34
logue and digital techniques in sed loop regulation application Digital systems • Sampling of analogue signals • Sample-and-hold • Parseval’s theorem

Analogue and digital techniques in closed loop regulation applications Digital systems Sampling of analogue signals Sample-and-hold Parseval’s theorem

  • View
    228

  • Download
    2

Embed Size (px)

Citation preview

Analogue and digital techniques in closed loop regulation applications

Digital systems• Sampling of analogue signals• Sample-and-hold• Parseval’s theorem

Sampling process

ContinuousFunction

f(t)

Sampler(t)

Series ofsamples

T

Reconstruction ?

From time domain to frequency domain

Fourier transform

y(t) is a real function of time We define the Fourier transform Y(f)A complex function in frequency domain f

dfe)f(Y)t(y

dte)t(y)f(Y

ftj2

ftj2

Y(f) is the spectral or harmonic representation of y(t) Frequency spectrum

From time domain to frequency domain

Example of Fourier transform

y(t)

t

-T T

Y(f)

Tf2

)Tf2sin(T2)f(Y

Real even functions

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-6 -4 -2 0 2 4 6

Series1

From time domain to frequency domain

NB: Comments on unit with Fourier functionUse of =2f instead of f

2

1,

2

1,1a

dfe)(Ya2

1)t(y

dte)t(ya)(Y

tj

tj

Fourier series

)tsin()(ab Linear

System b()

)tsin(a

Fourier series

Fourier transform

)kTt(f)t(f k,t

T/ntj2

nnec)t(f

dte)t(f

T

1dte)t(f

T

1c

2/T

2/T

tnT/ntj22/T

2/T

n

nc = Complex Fourier Coefficients

T

)t(f

t

T

Periodic function

f(t) a series of frequencies multiple of 1/T

Fourier coefficients for real functions

)jba(2

1c nnn )jba(

2

1c nnn

)]tnsin(b)tncos(a[2

a)t(f n

1nn

0

dt)tncos()t(fT

2a

2

T

2

T

n

dt)t(fT

2a

2

T

2

T

0

T

2

dt)tnsin()t(fT

2b

2

T

2

T

n

)]tnsin(b)tncos(a[2

a)t(f n

1nn

0

dt)]}tnsin(b)tncos(a[2

a)t(f{ 2

n1n

n0

T

0

,0 To be minimal

0a n

0

bn

Principle

)t()t(f)t(f '

Analysis in frequency domain

n

n

)Tnt(T)t(

• F()= Fourier transform of f(t)• ()= Fourier transform of (t)• F’()= Fourier transform of f’(t)

)()(F)(F'

Convolution in the frequency domain

n

n

)Tnt(T)T(

Analysis of ()

1dte)t(TT

1dte)t(f

T

1c T

tnj2

2/t

2/t

T

tnj2

2/t

2/t

n

Decomposition in Fourier series

Periodic function

T

tnj2n

nnec)t(

n,1cn

n=0 n=1n=-1

T

n2

0T

2

T

2

Analysis of ()

n

n

n

n

)T

n2()

T

nf()(

t

5

t

5

0

t

4

t

3

t

2

t

1

t

4

t

3

t

2

t

1

2

f

n

n

n

n

)T

nf()Tnt(

Transform of f’(t)

)t()t(f)t('f

Convolution )()(F)('F

d)T

n2()(Fd)()(F)('F

n

)T

n2(Fd)

T

n2()(F)('F

nn

)T

n2(F)('F

n

)n(F)('Fn

s

)('F

)(F )(F s

T

1f

f2T

2

s

ss

0 s

ss2 s2

)2(F s)(F s)2(F s

Transform of f’(t)

Aliasing

The spectra are overlapping (Folding)

0

Primary componentsFundamental components

ss

Complementarycomponents

Complementarycomponents

)('F

2s

2s

2

s Folding frequency

Requirements for sampling frequency

• The sampling frequency should be at least twice as large asthe highest frequency component contained in the continuoussignal being sampled• In practice several times since physical signals found in the real world contain components covering a wide frequency range •NB:If the continuous signal and its n derivatives are sampled at the same rate then the sampling time may be:

hf2

1nT

hf highest frequency component

Can we reconstruct f(t) ?

