16
- 1 - AM213B Numerical Methods for the Solution of Differential Equations Lecture 05 Copyright by Hongyun Wang, UCSC List of topics in this lecture Consistency of LMM, characteristic polynomials, consistency condition Stability and zero-stability of LMM, root condition Stability theorem: relation between stability and zero-stability Dahlquist equivalence theorem: consistency + stability = convergence Stiff problems, very different time scales in a problem Consistency of LMM (linear multi-step methods) Local truncation error of an LMM is defined the same way as before: Local truncation error = residual term when substituting an exact solution into numerical method. e n (h) = α j u ( t n + jh) j =0 r h β j fu ( t n + jh), t n + jh ( ) j =0 r Consistency of LMM is defined the same way as before: An LMM is consistent if en(h) = O(h p+1 ) with p > 0. Consistency condition We investigate the condition on coefficients {αjj} for consistency. We introduce characteristic polynomials of an LMM (there are two of them). Recall the general form of LMM α j u n+ j j =0 r = h β j f (u n+ j , t n+ j ) j =0 r , α r = 1 Definition: The two characteristic polynomials of an LMM are defined as

AM213B Numerical Methods for the Solution of …hongwang/AMS213B/Notes/...AM213B Numerical Methods for the Solution of Differential Equations - 5 - Motivation: We want numerical solution

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: AM213B Numerical Methods for the Solution of …hongwang/AMS213B/Notes/...AM213B Numerical Methods for the Solution of Differential Equations - 5 - Motivation: We want numerical solution

- 1 -

AM213BNumericalMethodsfortheSolutionofDifferentialEquations

Lecture05CopyrightbyHongyunWang,UCSC

Listoftopicsinthislecture

• ConsistencyofLMM,characteristicpolynomials,consistencycondition

• Stabilityandzero-stabilityofLMM,rootcondition

• Stabilitytheorem:relationbetweenstabilityandzero-stability

• Dahlquistequivalencetheorem:consistency+stability=convergence

• Stiffproblems,verydifferenttimescalesinaproblem

ConsistencyofLMM(linearmulti-stepmethods)LocaltruncationerrorofanLMMisdefinedthesamewayasbefore:

Localtruncationerror

=residualtermwhensubstitutinganexactsolutionintonumericalmethod.

en(h)= α j u(tn + jh)

j=0

r

∑ −h β j f u(tn + jh),tn + jh( )j=0

r

ConsistencyofLMMisdefinedthesamewayasbefore:

AnLMMisconsistentifen(h)=O(hp+1)withp>0.

Consistencycondition

Weinvestigatetheconditiononcoefficients{αj,βj}forconsistency.

WeintroducecharacteristicpolynomialsofanLMM(therearetwoofthem).RecallthegeneralformofLMM

α j un+ j

j=0

r

∑ = h β j f (un+ j ,tn+ j )j=0

r

∑ , αr =1

Definition:ThetwocharacteristicpolynomialsofanLMMaredefinedas

Page 2: AM213B Numerical Methods for the Solution of …hongwang/AMS213B/Notes/...AM213B Numerical Methods for the Solution of Differential Equations - 5 - Motivation: We want numerical solution

AM213BNumericalMethodsfortheSolutionofDifferentialEquations

- 2 -

ρ(ξ)= α j ξj

j=0

r

∑ ← coefficientsontheleftsideofLMM

σ(ξ)= β j ξj

j=0

r

∑ ← coefficientsontherightsideofLMM

Theorem(consistencycondition):AnLMMisconsistentifandonlyif

ρ(1)=0ρ′(1)= σ(1)

⎧⎨⎪

⎩⎪

Proof:

RecallthatconsistencymeansO(1)andO(h)termsdisappearinthelocaltruncationerror.Intheexpressionoflocaltruncationerror,wedoTaylorexpansionaroundtnandcalculatecoefficientsoftermsuptoO(h).

en(h)= α j u(tn + jh)

j=0

r

∑ −h β j f u(tn + jh),tn + jh( )j=0

r

= α j u(tn)+u′(tn) jh( )

j=0

r

∑ −h β j f u(tn),tn( )j=1

r

∑ +O h2( )

