34
Analyse multir´ esolution J. Morlet Y. Meyer S. Mallat I. Daubechies October 14, 2019 1 / 33

Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Analyse multiresolution

J. Morlet Y. Meyer S. Mallat I. Daubechies

October 14, 2019 1 / 33

Page 2: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Qu’est-ce qu’une ondelette?

(N. Kevlahan) Une large classe de fonctions caracterisee par

leur regularite et le nombre de moments nuls

leur localisation dans l’espace spectral

Les ondelettes peuvent etre:

continues, orthogonales, bi-orthogonales, a support compact,symetriques (pas en meme temps)

utilisees pour l’analyse et la compression du signal ainsi que pour laresolution adaptative d’EDP

October 14, 2019 2 / 33

Page 3: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Les limites de l’analyse de Fourier

Pas d’information sur la localite de la frequence

Discontinuite locale affecte tous les modes de Fourier

Exemple: Notes de musique ne sont pas jouees en meme temps

October 14, 2019 3 / 33

Page 4: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Comment obtenir une information locale en frequence?

Transformee de Fourier sur des temps courtsD. Gabor(1900-1979) Short Time Fourier Transform (STFT)

Gx(τ, ω) =

∫ ∞−∞

x(t)e−π(t−τ)2e−jωtdt

On integre sur le domaine

Gx(τ, ω) =

∫ τ+1.91

τ−1.91x(t)e−π(t−τ)

2e−jωtdt

Synthese:

x(t) =

∫ ∞−∞

Gx(τ, ω)e iωtdω

October 14, 2019 4 / 33

Page 5: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Information locale en frequence

Autant de points pour chaque frequence

October 14, 2019 5 / 33

Page 6: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Information locale en frequence

Adapter la resolution a l’echelle

October 14, 2019 6 / 33

Page 7: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

A quoi ressemble une ondelette?

DWT CWT

Mother wavelets

October 14, 2019 7 / 33

Page 8: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Translation et dilation of wavelets

Mexican hat (Ricker) wavelet

ψ(x) =2√

(3σπ1/4(1− (

x

σ

2)e−

x2

2σ2

Translations Dilations

October 14, 2019 8 / 33

Page 9: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Transformee en ondelette continue (CWT)

u(a, b) =1

a1/p

∫ ∞∞

u(x)ψ(x − b

a)dx (1)

Condition d’admissibilite: ∫ ∞−∞

|Ψk |2

|k |dk <∞

Analyse de Fourier locale: u(a, b) varie autour de b, avec une frequencequi varie comme 1/a

October 14, 2019 9 / 33

Page 10: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Transformee en ondelette discrete - DWT

Decomposition non redondante (N points → N coefficients)Idee de base: Separer donnees en approximation et detail:

approximation: scaling function

detail: ondelette

Interpolation sur differents niveaux

October 14, 2019 10 / 33

Page 11: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Analyse multiresolution

Soit f ∈ L2(R). On cherche une representation multi-niveaux de f. Oncherche des sous-espaces V0 ⊂ V1 ⊂ V2 . . . ⊂ L2(R) tels que

∪jVj est dense dans L2

∩jVj = {0}g(x) ∈ Vj ⇐⇒ g(2x) ∈ Vj+1

g(x) ∈ V0 ⇐⇒ g(x + 1) ∈ V0

Vj : approximationVj+1: approximation raffinee au niveau superieur

October 14, 2019 11 / 33

Page 12: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Interpolation

Toute fonction de V0 peut etre exprimee a partir de fonctions de V1 :La fonction de scaling a un niveau est exactement interpolee au niveausuperieur → Equation de dilation ou relation de scaling

φ(x) =∞∑

k=∞akφ(2x − k)

Parametre de dilation m

φm,k(x) = 2m/2φ(2mx − k)

October 14, 2019 12 / 33

Page 13: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Application a la fonction de Haar

Approximation (scaling function)

φ(x) = 1 for 0 ≤ x < 1

= 0 otherwise

φ(x) = φ(2x) + φ(2x − 1)

October 14, 2019 13 / 33

Page 14: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Application a la fonction de Haar

Complement orthogonal de V1 dans V2

⊕j∈ZWj = L2

Pour la fonction de Haar

ψ(x) = φ(2x)− φ(2x − 1)

ψm,k(x) = 2m/2ψ(2mx − k)

October 14, 2019 14 / 33

Page 15: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Generalisation

φ(x) =∞∑

k=−∞akφ(2x − k) (2)

ψ(x) =∞∑

k=−∞bkφ(2x − k) (3)

Definir une ondelette/scaling function = Definir a et b.