Sampler Filterf(t)

f’(t) f °(t)

)(W)('F)(F c

In the frequency domain

0 s

ss2 s2

)('F

cc

Window )(Wc c2

1

)t(w)t('f)t(f c

Back to time domain

)(W)('F)(F c Convolution

d)t(w)('f)t(f c

tf2

)tf2sin(

t

)tsin(de

2

1)t(w

c

c

c

ctj2

cc

c

c

Window in the time domain

n

n

)Tnt()Tn(f)t()t(f)t('f

f’(t) in the time domain

d)t(w)('f)t(f c

d)t(

)t(sin)Tn()Tn(f)t(f

c

c

n

n c

c

n c

c

)Tnt(f2

)Tnt(f2sin)Tn(f)t(f

)Tnt(

)Tnt(sin)Tn(f)t(f

Back to time domain

Tn

Reconstruction

t

0)Tkt(i

1)Tnt(i

)Tnt(f2

)Tnt(f2sin)t(i

c

c

f(t)

Interpolation functions

nT (n+1)T (n+2)T (n+3)T

Delayed pulse train

tT )1(T )2(T )1(T

10 T

2

n2jTnj

2

T

2

T

ntjn e

T

1e

T

1e)Tt(

T

1C

n

)Tt(jntjn

n

Tnj eee)t(

Analogue and digital techniques in closed loop regulation applications

Zero-order-hold

Reconstruction of sampled data

To reconstruct the data we have a series of data

n...........,.........4,3,2,1k),Tk(f

..)Tkt](Tk[''f!2

1)Tkt](Tk['f]Tk[f)t(f 2

Approximation

]}T)1k[(f]Tk[f{T

1]Tk['f

]}T)1k[('f]Tk['f{T

1]Tk[''f

A device which uses only the first term f[kT] is called aZero-order extrapolator or zero-order-hold

Sample-and-Hold devicesTk

Source c (t)xs z0z (t)xe

T]1)u((k-T)T).[u(k(kxT)(kx es

k1-k2-k 1k 2k 3k

(t)xe

tt/

T)(kxs

T)(kxs

t

Sample modeHold mode Hold mode

Input signal

Output signalaT

Droop

pT

sT

= Acquisition time = Aperture time = Settling timeaT pT sT

Sample-and-hold circuit

T)(kx(t)xk

so

dt.eT]1)u((k-T)T).[u(k(kx(s)X st-

0 keo

k

T)1k(

Tk

steo dte)]T)1k((u)Tk(u[)Tk(x(s)X

]s

e

s

e[)Tk(x(s)X

T)1k(Tks

keo

]e.)Tk(x[s

e1(s)X Tsk

ke

Ts

o

Laplace transform of output

Transfer function

F(s))t( )t(h

Impulse response

F(s)=L[h(t)]

js1e)Tk(x Tsk

ke

s

e1(s)X

Ts

o

h(t)

t

(t)

t

k=0

s

sjjj

s

j2Tj

o

j2

)ee(e.

2

j

e1

j

e1)(X)(F

sss

T

2f2 ss

ju

s

e.u

)usin(.

2)(F

s

u

Transfer function

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6

Series1

s

s

s

)sin(

Phase of F() s

j

s

s e

)sin(

)(F

s s2 s3 s40

2

3

4

5

Parseval’s theorem

x(t) and y(t) have Fourier transform X(f) and Y(f) respectively

d)t(y)(x)t(y)t(x Convolution

dfe)f(Y)f(X)]f(Y)f(X[F)t(y)t(x ftj21

df)f'f(Y)f(Xdte)t(y)t(x t'fj2 f’=0

df)f(Y)f(Xdt)t(y)t(x y(t)y*(t)

df)f(*Y)f(Xdt)t(*y)t(x

Parseval’s theorem

df)f(*Y)f(Xdt)t(*y)t(x x(t)y(t)

df)f(*X)f(Xdt)t(*x)t(x

df)f(Xdt)t(x22

This expression suggests that the energy of a signal

Is distributed in time with a density

Or is distributed in frequency with density

2)t(x

2)f(X