108
4: Parseval’s Theorem and Convolution 4: Parseval’s Theorem and Convolution Parseval’s Theorem (a.k.a. Plancherel’s Theorem) Power Conservation Magnitude Spectrum and Power Spectrum Product of Signals Convolution Properties Convolution Example Convolution and Polynomial Multiplication Summary E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 1 / 9

4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

4: Parseval’s Theorem andConvolution

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 1 / 9

Page 2: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Parseval’s Theorem (a.k.a. Plancherel’s Theorem)

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 2 / 9

Suppose we have two signals with the same period, T = 1F

,

u(t) =∑∞

n=−∞ Unei2πnFt

v(t) =∑∞

n=−∞ Vnei2πnFt

Page 3: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Parseval’s Theorem (a.k.a. Plancherel’s Theorem)

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 2 / 9

Suppose we have two signals with the same period, T = 1F

,

u(t) =∑∞

n=−∞ Unei2πnFt

⇒ u∗(t) =∑∞

n=−∞ U∗ne−i2πnFt [u(t) = u∗(t) if real]

v(t) =∑∞

n=−∞ Vnei2πnFt

Page 4: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Parseval’s Theorem (a.k.a. Plancherel’s Theorem)

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 2 / 9

Suppose we have two signals with the same period, T = 1F

,

u(t) =∑∞

n=−∞ Unei2πnFt

⇒ u∗(t) =∑∞

n=−∞ U∗ne−i2πnFt [u(t) = u∗(t) if real]

v(t) =∑∞

n=−∞ Vnei2πnFt

Now multiply u∗(t) and v(t) together and take the average over [0, T ].

Page 5: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Parseval’s Theorem (a.k.a. Plancherel’s Theorem)

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 2 / 9

Suppose we have two signals with the same period, T = 1F

,

u(t) =∑∞

n=−∞ Unei2πnFt

⇒ u∗(t) =∑∞

n=−∞ U∗ne−i2πnFt [u(t) = u∗(t) if real]

v(t) =∑∞

n=−∞ Vnei2πnFt

Now multiply u∗(t) and v(t) together and take the average over [0, T ].

〈u∗(t)v(t)〉 =⟨∑∞

n=−∞ U∗ne−i2πnFt

∑∞m=−∞ Vmei2πmFt

Page 6: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Parseval’s Theorem (a.k.a. Plancherel’s Theorem)

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 2 / 9

Suppose we have two signals with the same period, T = 1F

,

u(t) =∑∞

n=−∞ Unei2πnFt

⇒ u∗(t) =∑∞

n=−∞ U∗ne−i2πnFt [u(t) = u∗(t) if real]

v(t) =∑∞

n=−∞ Vnei2πnFt

Now multiply u∗(t) and v(t) together and take the average over [0, T ].[Use different “dummy variables”, n and m, so they don’t get mixed up]

〈u∗(t)v(t)〉 =⟨∑∞

n=−∞ U∗ne−i2πnFt

∑∞m=−∞ Vmei2πmFt

Page 7: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Parseval’s Theorem (a.k.a. Plancherel’s Theorem)

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 2 / 9

Suppose we have two signals with the same period, T = 1F

,

u(t) =∑∞

n=−∞ Unei2πnFt

⇒ u∗(t) =∑∞

n=−∞ U∗ne−i2πnFt [u(t) = u∗(t) if real]

v(t) =∑∞

n=−∞ Vnei2πnFt

Now multiply u∗(t) and v(t) together and take the average over [0, T ].[Use different “dummy variables”, n and m, so they don’t get mixed up]

〈u∗(t)v(t)〉 =⟨∑∞

n=−∞ U∗ne−i2πnFt

∑∞m=−∞ Vmei2πmFt

=∑∞

n=−∞ U∗n

∑∞m=−∞ Vm

e−i2πnFtei2πmFt⟩

Page 8: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Parseval’s Theorem (a.k.a. Plancherel’s Theorem)

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 2 / 9

Suppose we have two signals with the same period, T = 1F

,

u(t) =∑∞

n=−∞ Unei2πnFt

⇒ u∗(t) =∑∞

n=−∞ U∗ne−i2πnFt [u(t) = u∗(t) if real]

v(t) =∑∞

n=−∞ Vnei2πnFt

Now multiply u∗(t) and v(t) together and take the average over [0, T ].[Use different “dummy variables”, n and m, so they don’t get mixed up]

〈u∗(t)v(t)〉 =⟨∑∞

n=−∞ U∗ne−i2πnFt

∑∞m=−∞ Vmei2πmFt

=∑∞

n=−∞ U∗n

∑∞m=−∞ Vm

e−i2πnFtei2πmFt⟩

=∑∞

n=−∞ U∗n

∑∞m=−∞ Vm

ei2π(m−n)Ft⟩

Page 9: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Parseval’s Theorem (a.k.a. Plancherel’s Theorem)

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 2 / 9

Suppose we have two signals with the same period, T = 1F

,

u(t) =∑∞

n=−∞ Unei2πnFt

⇒ u∗(t) =∑∞

n=−∞ U∗ne−i2πnFt [u(t) = u∗(t) if real]

v(t) =∑∞

n=−∞ Vnei2πnFt

Now multiply u∗(t) and v(t) together and take the average over [0, T ].[Use different “dummy variables”, n and m, so they don’t get mixed up]

〈u∗(t)v(t)〉 =⟨∑∞

n=−∞ U∗ne−i2πnFt

∑∞m=−∞ Vmei2πmFt

=∑∞

n=−∞ U∗n

∑∞m=−∞ Vm

e−i2πnFtei2πmFt⟩

=∑∞

n=−∞ U∗n

∑∞m=−∞ Vm

ei2π(m−n)Ft⟩

The quantity 〈· · · 〉 equals 1 if m = n and 0 otherwise, so the onlynon-zero element in the second sum is when m = n, so the second sumequals Vn.

Page 10: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Parseval’s Theorem (a.k.a. Plancherel’s Theorem)

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 2 / 9

Suppose we have two signals with the same period, T = 1F

,

u(t) =∑∞

n=−∞ Unei2πnFt

⇒ u∗(t) =∑∞

n=−∞ U∗ne−i2πnFt [u(t) = u∗(t) if real]

v(t) =∑∞

n=−∞ Vnei2πnFt

Now multiply u∗(t) and v(t) together and take the average over [0, T ].[Use different “dummy variables”, n and m, so they don’t get mixed up]

〈u∗(t)v(t)〉 =⟨∑∞

n=−∞ U∗ne−i2πnFt

∑∞m=−∞ Vmei2πmFt

=∑∞

n=−∞ U∗n

∑∞m=−∞ Vm

e−i2πnFtei2πmFt⟩

=∑∞

n=−∞ U∗n

∑∞m=−∞ Vm

ei2π(m−n)Ft⟩

The quantity 〈· · · 〉 equals 1 if m = n and 0 otherwise, so the onlynon-zero element in the second sum is when m = n, so the second sumequals Vn.

Hence Parseval’s theorem: 〈u∗(t)v(t)〉 =∑∞

n=−∞ U∗nVn

Page 11: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Parseval’s Theorem (a.k.a. Plancherel’s Theorem)

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 2 / 9

Suppose we have two signals with the same period, T = 1F

,

u(t) =∑∞

n=−∞ Unei2πnFt

⇒ u∗(t) =∑∞

n=−∞ U∗ne−i2πnFt [u(t) = u∗(t) if real]

v(t) =∑∞

n=−∞ Vnei2πnFt

Now multiply u∗(t) and v(t) together and take the average over [0, T ].[Use different “dummy variables”, n and m, so they don’t get mixed up]

〈u∗(t)v(t)〉 =⟨∑∞

n=−∞ U∗ne−i2πnFt

∑∞m=−∞ Vmei2πmFt

=∑∞

n=−∞ U∗n

∑∞m=−∞ Vm

e−i2πnFtei2πmFt⟩

=∑∞

n=−∞ U∗n

∑∞m=−∞ Vm

ei2π(m−n)Ft⟩

The quantity 〈· · · 〉 equals 1 if m = n and 0 otherwise, so the onlynon-zero element in the second sum is when m = n, so the second sumequals Vn.

Hence Parseval’s theorem: 〈u∗(t)v(t)〉 =∑∞

n=−∞ U∗nVn

If v(t) = u(t) we get:⟨

|u(t)|2⟩

=∑∞

n=−∞ U∗nUn

Page 12: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Parseval’s Theorem (a.k.a. Plancherel’s Theorem)

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 2 / 9

Suppose we have two signals with the same period, T = 1F

,

u(t) =∑∞

n=−∞ Unei2πnFt

⇒ u∗(t) =∑∞

n=−∞ U∗ne−i2πnFt [u(t) = u∗(t) if real]

v(t) =∑∞

n=−∞ Vnei2πnFt

Now multiply u∗(t) and v(t) together and take the average over [0, T ].[Use different “dummy variables”, n and m, so they don’t get mixed up]

〈u∗(t)v(t)〉 =⟨∑∞

n=−∞ U∗ne−i2πnFt

∑∞m=−∞ Vmei2πmFt

=∑∞

n=−∞ U∗n

∑∞m=−∞ Vm

e−i2πnFtei2πmFt⟩

=∑∞

n=−∞ U∗n

∑∞m=−∞ Vm

ei2π(m−n)Ft⟩

The quantity 〈· · · 〉 equals 1 if m = n and 0 otherwise, so the onlynon-zero element in the second sum is when m = n, so the second sumequals Vn.

