35
Preparation of the concerned sectors for educational and R&D activities related to the Hungarian ELI project THz spectroscopy in biology Andrea Buzády 5. lecture Applications TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 1

Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

„Preparation of the concerned sectors for educational and R&D activities related to the Hungarian ELI project ”

THz spectroscopy in biology

Andrea Buzády

5. lectureApplications

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 1

Page 2: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 2

5. lecture

Introductionbiomolecular function in vivo ⇔⇔ secondary and tertiary structure of bioplimers⇔ dynamical motions in the relevant timescale

at the cores of proteins – substituent amino acids: structure and function

directly monitor complex macromolecule dynamics in real timemotions of polipeptid chains at atomic levellow frequencies vibrations – terahertz regime

may be observed by: ♣ Raman spectroscopy♣ low-energy neutron spectroscopy♣ THz spectroscopy

Susan L. Dexheimer: Terahertz Spectroscopy Principles and Applications

Page 3: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 3

5. lecture

Introduction

Susan L. Dexheimer: Terahertz Spectroscopy Principles and Applications

In case of: > 30 kDa molecular weigthsoverlapping states and frequencies of the collective modes →the absorption bands smear out, yielding structurless spectra

measurements in aqueous phase environments - because of biologic system

difficulties:- water absorption in 1- 3 THz region masking the absorption of biomolecules- spectral broadening: interconversion between numerous accessible conformational states

despite the limitation there are a lot of results- experimental- modeling method - simulations

Page 4: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 4

5. lecture

Water is life – Water of Life – Water for life - …..Science of water at nanoscale

one oxigen and two hydrogen atoms – covalent bonds

apparent simplicity ⇔ anomalous properties (?)

We know the water: hydrogen-bonded bulk liquid melting at 0 °C and boiling at 100 °C

But this way the water may not exist within cells

Page 5: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 5

5. lecture

Science of water at nanoscale

apparent simplicity ⇔ anomalous properties (?)

⇐ structure of molecules ⇐ binding to each other by hydrogen bonds

conventional picture of bulk water: tetrahedral motif

recently: questioned

http://www1.lsbu.ac.uk/water/

Page 6: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 6

5. lecture

Science of water at nanoscale

recently: in bulk water molecules bind on average to just two others

most molecules: arranged in strongly hydrogen bonded chains and in rings connected by weak hydrogen bonds

cluster network

http://www1.lsbu.ac.uk/water/

P. Wernet, D. Nordlund, U. Bergmann, M. Cavallieri, H. Ogasawara, LA. Näslund, TK. Hirsch, L. Ojamäe, P. Gllatzel, LG. Pettersson, A. Nilsson: The structure of the first coordination shell in liquid water, Sciense, 304, 995-999 (2004)

Page 7: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 7

5. lecture

Science of water at nanoscale

http://www1.lsbu.ac.uk/water/

M. Sonoda, N.H. Moreira, L. Mart´ınez, F.W. Favero,S.M. Vechi, L.R. Martins, and M. S. Skaf : A Review on the Dynamics of WaterBrazilian Journal of Physics, vol. 34, no. 1, March, 2004

Forms of water → In different molecular environment

Bulk water – only water molecules

Interfacial water –neighbouring molecules next to another media

Confined water – closing by molecules of another media

Page 8: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 8

5. lecture

What are the properties of water in the biological environment?What are the properties of water in a living cell?

What are the properties of water in cytoplasmic packing density of up to 400 mg/ml of protein, nucleic acids, lipids, carbohydrates and small molecules or ionic compounds?

aquaporin protein - waterhttp://askabiologist.asu.edu/venom/protein-channels

http://www.exobiologie.fr/index.php/vulgarisation/chimie-vulgarisation/the-role-of-water-in-the-structure-and-function-of-biological-macromolecules/

Science of water and biomolecules

Page 9: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 9

5. lecture

In cytoplasmic packing or in membran density of up to 400 mg/ml of protein, nucleic acids, lipids, carbohydrates and small molecules or ionic compounds?

there is little distance from any one molecule to its nearest neighbors –only about 20-30 Å

Roughly ten layers of water molecules can fit into these spaces different properties from water in “bulk” ⇐ interactions with cellular components

http://biologyct.blogfa.com/

just for demonstration

Science of water and biomolecules

Page 10: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 10

5. lecture

The time scales: PICOSECOND

♣ collective motions of solvent molecules

Modern terahertz instrumentation: possibility to observe water dynamics and the fast collective motion of water molecules, around biological molecules.