=u(tn) α j

j=0

r

∑ +h u′(tn) α j jj=0

r

∑ − f u(tn),tn( ) β jj=1

r

∑⎛

⎝⎜⎞

⎠⎟+O h2( )

Usef u(tn),tn( ) =u′(tn) , α j

j=0

r

∑ = ρ(1) , α j jj=0

r

∑ = ′ρ (1) , β jj=1

r

∑ = σ(1)

=u(tn)ρ(1)+h ′u (tn) ρ′(1)−σ(1)( )+O(h2) Thus,en(h)=O(h

2) ifandonlyifthecharacteristicpolynomialssatisfy

ρ(1)=0ρ′(1)= σ(1)

⎧⎨⎪

⎩⎪

StabilityofLMM

Recallthestabilityweintroducedearlierforsingle-stepmethodsun+1 = Lnum(un) :

Lnum(un)−Lnum(vn) ≤(1+C ⋅h)un − vn forsmallh (E01)

Page 3: AM213B Numerical Methods for the Solution of …hongwang/AMS213B/Notes/...AM213B Numerical Methods for the Solution of Differential Equations - 5 - Motivation: We want numerical solution

AM213BNumericalMethodsfortheSolutionofDifferentialEquations

- 3 -

whereconstantCisindependentofh,unandvn.

Applyingthenumericalmethodovernstepsleadsto

Lnum( )n(u0)− Lnum( )n(v0) ≤CT u0 − v0 forsmallhandnh≤T (E01B)

whereCTisindependentofh,n,u0andv0(aslongasnh≤T).

(E01B)ismoregeneralinthesensethat(E01)implies(E01B).

Foranr-stepLMM,wewriteitinthevector-operatorform:

!un+1 = LLMM(

!un)

where

!un ≡

unun+1"

un+r−1

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

, !u0 ≡

u0u1"ur−1

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

Applyingthenumericalmethodovernstepsleadsto

!un = LLMM( )n(!u0)

While(E01)isconvenienttouseinanalysis,itistoonarrowandisinadequateforLMM.Wedemonstratethisinthesimpleexamplebelow.

Example:WecasttheEulermethodintotheformofanr–stepLMM

un+r =un+r−1 + β j f (un+ j ,tn+ j )

j=0

r

∑ , β j =1 , j = r −10 , otherwise

⎧⎨⎪

⎩⎪

WeapplyittoODEu′=0.Itbecomesun+r=un+r–1 forn≥0.

Invector-operatorform,thissimplenumericalmethod(forODEu′=0)is

!un+1 = LLMM(!un)=

!un(2)!un(3)"!un(r)!un(r)

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟

whereu ⃗n(i)denotesthei-thcomponentofvectoru ⃗n.

Toexaminethevalidityof(E01)and(E01B),weapplyLLMMtotwospecialvectors:

Page 4: AM213B Numerical Methods for the Solution of …hongwang/AMS213B/Notes/...AM213B Numerical Methods for the Solution of Differential Equations - 5 - Motivation: We want numerical solution

AM213BNumericalMethodsfortheSolutionofDifferentialEquations

- 4 -

!u0 = ( 0 " 0 1 )T , !v0 = ( 0 " 0 )T .

Wehave

LLMM(!u0)= ( 0 " 0 1 1 )T

LLMM( )n(!u0)= ( 1 " 1 1 )T forn≥(r −1)

LLMM( )n(!v0)=0

Itfollowsthat

LLMM( )n(!u0)− LLMM( )n(!v0)( 1 " 1 1 )T−0

# $%%%%% &%%%%%≤ CT

!u0 −!v0

( 0 " 0 1 )T−0#$% &%

istrue.

LLMM(!u0)−LLMM(

!v0)( 0 " 0 1 1 )T−0

# $%%% &%%%≤ 1+C ⋅h( ) !u0 −

!v0( 0 " 0 1 )T−0#$% &%

isNOTtrue.

Itisclearthatthissimplemethod(forODEu′=0)shouldbeclassifiedas“stable”.

Therefore,weselect(E01B)todefinethestabilityforLMM.