Hence Parseval’s theorem: 〈u∗(t)v(t)〉 =∑∞

n=−∞ U∗nVn

If v(t) = u(t) we get:⟨

|u(t)|2⟩

=∑∞

n=−∞ U∗nUn =

∑∞n=−∞ |Un|2

Page 13: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Power Conservation

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 3 / 9

The average power of a periodic signal is given by Pu ,

|u(t)|2⟩

.

This is the average electrical power that would be dissipated if thesignal represents the voltage across a 1Ω resistor.

Page 14: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Power Conservation

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 3 / 9

The average power of a periodic signal is given by Pu ,

|u(t)|2⟩

.

This is the average electrical power that would be dissipated if thesignal represents the voltage across a 1Ω resistor.

Parseval’s Theorem: Pu =⟨

|u(t)|2⟩

=∑∞

n=−∞ |Un|2

Page 15: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Power Conservation

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 3 / 9

The average power of a periodic signal is given by Pu ,

|u(t)|2⟩

.

This is the average electrical power that would be dissipated if thesignal represents the voltage across a 1Ω resistor.

Parseval’s Theorem: Pu =⟨

|u(t)|2⟩

=∑∞

n=−∞ |Un|2

= |U0|2 + 2∑∞

n=1 |Un|2 [assume u(t) real]

Page 16: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Power Conservation

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 3 / 9

The average power of a periodic signal is given by Pu ,

|u(t)|2⟩

.

This is the average electrical power that would be dissipated if thesignal represents the voltage across a 1Ω resistor.

Parseval’s Theorem: Pu =⟨

|u(t)|2⟩

=∑∞

n=−∞ |Un|2

= |U0|2 + 2∑∞

n=1 |Un|2 [assume u(t) real]

= 14a

20 +

12

∑∞n=1

(

a2n+ b2

n

)

[U+n = an−ibn

2 ]

Page 17: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Power Conservation

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 3 / 9

The average power of a periodic signal is given by Pu ,

|u(t)|2⟩

.

This is the average electrical power that would be dissipated if thesignal represents the voltage across a 1Ω resistor.

Parseval’s Theorem: Pu =⟨

|u(t)|2⟩

=∑∞

n=−∞ |Un|2

= |U0|2 + 2∑∞

n=1 |Un|2 [assume u(t) real]

= 14a

20 +

12

∑∞n=1

(

a2n+ b2

n

)

[U+n = an−ibn

2 ]

Parseval’s theorem ⇒ the average power in u(t) is equal to the sum of theaverage powers in each of its Fourier components.

Page 18: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Power Conservation

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 3 / 9

The average power of a periodic signal is given by Pu ,

|u(t)|2⟩

.

This is the average electrical power that would be dissipated if thesignal represents the voltage across a 1Ω resistor.

Parseval’s Theorem: Pu =⟨

|u(t)|2⟩

=∑∞

n=−∞ |Un|2

= |U0|2 + 2∑∞

n=1 |Un|2 [assume u(t) real]

= 14a

20 +

12

∑∞n=1

(

a2n+ b2

n

)

[U+n = an−ibn

2 ]

Parseval’s theorem ⇒ the average power in u(t) is equal to the sum of theaverage powers in each of its Fourier components.

Example: u(t) = 2 + 2 cos 2πFt+ 4 sin 2πFt− 2 sin 6πFt

-1 -0.5 0 0.5 1-4-202468

u(t)

U[0:3]=[2, 1-2j, 0, j]

Time (s)

Page 19: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Power Conservation

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 3 / 9

The average power of a periodic signal is given by Pu ,

|u(t)|2⟩

.

This is the average electrical power that would be dissipated if thesignal represents the voltage across a 1Ω resistor.

Parseval’s Theorem: Pu =⟨

|u(t)|2⟩

=∑∞

n=−∞ |Un|2

= |U0|2 + 2∑∞

n=1 |Un|2 [assume u(t) real]

= 14a

20 +

12

∑∞n=1

(

a2n+ b2

n

)

[U+n = an−ibn

2 ]

Parseval’s theorem ⇒ the average power in u(t) is equal to the sum of theaverage powers in each of its Fourier components.

Example: u(t) = 2 + 2 cos 2πFt+ 4 sin 2πFt− 2 sin 6πFt

-1 -0.5 0 0.5 1-4-202468

u(t)

U[0:3]=[2, 1-2j, 0, j]

Time (s)-1 -0.5 0 0.5 1

0204060

u2 (t)

U[0:3]=[2, 1-2j, 0, j]

Time (s)

Page 20: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Power Conservation

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 3 / 9

The average power of a periodic signal is given by Pu ,

|u(t)|2⟩

.

This is the average electrical power that would be dissipated if thesignal represents the voltage across a 1Ω resistor.

Parseval’s Theorem: Pu =⟨

|u(t)|2⟩

=∑∞

n=−∞ |Un|2

= |U0|2 + 2∑∞

n=1 |Un|2 [assume u(t) real]

= 14a

20 +

12

∑∞n=1

(

a2n+ b2

n

)

[U+n = an−ibn

2 ]

Parseval’s theorem ⇒ the average power in u(t) is equal to the sum of theaverage powers in each of its Fourier components.

Example: u(t) = 2 + 2 cos 2πFt+ 4 sin 2πFt− 2 sin 6πFt⟨

|u(t)|2⟩

= 4 + 12

(

22 + 42 + (−2)2)

= 16

-1 -0.5 0 0.5 1-4-202468

u(t)

U[0:3]=[2, 1-2j, 0, j]

Time (s)-1 -0.5 0 0.5 1

0204060

u2 (t)

U[0:3]=[2, 1-2j, 0, j]

Time (s)

Page 21: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Power Conservation

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 3 / 9

The average power of a periodic signal is given by Pu ,

|u(t)|2⟩

.

This is the average electrical power that would be dissipated if thesignal represents the voltage across a 1Ω resistor.

Parseval’s Theorem: Pu =⟨

|u(t)|2⟩

=∑∞

n=−∞ |Un|2

= |U0|2 + 2∑∞

n=1 |Un|2 [assume u(t) real]

= 14a

20 +

12

∑∞n=1

(

a2n+ b2

n

)

[U+n = an−ibn

2 ]

Parseval’s theorem ⇒ the average power in u(t) is equal to the sum of theaverage powers in each of its Fourier components.

Example: u(t) = 2 + 2 cos 2πFt+ 4 sin 2πFt− 2 sin 6πFt⟨

|u(t)|2⟩

= 4 + 12

(

22 + 42 + (−2)2)

= 16

-1 -0.5 0 0.5 1-4-202468

u(t)

U[0:3]=[2, 1-2j, 0, j]

Time (s)-1 -0.5 0 0.5 1

0204060

u2 (t)

Pu=<u2>=16

U[0:3]=[2, 1-2j, 0, j]

Time (s)

Page 22: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Power Conservation

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 3 / 9

The average power of a periodic signal is given by Pu ,

|u(t)|2⟩

.

This is the average electrical power that would be dissipated if thesignal represents the voltage across a 1Ω resistor.

Parseval’s Theorem: Pu =⟨

|u(t)|2⟩

=∑∞

n=−∞ |Un|2

= |U0|2 + 2∑∞

n=1 |Un|2 [assume u(t) real]

= 14a

20 +

12

∑∞n=1

(

a2n+ b2

n

)

[U+n = an−ibn

2 ]

Parseval’s theorem ⇒ the average power in u(t) is equal to the sum of theaverage powers in each of its Fourier components.

Example: u(t) = 2 + 2 cos 2πFt+ 4 sin 2πFt− 2 sin 6πFt⟨

|u(t)|2⟩

= 4 + 12

(

22 + 42 + (−2)2)

= 16

-1 -0.5 0 0.5 1-4-202468

u(t)

U[0:3]=[2, 1-2j, 0, j]

Time (s)-1 -0.5 0 0.5 1

0204060

u2 (t)

Pu=<u2>=16

U[0:3]=[2, 1-2j, 0, j]

Time (s)

U0:3 = [2, 1− 2i, 0, i]

Page 23: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Power Conservation

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 3 / 9

The average power of a periodic signal is given by Pu ,

|u(t)|2⟩

.

This is the average electrical power that would be dissipated if thesignal represents the voltage across a 1Ω resistor.

Parseval’s Theorem: Pu =⟨

|u(t)|2⟩

=∑∞

n=−∞ |Un|2

= |U0|2 + 2∑∞

n=1 |Un|2 [assume u(t) real]

= 14a

20 +

12

∑∞n=1

(

a2n+ b2

n

)

[U+n = an−ibn

2 ]

Parseval’s theorem ⇒ the average power in u(t) is equal to the sum of theaverage powers in each of its Fourier components.

Example: u(t) = 2 + 2 cos 2πFt+ 4 sin 2πFt− 2 sin 6πFt⟨

|u(t)|2⟩

= 4 + 12

(

22 + 42 + (−2)2)

= 16

-1 -0.5 0 0.5 1-4-202468

u(t)

U[0:3]=[2, 1-2j, 0, j]

Time (s)-1 -0.5 0 0.5 1

0204060

u2 (t)

Pu=<u2>=16

U[0:3]=[2, 1-2j, 0, j]

Time (s)

U0:3 = [2, 1− 2i, 0, i] ⇒ |U0|2 + 2∑∞

n=1 |Un|2 = 16

Page 24: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Magnitude Spectrum and Power Spectrum

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 4 / 9

The spectrum of a periodic signal is the values of Un versus nF .

Page 25: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Magnitude Spectrum and Power Spectrum

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 4 / 9

The spectrum of a periodic signal is the values of Un versus nF .

The magnitude spectrum is the values of |Un| =

12

a2|n| + b2|n|

.

Page 26: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Magnitude Spectrum and Power Spectrum

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 4 / 9

The spectrum of a periodic signal is the values of Un versus nF .