1012 Hertz = 1 Terahertz 1 picosecond

♣ collective, functionally important motions of large biomolecules such as proteins and nucleic acids.

♣ hydrogen bond rearrangement in water

coupled in the picosecondtime scale

http://www.hfsp.org/frontier-science/hfsp-success-stories/water-and-biological-molecules-probed-terahertz-spectroscopy

Science of water and biomolecules

Page 11: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 11

5. lecture

Science of water and biomoleculesD.M. Leitner, M. Gruebele, M. Havenith: Solvation dynamics of biomolecules: modeling and terahertz experiments, HFSP Journal 2, 6, 314–323 (2008)

complex macromolecules → great many vibrations → spectral density ρ (ω) - rather than vibrational peaks separately

modeling of five-helix bundle protein, ∗

> 90 THz: vibrations from the lightest nuclei (H)most localized vibrational modes ~ 30 THz: small amplitude stretching and bandingmodes of backbone and sidechains < 10 THz: delocalized large numbers of atoms1 – 5 THz: water absorption – significant rule

grey: proteinblack: water

Page 12: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 12

5. lecture

http://www.hfsp.org/frontier-science/hfsp-success-stories/water-and-biological-molecules-probed-terahertz-spectroscopy

Despite the „possibility” → trouble - little information contained in the THz spectrum of a biomolecule

BUT: measurements of the THz absorbance as a function of biomolecule concentration in solution→ can be deduced the extent of the hydration layer → the number of water molecules around the biomolecule

The frequency dependence of the absorbance is largely featureless in the 1-5 THz regimeBiomolecules absorb much less THz light than water or even: water absorb much more than biomolecule in terahertz regime

bulk water and hydration water - distinct absorption coefficients, identified to account for the variation of the absorbance with biomolecule concentration

Science of water and biomolecules

Page 13: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 13

5. lecture

experimental studies + molecular dynamics simulations modeling the same system

http://www.hfsp.org/frontier-science/hfsp-success-stories/water-and-biological-molecules-probed-terahertz-spectroscopy

the change in absorbance with concentration

deduce the size of the hydration layer

the molecular level of the biomolecule-solvent dynamics underlying the THz spectra

Science of water and biomolecules

Page 14: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 14

5. lecture

http://www.hfsp.org/frontier-science/hfsp-success-stories/water-and-biological-molecules-probed-terahertz-spectroscopy

♣ “Terahertz defect”: over part of the THz frequency rangeAbsorption of the biomolecules < absorption of the water, and dissolving biomolecules in water

♣ “Terahertz excess”: between 1 - 3 THz absorption of the pure biomolecule solids or films generally < absorption of bulk water many situations: the biomolecule+water mixture absorbs > either the biomolecule or a bulk water sample.

Their ascertainments

D.M. Leitner, M. Gruebele, M. Havenith: Solvation dynamics of biomolecules: modeling and terahertz experiments. HFSP Journal Vol. 2, No. 6, December 2008, 314–323

decreasing of the absorption coefficient of the solution at certain frequencies, for proteins in water: ~ 2.5 THz

♣ third substance: biological or hydration water biomolecules perturbs nearby water molecules effect on the properties of water: density, relaxation rates, reorientation rates

Science of water and biomolecules

Page 15: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

15

5. lecture

http://www.hfsp.org/frontier-science/hfsp-success-stories/water-and-biological-molecules-probed-terahertz-spectroscopy

M. Heyden, E. Brünbenmann, U. Heugen, G. Niehues, D. M. Leitner, M. Havenith: Long-range influence of carbohydrates on the solvation dynamics of water-answers from terahertz absorption measurements and Molecular Modeling Simulations J. Am. Chem. Soc. 130 (17), pp 5773–5779 (2008)B. Born, M. Havenith: erahertz Dance of Proteins and Sugars with Water, J. of. Inf. Mill. and THz Waves, 30, 12, 1245-1254 (2009)

the influence of mono- and disaccharides on the THz spectrum of water

small, isolated saccharide → absorbtion of the THz radiation → at only a few specific frequencies.

saccharides into water → fast oscillations in the water network → in the THz spectrum.

