38
Alveolar Gas Equation Oxygenation www.mecriticalcare.net 1

Alveolar Gas Equation Oxygenation 1

Embed Size (px)

Citation preview

Page 1: Alveolar Gas Equation Oxygenation  1

Alveolar Gas Equation

Oxygenation

www.mecriticalcare.net

1

Page 2: Alveolar Gas Equation Oxygenation  1

The Key to Blood Gas Interpretation:Four Equations, Three Physiologic Processes

Equation Physiologic Process1) PaCO2 equation Alveolar ventilation

2) Alveolar gas equation Oxygenation

3) Oxygen content equation Oxygenation

4) Henderson-Hasselbalch equation Acid-base balance

These four equations, crucial to understanding and interpreting arterial blood gas data.

Page 3: Alveolar Gas Equation Oxygenation  1

Normal Arterial Blood Gas Values*

pH 7.35 - 7.45

PaCO2 35 - 45 mm Hg

PaO2 70 - 100 mm Hg **

SaO2 93 - 98%

HCO3¯ 22 - 26 mEq/L

%MetHb < 2.0%

%COHb < 3.0%

Base excess -2.0 to 2.0 mEq/L

CaO2 16 - 22 ml O2/dl• * At sea level, breathing ambient air• ** Age-dependent

Page 4: Alveolar Gas Equation Oxygenation  1

Oxygenation and Ventilation

4

Page 5: Alveolar Gas Equation Oxygenation  1

Oxygen Saturation Monitoring by Pulse Oximetry

Page 6: Alveolar Gas Equation Oxygenation  1

O2-Hg Dissociation CurveH

b S

atur

atio

n)%

)

PaO2 (mm Hg)

90%

60 600

100%

90

Page 7: Alveolar Gas Equation Oxygenation  1

Oxygen Saturation Monitoring by Pulse Oximetry

Page 8: Alveolar Gas Equation Oxygenation  1
Page 9: Alveolar Gas Equation Oxygenation  1

Patient Environments

• Ambient Light– Any external light exposure to capillary bed where sampling is

occurring may result in an erroneous reading• Excessive Motion

– Always compare the palpable pulse rate with the pulse rate indicated on the pulse oximetry

• Fingernail polish and false nails– Most commonly use nails and fingernail polish will not affect pulse

oximetry accuracy– Some shades of blue, black and green may affect accuracy

)remove with acetone pad)• Skin pigmentation

– Apply sensor to the fingertips of darkly pigmented patients

Page 10: Alveolar Gas Equation Oxygenation  1

Conditions Affecting Accuracy

• Patient conditions– Carboxyhemoglobin

• Erroneously high reading may present

– Methaemoglobin– Anemia

• Values as low as 5 g/dl may result in 100% SpO2

– Hypovolemia/Hypotension:• May not have adequate perfusion to be detected by

oximetry

– Hypothermia:• peripheral vasoconstriction may prevent oximetry detection

Page 11: Alveolar Gas Equation Oxygenation  1

Nasal Cannula: Variable Flow

Page 12: Alveolar Gas Equation Oxygenation  1

Simple Face Mask: Variable Flow

Page 13: Alveolar Gas Equation Oxygenation  1

Venturi Mask: Fixed Flow

blue = 24%; yellow = 28%; white = 31%; green = 35%; pink = 40%; orange = 50%

Page 14: Alveolar Gas Equation Oxygenation  1

Venturi Effect

The pressure at "1" is higher than at "2" because the fluid speed at "1" is lower than at "2."

Page 15: Alveolar Gas Equation Oxygenation  1

Venturi Effect

A flow of air through a venturi meter, showing the columns connected in a U-shape )a manometer) and partially filled

with water. The meter is "read" as a differential pressure head in cm or inches of water.