The magnitude spectrum is the values of |Un| =

12

a2|n| + b2|n|

.

The power spectrum is the values of

|Un|2

=

14

(

a2|n| + b2|n|

)

.

Page 27: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Magnitude Spectrum and Power Spectrum

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 4 / 9

The spectrum of a periodic signal is the values of Un versus nF .

The magnitude spectrum is the values of |Un| =

12

a2|n| + b2|n|

.

The power spectrum is the values of

|Un|2

=

14

(

a2|n| + b2|n|

)

.

Example:u(t) = 2 + 2 cos 2πFt+ 4 sin 2πFt− 2 sin 6πFt

Page 28: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Magnitude Spectrum and Power Spectrum

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 4 / 9

The spectrum of a periodic signal is the values of Un versus nF .

The magnitude spectrum is the values of |Un| =

12

a2|n| + b2|n|

.

The power spectrum is the values of

|Un|2

=

14

(

a2|n| + b2|n|

)

.

Example:u(t) = 2 + 2 cos 2πFt+ 4 sin 2πFt− 2 sin 6πFt

Fourier Coefficients: a0:3 = [4, 2, 0, 0]

Page 29: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Magnitude Spectrum and Power Spectrum

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 4 / 9

The spectrum of a periodic signal is the values of Un versus nF .

The magnitude spectrum is the values of |Un| =

12

a2|n| + b2|n|

.

The power spectrum is the values of

|Un|2

=

14

(

a2|n| + b2|n|

)

.

Example:u(t) = 2 + 2 cos 2πFt+ 4 sin 2πFt− 2 sin 6πFt

Fourier Coefficients: a0:3 = [4, 2, 0, 0] b1:3 = [4, 0, −2]

Page 30: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Magnitude Spectrum and Power Spectrum

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 4 / 9

The spectrum of a periodic signal is the values of Un versus nF .

The magnitude spectrum is the values of |Un| =

12

a2|n| + b2|n|

.

The power spectrum is the values of

|Un|2

=

14

(

a2|n| + b2|n|

)

.

Example:u(t) = 2 + 2 cos 2πFt+ 4 sin 2πFt− 2 sin 6πFt

Fourier Coefficients: a0:3 = [4, 2, 0, 0] b1:3 = [4, 0, −2]

Spectrum: U−3:3 = [−i, 0, 1 + 2i, 2, 1− 2i, 0, i]

Page 31: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Magnitude Spectrum and Power Spectrum

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 4 / 9

The spectrum of a periodic signal is the values of Un versus nF .

The magnitude spectrum is the values of |Un| =

12

a2|n| + b2|n|

.

The power spectrum is the values of

|Un|2

=

14

(

a2|n| + b2|n|

)

.

Example:u(t) = 2 + 2 cos 2πFt+ 4 sin 2πFt− 2 sin 6πFt

Fourier Coefficients: a0:3 = [4, 2, 0, 0] b1:3 = [4, 0, −2]

Spectrum: U−3:3 = [−i, 0, 1 + 2i, 2, 1− 2i, 0, i]

Magnitude Spectrum: |U−3:3| =[

1, 0,√5, 2,

√5, 0, 1

]

-3 -2 -1 0 1 2 30

1

2

Frequency (Hz)

|Un|

Page 32: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Magnitude Spectrum and Power Spectrum

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 4 / 9

The spectrum of a periodic signal is the values of Un versus nF .

The magnitude spectrum is the values of |Un| =

12

a2|n| + b2|n|

.

The power spectrum is the values of

|Un|2

=

14

(

a2|n| + b2|n|

)

.

Example:u(t) = 2 + 2 cos 2πFt+ 4 sin 2πFt− 2 sin 6πFt

Fourier Coefficients: a0:3 = [4, 2, 0, 0] b1:3 = [4, 0, −2]

Spectrum: U−3:3 = [−i, 0, 1 + 2i, 2, 1− 2i, 0, i]

Magnitude Spectrum: |U−3:3| =[

1, 0,√5, 2,

√5, 0, 1

]

Power Spectrum:∣

∣U2−3:3

∣ = [1, 0, 5, 4, 5, 0, 1]

-3 -2 -1 0 1 2 30

1

2

Frequency (Hz)

|Un|

-3 -2 -1 0 1 2 30

5

Frequency (Hz)|U

n2 |

Page 33: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Magnitude Spectrum and Power Spectrum

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 4 / 9

The spectrum of a periodic signal is the values of Un versus nF .

The magnitude spectrum is the values of |Un| =

12

a2|n| + b2|n|

.

The power spectrum is the values of

|Un|2

=

14

(

a2|n| + b2|n|

)

.

Example:u(t) = 2 + 2 cos 2πFt+ 4 sin 2πFt− 2 sin 6πFt

Fourier Coefficients: a0:3 = [4, 2, 0, 0] b1:3 = [4, 0, −2]

Spectrum: U−3:3 = [−i, 0, 1 + 2i, 2, 1− 2i, 0, i]

Magnitude Spectrum: |U−3:3| =[

1, 0,√5, 2,

√5, 0, 1

]

Power Spectrum:∣

∣U2−3:3

∣ = [1, 0, 5, 4, 5, 0, 1] [∑

=⟨

u2(t)⟩

]

-3 -2 -1 0 1 2 30

1

2

Frequency (Hz)

|Un|

-3 -2 -1 0 1 2 30

5

Frequency (Hz)|U

n2 |

Σ=16

Page 34: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Magnitude Spectrum and Power Spectrum

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 4 / 9

The spectrum of a periodic signal is the values of Un versus nF .

The magnitude spectrum is the values of |Un| =

12

a2|n| + b2|n|

.

The power spectrum is the values of

|Un|2

=

14

(

a2|n| + b2|n|

)

.

Example:u(t) = 2 + 2 cos 2πFt+ 4 sin 2πFt− 2 sin 6πFt

Fourier Coefficients: a0:3 = [4, 2, 0, 0] b1:3 = [4, 0, −2]

Spectrum: U−3:3 = [−i, 0, 1 + 2i, 2, 1− 2i, 0, i]

Magnitude Spectrum: |U−3:3| =[

1, 0,√5, 2,

√5, 0, 1

]

Power Spectrum:∣

∣U2−3:3

∣ = [1, 0, 5, 4, 5, 0, 1] [∑

=⟨

u2(t)⟩

]

-3 -2 -1 0 1 2 30

1

2

Frequency (Hz)

|Un|

-3 -2 -1 0 1 2 30

5

Frequency (Hz)|U

n2 |

Σ=16

The magnitude and power spectra of a real periodic signal are symmetrical.

Page 35: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Magnitude Spectrum and Power Spectrum

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 4 / 9

The spectrum of a periodic signal is the values of Un versus nF .

The magnitude spectrum is the values of |Un| =

12

a2|n| + b2|n|

.

The power spectrum is the values of

|Un|2

=

14

(

a2|n| + b2|n|

)

.

Example:u(t) = 2 + 2 cos 2πFt+ 4 sin 2πFt− 2 sin 6πFt

Fourier Coefficients: a0:3 = [4, 2, 0, 0] b1:3 = [4, 0, −2]

Spectrum: U−3:3 = [−i, 0, 1 + 2i, 2, 1− 2i, 0, i]

Magnitude Spectrum: |U−3:3| =[

1, 0,√5, 2,

√5, 0, 1

]

Power Spectrum:∣

∣U2−3:3

∣ = [1, 0, 5, 4, 5, 0, 1] [∑

=⟨

u2(t)⟩

]

-3 -2 -1 0 1 2 30

1

2

Frequency (Hz)

|Un|

-3 -2 -1 0 1 2 30

5

Frequency (Hz)|U

n2 |

Σ=16

The magnitude and power spectra of a real periodic signal are symmetrical.

A one-sided power power spectrum shows U0 and then 2 |Un|2 for n ≥ 1.

Page 36: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Product of Signals

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 5 / 9

Suppose we have two signals with the same period, T = 1F

,

u(t) =∑∞

n=−∞ Unei2πnFt

v(t) =∑∞

m=−∞ Vnei2πmFt

Page 37: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Product of Signals

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 5 / 9

Suppose we have two signals with the same period, T = 1F

,

u(t) =∑∞

n=−∞ Unei2πnFt

v(t) =∑∞

m=−∞ Vnei2πmFt

If w(t) = u(t)v(t) then Wr =∑∞

m=−∞ Ur−mVm

Page 38: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Product of Signals

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 5 / 9

Suppose we have two signals with the same period, T = 1F

,

u(t) =∑∞

n=−∞ Unei2πnFt

v(t) =∑∞

m=−∞ Vnei2πmFt

If w(t) = u(t)v(t) then Wr =∑∞

m=−∞ Ur−mVm , Ur ∗ Vr

Page 39: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Product of Signals

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 5 / 9

Suppose we have two signals with the same period, T = 1F

,

u(t) =∑∞

n=−∞ Unei2πnFt

v(t) =∑∞

m=−∞ Vnei2πmFt

If w(t) = u(t)v(t) then Wr =∑∞

m=−∞ Ur−mVm , Ur ∗ Vr

Proof:w(t) = u(t)v(t)