Science of water and biomolecules

Page 16: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 16

5. lecture

http://www.hfsp.org/frontier-science/hfsp-success-stories/water-and-biological-molecules-probed-terahertz-spectroscopy

M. Heyden, E. Brünbenmann, U. Heugen, G. Niehues, D. M. Leitner, M. Havenith: Long-range influence of carbohydrates on the solvation dynamics of water-answers from terahertz absorption measurements and Molecular Modeling SimulationsJ. Am. Chem. Soc. 130 (17), pp 5773–5779 (2008)B. Born, M. Havenith: Terahertz Dance of Proteins and Sugars with Water, J. of. Inf. Mill. and THz Waves, 30, 12, 1245-1254 (2009)

the influence of mono- and disaccharides on the THz spectrum of waterfitting the experimental THz absorption coefficients → extension of the dynamical hydration shell around sugars

radii of the shell:glucose: ≈ 4 Ålactose: ≈ 6 Åtrehalose: ≈ 7 Å

amount of water moleculesinfluenced by sugars range:50 water/glucose150 water/lactose190 water/trehalose

Science of water and biomolecules

Page 17: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 17

5. lecture

http://www.hfsp.org/frontier-science/hfsp-success-stories/water-and-biological-molecules-probed-terahertz-spectroscopy

M. Heyden, E. Brünbenmann, U. Heugen, G. Niehues, D. M. Leitner, M. Havenith: Long-range influence of carbohydrates on the solvation dynamics of water-answers from terahertz absorptionmeasurements and Molecular Modeling SimulationsJ. Am. Chem. Soc. 130 (17), pp 5773–5779 (2008)B. Born, M. Havenith: erahertz Dance of Proteins and Sugars with Water, J. of. Inf. Mill. and THz Waves, 30, 12, 1245-1254 (2009)

the influence of mono- and disaccharides on the THz spectrum of water

Molecular dynamics simulations: the hydrogen bond dynamics ↔ water molecules around glucose, lactose, trehalose

rearrangement of the hydrogen bonds ↔ water molecules in bulk water to about6 Å away from the solute.

Science of water and biomolecules

Page 18: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 18

5. lecture

http://www.hfsp.org/frontier-science/hfsp-success-stories/water-and-biological-molecules-probed-terahertz-spectroscopy

B. Born, K.SJ. Ebbinghaus, M. Gruebele, M. Havenith: The terahertz dance of water with the proteins: the effect of protein flexibility on the dynamical hydration shell of ubiquitin, Faraday Discuss, 141:161-73; discussion 175-207 (2009)S. Ebbinghaus, S.J. Kim, M. Heyden, X. Yu, U. Heugen, M. Guebele, D.M. Leitner, M, Havenith: An extended dynamical hydration shellaround proteins, PNAS,104, 52, 20749–20752 (2007)

hydration study → more complex model system: proteins

highly precise measurements of the THz absorption spectra

spectrum of native ubiquitin wild-type protein in bufferonly buffer

Science of water and biomolecules

Page 19: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 19

5. lecture

http://www.hfsp.org/frontier-science/hfsp-success-stories/water-and-biological-molecules-probed-terahertz-spectroscopy

B. Born, K.SJ. Ebbinghaus, M. Gruebele, M. Havenith: The terahertz dance of water with the proteins: the effect of protein flexibility on the dynamical hydration shell of ubiquitin, Faraday Discuss, 141:161-73; discussion 175-207 (2009)S. Ebbinghaus, S.J. Kim, M. Heyden, X. Yu, U. Heugen, M. Guebele, D.M. Leitner, M, Havenith: An extended dynamical hydration shellaround proteins, PNAS,104, 52, 20749–20752 (2007)

hydration study → more complex model system: proteins

>> structural hydration shell, water molecules rigidly attached to protein

globular proteins ubiquitin:

THz absorbance – non-linearto protein concentration

dynamical hydration shell: ≈ 18 Å

Science of water and biomolecules

Page 20: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 20

5. lecture

http://www.hfsp.org/frontier-science/hfsp-success-stories/water-and-biological-molecules-probed-terahertz-spectroscopy