DefinitionofstabilityforLMM

AnLMM !un+1 = LLMM(

!un) isstableif

LLMM( )n(!u0)− LLMM( )n(!v0) ≤ CT

!u0 −!v0 forsmallhandnh≤T

whereCTisindependentofh,n,u0andv0(aslongasnh≤T).

Remark:

Thisstabilityisdifficulttocheckdirectly.Weneedtoworkwithalternativeconditionsthataremoreconvenienttocheck.

Zero-stabilityofLMMConsideranLMMappliedtothemodelODE: u’=0

Exactsolution:u(t)=const

Numericalsolution:

α j un+ jj=0

r

∑ = 0

Page 5: AM213B Numerical Methods for the Solution of …hongwang/AMS213B/Notes/...AM213B Numerical Methods for the Solution of Differential Equations - 5 - Motivation: We want numerical solution

AM213BNumericalMethodsfortheSolutionofDifferentialEquations

- 5 -

Motivation:

Wewantnumericalsolutionuntoremainboundedasn→∞.

Definitionofzero-stability:

Ifallsolutionsof α j un+ jj=0

r

∑ = 0 remainboundedasn→∞,

thenwesaythecorrespondingLMMiszero-stable.

Remark:

Thezero-stabilityisnotaffectedbycoefficients{βj}.

Nextweconnectthezero-stabilityofanLMMtoitscharacteristicpolynomialρ(ξ).

Inequation α j un+ jj=0

r

∑ = 0 ,weconsidersolutionsoftheform{uk=ξk,k=0,1,2,…}.

Substitutinguk=ξkintotheequation,weget

α j ξ

n+ j

j=0

r

∑ =0 ⎯→⎯ α j ξj

j=0

r

∑ =0

==> ρ ξ( ) = 0

Forpolynomialρ(ξ),let

{ξj}denotesimplerootsand

{qi}denoterootswithmultiplicity>1.

Thegeneralnumericalsolutionhastheform:

un = c1ξ1n + c2ξ2

n +!( )+ b1(0) +b1

(1)n+!( )q1n + b2(0) +b2

(1)n+!( )q2n +!

unremainsboundedasn→∞ifandonlyif

|ξj|≤1and|qi|<1

Thisiscalledtherootcondition.

Definition(rootcondition)

Forapolynomial,if

• allrootssatisfy|ξj|≤1and

• allrootswithmultiplicityabove1 satisfy|qi|<1,

thenwesaythepolynomialsatisfiestherootcondition.

Page 6: AM213B Numerical Methods for the Solution of …hongwang/AMS213B/Notes/...AM213B Numerical Methods for the Solution of Differential Equations - 5 - Motivation: We want numerical solution

AM213BNumericalMethodsfortheSolutionofDifferentialEquations

- 6 -

Wesummarizetheresultweobtainaboveintoatheorem.

Theorem(conditionforzero-stability):

AnLMMiszero-stableifandonlyifitscharacteristicpolynomialρ(ξ)satisfiestherootcondition.

Nextwelookattheconnectionbetweenthezero-stabilityandthestability.Theorem(thestabilitytheorem):

Supposeƒ(u,t)inu′=ƒ(u,t)isLipschitzcontinuous.IfanLMMiszero-stable,thenitisstable.

Thatis,foranyT>0,thereexistsCTsuchthat

LLMM( )n(!u0)− LLMM( )n(!v0) ≤ CT

!u0 −!v0 forsmallhandnh≤T

whereCTisindependentofh,n,u0andv0(aslongasnh≤T).

Proof:Wewillnotgothroughtheproofindetails.AnoutlineofkeystepsintheproofispresentedinAppendixB.

Thistheoremconnectsthezero-stabilitytothestability.Withthistheoremasthestepping-stone,wenowintroducetheDahlquistequivalencetheorem(whichissimilartotheequivalencetheoremweprovedforsingle-stepmethods:

consistency+stability=convergence

Theorem(Dahlquistequivalencetheorem)

AnLMMmethodisconvergentifandonlyifitiszero-stableandisconsistent.Proof:Wewillnotgothroughtheproofindetails.ThekeystepsforprovingtheDahlquist

equivalencetheoremaresimilartothestepsusedforprovingthestabilitytheorem(AppendixB).TheadaptationofthesestepsforprovingtheDahlquistequivalencetheoremisdiscussedinAppendixC.