Page 40: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Product of Signals

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 5 / 9

Suppose we have two signals with the same period, T = 1F

,

u(t) =∑∞

n=−∞ Unei2πnFt

v(t) =∑∞

m=−∞ Vnei2πmFt

If w(t) = u(t)v(t) then Wr =∑∞

m=−∞ Ur−mVm , Ur ∗ Vr

Proof:w(t) = u(t)v(t)=

∑∞n=−∞ Une

i2πnFt∑∞

m=−∞ Vmei2πmFt

Page 41: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Product of Signals

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 5 / 9

Suppose we have two signals with the same period, T = 1F

,

u(t) =∑∞

n=−∞ Unei2πnFt

v(t) =∑∞

m=−∞ Vnei2πmFt

If w(t) = u(t)v(t) then Wr =∑∞

m=−∞ Ur−mVm , Ur ∗ Vr

Proof:w(t) = u(t)v(t)=

∑∞n=−∞ Une

i2πnFt∑∞

m=−∞ Vmei2πmFt

=∑∞

n=−∞

∑∞m=−∞ UnVmei2π(m+n)Ft

Page 42: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Product of Signals

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 5 / 9

Suppose we have two signals with the same period, T = 1F

,

u(t) =∑∞

n=−∞ Unei2πnFt

v(t) =∑∞

m=−∞ Vnei2πmFt

If w(t) = u(t)v(t) then Wr =∑∞

m=−∞ Ur−mVm , Ur ∗ Vr

Proof:w(t) = u(t)v(t)=

∑∞n=−∞ Une

i2πnFt∑∞

m=−∞ Vmei2πmFt

=∑∞

n=−∞

∑∞m=−∞ UnVmei2π(m+n)Ft

Now we change the summation variable to use r instead of n:r = m+ n

Page 43: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Product of Signals

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 5 / 9

Suppose we have two signals with the same period, T = 1F

,

u(t) =∑∞

n=−∞ Unei2πnFt

v(t) =∑∞

m=−∞ Vnei2πmFt

If w(t) = u(t)v(t) then Wr =∑∞

m=−∞ Ur−mVm , Ur ∗ Vr

Proof:w(t) = u(t)v(t)=

∑∞n=−∞ Une

i2πnFt∑∞

m=−∞ Vmei2πmFt

=∑∞

n=−∞

∑∞m=−∞ UnVmei2π(m+n)Ft

Now we change the summation variable to use r instead of n:r = m+ n ⇒ n = r −m

Page 44: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Product of Signals

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 5 / 9

Suppose we have two signals with the same period, T = 1F

,

u(t) =∑∞

n=−∞ Unei2πnFt

v(t) =∑∞

m=−∞ Vnei2πmFt

If w(t) = u(t)v(t) then Wr =∑∞

m=−∞ Ur−mVm , Ur ∗ Vr

Proof:w(t) = u(t)v(t)=

∑∞n=−∞ Une

i2πnFt∑∞

m=−∞ Vmei2πmFt

=∑∞

n=−∞

∑∞m=−∞ UnVmei2π(m+n)Ft

Now we change the summation variable to use r instead of n:r = m+ n ⇒ n = r −m

This is a one-to-one mapping: every pair (m, n) in the range ±∞corresponds to exactly one pair (m, r) in the same range.

Page 45: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Product of Signals

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 5 / 9

Suppose we have two signals with the same period, T = 1F

,

u(t) =∑∞

n=−∞ Unei2πnFt

v(t) =∑∞

m=−∞ Vnei2πmFt

If w(t) = u(t)v(t) then Wr =∑∞

m=−∞ Ur−mVm , Ur ∗ Vr

Proof:w(t) = u(t)v(t)=

∑∞n=−∞ Une

i2πnFt∑∞

m=−∞ Vmei2πmFt

=∑∞

n=−∞

∑∞m=−∞ UnVmei2π(m+n)Ft

Now we change the summation variable to use r instead of n:r = m+ n ⇒ n = r −m

This is a one-to-one mapping: every pair (m, n) in the range ±∞corresponds to exactly one pair (m, r) in the same range.

w(t) =∑∞

r=−∞

∑∞m=−∞ Ur−mVmei2πrFt

Page 46: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Product of Signals

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 5 / 9

Suppose we have two signals with the same period, T = 1F

,

u(t) =∑∞

n=−∞ Unei2πnFt

v(t) =∑∞

m=−∞ Vnei2πmFt

If w(t) = u(t)v(t) then Wr =∑∞

m=−∞ Ur−mVm , Ur ∗ Vr

Proof:w(t) = u(t)v(t)=

∑∞n=−∞ Une

i2πnFt∑∞

m=−∞ Vmei2πmFt

=∑∞

n=−∞

∑∞m=−∞ UnVmei2π(m+n)Ft

Now we change the summation variable to use r instead of n:r = m+ n ⇒ n = r −m

This is a one-to-one mapping: every pair (m, n) in the range ±∞corresponds to exactly one pair (m, r) in the same range.

w(t) =∑∞

r=−∞

∑∞m=−∞ Ur−mVmei2πrFt=

∑∞r=−∞ Wre

i2πrFt

Page 47: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Product of Signals

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 5 / 9

Suppose we have two signals with the same period, T = 1F

,

u(t) =∑∞

n=−∞ Unei2πnFt

v(t) =∑∞

m=−∞ Vnei2πmFt

If w(t) = u(t)v(t) then Wr =∑∞

m=−∞ Ur−mVm , Ur ∗ Vr

Proof:w(t) = u(t)v(t)=

∑∞n=−∞ Une

i2πnFt∑∞

m=−∞ Vmei2πmFt

=∑∞

n=−∞

∑∞m=−∞ UnVmei2π(m+n)Ft

Now we change the summation variable to use r instead of n:r = m+ n ⇒ n = r −m

This is a one-to-one mapping: every pair (m, n) in the range ±∞corresponds to exactly one pair (m, r) in the same range.

w(t) =∑∞

r=−∞

∑∞m=−∞ Ur−mVmei2πrFt=

∑∞r=−∞ Wre

i2πrFt

where Wr =∑∞

m=−∞ Ur−mVm , Ur ∗ Vr .

Page 48: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Product of Signals

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 5 / 9

Suppose we have two signals with the same period, T = 1F

,

u(t) =∑∞

n=−∞ Unei2πnFt

v(t) =∑∞

m=−∞ Vnei2πmFt

If w(t) = u(t)v(t) then Wr =∑∞

m=−∞ Ur−mVm , Ur ∗ Vr

Proof:w(t) = u(t)v(t)=

∑∞n=−∞ Une

i2πnFt∑∞

m=−∞ Vmei2πmFt

=∑∞

n=−∞

∑∞m=−∞ UnVmei2π(m+n)Ft

Now we change the summation variable to use r instead of n:r = m+ n ⇒ n = r −m

This is a one-to-one mapping: every pair (m, n) in the range ±∞corresponds to exactly one pair (m, r) in the same range.

w(t) =∑∞

r=−∞

∑∞m=−∞ Ur−mVmei2πrFt=

∑∞r=−∞ Wre

i2πrFt

where Wr =∑∞

m=−∞ Ur−mVm , Ur ∗ Vr .

Wr is the sum of all products UnVm for which m+ n = r.

Page 49: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Product of Signals

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 5 / 9

Suppose we have two signals with the same period, T = 1F

,

u(t) =∑∞

n=−∞ Unei2πnFt

v(t) =∑∞

m=−∞ Vnei2πmFt

If w(t) = u(t)v(t) then Wr =∑∞

m=−∞ Ur−mVm , Ur ∗ Vr

Proof:w(t) = u(t)v(t)=

∑∞n=−∞ Une

i2πnFt∑∞

m=−∞ Vmei2πmFt

=∑∞

n=−∞

∑∞m=−∞ UnVmei2π(m+n)Ft

Now we change the summation variable to use r instead of n:r = m+ n ⇒ n = r −m

This is a one-to-one mapping: every pair (m, n) in the range ±∞corresponds to exactly one pair (m, r) in the same range.

w(t) =∑∞

r=−∞

∑∞m=−∞ Ur−mVmei2πrFt=

∑∞r=−∞ Wre

i2πrFt

where Wr =∑∞

m=−∞ Ur−mVm , Ur ∗ Vr .

Wr is the sum of all products UnVm for which m+ n = r.

The spectrum Wr = Ur ∗ Vr is called the convolution of Ur and Vr.

Page 50: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution Properties

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 6 / 9

Convolution behaves algebraically like multiplication:

Page 51: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution Properties

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 6 / 9

Convolution behaves algebraically like multiplication:

1) Commutative: Ur ∗ Vr = Vr ∗ Ur

Page 52: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution Properties

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 6 / 9

Convolution behaves algebraically like multiplication:

1) Commutative: Ur ∗ Vr = Vr ∗ Ur

2) Associative: Ur ∗ Vr ∗Wr = (Ur ∗ Vr) ∗Wr = Ur ∗ (Vr ∗Wr)

Page 53: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution Properties

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 6 / 9

Convolution behaves algebraically like multiplication:

1) Commutative: Ur ∗ Vr = Vr ∗ Ur

2) Associative: Ur ∗ Vr ∗Wr = (Ur ∗ Vr) ∗Wr = Ur ∗ (Vr ∗Wr)3) Distributive over addition: Wr ∗ (Ur + Vr) = Wr ∗ Ur +Wr ∗ Vr

Page 54: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution Properties

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 6 / 9

Convolution behaves algebraically like multiplication:

1) Commutative: Ur ∗ Vr = Vr ∗ Ur

2) Associative: Ur ∗ Vr ∗Wr = (Ur ∗ Vr) ∗Wr = Ur ∗ (Vr ∗Wr)3) Distributive over addition: Wr ∗ (Ur + Vr) = Wr ∗ Ur +Wr ∗ Vr

4) Identity Element or “1”: If Ir =

1 r = 0

0 r 6= 0, then Ir ∗ Ur = Ur

Page 55: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution Properties

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 6 / 9

Convolution behaves algebraically like multiplication:

1) Commutative: Ur ∗ Vr = Vr ∗ Ur

2) Associative: Ur ∗ Vr ∗Wr = (Ur ∗ Vr) ∗Wr = Ur ∗ (Vr ∗Wr)3) Distributive over addition: Wr ∗ (Ur + Vr) = Wr ∗ Ur +Wr ∗ Vr