S. Ebbinghaus, S.J. Kim, M. Heyden, X. Yu, U. Heugen, M. Guebele, D.M. Leitner, M, Havenith: Protein Sequence- and pH-Dependent Hydration Probed by Terahertz Spectroscopy, J. Am. Chem. Soc., 130 (8), 2374–2375 (2008)

hydration study → more complex model system: proteins

mutants of ubiquitin: the effect of surface properties and flexibility on hydration dynamics

changing the protein to water molar ratios → folded or partially unfolded proteins → distinct response for the THz absorption

synthesized, purified site-specified mutants → at internal side chains →different THz absorbance from natural wild type protein

Science of water and biomolecules

Page 21: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 21

5. lecture

http://www.hfsp.org/frontier-science/hfsp-success-stories/water-and-biological-molecules-probed-terahertz-spectroscopy

S. Ebbinghaus, S.J. Kim, M. Heyden, X. Yu, U. Heugen, M. Guebele, D.M. Leitner, M, Havenith: Protein Sequence- and pH-Dependent Hydration Probed by Terahertz Spectroscopy, J. Am. Chem. Soc., 130 (8), 2374–2375 (2008)

hydration study → more complex model system: proteins

mutants of ubiquitin: the effect of surface properties and flexibility on hydration dynamics

changing the protein to water molar ratios → folded or partially unfolded proteins → distinct response for the THz absorption

synthesized, purified site-specified mutants → at internal side chains →different THz absorbance from natural wild type protein

Science of water and biomolecules

Page 22: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 22

5. lecture

S. Funkner, G. Niehues, D. A. Schmidt, M. Heyden, G. Schwaab, K. M. Callahan, D. J. Tobias, M. Havenith: Watching the Low-Frequency Motions in Aqueous Salt Solutions: TheTerahertz Vibrational Signatures of Hydrated Ions, J. Am. Chem.Soc., 134, 1030−1035 (2012)

relevant question: how the details of ion hydration?

The water and ionic effect

network-coupled dynamics of water in divalent salt solutions

♣ unique high power p-Ge THz laser spectrometer

♣ precise wideband THz Fourier transform (FT) spectroscopy

♣ molecular dynamics simulations

only: atomic anions and cationsavoiding the ambiguities due to coupling between intramolecular ion modes and the water network

Page 23: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 23

5. lecture

S. Funkner, G. Niehues, D. A. Schmidt, M. Heyden, G. Schwaab, K. M. Callahan, D. J. Tobias, M. Havenith: Watching the Low-Frequency Motions in Aqueous Salt Solutions: TheTerahertz Vibrational Signatures of Hydrated Ions, J. Am. Chem.Soc., 134, 1030−1035 (2012)

The water and ionic effect

♣ unique high power p-Ge THz laser spectrometer

concentration → precise narrow-band THz absorption

strictly linear

from μM to Maveraged between 2.1 and 2.8 THzi.e. 76−93 cm−1

the THz contribution of the solvated ions:αion = αsample - β⋅αwaterαsample : the calculated absorption coefficients using Beer’s law β: the ratio of the number of water molecules at a given concentration in an aqueous solution to that of neat water

Page 24: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 24

5. lecture

S. Funkner, G. Niehues, D. A. Schmidt, M. Heyden, G. Schwaab, K. M. Callahan, D. J. Tobias, M. Havenith: Watching the Low-Frequency Motions in Aqueous Salt Solutions: TheTerahertz Vibrational Signatures of Hydrated Ions, J. Am. Chem.Soc., 134, 1030−1035 (2012)

The water and ionic effect

♣ precise wideband THz Fourier transform (FT) spectroscopy

each spectrum consists of two absorption peaks which are attributed to either the anion or the cationFor MgCl2 both overlap

liquid cell: 40 μm Kapton spacers, diamond windows nitrogen-purged, temperature-controlled (20 ± 0.1) °Cliquid-He cooled silicon bolometer

concentration of solvated MgCl2: 3 M

spectra of divalent salts

Page 25: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 25

5. lecture

S. Funkner, G. Niehues, D. A. Schmidt, M. Heyden, G. Schwaab, K. M. Callahan, D. J. Tobias, M. Havenith: Watching the Low-Frequency Motions in Aqueous Salt Solutions: TheTerahertz Vibrational Signatures of Hydrated Ions, J. Am. Chem.Soc., 134, 1030−1035 (2012)

The water and ionic effect

♣ precise wideband THz Fourier transform (FT) spectroscopy

THz ionic absorption bands → fitted to two distinct absorption bandsone corresponding to the anion and one to the cationDots of the same color represent measurements on different concentrations ranging from 0.5 to 4 M