4-15 L/min35-45 L/min

Page 16: Alveolar Gas Equation Oxygenation  1

Variable Performance Device: Nonrebreather Mask

Page 17: Alveolar Gas Equation Oxygenation  1

100

90

80

70

60

50

40

30

20

10

0

5 15 25 35 45 55 65 75 85

5 L.min-1

10 L.min-1

20 L.min-1

30 L.min-1

Fra

cti

on

al in

sp

ired

oxyg

en

con

cen

trati

on

%

Peak inspiratory flow (liters/minute)

Page 18: Alveolar Gas Equation Oxygenation  1

Continuous Airway Pressure: CPAP

Page 19: Alveolar Gas Equation Oxygenation  1

Alveolar-arterial Oxygen Gradient

20

PAO2= (Patm-PH2O) FiO2- PACO2/0.8 760 47 0.21 40

Page 20: Alveolar Gas Equation Oxygenation  1

Alveolar Gas Equation

PAO2 = PIO2 - 1.2 (PaCO2)*

PAO2 = FIO2 (PB – 47 mm Hg) - 1.2 (PaCO2)

A-a Gradient= PAO2- PaO2 =5-25 mm Hg

PAO2 is the average alveolar PO2

PIO2 is the partial pressure of inspired oxygen in the tracheaFIO2 is fraction of inspired oxygen PB is the barometric pressure. 47 mm Hg is the water vapor pressure at normal body temperature* Note: This is the “abbreviated version” of the AG equation, suitable for most clinical purposes. In the longer version, the multiplication factor “1.2” declines with increasing FIO2, reaching zero when 100% oxygen is inhaled. In these exercises “1.2” is dropped when FIO2 is above 60%.

Page 21: Alveolar Gas Equation Oxygenation  1

Hypoxemia Due to Hypercapnia

↓PAO2 = FIO2 (PB – 47 mm Hg) - 1.2 (↑PaCO2)

Hypercapneic Respiratory Failure

Page 22: Alveolar Gas Equation Oxygenation  1

Hypoxemia Due to Decreased FiO2

↓PAO2 = ↓FIO2 (PB – 47 mm Hg) - 1.2 (PaCO2)

Suffocation

Page 23: Alveolar Gas Equation Oxygenation  1

24

Page 24: Alveolar Gas Equation Oxygenation  1

High Altitude Hypoxemia

↓PAO2 = FIO2 (↓PB – 47 mm Hg) - 1.2 (PaCO2)

Mountain climbing

Page 25: Alveolar Gas Equation Oxygenation  1

Alveolar Gas Equation: Test Your Understanding

What is the expected PaO2 in a normal lung patient at sea level in the following circumstances? )Barometric pressure = 760 mm Hg)

A. FIO2 = 1.00, PaCO2 = 30 mm HgPAO2 = 1.00 (713) - 30 = 683 mm Hg, PaO2= 673

B. FIO2 = .21, PaCO2 = 50 mm HgPAO2 = .21 (713) - 1.2 (50) = 90 mm Hg, PaO2 = 80

C. FIO2 = .40, PaCO2 = 30 mm HgPAO2 = .40 (713) - 1.2 (30) = 249 mm Hg, PaO2 = 239

Page 26: Alveolar Gas Equation Oxygenation  1

Alveolar Gas Equation: Test Your Understanding

What is the PAO2 on the summit of Mt. Everest in the following circumstances? )Barometric pressure = 253 mm Hg)

A. FIO2 = .21, PaCO2 = 40 mm Hg

B. FIO2 = 1.00, PaCO2 = 40 mm Hg

C. FIO2 = .21, PaCO2 = 10 mm Hg

A. PAO2 = .21 (253 - 47) - 1.2 (40) = - 5 mm HgB. PAO2 = 1.00 (253 - 47) - 40 = 166 mm HgC. PAO2 = .21 (253 - 47) - 1.2 (10) = 31 mm Hg