4) Identity Element or “1”: If Ir =

1 r = 0

0 r 6= 0, then Ir ∗ Ur = Ur

Proofs: (all sums are over ±∞)

1) Substitute for m: n = r −m∑

mUr−mVm

Page 56: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution Properties

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 6 / 9

Convolution behaves algebraically like multiplication:

1) Commutative: Ur ∗ Vr = Vr ∗ Ur

2) Associative: Ur ∗ Vr ∗Wr = (Ur ∗ Vr) ∗Wr = Ur ∗ (Vr ∗Wr)3) Distributive over addition: Wr ∗ (Ur + Vr) = Wr ∗ Ur +Wr ∗ Vr

4) Identity Element or “1”: If Ir =

1 r = 0

0 r 6= 0, then Ir ∗ Ur = Ur

Proofs: (all sums are over ±∞)

1) Substitute for m: n = r −m⇔ m = r − n [1 ↔ 1 for any r]∑

mUr−mVm

Page 57: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution Properties

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 6 / 9

Convolution behaves algebraically like multiplication:

1) Commutative: Ur ∗ Vr = Vr ∗ Ur

2) Associative: Ur ∗ Vr ∗Wr = (Ur ∗ Vr) ∗Wr = Ur ∗ (Vr ∗Wr)3) Distributive over addition: Wr ∗ (Ur + Vr) = Wr ∗ Ur +Wr ∗ Vr

4) Identity Element or “1”: If Ir =

1 r = 0

0 r 6= 0, then Ir ∗ Ur = Ur

Proofs: (all sums are over ±∞)

1) Substitute for m: n = r −m⇔ m = r − n [1 ↔ 1 for any r]∑

mUr−mVm =

nUnVr−n

Page 58: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution Properties

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 6 / 9

Convolution behaves algebraically like multiplication:

1) Commutative: Ur ∗ Vr = Vr ∗ Ur

2) Associative: Ur ∗ Vr ∗Wr = (Ur ∗ Vr) ∗Wr = Ur ∗ (Vr ∗Wr)3) Distributive over addition: Wr ∗ (Ur + Vr) = Wr ∗ Ur +Wr ∗ Vr

4) Identity Element or “1”: If Ir =

1 r = 0

0 r 6= 0, then Ir ∗ Ur = Ur

Proofs: (all sums are over ±∞)

1) Substitute for m: n = r −m⇔ m = r − n [1 ↔ 1 for any r]∑

mUr−mVm =

nUnVr−n

2) Substitute for n: k = r +m− n∑

n((∑

mUn−mVm)Wr−n)

Page 59: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution Properties

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 6 / 9

Convolution behaves algebraically like multiplication:

1) Commutative: Ur ∗ Vr = Vr ∗ Ur

2) Associative: Ur ∗ Vr ∗Wr = (Ur ∗ Vr) ∗Wr = Ur ∗ (Vr ∗Wr)3) Distributive over addition: Wr ∗ (Ur + Vr) = Wr ∗ Ur +Wr ∗ Vr

4) Identity Element or “1”: If Ir =

1 r = 0

0 r 6= 0, then Ir ∗ Ur = Ur

Proofs: (all sums are over ±∞)

1) Substitute for m: n = r −m⇔ m = r − n [1 ↔ 1 for any r]∑

mUr−mVm =

nUnVr−n

2) Substitute for n: k = r +m− n⇔ n = r +m− k [1 ↔ 1]∑

n((∑

mUn−mVm)Wr−n)

Page 60: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution Properties

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 6 / 9

Convolution behaves algebraically like multiplication:

1) Commutative: Ur ∗ Vr = Vr ∗ Ur

2) Associative: Ur ∗ Vr ∗Wr = (Ur ∗ Vr) ∗Wr = Ur ∗ (Vr ∗Wr)3) Distributive over addition: Wr ∗ (Ur + Vr) = Wr ∗ Ur +Wr ∗ Vr

4) Identity Element or “1”: If Ir =

1 r = 0

0 r 6= 0, then Ir ∗ Ur = Ur

Proofs: (all sums are over ±∞)

1) Substitute for m: n = r −m⇔ m = r − n [1 ↔ 1 for any r]∑

mUr−mVm =

nUnVr−n

2) Substitute for n: k = r +m− n⇔ n = r +m− k [1 ↔ 1]∑

n((∑

mUn−mVm)Wr−n)=

k((∑

mUr−kVm)Wk−m)

Page 61: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution Properties

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 6 / 9

Convolution behaves algebraically like multiplication:

1) Commutative: Ur ∗ Vr = Vr ∗ Ur

2) Associative: Ur ∗ Vr ∗Wr = (Ur ∗ Vr) ∗Wr = Ur ∗ (Vr ∗Wr)3) Distributive over addition: Wr ∗ (Ur + Vr) = Wr ∗ Ur +Wr ∗ Vr

4) Identity Element or “1”: If Ir =

1 r = 0

0 r 6= 0, then Ir ∗ Ur = Ur

Proofs: (all sums are over ±∞)

1) Substitute for m: n = r −m⇔ m = r − n [1 ↔ 1 for any r]∑

mUr−mVm =

nUnVr−n

2) Substitute for n: k = r +m− n⇔ n = r +m− k [1 ↔ 1]∑

n((∑

mUn−mVm)Wr−n)=

k((∑

mUr−kVm)Wk−m)

=∑

k

mUr−kVmWk−m

Page 62: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution Properties

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 6 / 9

Convolution behaves algebraically like multiplication:

1) Commutative: Ur ∗ Vr = Vr ∗ Ur

2) Associative: Ur ∗ Vr ∗Wr = (Ur ∗ Vr) ∗Wr = Ur ∗ (Vr ∗Wr)3) Distributive over addition: Wr ∗ (Ur + Vr) = Wr ∗ Ur +Wr ∗ Vr

4) Identity Element or “1”: If Ir =

1 r = 0

0 r 6= 0, then Ir ∗ Ur = Ur

Proofs: (all sums are over ±∞)

1) Substitute for m: n = r −m⇔ m = r − n [1 ↔ 1 for any r]∑

mUr−mVm =

nUnVr−n

2) Substitute for n: k = r +m− n⇔ n = r +m− k [1 ↔ 1]∑

n((∑

mUn−mVm)Wr−n)=

k((∑

mUr−kVm)Wk−m)

=∑

k

mUr−kVmWk−m=

k(Ur−k (

mVmWk−m))

Page 63: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution Properties

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 6 / 9

Convolution behaves algebraically like multiplication:

1) Commutative: Ur ∗ Vr = Vr ∗ Ur

2) Associative: Ur ∗ Vr ∗Wr = (Ur ∗ Vr) ∗Wr = Ur ∗ (Vr ∗Wr)3) Distributive over addition: Wr ∗ (Ur + Vr) = Wr ∗ Ur +Wr ∗ Vr

4) Identity Element or “1”: If Ir =

1 r = 0

0 r 6= 0, then Ir ∗ Ur = Ur

Proofs: (all sums are over ±∞)

1) Substitute for m: n = r −m⇔ m = r − n [1 ↔ 1 for any r]∑

mUr−mVm =

nUnVr−n

2) Substitute for n: k = r +m− n⇔ n = r +m− k [1 ↔ 1]∑

n((∑

mUn−mVm)Wr−n)=

k((∑

mUr−kVm)Wk−m)

=∑

k

mUr−kVmWk−m=

k(Ur−k (

mVmWk−m))

3)∑

mWr−m (Um + Vm)=

mWr−mUm +

mWr−mVm

Page 64: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution Properties

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 6 / 9

Convolution behaves algebraically like multiplication:

1) Commutative: Ur ∗ Vr = Vr ∗ Ur

2) Associative: Ur ∗ Vr ∗Wr = (Ur ∗ Vr) ∗Wr = Ur ∗ (Vr ∗Wr)3) Distributive over addition: Wr ∗ (Ur + Vr) = Wr ∗ Ur +Wr ∗ Vr

4) Identity Element or “1”: If Ir =

1 r = 0

0 r 6= 0, then Ir ∗ Ur = Ur

Proofs: (all sums are over ±∞)

1) Substitute for m: n = r −m⇔ m = r − n [1 ↔ 1 for any r]∑

mUr−mVm =

nUnVr−n

2) Substitute for n: k = r +m− n⇔ n = r +m− k [1 ↔ 1]∑

n((∑

mUn−mVm)Wr−n)=

k((∑

mUr−kVm)Wk−m)

=∑

k

mUr−kVmWk−m=

k(Ur−k (

mVmWk−m))

3)∑

mWr−m (Um + Vm)=

mWr−mUm +

mWr−mVm

4) Ir−mUm = 0 unless m = r.

Page 65: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution Properties

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 6 / 9

Convolution behaves algebraically like multiplication:

1) Commutative: Ur ∗ Vr = Vr ∗ Ur

2) Associative: Ur ∗ Vr ∗Wr = (Ur ∗ Vr) ∗Wr = Ur ∗ (Vr ∗Wr)3) Distributive over addition: Wr ∗ (Ur + Vr) = Wr ∗ Ur +Wr ∗ Vr

4) Identity Element or “1”: If Ir =

1 r = 0

0 r 6= 0, then Ir ∗ Ur = Ur

Proofs: (all sums are over ±∞)

1) Substitute for m: n = r −m⇔ m = r − n [1 ↔ 1 for any r]∑

mUr−mVm =

nUnVr−n

2) Substitute for n: k = r +m− n⇔ n = r +m− k [1 ↔ 1]∑

n((∑

mUn−mVm)Wr−n)=

k((∑

mUr−kVm)Wk−m)

=∑

k

mUr−kVmWk−m=

k(Ur−k (

mVmWk−m))

3)∑

mWr−m (Um + Vm)=

mWr−mUm +

mWr−mVm

4) Ir−mUm = 0 unless m = r. Hence∑

mIr−mUm = Ur.