Page 26: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 26

5. lecture

S. Funkner, G. Niehues, D. A. Schmidt, M. Heyden, G. Schwaab, K. M. Callahan, D. J. Tobias, M. Havenith: Watching the Low-Frequency Motions in Aqueous Salt Solutions: TheTerahertz Vibrational Signatures of Hydrated Ions, J. Am. Chem.Soc., 134, 1030−1035 (2012)

The water and ionic effect

♣ molecular dynamics simulations without getting into details

Symmetry-adapted octahedral normal modes for the Mg2+ ions and their octahedral solvation shells

Vibrational densities of states (VDOS) computed for the projected motion ofMg2+ ions and their first solvation shell along thesymmetry-adapted normal modes.

VDOS computed from Fourier transformed velocity autocorrelation functions in Cartesian space

Mg2+ ions

the oxygens of solvating water molecules

the oxigens of bulk water

Page 27: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 27

5. lecture

S. Funkner, G. Niehues, D. A. Schmidt, M. Heyden, G. Schwaab, K. M. Callahan, D. J. Tobias, M. Havenith: Watching the Low-Frequency Motions in Aqueous Salt Solutions: TheTerahertz Vibrational Signatures of Hydrated Ions, J. Am. Chem.Soc., 134, 1030−1035 (2012)

The water and ionic effect

♣ molecular dynamics simulations without getting into details

Simulated vibrational density of states (VDOS) computed from Fourier transformed velocity autocorrelation functions of divalent cations and chloride anions

Page 28: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 28

5. lecture

S. Funkner, G. Niehues, D. A. Schmidt, M. Heyden, G. Schwaab, K. M. Callahan, D. J. Tobias, M. Havenith: Watching the Low-Frequency Motions in Aqueous Salt Solutions: TheTerahertz Vibrational Signatures of Hydrated Ions, J. Am. Chem.Soc., 134, 1030−1035 (2012)

relevant answers: how the details of ion hydration?

The water and ionic effect

network-coupled dynamics of water in divalent salt solutions

♦ the low-frequency (THz) frequency spectrum of a series of salt solutions → linear superposition of concentration weighted neat water and ion contributions

♦ The concentration of the ions → THz absorption: strictly linear

♦ Both anion and cation bands can be assigned independently

♦ coupling between the water molecules in the hydration shell and the ions this lifetime > several vibrational cycles

♦ specific anion and cation resonances: ▬ frequencies ∝ the inverse ion mass and intensities ▬ intensities of these resonances ∝ charge density ▬ these resonances → concerted rattling motions of the anion and cation with its first hydration shell.

be continued

Page 29: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 29

5. lecture

S. Funkner, G. Niehues, D. A. Schmidt, M. Heyden, G. Schwaab, K. M. Callahan, D. J. Tobias, M. Havenith: Watching the Low-Frequency Motions in Aqueous Salt Solutions: TheTerahertz Vibrational Signatures of Hydrated Ions, J. Am. Chem.Soc., 134, 1030−1035 (2012)

relevant answers: how the details of ion hydration?

The water and ionic effect

network-coupled dynamics of water in divalent salt solutions

♦ very strong coupling of the ions with their first hydration shells

♦ there was not detected any indication of long-ranged effects, which would hint to structure breaking, or structure making, or cooperative effects on water for atomic mono- and divalentsalts

♦ this study underlines the need to include anion and cation contributions for a rigorous analysis of the THz spectrum of solvated salts.

♦ The ions here: ideal, prototypical systems, they lack additional complications, e.g., steric effects and intramolecular vibrations and/or rotational/librational motions

Page 30: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 30

5. lecture

About the experimental methodA. Bergner, U. Heugen, E. Bründermann, G. Schwaab, M. Havenith, D. R. Chamberlin, E. Haller: New p-Ge THz Laser Spectrometer for the Study of Solutions: THz Absorption Spectroscopy of Water, Rev. Sci. Instr. 76, 063110 (2005)

p-Ge laser spectrometer for accurate solvation studies

THz source: semiconductor p-Ge laser, in a closed-cycle helium cryostat, 3-5 Kpulses with up to 1 W peak output power , tuning: 1-4 THzGa:Al detector

window interfaces reflection: varying the layer thichnessabsorption of the sample: increasing exponentiallyreflection unchanged

dual-beam for reference and sample

∙ exp ∙absorbed amount of THz radiation by sample:

Intensity prior to the sample, the frequency dependent absorption coefficient of the samplethe layer thickness d of the sample, the detector offset C.