Example:Themidpointmethod:

un+2 −un =2h f (un+1 ,tn+1) Itisa2-stepLMM.Thetwocharacteristicpolynomialsare

ρ(ξ)= ξ2 −1 , σ(ξ)=2ξ

Checkingtheconsistencycondition:

Page 7: AM213B Numerical Methods for the Solution of …hongwang/AMS213B/Notes/...AM213B Numerical Methods for the Solution of Differential Equations - 5 - Motivation: We want numerical solution

AM213BNumericalMethodsfortheSolutionofDifferentialEquations

- 7 -

ρ(1)=0, ρ′(1)=2=σ(1)

==> Itisconsistent.Checkingtherootcondition:

ρ(ξ)hastwosimpleroots:

ξ1=1, ξ2=–1

==> Itsatisfiestherootcondition.==> Itiszero-stable.

BytheDahlquistequivalencetheorem,themidpointmethodisconvergent.

Remark: Innumericalsimulations,wefindthatthemidpointmethodhasanexponentiallygrowingerrormodeevenforthesimpleODE:u’=–u.Theexponentiallygrowingerrormodequicklyruinsthenumericalsolutionastimeincreases.ThisbehaviordoesnotcontradicttheDahlquistequivalencetheorem.Atafinitetime,ifweuseaverysmalltimestep,themidpointmethodwillbewellbehaved.

h→0whileT isfixed

⎛⎝⎜

⎞⎠⎟

vs T→∞whilehisfixedalthoughsmall

⎛⎝⎜

⎞⎠⎟

Example:

AllAdamsmethods(bothAdams-BashforthandAdams-Moulton)arezero-stable.Thegeneralformofr-stepAdamsmethods:

un+r =un+r−1 +h β j f (un+ j ,tn+ j )

j=0

r

Characteristicpolynomialρ(ξ):

ρ(ξ)= ξr −ξ(r−1) = ξ(r−1)(ξ−1)

ρ(ξ)hasonesamplerootandonerootofmultiplicity(r–1).

ξ1=1, asimpleroot,

q1=0, arootofmultiplicity(r–1).

==> Itsatisfiestherootcondition.

==> Itiszero-stable.

Question: Iszero-stabilityenoughformakingamethodwellbehaved?

ConsidernumericalsolutionsofODE

u′ = −λsinh u− cos(t)( ) , λ = large>0 (E02)

Page 8: AM213B Numerical Methods for the Solution of …hongwang/AMS213B/Notes/...AM213B Numerical Methods for the Solution of Differential Equations - 5 - Motivation: We want numerical solution

AM213BNumericalMethodsfortheSolutionofDifferentialEquations

- 8 -

InAssignment#1,youobservedtheresultsbelow.

ThenumericalsolutionofEulermethodisnotevenboundedunlessthetimestepistiny.TheimplicittrapezoidalmethodperformsmuchbetterthanEulermethod.TheimplicitbackwardEulerisevenbetter.

Thebottomline:

Zero-stabilityimpliesthatwhenthetimestepissmallenough,thenumericalsolutioniswellbehaved.Butforacertaincategoryofproblems,wecannotaffordverytinytimesteps.Weneedothertypesofstabilitytoensurethatthenumericalsolutioniswellbehavedevenwhenthetimestepisnotverysmall.

Stiffproblems

Weconsideralinearversionof(E02)asamodelproblem.

u′ = −λ u− cos(t)( ) , λ = large>0u(0)=0

⎧⎨⎪

⎩⎪ (E03A)

Exactsolution:

u(t)= λ2

1+λ2 cos(t)+λ

1+λ2 sin(t)−λ2

1+λ2 e−λt

(SeeAppendixAforderivation)

Therearetwoverydifferenttimescalesinthisproblem:

• Slowevolutionofcos(t),and

• Veryfastdecayofexp(−λt)

Definition(stiffproblem):Aproblemiscalledstiffifithas(atleast)twoverydifferenttimescales.