Page 66: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution Example

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 7 / 9

u(t) = 10 + 8 sin 2πt

-2 -1 0 1 20

10u(

t)

Time (s)

Page 67: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution Example

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 7 / 9

u(t) = 10 + 8 sin 2πtU−1:1 = [4i, 10, −4i]

-2 -1 0 1 20

10u(

t)

Time (s)

Page 68: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution Example

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 7 / 9

u(t) = 10 + 8 sin 2πtU−1:1 = [4i, 10, −4i]

-2 -1 0 1 20

10u(

t)

Time (s)

-1 0 10

5

10

Frequency (Hz)

|Un|

Page 69: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution Example

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 7 / 9

u(t) = 10 + 8 sin 2πt v(t) = 4 cos 6πtU−1:1 = [4i, 10, −4i]

-2 -1 0 1 20

10u(

t)

Time (s)-2 -1 0 1 2

-4-2024

v(t)

Time (s)

-1 0 10

5

10

Frequency (Hz)

|Un|

Page 70: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution Example

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 7 / 9

u(t) = 10 + 8 sin 2πt v(t) = 4 cos 6πtU−1:1 = [4i, 10, −4i] V−3:3 = [2, 0, 0, 0, 0, 0, 2] [0 = V0]

-2 -1 0 1 20

10u(

t)

Time (s)-2 -1 0 1 2

-4-2024

v(t)

Time (s)

-1 0 10

5

10

Frequency (Hz)

|Un|

Page 71: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution Example

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 7 / 9

u(t) = 10 + 8 sin 2πt v(t) = 4 cos 6πtU−1:1 = [4i, 10, −4i] V−3:3 = [2, 0, 0, 0, 0, 0, 2] [0 = V0]

-2 -1 0 1 20

10u(

t)

Time (s)-2 -1 0 1 2

-4-2024

v(t)

Time (s)

-1 0 10

5

10

Frequency (Hz)

|Un|

-3 -2 -1 0 1 2 30

1

2

Frequency (Hz)

|Vn|

Page 72: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution Example

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 7 / 9

u(t) = 10 + 8 sin 2πt v(t) = 4 cos 6πtU−1:1 = [4i, 10, −4i] V−3:3 = [2, 0, 0, 0, 0, 0, 2] [0 = V0]

-2 -1 0 1 20

10u(

t)

Time (s)-2 -1 0 1 2

-4-2024

v(t)

Time (s)-2 -1 0 1 2

-50

0

50

w(t

)

Time (s)

-1 0 10

5

10

Frequency (Hz)

|Un|

-3 -2 -1 0 1 2 30

1

2

Frequency (Hz)

|Vn|

w(t) = u(t)v(t)

Page 73: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution Example

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 7 / 9

u(t) = 10 + 8 sin 2πt v(t) = 4 cos 6πtU−1:1 = [4i, 10, −4i] V−3:3 = [2, 0, 0, 0, 0, 0, 2] [0 = V0]

-2 -1 0 1 20

10u(

t)

Time (s)-2 -1 0 1 2

-4-2024

v(t)

Time (s)-2 -1 0 1 2

-50

0

50

w(t

)

Time (s)

-1 0 10

5

10

Frequency (Hz)

|Un|

-3 -2 -1 0 1 2 30

1

2

Frequency (Hz)

|Vn|

w(t) = u(t)v(t)= (10 + 8 sin 2πt) 4 cos 6πt

Page 74: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution Example

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 7 / 9

u(t) = 10 + 8 sin 2πt v(t) = 4 cos 6πtU−1:1 = [4i, 10, −4i] V−3:3 = [2, 0, 0, 0, 0, 0, 2] [0 = V0]

-2 -1 0 1 20

10u(

t)

Time (s)-2 -1 0 1 2

-4-2024

v(t)

Time (s)-2 -1 0 1 2

-50

0

50

w(t

)

Time (s)

-1 0 10

5

10

Frequency (Hz)

|Un|

-3 -2 -1 0 1 2 30

1

2

Frequency (Hz)

|Vn|

w(t) = u(t)v(t)= (10 + 8 sin 2πt) 4 cos 6πt

= 40 cos 6πt+ 32 sin 2πt cos 6πt

Page 75: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution Example

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 7 / 9

u(t) = 10 + 8 sin 2πt v(t) = 4 cos 6πtU−1:1 = [4i, 10, −4i] V−3:3 = [2, 0, 0, 0, 0, 0, 2] [0 = V0]

-2 -1 0 1 20

10u(

t)

Time (s)-2 -1 0 1 2

-4-2024

v(t)

Time (s)-2 -1 0 1 2

-50

0

50

w(t

)

Time (s)

-1 0 10

5

10

Frequency (Hz)

|Un|

-3 -2 -1 0 1 2 30

1

2

Frequency (Hz)

|Vn|

w(t) = u(t)v(t)= (10 + 8 sin 2πt) 4 cos 6πt

= 40 cos 6πt+ 32 sin 2πt cos 6πt

= 40 cos 6πt+ 16 sin 8πt− 16 sin 4πt

Page 76: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution Example

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 7 / 9

u(t) = 10 + 8 sin 2πt v(t) = 4 cos 6πtU−1:1 = [4i, 10, −4i] V−3:3 = [2, 0, 0, 0, 0, 0, 2] [0 = V0]

-2 -1 0 1 20

10u(

t)

Time (s)-2 -1 0 1 2

-4-2024

v(t)

Time (s)-2 -1 0 1 2

-50

0

50

w(t

)

Time (s)

-1 0 10

5

10

Frequency (Hz)

|Un|

-3 -2 -1 0 1 2 30

1

2

Frequency (Hz)

|Vn|

w(t) = u(t)v(t)= (10 + 8 sin 2πt) 4 cos 6πt

= 40 cos 6πt+ 32 sin 2πt cos 6πt

= 40 cos 6πt+ 16 sin 8πt− 16 sin 4πt

W−4:4 = [8i, 20, −8i, 0, 0, 0, 8i, 20, −8i]

Page 77: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution Example

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 7 / 9

u(t) = 10 + 8 sin 2πt v(t) = 4 cos 6πtU−1:1 = [4i, 10, −4i] V−3:3 = [2, 0, 0, 0, 0, 0, 2] [0 = V0]

-2 -1 0 1 20

10u(

t)

Time (s)-2 -1 0 1 2

-4-2024

v(t)

Time (s)-2 -1 0 1 2

-50

0

50

w(t

)

Time (s)

-1 0 10

5

10

Frequency (Hz)

|Un|

-3 -2 -1 0 1 2 30

1

2

Frequency (Hz)

|Vn|

-4 -3 -2 -1 0 1 2 3 40

10

20

Frequency (Hz)

|Wn|

w(t) = u(t)v(t)= (10 + 8 sin 2πt) 4 cos 6πt

= 40 cos 6πt+ 32 sin 2πt cos 6πt

= 40 cos 6πt+ 16 sin 8πt− 16 sin 4πt

W−4:4 = [8i, 20, −8i, 0, 0, 0, 8i, 20, −8i]

Page 78: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution Example

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 7 / 9

u(t) = 10 + 8 sin 2πt v(t) = 4 cos 6πtU−1:1 = [4i, 10, −4i] V−3:3 = [2, 0, 0, 0, 0, 0, 2] [0 = V0]

-2 -1 0 1 20

10u(

t)

Time (s)-2 -1 0 1 2

-4-2024

v(t)

Time (s)-2 -1 0 1 2

-50

0

50

w(t

)

Time (s)

-1 0 10

5

10

Frequency (Hz)

|Un|

-3 -2 -1 0 1 2 30

1

2

Frequency (Hz)

|Vn|

-4 -3 -2 -1 0 1 2 3 40

10

20

Frequency (Hz)

|Wn|

w(t) = u(t)v(t)= (10 + 8 sin 2πt) 4 cos 6πt

= 40 cos 6πt+ 32 sin 2πt cos 6πt

= 40 cos 6πt+ 16 sin 8πt− 16 sin 4πt

W−4:4 = [8i, 20, −8i, 0, 0, 0, 8i, 20, −8i]

To convolve Un and Vn:

Page 79: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution Example

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 7 / 9

u(t) = 10 + 8 sin 2πt v(t) = 4 cos 6πtU−1:1 = [4i, 10, −4i] V−3:3 = [2, 0, 0, 0, 0, 0, 2] [0 = V0]

-2 -1 0 1 20

10u(

t)

Time (s)-2 -1 0 1 2

-4-2024

v(t)

Time (s)-2 -1 0 1 2

-50

0

50

w(t

)

Time (s)

-1 0 10

5

10

Frequency (Hz)

|Un|

-3 -2 -1 0 1 2 30

1

2

Frequency (Hz)

|Vn|

-4 -3 -2 -1 0 1 2 3 40

10

20

Frequency (Hz)

|Wn|

w(t) = u(t)v(t)= (10 + 8 sin 2πt) 4 cos 6πt

= 40 cos 6πt+ 32 sin 2πt cos 6πt

= 40 cos 6πt+ 16 sin 8πt− 16 sin 4πt

W−4:4 = [8i, 20, −8i, 0, 0, 0, 8i, 20, −8i]

To convolve Un and Vn:Replace each harmonic in Vn by a scaled copy of the entire Un

and sum the complex-valued coefficients of anyoverlapping harmonics.