October 14, 2019 15 / 33

Page 16: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Conditions d’admissibilite

Les translatees de la scaling fonction φ sont orthogonales∫ ∞−∞

φ(x)φ(x + l)dx = δ0l

L’ondelette ψ est orthogonale a la scaling function φ:∫ ∞−∞

φ(x)ψ(x)dx = 0

Si on suppose N pair, cela implique

→ ψ(x) =∞∑−∞

(−1)kaN−1−kφ(2x − k)

Les coefficients {ak} et {(−1)kakaN−1−k} forment des filtres enquadrature miroir (quadrature mirror filters).

October 14, 2019 16 / 33

Page 17: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Conditions d’admissibilite

Les translatees de la scaling fonction φ sont orthogonales∫ ∞−∞

φ(x)φ(x + l)dx = δ0l

L’ondelette ψ est orthogonale a la scaling function φ:∫ ∞−∞

φ(x)ψ(x)dx = 0

Si on suppose N pair, cela implique

→ ψ(x) =∞∑−∞

(−1)kaN−1−kφ(2x − k)

Les coefficients {ak} et {(−1)kakaN−1−k} forment des filtres enquadrature miroir (quadrature mirror filters).

October 14, 2019 16 / 33

Page 18: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Conditions supplementaires

Normalisation∫∞−∞ φ(x)dx = 1

→∞∑

k=−∞ak = 2

Translatees de φ sont orthogonales:

→∞∑

k=−∞akak+2l = 2δ0l ,∀l ∈ Z( ici l < N/2) (4)

→ N/2 + 1 equations pour determiner N coefficients an

October 14, 2019 17 / 33

Page 19: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Conditions supplementaires - Ondelettes de Daubechies

Pour determiner an il manque N/2-1 equations

On impose que φ interpole exactement tout polynome P de degreinferieur ou egal a p P(x) = α0 + α1x + α2x

2 + . . .+ αp−1xp−1. →

Projection de ψ sur tout monome xk pour k < p est nulleCas k = 0 interpolation d’une constante redondant → p = N/2 →Moment de l’ondelette

∫∞−∞ ψ(x)xk = 0 pour k = 1, . . . ,N/2− 1.

→ N/2-1 equations pour les coefficients → ondelettes de Daubechiesa l’ordre N/2

October 14, 2019 18 / 33

Page 20: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Coefficients de Daubechies a l’ordre 4

φ(x) =∞∑

k=−∞akφ(2x − k) (5)

Trouver a0, a1, a2, a34 equations ∫

φ(x) = 1→ a0 + a1 + a2 + a3 = 2∫φ(x)φ(x) = 1→ a20 + a21 + a22 + a23 = 2∫ψ(x) = 0→ a0 − a1 + a2 − a3 = 0∫xψ(x) = 0→ −a1 + 2a2 − 3a3 = 0

October 14, 2019 19 / 33

Page 21: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Construction de la fonction de scaling - I

On utilise

φ(x) = a0φ(2x) + a1φ(2x − 1) + . . .+ an−1φ(2x − N + 1)

Support compact:

φ est integrable, ∃j1, φ(l) = 0 pour l < j1 → φ(j) = 0 for j < 0.φ est integrable, ∃j2 , φ(l) = 0 pour l > j2 → φ(j) = 0 for j > N − 1.

→ Ecrire en x = i for 0 ≤ i ≤ N − 1

φ(0) = a0φ(0)

φ(1) = a0φ(2) + a1φ(1) + a2φ(0)

φ(2) = a0φ(4) + a1φ(3) + a2φ(2) + a1φ(1) + a4φ(0)

. . . = . . .