InODE(E03A),thetwotimescalesaretangledtogether.Tosimplifythediscussion,weconsideranevensimplerprobleminwhichthetwotimescalesareseparated.

u′ = −λu , λ = large>0′v = −v

⎧⎨⎪

⎩⎪ (E03B)

Wefocusontheu-componentof(E03B)anduseitasamodelproblemforexaminingtheperformanceofvariousnumericalmethods.

Asimplifiedmodel:

Page 9: AM213B Numerical Methods for the Solution of …hongwang/AMS213B/Notes/...AM213B Numerical Methods for the Solution of Differential Equations - 5 - Motivation: We want numerical solution

AM213BNumericalMethodsfortheSolutionofDifferentialEquations

- 9 -

u′ = −λu , λ = large>0u(0)=1

⎧⎨⎪

⎩⎪

Exactsolution:

u(t)= exp(−λt) Twopropertiesoftheexactsolution:

1. u(t)decreasestozeroast→∞.

Forlargeλ,u(t)decreasesveryfast.

2. Forafixedvalueoft>0(nomatterhowsmallitis),u(t)→0asλ→∞.Thesearethepropertieswewanttopreserveinnumericalsolutions.

Behaviorsofnumericalsolutionsofu′=–λu

Eulermethod:

un+1 =un +h(−λun)

==> un+1 =un(1−λh)

==> un =u0(1−λh)n

Asn→∞,undecreasesinabsolutevalueifandonlyif 1− λh <1 ,

ifandonlyif0 < λh < 2 ,

ifandonlyifh < 2λ.

Forlargeλ,thisconditionisveryrestrictive.

λ=108 ==> h<2×10-8

Foruntodecreasewithoutoscillatinginsign,weneed h ≤1λ.

ConclusionforEulermethod:

• Forlargeλ,Eulermethodhastouseatinytimestepjusttoensurethatthenumericalsolutiondecreasesinabsolutevalueasn→∞.Inotherwords,thenumericalsolutioniswellbehavedONLYwhenthefastevolutioncomponentisresolved,whichrequiresatinytimestep.

• Inastiffproblem,therequirementofatinytimestepiscoupledwiththeneedofsimulatingtheslowevolutioncomponentoveralongtimeperiod.

==> Extremelylargenumberoftimestepsisneeded.

Page 10: AM213B Numerical Methods for the Solution of …hongwang/AMS213B/Notes/...AM213B Numerical Methods for the Solution of Differential Equations - 5 - Motivation: We want numerical solution

AM213BNumericalMethodsfortheSolutionofDifferentialEquations

- 10 -

Forexample,toaccommodateλ=108andtosimulatetoT=10,weneed

h<2/λ=2×10–8

N=T/h>5×108=500milliontimesteps

BackwardEulermethod:

un+1 =un +h(−λun+1) , λ = large>0

==> un+1(1+λh)=un

==> un+1 = un1

1+ λh( )

==> un = u01

1+ λh( )n

Property1:

Asn→∞,undecreasesto0withoutoscillatinginsign,foranyvalueofh>0.

Property2:

Whenhisfixed,wehaveu1 = u01

1+ λh( )→ 0 asλ→∞.

ConclusionforBackwardEulermethod:

• Evenforverylargeλ,thenumericalsolutionofbackwardEulermethoddecreasesto0withoutoscillatinginsign,asn→∞,foranytimesteph>0.ThebackwardEulermethodpreservesbothproperties1and2.

• Inotherwords,thenumericalsolutionisalwayswellbehavedevenwhenthefastevolutioncomponentisnotresolved.Wecanselectthetimestepbasedontheneedofresolvingtheslowevolutioncomponent.