Page 80: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution Example

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 7 / 9

u(t) = 10 + 8 sin 2πt v(t) = 4 cos 6πtU−1:1 = [4i, 10, −4i] V−3:3 = [2, 0, 0, 0, 0, 0, 2] [0 = V0]

-2 -1 0 1 20

10u(

t)

Time (s)-2 -1 0 1 2

-4-2024

v(t)

Time (s)-2 -1 0 1 2

-50

0

50

w(t

)

Time (s)

-1 0 10

5

10

Frequency (Hz)

|Un|

-3 -2 -1 0 1 2 30

1

2

Frequency (Hz)

|Vn|

-4 -3 -2 -1 0 1 2 3 40

10

20

Frequency (Hz)

|Wn|

w(t) = u(t)v(t)= (10 + 8 sin 2πt) 4 cos 6πt

= 40 cos 6πt+ 32 sin 2πt cos 6πt

= 40 cos 6πt+ 16 sin 8πt− 16 sin 4πt

W−4:4 = [8i, 20, −8i, 0, 0, 0, 8i, 20, −8i]

To convolve Un and Vn:Replace each harmonic in Vn by a scaled copy of the entire Un(or vice versa) and sum the complex-valued coefficients of anyoverlapping harmonics.

Page 81: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution and Polynomial Multiplication

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 8 / 9

Two polynomials: u(x) = U3x3 + U2x

2 + U1x+ U0

v(x) = V2x2 + V1x+ V0

Page 82: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution and Polynomial Multiplication

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 8 / 9

Two polynomials: u(x) = U3x3 + U2x

2 + U1x+ U0

v(x) = V2x2 + V1x+ V0

Now multiply the two polynomials together:w(x) = u(x)v(x)

Page 83: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution and Polynomial Multiplication

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 8 / 9

Two polynomials: u(x) = U3x3 + U2x

2 + U1x+ U0

v(x) = V2x2 + V1x+ V0

Now multiply the two polynomials together:w(x) = u(x)v(x)

= U3V2x5

Page 84: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution and Polynomial Multiplication

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 8 / 9

Two polynomials: u(x) = U3x3 + U2x

2 + U1x+ U0

v(x) = V2x2 + V1x+ V0

Now multiply the two polynomials together:w(x) = u(x)v(x)

= U3V2x5 +(U3V1 + U2V2) x

4

Page 85: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution and Polynomial Multiplication

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 8 / 9

Two polynomials: u(x) = U3x3 + U2x

2 + U1x+ U0

v(x) = V2x2 + V1x+ V0

Now multiply the two polynomials together:w(x) = u(x)v(x)

= U3V2x5 +(U3V1 + U2V2) x

4 +(U3V0 + U2V1 + U1V2)x3

Page 86: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution and Polynomial Multiplication

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 8 / 9

Two polynomials: u(x) = U3x3 + U2x

2 + U1x+ U0

v(x) = V2x2 + V1x+ V0

Now multiply the two polynomials together:w(x) = u(x)v(x)

= U3V2x5 +(U3V1 + U2V2) x

4 +(U3V0 + U2V1 + U1V2)x3

+(U2V0 + U1V1 + U0V2)x2

Page 87: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution and Polynomial Multiplication

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 8 / 9

Two polynomials: u(x) = U3x3 + U2x

2 + U1x+ U0

v(x) = V2x2 + V1x+ V0

Now multiply the two polynomials together:w(x) = u(x)v(x)

= U3V2x5 +(U3V1 + U2V2) x

4 +(U3V0 + U2V1 + U1V2)x3

+(U2V0 + U1V1 + U0V2)x2 +(U1V0 + U0V1)x

Page 88: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution and Polynomial Multiplication

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 8 / 9

Two polynomials: u(x) = U3x3 + U2x

2 + U1x+ U0

v(x) = V2x2 + V1x+ V0

Now multiply the two polynomials together:w(x) = u(x)v(x)

= U3V2x5 +(U3V1 + U2V2) x

4 +(U3V0 + U2V1 + U1V2)x3

+(U2V0 + U1V1 + U0V2)x2 +(U1V0 + U0V1)x+U0V0

Page 89: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution and Polynomial Multiplication

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 8 / 9

Two polynomials: u(x) = U3x3 + U2x

2 + U1x+ U0

v(x) = V2x2 + V1x+ V0

Now multiply the two polynomials together:w(x) = u(x)v(x)

= U3V2x5 +(U3V1 + U2V2) x

4 +(U3V0 + U2V1 + U1V2)x3

+(U2V0 + U1V1 + U0V2)x2 +(U1V0 + U0V1)x+U0V0

The coefficient of xr consists of all the coefficient pair from U and V wherethe subscripts add up to r.

Page 90: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution and Polynomial Multiplication

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 8 / 9

Two polynomials: u(x) = U3x3 + U2x

2 + U1x+ U0

v(x) = V2x2 + V1x+ V0

Now multiply the two polynomials together:w(x) = u(x)v(x)

= U3V2x5 +(U3V1 + U2V2) x

4 +(U3V0 + U2V1 + U1V2)x3

+(U2V0 + U1V1 + U0V2)x2 +(U1V0 + U0V1)x+U0V0

The coefficient of xr consists of all the coefficient pair from U and V wherethe subscripts add up to r. For example, for r = 3:

W3 = U3V0 + U2V1 + U1V2

Page 91: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution and Polynomial Multiplication

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 8 / 9

Two polynomials: u(x) = U3x3 + U2x

2 + U1x+ U0

v(x) = V2x2 + V1x+ V0

Now multiply the two polynomials together:w(x) = u(x)v(x)

= U3V2x5 +(U3V1 + U2V2) x

4 +(U3V0 + U2V1 + U1V2)x3

+(U2V0 + U1V1 + U0V2)x2 +(U1V0 + U0V1)x+U0V0

The coefficient of xr consists of all the coefficient pair from U and V wherethe subscripts add up to r. For example, for r = 3:

W3 = U3V0 + U2V1 + U1V2 =∑2

m=0 U3−mVm

Page 92: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution and Polynomial Multiplication

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 8 / 9

Two polynomials: u(x) = U3x3 + U2x

2 + U1x+ U0

v(x) = V2x2 + V1x+ V0

Now multiply the two polynomials together:w(x) = u(x)v(x)

= U3V2x5 +(U3V1 + U2V2) x

4 +(U3V0 + U2V1 + U1V2)x3

+(U2V0 + U1V1 + U0V2)x2 +(U1V0 + U0V1)x+U0V0

The coefficient of xr consists of all the coefficient pair from U and V wherethe subscripts add up to r. For example, for r = 3:

W3 = U3V0 + U2V1 + U1V2 =∑2

m=0 U3−mVm

If all the missing coefficients are assumed to be zero, we can write

Wr =∑∞

m=−∞ Ur−mVm

Page 93: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution and Polynomial Multiplication

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 8 / 9

Two polynomials: u(x) = U3x3 + U2x

2 + U1x+ U0

v(x) = V2x2 + V1x+ V0

Now multiply the two polynomials together:w(x) = u(x)v(x)

= U3V2x5 +(U3V1 + U2V2) x

4 +(U3V0 + U2V1 + U1V2)x3

+(U2V0 + U1V1 + U0V2)x2 +(U1V0 + U0V1)x+U0V0

The coefficient of xr consists of all the coefficient pair from U and V wherethe subscripts add up to r. For example, for r = 3:

W3 = U3V0 + U2V1 + U1V2 =∑2

m=0 U3−mVm

If all the missing coefficients are assumed to be zero, we can write

Wr =∑∞

m=−∞ Ur−mVm, Ur ∗ Vr

Page 94: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution and Polynomial Multiplication

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 8 / 9

Two polynomials: u(x) = U3x3 + U2x

2 + U1x+ U0

v(x) = V2x2 + V1x+ V0

Now multiply the two polynomials together:w(x) = u(x)v(x)

= U3V2x5 +(U3V1 + U2V2) x

4 +(U3V0 + U2V1 + U1V2)x3

+(U2V0 + U1V1 + U0V2)x2 +(U1V0 + U0V1)x+U0V0

The coefficient of xr consists of all the coefficient pair from U and V wherethe subscripts add up to r. For example, for r = 3:

W3 = U3V0 + U2V1 + U1V2 =∑2

m=0 U3−mVm

If all the missing coefficients are assumed to be zero, we can write

Wr =∑∞

m=−∞ Ur−mVm, Ur ∗ Vr

So, to multiply two polynomials, you convolve their coefficient sequences.

Page 95: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution and Polynomial Multiplication

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 8 / 9

Two polynomials: u(x) = U3x3 + U2x

2 + U1x+ U0

v(x) = V2x2 + V1x+ V0

Now multiply the two polynomials together:w(x) = u(x)v(x)

= U3V2x5 +(U3V1 + U2V2) x

4 +(U3V0 + U2V1 + U1V2)x3

+(U2V0 + U1V1 + U0V2)x2 +(U1V0 + U0V1)x+U0V0

The coefficient of xr consists of all the coefficient pair from U and V wherethe subscripts add up to r. For example, for r = 3:

W3 = U3V0 + U2V1 + U1V2 =∑2

m=0 U3−mVm

If all the missing coefficients are assumed to be zero, we can write

Wr =∑∞

m=−∞ Ur−mVm, Ur ∗ Vr

So, to multiply two polynomials, you convolve their coefficient sequences.