φ(N − 2) = aN−3φ(N − 1) + aN−2φ(N − 2) + aN−1φ(N − 3)

φ(N − 1) = aN−1φ(N − 1)

October 14, 2019 20 / 33

Page 22: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Construction de la fonction de scaling - II

a0 0 0 . . . 0 0a2 a1 a0 . . . 0 0a4 a3 a2 . . . 0 0. . . . . . . . . . . . . . . . . .0 0 0 . . . aN−2 aN−30 0 0 . . . 0 aN−1

φ(0)φ(1)φ(2). . .

φ(N − 2)φ(N − 1)

=

φ(0)φ(1)φ(2). . .

φ(N − 2)φ(N − 1)

MΦ = Φ

Probleme aux valeurs propres, solution definie a une constante presNormalization

∞∑k=−∞

φ(k) = 1

φ est connue aux valeurs entieres k

October 14, 2019 21 / 33

Page 23: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Construction de la fonction de scaling - III

Pour les valeurs k/2 on utilise

φ(x/2) =∞∑

k=−∞akφ(x − k)

On peut ainsi trouver les valeurs de φ(x) en tous les points x = i/2n.

October 14, 2019 22 / 33

Page 24: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Scaling functions de Daubechies

Saravanan and Ramachadran (ESA 2009)

October 14, 2019 23 / 33

Page 25: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Ondelettes de Daubechies

October 14, 2019 24 / 33

Page 26: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Comment passer d’un niveau de resolution a un autre?

Soit f. On considere son approximation au niveau m et on cherche sonexpression au niveau m − 1. On a

Pmf = Pm−1f + Qm−1f

Pm−1 approximation au niveau m − 1Qm−1 detail au niveau m − 1

Pmf =∞∑

k=∞cm,kφm,k(x)

cm,k =< f , φm,k >

et dans Wm−1

Qmf =∞∑

k=∞dm,kψm,k(x)

dm,k =< f , ψm,k >

October 14, 2019 25 / 33

Page 27: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Transformation de Mallat

En utilisant Pm−1f = Pmf − Qm−1f , on obtient

cm−1,k =1√2

∞∑j=−∞

cm,j(−1)jaj−2k

et

dm−1,k =1√2

∞∑j=−∞

(−1)jcm,j(−1)jaN−1−j+2k

A partir de cm−1,k et de dm−1,k on peut reconstruire

cm,k =1√2

∞∑j=−∞

cm−1,jak−2j +1√2

∞∑j=−∞

dm−1,j(−1)kaN−1−k+2j

October 14, 2019 26 / 33

Page 28: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Algorithme de Mallat

h =1√2

[a0, 0, 0, . . . , aN−1, . . . , a2, a1]T

g =1√2

[aN−1, 0, 0, . . . ,−a0, . . . , aN−3,−aN−2]T

Decomposition:Downsampling:Garder 1 point sur 2

Synthese:Upsampling:Ajouter 1 zero entre 2 points

October 14, 2019 27 / 33

Page 29: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Ondelettes bi-orthogonales

Decomposition Synthese

October 14, 2019 28 / 33

Page 30: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Compression JPEG-2000

October 14, 2019 29 / 33

Page 31: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Compression JPEG-2000

Zhu and Lawson (2002)

7/9 ondelettes biorthogonales

October 14, 2019 30 / 33

Page 32: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Compression JPEG-2000

October 14, 2019 31 / 33

Page 33: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Quelques applications des ondelettes

Analyse de singularites (CWT)

Compression de donnees et reduction du bruit (DWT)

Resolution d’EDP (ondelettes bi-orthogonales)

October 14, 2019 32 / 33

Page 34: Analyse multir esolution - LIMSI · 2019-12-06 · A friendly guide to wavelets, Kaiser 1994. Introduction to wavelets in engineering, Williams and Amaratunga, IJNME, 1994. A wavelet

Quelques references

Ten lectures on wavelets, I. Daubechies, 1996.

A friendly guide to wavelets, Kaiser 1994.

Introduction to wavelets in engineering, Williams and Amaratunga,IJNME, 1994.

A wavelet tour of signal processing, S. Mallat 1998

October 14, 2019 33 / 33