Number of (single) paths from Si to Ej)

and similarly with weighted sums.

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 92: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

Here we are also summing over endpoints and the number of paths(“grand canonical partition function”):ZDPP(n, x , y , 1) = det MDPP(n, x , y , 1) with

MDPP(n, x , y , 1) = δij +i−1∑k=0

min(j ,k)∑`=0

(j

`

)(k

`

)x`+1 yk−`

Note that the second term is a product of two discrete transfermatrices. . .

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 93: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

We have

(I − S)MDPP(n, x , y , 1)(I + (ω − 1)ST )

= (I + (x − ωy − 1)S)MASM(n, x , y , 1)(I − ST )

where Iij = δi ,j and Sij = δi ,j+1.

Therefore,ZDPP(n, x , y , 1) = ZASM(n, x , y , 1)

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 94: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

The Izergin determinant formulaThe Lindstrom–Gessel–Viennot formulaEquality of determinants

We have

(I − S)MDPP(n, x , y , 1)(I + (ω − 1)ST )

= (I + (x − ωy − 1)S)MASM(n, x , y , 1)(I − ST )

where Iij = δi ,j and Sij = δi ,j+1.

Therefore,ZDPP(n, x , y , 1) = ZASM(n, x , y , 1)

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 95: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

We are working on various generalizations:

At least one more statistic can be introduced: the doublerefinement. For ASMs this consists in recording the positionsof the 1’s on both the first row and last row.

There are symmetry operations on ASMs and DPPs. Forexample, there is an operation * which for ASMs is symmetrywrt a vertical axis, and for DPPs viewed as rhombus tilings isrefelection in any of the three lines bisecting the centraltriangular hole.De Gier, Pyatov and Zinn-Justin have proved in ’09 aconjecture of Mills, Robbins and Rumsey concerning these.The proof can probably be simplified and the resultgeneralized.Other symmetries?

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 96: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

We are working on various generalizations:

At least one more statistic can be introduced: the doublerefinement. For ASMs this consists in recording the positionsof the 1’s on both the first row and last row.

There are symmetry operations on ASMs and DPPs. Forexample, there is an operation * which for ASMs is symmetrywrt a vertical axis, and for DPPs viewed as rhombus tilings isrefelection in any of the three lines bisecting the centraltriangular hole.De Gier, Pyatov and Zinn-Justin have proved in ’09 aconjecture of Mills, Robbins and Rumsey concerning these.The proof can probably be simplified and the resultgeneralized.Other symmetries?

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 97: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

We are working on various generalizations:

At least one more statistic can be introduced: the doublerefinement. For ASMs this consists in recording the positionsof the 1’s on both the first row and last row.

There are symmetry operations on ASMs and DPPs. Forexample, there is an operation * which for ASMs is symmetrywrt a vertical axis, and for DPPs viewed as rhombus tilings isrefelection in any of the three lines bisecting the centraltriangular hole.De Gier, Pyatov and Zinn-Justin have proved in ’09 aconjecture of Mills, Robbins and Rumsey concerning these.The proof can probably be simplified and the resultgeneralized.Other symmetries?

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions

Page 98: Alternating Sign Matrices and Descending Plane Partitions · Alternating Sign Matrices and Descending Plane Partitions R. Behrend, P. Di Francesco and P. Zinn-Justin Laboratoire de

Alternating Sign MatricesDescending Plane Partitions

The ASM-DPP conjectureProof: determinant formulae

Generalizations

We are working on various generalizations:

At least one more statistic can be introduced: the doublerefinement. For ASMs this consists in recording the positionsof the 1’s on both the first row and last row.

There are symmetry operations on ASMs and DPPs. Forexample, there is an operation * which for ASMs is symmetrywrt a vertical axis, and for DPPs viewed as rhombus tilings isrefelection in any of the three lines bisecting the centraltriangular hole.De Gier, Pyatov and Zinn-Justin have proved in ’09 aconjecture of Mills, Robbins and Rumsey concerning these.The proof can probably be simplified and the resultgeneralized.Other symmetries?

R. Behrend, P. Di Francesco and P. Zinn-Justin Alternating Sign Matrices and Descending Plane Partitions