Trapezoidalmethod:

un+1 = un +h2

−λun − λun+1( )

==> un+1 1+λh2

⎛⎝⎜

⎞⎠⎟ = un 1−

λh2

⎛⎝⎜

⎞⎠⎟

==> un+1 = un1− λh

21+ λh

2

⎜⎜⎜

⎟⎟⎟

Page 11: AM213B Numerical Methods for the Solution of …hongwang/AMS213B/Notes/...AM213B Numerical Methods for the Solution of Differential Equations - 5 - Motivation: We want numerical solution

AM213BNumericalMethodsfortheSolutionofDifferentialEquations

- 11 -

==> un = u01− λh

21+ λh

2

⎜⎜⎜

⎟⎟⎟

n

Themultiplicationfactorsatisfies

1− λh2

1+ λh2

<1 for all values of h > 0

Property1:

Asn→∞,undecreasesinabsolutevalueto0,foranyvalueofh>0.

However,forλh>2,themultiplicationfactorisnegative.

==> Forλh>2,unoscillatesinsignwhiledecreasingto0asn→∞.

Property2:

Whenhisfixed,wehave

u1 =1− λh

21+ λh

2

⎜⎜⎜

⎟⎟⎟u0→ (−u0) asλ→∞.

Conclusionfortrapezoidalmethod:

• Thenumericalsolutionoftrapezoidalmethoddecreasesto0asn→∞,foranytimesteph>0.Sothenumericalsolutionwillalwaysremainboundedforanytimestep.Wedon’tneedtorestricttheselectionoftimesteptomakethenumericalsolutionbounded.

• However,forlargeλ,asn→∞,thenumericalsolutionoftrapezoidalmethodoscillatesinsignwithaveryslowdecayinamplitude.Thetrapezoidalmethodpreservesproperty1,butnotproperty2.

BasedontheperformancesofEuler,backwardEulerandtrapezoidalmethodsanalyzedabove,weintroducetheA-stabilityandtheL-stabilitytomeasuretheperformanceofanumericalmethodforsolvingstiffproblems.

Intuitively,wedefineA-stabilityandL-stabilityasfollows:A-stabilitydescribeswhetherornotproperty1ispreserved.

L-stabilitydescribedwhetherornotbothproperties1&2arepreserved.

Page 12: AM213B Numerical Methods for the Solution of …hongwang/AMS213B/Notes/...AM213B Numerical Methods for the Solution of Differential Equations - 5 - Motivation: We want numerical solution

AM213BNumericalMethodsfortheSolutionofDifferentialEquations

- 12 -

AppendixA: ExactsolutionoftheIVP

u′ = −λ u− cos(t)( )u(0)=0

⎧⎨⎪

⎩⎪

WewritetheODEas

u′+λu= λcos(t) Weusetheintegratingfactormethod.Multiplyingbyeλt,leadsto

eλtu′+λeλtu= λeλt cos(t)

==> eλtu( )′ = λeλt cos(t)

Integratingfrom0tot,weget

eλtu(t)= λ eλ s cos(s)ds

0

t

Weusetheintegrationformula

eλ s cos(s)ds

0

t

∫ =Real e(λ+i )s ds0

t

∫⎡

⎣⎢⎢

⎦⎥⎥=Real 1

λ+ ie(λ+i )t −1( )⎡

⎣⎢

⎦⎥

=Real λ− i

λ2 +1 eλt cos(t)−1+ ieλt sin(t)( )⎡

⎣⎢

⎦⎥ =

λλ2 +1 eλt cos(t)−1( )+ 1

λ2 +1eλt sin(t)

ThesolutionoftheIVPis

u(t)= e−λtλ eλ s cos(s)ds

0

t

= λ2

1+λ2 cos(t)+λ

1+λ2 sin(t)−λ2

1+λ2 e−λt

AppendixB: Proofofthestabilitytheorem

Theorem(thestabilitytheorem):

Supposef(u,t)inu’=ƒ(u,t)isLipschitzcontinuous.

IfanLMMiszero-stable,thenforanyT>0,thereexistsCTsuchthat

Page 13: AM213B Numerical Methods for the Solution of …hongwang/AMS213B/Notes/...AM213B Numerical Methods for the Solution of Differential Equations - 5 - Motivation: We want numerical solution

AM213BNumericalMethodsfortheSolutionofDifferentialEquations

- 13 -

LLMM( )n(!u0)− LLMM( )n(!v0) ≤ CT

!u0 −!v0 forsmallhandnh≤T

whereCTisindependentofh,n,u0andv0(aslongasnh≤T).