Science of water and biomolecules

Page 31: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 31

5. lecture

About the experimental methodA. Bergner, U. Heugen, E. Bründermann, G. Schwaab, M. Havenith, D. R. Chamberlin, E. Haller: New p-Ge THz Laser Spectrometer for the Study of Solutions: THz Absorption Spectroscopy of Water, Rev. Sci. Instr. 76, 063110 (2005)

p-Ge laser spectrometer for accurate solvation studies

THz spectra of hydrated biological samples: 100 400 cmC: constant electronic offset, blocking the leaser beamcontrolled temperature (external water reservoir → sample of temperature: -28 - 55 °C, ±0,05°C) Relative humidity: < 8%; by purging with dry air and nitrogen~ 200 μm thick samples

averaging ~30.000 pulses of 5 μs duration → accuracy of α < 0,1 %, (α ) ± 0,3 cm -1

Precisely measured THz absorption → directly probes the rearrangement of hydrogen bonds

in the water network → THz spectroscopy sensitive detective method:

by biomelcules induced solutes fsat diplole fluctuations of water molecules

Science of water and biomolecules

Page 32: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 32

5. lecture

http://www.hfsp.org/frontier-science/hfsp-success-stories/water-and-biological-molecules-probed-terahertz-spectroscopy

E. Bründermann, B. Born, S. Funkner, M. Krüger, M. Havenith: Terahertz spectroscopic techniques for the study of proteins in aqueous solutions Proceedings of SPIE 7215, 72150E1–72150E9 (2009)

THz Fourier transform spectrometer to collect large-bandwidth THz sepctra

Commercial continuous wave FT spectrometer VERTEX 80v, Bruker Co.

For THz source: mercury lampFor beamsplitter: 23 μm mylar folieFor coherent detection: silicon bolometer, cooled by liquid heliumsamples: in a separate compartmentin nitrogen atmosphere

Science of water and biomolecules

well-known procedure for measurement of the spectrum

I (x) Fourier transformation I(ω)

Page 33: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 33

5. lecture

B. Born, M. Heyden, M. Grossman, I. Saqi, M. Havenith: Protein-water network dynamics during metalloenzyme hydrolysis observed by kinetic THz absorption (KITA) Proceedings of the SPIE, Volume 8585, id. 85850E 7 pp. (2013)

TDTS spectrometer modified for real-time biochemical studieskinetic terahertz absorption spectroscopy KITA

Science of water and biomolecules

near-infrared femtosecond laser pulses →split into 70:30% for terahertz generation/detectionsample cell of a rapid stopped-flow mixerdetection: electro-optic sampling

for fast mixing of the reagents →stopped-flow sample →following the chemical reactions by kinetic terahertz absorption

Page 34: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 34

5. lecture

B. Born, M. Havenith: Terahertz Dance of Proteins and Sugars with Water, Journal of Infrared, Millimeter, and Terahertz Waves, 30, 12, 1245-1254 (2009)http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/BornBenjaminPhilipp/diss.pdf

Science of water and biomolecules

How it works ubiquitin’s folding?

by KITA

denatured ubiquitin

denaturant concentration: 6 M → 0,86 M within milliseconds →♦ refolding of protein♦ triggered reading out of THz electric field

changing of water dielectric properties →changing absorbance →attenuated and shifted THz pulses

GuHCl-denatured ubiquitin + denaturant-free surplus of buffer

Page 35: Andrea Buzády - PTE-TTK Fizikai Intézet · biomolecular function in vivo ⇔ ⇔ secondary and tertiary structure of bioplimers ⇔ dynamical motions in the relevant timescale at

TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt 35

5. lecture

B. Born, M. Havenith: Terahertz Dance of Proteins and Sugars with Water, Journal of Infrared, Millimeter, and Terahertz Waves, 30, 12, 1245-1254 (2009)http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/BornBenjaminPhilipp/diss.pdf

Science of water and biomolecules

How it works ubiquitin’s folding?

by KITA

Time-dependent electric field of THz pulseskinetic time: mixer is scanned

folding of protein →changing of THz absorbance→changing of THz pulse

refolding kinetics of Ub*at – 20°C in water/ethylene glycol buffer