Page 27: Alveolar Gas Equation Oxygenation  1

Alveolar Arterial O2 Gradient

EpitheliumEndothelium

Po

2

Po

2

Alveolar Gas Capillary Blood

initial Initial

Thickness

A-a Gradient

Page 28: Alveolar Gas Equation Oxygenation  1

Alveolar Arterial O2 Gradient

EpitheliumEndothelium

Alveolar Gas Capillary BloodThickness

FIO2= 21% PAO2= 100 PaO2= 95

5FIO2= 50% PAO2= 331 PaO2= 326

FIO2= 100% PAO2= 663 PaO2= 657

O2 Sat= 99%

O2 Sat= 100%

O2 Sat= 100%

Page 29: Alveolar Gas Equation Oxygenation  1

Alveolar Arterial O2 Gradient

EpitheliumEndothelium

Alveolar Gas Capillary BloodThickness

200FIO2= 50% PAO2= 331 PaO2= 131

FIO2= 100% PAO2= 663 PaO2= 463

O2 Sat= 100%

O2 Sat= 100%

Page 30: Alveolar Gas Equation Oxygenation  1

Alveolar-arterial Oxygen Gradient

31

Page 31: Alveolar Gas Equation Oxygenation  1

Physiologic Causes of Low PaO2

NON-RESPIRATORY P(A-a)O2

Cardiac right-to-left shunt Increased

Decreased PIO2 Normal

Low mixed venous oxygen content* Increased

* Unlikely to be clinically significant unless there is right-to-left shunting or ventilation-perfusion imbalance

Page 32: Alveolar Gas Equation Oxygenation  1

Physiologic Causes of Low PaO2

RESPIRATORY P(A-a)O2

Pulmonary right-to-left shunt Increased

Ventilation-perfusion imbalance Increased

Diffusion barrier Increased

Hypoventilation )increased PaCO2) Normal

Page 33: Alveolar Gas Equation Oxygenation  1

34

Page 34: Alveolar Gas Equation Oxygenation  1

A 44-year-old woman with: PaCO2 75 mm Hg, PaO2 95 mm Hg, FIO2 0.28

PAO2 = FIO2 (PB – 47 mm Hg) - 1.2 (PaCO2)

PAO2 = .28 )713) - 1.2 )75) PAO2= 200 - 90 =110 mm HgP(A-a)O2 = 110 - 95 = 15 mm Hg

Despite severe hypoventilation, there is no evidence here for lung disease. Hypercapnia is most likely a result of disease elsewhere in the respiratory system, either the central nervous system or chest bellows

Page 35: Alveolar Gas Equation Oxygenation  1

A young, anxious man with: PaO2 120 mm Hg, PaCO2 15 mm Hg, FIO2 0.21

PAO2 = FIO2 (PB – 47 mm Hg) - 1.2 (PaCO2)

PAO2 = .21 )713) - 1.2 )15) PAO2= 150 - 18 =132 mm HgP(A-a)O2 = 132 - 120 = 12 mm Hg

Hyperventilation can easily raise PaO2 above 100 mm Hg when the lungs are normal, as in this case

Page 36: Alveolar Gas Equation Oxygenation  1

A woman in the ICU with: PaO2 350 mm Hg, PaCO2 40 mm Hg, FIO2 0.80

PAO2 = FIO2 (PB – 47 mm Hg) - 1.2 (PaCO2)

PAO2 = .80 )713) - )40) PAO2= 570 - 40 = 530 mm HgP(A-a)O2 = 530 - 350 = 180 mm Hg

Note that the factor 1.2 is dropped since FIO2 is above 60%P)A-a)O2 is increased. Despite a very high PaO2, the lungs are not transferring

oxygen normally.

Page 37: Alveolar Gas Equation Oxygenation  1

A man with: PaO2 80 mm Hg, PaCO2 72 mm Hg, FIO2 0.21

PAO2 = FIO2 (PB – 47 mm Hg) - 1.2 (PaCO2)

PAO2 = .21 )713) – 1.2)72) PAO2= 150 - 86 = 64 mm HgP(A-a)O2 = 64 - 72 = -16 mm Hg

A negative P)A-a)O2 is incompatible with life )unless it is a transient unsteady state, such as sudden fall in FIO2 -- not the case here). In this example, negative P)A-a)O2 can be explained by any of the following: incorrect FIO2, incorrect blood gas measurement, or a reporting or transcription error.

Page 38: Alveolar Gas Equation Oxygenation  1

40 Thank You