Outlineofkeystepsintheproof:

1. WefirstlookattheLMMappliedtosolvingu’=0.Ithastheform

α jun+ jj=0

r

∑ = 0 , αr = 1

Inthematrix-vectorform,wecanwriteitas

!un+1 = A

!un

wherevectoruandmatrixAare

!un ≡

unun+1"

un+r−1

⎜⎜⎜⎜

⎟⎟⎟⎟, A ≡

0 1 0" # #0 $ 0 1

−α0 −α1 $ −αr−1

⎜⎜⎜⎜

⎟⎟⎟⎟

MatrixAisaconstantmatrix,independentofh.ThecharacteristicpolynomialofmatrixAisρ(ξ).Polynomialρ(ξ)determinesthezero-stabilityoftheLMM.WhentheLMMiszero-stable,theeigenvaluesofmatrixAsatisfytherootcondition.BywritingmatrixAintheJordancanonicalform,wecanshowthatthereexistsCA≥1suchthat

An ≤CA for all n ≥ 0

2. Next,welookattheLMMappliedtosolvingu’=ƒ(u,t).Ithastheform

α jun+ jj=0

r

∑ = h β j f un+ j , tn+ j( )j=0

r

∑ , αr = 1

Forsimplicity,wefocusonexplicitmethods.Wewriteitinthematrix-vectorform

!un+1 = A

!un + h!φ !un , tn( ) (E05)

wherefunctionφ(u,t)satisfiesLipschitzcontinuitywithrespecttou:

!φ !u, t( )− !φ !v, t( ) ≤CL

!u − !v

NotethatwhilemappingAuislinear,functionφ(u,t)isnon-linear.Let

Δ!un ≡!un −!vn and Δ

!φn ≡!φ !un , tn( )− !φ !vn , tn( )

TheLipschitzcontinuitygivesus

Page 14: AM213B Numerical Methods for the Solution of …hongwang/AMS213B/Notes/...AM213B Numerical Methods for the Solution of Differential Equations - 5 - Motivation: We want numerical solution

AM213BNumericalMethodsfortheSolutionofDifferentialEquations

- 14 -

Δ!φn ≤CL Δ!un

Takingthedifferenceof(E05)betweenuandvyields

Δ!un+1 = AΔ

!un + hΔ!φn (E06)

Substituting(E06)atn=0into(E06)atn=1,andtheninto(E06)atn=2,…weobtain

Δ!u2 = A

2Δ!u0 +h AΔ!φ0 +Δ

!φ1( )

Δ!un+1 = A

n+1Δ!u0 +h An− jΔ!φ j

j=0

n

∑ (E07)

Takingnormofbothsides,usingAn ≤CA andtheLipschitzcontinuity

Δ!φn ≤CL Δ!un ,

wearriveatarecursiveinequalityfor Δ!un

Δ!un+1 ≤CA Δ!u0 + hCACL Δ!uj

j=0

n

∑ (E08)

3. Nowwesolvetherecursiveinequality(E08).

Weintroduce{gn}recursivelyas

g0 = CA Δ!u0

gn+1 = g0 + hCACL gjj=0

n

∑ (E09)

Itisstraightforwardtoshowthat

Δ!un ≤ gn for all n ≥ 0

Tocalculategn,were-writetherecursiveequation(E09)as

gn+1 = gn +hCACL gn = (1+hCACL)gn Applyingthisrelationsuccessivelyfromindex0toindex(n–1),yields

gn = (1+hCACL)n g0 ≤ exp CACLT( ) Δ!u0 fornh≤T

Using Δ!un ≤ gn andg0 =CA Δ!u0 ,wehave

Δ!un ≤CAexp CACLT( ) Δ!u0 fornh≤T

Therefore,wefinallyarriveat

LLMM( )n !u0 − LLMM( )n !v0 ≤CAexp CACLT( ) !u0 − !v0 fornh≤T

Page 15: AM213B Numerical Methods for the Solution of …hongwang/AMS213B/Notes/...AM213B Numerical Methods for the Solution of Differential Equations - 5 - Motivation: We want numerical solution

AM213BNumericalMethodsfortheSolutionofDifferentialEquations

- 15 -

whichimpliestheLMMisstable,bydefinition.