Actually, the complex Fourier Series is iust a polynomial:

u(t) =∑∞

n=−∞ Unei2πnFt

Page 96: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Convolution and Polynomial Multiplication

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 8 / 9

Two polynomials: u(x) = U3x3 + U2x

2 + U1x+ U0

v(x) = V2x2 + V1x+ V0

Now multiply the two polynomials together:w(x) = u(x)v(x)

= U3V2x5 +(U3V1 + U2V2) x

4 +(U3V0 + U2V1 + U1V2)x3

+(U2V0 + U1V1 + U0V2)x2 +(U1V0 + U0V1)x+U0V0

The coefficient of xr consists of all the coefficient pair from U and V wherethe subscripts add up to r. For example, for r = 3:

W3 = U3V0 + U2V1 + U1V2 =∑2

m=0 U3−mVm

If all the missing coefficients are assumed to be zero, we can write

Wr =∑∞

m=−∞ Ur−mVm, Ur ∗ Vr

So, to multiply two polynomials, you convolve their coefficient sequences.

Actually, the complex Fourier Series is iust a polynomial:

u(t) =∑∞

n=−∞ Unei2πnFt =

∑∞n=−∞ Un

(

ei2πFt)n

Page 97: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Summary

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 9 / 9

• Parseval’s Theorem: 〈u∗(t)v(t)〉 =∑∞

n=−∞ U∗nVn

Page 98: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Summary

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 9 / 9

• Parseval’s Theorem: 〈u∗(t)v(t)〉 =∑∞

n=−∞ U∗nVn

Power Conservation:⟨

|u(t)|2⟩

=∑∞

n=−∞ |Un|2

Page 99: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Summary

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 9 / 9

• Parseval’s Theorem: 〈u∗(t)v(t)〉 =∑∞

n=−∞ U∗nVn

Power Conservation:⟨

|u(t)|2⟩

=∑∞

n=−∞ |Un|2

or in terms of an and bn:⟨

|u(t)|2⟩

= 14a

20 +

12

∑∞n=1

(

a2n+ b2

n

)

Page 100: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Summary

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 9 / 9

• Parseval’s Theorem: 〈u∗(t)v(t)〉 =∑∞

n=−∞ U∗nVn

Power Conservation:⟨

|u(t)|2⟩

=∑∞

n=−∞ |Un|2

or in terms of an and bn:⟨

|u(t)|2⟩

= 14a

20 +

12

∑∞n=1

(

a2n+ b2

n

)

• Linearity: w(t) = au(t) + bv(t) ⇔ Wn = aUn + bVn

Page 101: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Summary

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 9 / 9

• Parseval’s Theorem: 〈u∗(t)v(t)〉 =∑∞

n=−∞ U∗nVn

Power Conservation:⟨

|u(t)|2⟩

=∑∞

n=−∞ |Un|2

or in terms of an and bn:⟨

|u(t)|2⟩

= 14a

20 +

12

∑∞n=1

(

a2n+ b2

n

)

• Linearity: w(t) = au(t) + bv(t) ⇔ Wn = aUn + bVn

• Product of signals ⇔ Convolution of complex Fourier coefficients:w(t) = u(t)v(t) ⇔ Wn = Un ∗ Vn

Page 102: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Summary

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 9 / 9

• Parseval’s Theorem: 〈u∗(t)v(t)〉 =∑∞

n=−∞ U∗nVn

Power Conservation:⟨

|u(t)|2⟩

=∑∞

n=−∞ |Un|2

or in terms of an and bn:⟨

|u(t)|2⟩

= 14a

20 +

12

∑∞n=1

(

a2n+ b2

n

)

• Linearity: w(t) = au(t) + bv(t) ⇔ Wn = aUn + bVn

• Product of signals ⇔ Convolution of complex Fourier coefficients:w(t) = u(t)v(t) ⇔ Wn = Un ∗ Vn ,

∑∞m=−∞ Un−mVm

Page 103: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Summary

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 9 / 9

• Parseval’s Theorem: 〈u∗(t)v(t)〉 =∑∞

n=−∞ U∗nVn

Power Conservation:⟨

|u(t)|2⟩

=∑∞

n=−∞ |Un|2

or in terms of an and bn:⟨

|u(t)|2⟩

= 14a

20 +

12

∑∞n=1

(

a2n+ b2

n

)

• Linearity: w(t) = au(t) + bv(t) ⇔ Wn = aUn + bVn

• Product of signals ⇔ Convolution of complex Fourier coefficients:w(t) = u(t)v(t) ⇔ Wn = Un ∗ Vn ,

∑∞m=−∞ Un−mVm

• Convolution acts like multiplication: Commutative: U ∗ V = V ∗ U

Page 104: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Summary

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 9 / 9

• Parseval’s Theorem: 〈u∗(t)v(t)〉 =∑∞

n=−∞ U∗nVn

Power Conservation:⟨

|u(t)|2⟩

=∑∞

n=−∞ |Un|2

or in terms of an and bn:⟨

|u(t)|2⟩

= 14a

20 +

12

∑∞n=1

(

a2n+ b2

n

)

• Linearity: w(t) = au(t) + bv(t) ⇔ Wn = aUn + bVn

• Product of signals ⇔ Convolution of complex Fourier coefficients:w(t) = u(t)v(t) ⇔ Wn = Un ∗ Vn ,

∑∞m=−∞ Un−mVm

• Convolution acts like multiplication: Commutative: U ∗ V = V ∗ U Associative: U ∗ V ∗W is unambiguous

Page 105: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Summary

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 9 / 9

• Parseval’s Theorem: 〈u∗(t)v(t)〉 =∑∞

n=−∞ U∗nVn

Power Conservation:⟨

|u(t)|2⟩

=∑∞

n=−∞ |Un|2

or in terms of an and bn:⟨

|u(t)|2⟩

= 14a

20 +

12

∑∞n=1

(

a2n+ b2

n

)

• Linearity: w(t) = au(t) + bv(t) ⇔ Wn = aUn + bVn

• Product of signals ⇔ Convolution of complex Fourier coefficients:w(t) = u(t)v(t) ⇔ Wn = Un ∗ Vn ,

∑∞m=−∞ Un−mVm

• Convolution acts like multiplication: Commutative: U ∗ V = V ∗ U Associative: U ∗ V ∗W is unambiguous Distributes over addition: U ∗ (V +W ) = U ∗ V + U ∗W

Page 106: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Summary

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 9 / 9

• Parseval’s Theorem: 〈u∗(t)v(t)〉 =∑∞

n=−∞ U∗nVn

Power Conservation:⟨

|u(t)|2⟩

=∑∞

n=−∞ |Un|2

or in terms of an and bn:⟨

|u(t)|2⟩

= 14a

20 +

12

∑∞n=1

(

a2n+ b2

n

)

• Linearity: w(t) = au(t) + bv(t) ⇔ Wn = aUn + bVn

• Product of signals ⇔ Convolution of complex Fourier coefficients:w(t) = u(t)v(t) ⇔ Wn = Un ∗ Vn ,

∑∞m=−∞ Un−mVm

• Convolution acts like multiplication: Commutative: U ∗ V = V ∗ U Associative: U ∗ V ∗W is unambiguous Distributes over addition: U ∗ (V +W ) = U ∗ V + U ∗W Has an identity: Ir = 1 if r = 0 and = 0 otherwise

Page 107: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Summary

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 9 / 9

• Parseval’s Theorem: 〈u∗(t)v(t)〉 =∑∞

n=−∞ U∗nVn

Power Conservation:⟨

|u(t)|2⟩

=∑∞

n=−∞ |Un|2

or in terms of an and bn:⟨

|u(t)|2⟩

= 14a

20 +

12

∑∞n=1

(

a2n+ b2

n

)

• Linearity: w(t) = au(t) + bv(t) ⇔ Wn = aUn + bVn

• Product of signals ⇔ Convolution of complex Fourier coefficients:w(t) = u(t)v(t) ⇔ Wn = Un ∗ Vn ,

∑∞m=−∞ Un−mVm

• Convolution acts like multiplication: Commutative: U ∗ V = V ∗ U Associative: U ∗ V ∗W is unambiguous Distributes over addition: U ∗ (V +W ) = U ∗ V + U ∗W Has an identity: Ir = 1 if r = 0 and = 0 otherwise

• Polynomial multiplication ⇔ convolution of coefficients

Page 108: 4: Parseval’s Theorem and Convolution · Convolution •Parseval’s Theorem (a.k.a. Plancherel’s Theorem) •Power Conservation •Magnitude Spectrum and Power Spectrum •Product

Summary

4: Parseval’s Theorem andConvolution• Parseval’s Theorem (a.k.a.Plancherel’s Theorem)

• Power Conservation• Magnitude Spectrum andPower Spectrum

• Product of Signals

• Convolution Properties

• Convolution Example

• Convolution andPolynomial Multiplication

• Summary

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 – 9 / 9

• Parseval’s Theorem: 〈u∗(t)v(t)〉 =∑∞

n=−∞ U∗nVn

Power Conservation:⟨

|u(t)|2⟩

=∑∞

n=−∞ |Un|2

or in terms of an and bn:⟨

|u(t)|2⟩

= 14a

20 +

12

∑∞n=1

(

a2n+ b2

n

)

• Linearity: w(t) = au(t) + bv(t) ⇔ Wn = aUn + bVn

• Product of signals ⇔ Convolution of complex Fourier coefficients:w(t) = u(t)v(t) ⇔ Wn = Un ∗ Vn ,

∑∞m=−∞ Un−mVm

• Convolution acts like multiplication: Commutative: U ∗ V = V ∗ U Associative: U ∗ V ∗W is unambiguous Distributes over addition: U ∗ (V +W ) = U ∗ V + U ∗W Has an identity: Ir = 1 if r = 0 and = 0 otherwise

• Polynomial multiplication ⇔ convolution of coefficients

For further details see RHB Chapter 12.8.