AppendixC: KeystepsforprovingDahlquistequivalencetheorem

BelowwediscussbrieflythekeystepsforprovingtheDahlquistequivalencetheorem.ThesestepsareadaptedfromthestepsinAppendixBforprovingthestabilitytheorem.

Again,wewritetheLMMinthematrix-vectorform

!un+1 = A

!un + h!φ !un , tn( )

Weintroducethevectorversionsofexactsolutionandlocaltruncationerror.

!vn ≡!u tn( ) =

u tn( )u tn+1( )"

u tn+r−1( )

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

, !en h( ) ≡00"

en h( )

⎜⎜⎜⎜

⎟⎟⎟⎟

=O hp+1( )

Numericalsolutionuandexactsolutionvsatisfy,respectively

!un+1 = A!un + h

!φ !un , tn( )

!vn+1 = A!vn + h

!φ !vn , tn( ) + !en h( )

(E25)

Let Δ!un ≡!un −!vn andΔ

!φn ≡!φ !un ,tn( )− !φ !vn ,tn( ) .Takingthedifferencein(E25)givesus

Δ!un+1 = AΔ

!un +hΔ!φn −!en(h) (E26)

Substituting(E26)atn=0into(E26)atn=1,andtheninto(E26)atn=2,…weobtain

Δ!u2 = A

2Δ!u0 +h AΔ!φ0 +Δ

!φ1( )− A!e0(h)+

!e1(h)( )

Δ!un+1 = A

n+1Δ!u0 + h An− jΔ!φ j

j=0

n

∑ − An− j !en h( )j=0

n

∑ (E27)

Takingnormofbothsides,usingAn ≤CA andtheLipschitzcontinuity

Δ!φn ≤CL Δ!un ,

wearriveatarecursiveinequalityfor Δ!un

Δ!un+1 ≤CA Δ!u0 +hCACL Δ!uj

j=0

n

∑ + n+1( )CACehp+1 (E28)

Tosolverecursiveinequality(E28),weintroduce{gn}recursivelyas

g0 = CA Δ!u0

Page 16: AM213B Numerical Methods for the Solution of …hongwang/AMS213B/Notes/...AM213B Numerical Methods for the Solution of Differential Equations - 5 - Motivation: We want numerical solution

AM213BNumericalMethodsfortheSolutionofDifferentialEquations

- 16 -

gn+1 = g0 +hCACL gj

j=0

n

∑ + n+1( )CACehp+1 (E29)

whichensuresthat

Δ!un ≤ gn for all n ≥ 0

Tocalculategn,were-writerecursiveequation(E29)as

gn+1 = 1+hCACL( )gn +CACehp+1 ==> 1+hCACL( )−(n+1) gn+1 ≤ 1+hCACL( )−n gn + 1+hCACL( )−(n+1)CACehp+1

==>1+hCACL( )−n gn ≤ g0 +CACehp+1 1+hCACL( )−(n+1)

j=0

n−1

≤ g0 +CACeh

p+1 1+hCACL( )−1 1− 1+hCACL( )−n1− 1+hCACL( )−1

==>gn ≤ 1+hCACL( )n g0 +CACehp+1

1+hCACL( )n −1CACLh

≤ exp(nhCACL)g0 +

exp(nhCACL)−1CL

Cehp

Using Δ!un ≤ gn andg0 =CA Δ!u0 ,weobtain

Δ!un ≤CAexp CACLT( ) Δ!u0 +

exp CACLT( )−1CL

Cehp fornh≤T

Whentheinitialvalueu0isatleastp-thorderaccurate: Δ!u0 = !u0 −

!v0 ≤ cinthp ,the

differencebetweenthenumericalsolutionuandexactsolutionvisboundedby

!un −!vn ≤ CAexp CACLT( )cint +

exp CACLT( )−1CL

⎝⎜⎜

⎠⎟⎟hp fornh≤T

whichimpliestheLMMisconvergent,bydefinition.