62
Appendix A: Dimensional Equivalents and Physical Constants Dimensional Equivalents Length 1ft ¼ 12 in: ¼ 30:48 cm ¼ 0:3048 1m ¼ 100 cm ¼ 39:37 in: ¼ 3:28 ft Mass 1 lbm ¼ 0:03108 slug ¼ 453:59g ¼ 0:45359 kg 1kg ¼ 100 g ¼ 0:06852 slug ¼ 2:205 lbm Time 1h ¼ 3600 s 1s ¼ 2:778 10 4 h Force 1 lbf ¼ 4:448 10 5 dyne ¼ 4:448 N 1N ¼ 10 5 dyne ¼ 0:2249 lbf Angle 1 ¼ 1:745 10 2 rad 1 rad ¼ 57:30 Temperature 1 F ¼ 1 R ¼ 0:5556 C ¼ 0:5556 K 1 K ¼ C ¼ 1:8 R ¼ 1:8 F F ¼ 1:8 C þ 32 C ¼ 0:5556 F 32 ð Þ R ¼ F þ 459:69 K ¼ C þ 273:16 R ¼ 1:8 K K ¼ 0:5556 R Energy 1 Btu ¼ 777:66 ft lbf ¼ 252 cal ¼ 1:054 10 10 erg ¼ 1054 J 1J ¼ 10 7 erg ¼ 0:239 cal ¼ 0:7375 ft lbf ¼ 9:485 10 4 Btu Power 1 Btu=h ¼ 2:778 10 4 Btu=s ¼ 2:929 10 6 erg=s ¼ 0:2929 W 1W ¼ 10 7 erg=s ¼ 9:481 10 4 Btu=s ¼ 3:414 Btu=h Pressure 1 lbf =ft 2 ¼ 6:944 10 3 lbf =in: 2 ¼ 4:78:8 dyne=cm 2 ¼ 47:88N=m 2 1 lbf =in: 2 ¼ 144 lbf =ft 2 ¼ 68, 948 dyne=cm 2 ¼ 6894:8N=m 2 1N=m 2 ¼ 10 dyne=cm 2 ¼ 1:450 10 4 lbf =in: 2 ¼ 2:089 10 2 lbf =ft 2 (continued) © Springer International Publishing Switzerland 2016 B. Zohuri, Heat Pipe Design and Technology, DOI 10.1007/978-3-319-29841-2 451

Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Embed Size (px)

Citation preview

Page 1: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Appendix A: Dimensional Equivalentsand Physical Constants

Dimensional Equivalents

Length 1ft ¼ 12 in: ¼ 30:48cm ¼ 0:3048

1m ¼ 100cm ¼ 39:37 in: ¼ 3:28ft

Mass 1 lbm ¼ 0:03108slug ¼ 453:59g ¼ 0:45359kg

1kg ¼ 100g ¼ 0:06852slug ¼ 2:205 lbm

Time 1h ¼ 3600s

1s ¼ 2:778� 10�4 h

Force 1 lbf ¼ 4:448� 105dyne ¼ 4:448N

1N ¼ 105 dyne ¼ 0:2249lbf

Angle 1 � ¼ 1:745� 10�2 rad

1rad ¼ 57:30 �

Temperature 1 �F ¼ 1� R ¼ 0:5556 � C ¼ 0:5556 � K

1 �K ¼� C ¼ 1:8 � R ¼ 1:8 � F�F ¼ 1:8 � Cþ 32�C ¼ 0:5556 �F� 32ð Þ�R ¼� Fþ 459:69�K ¼� Cþ 273:16�R ¼ 1:8 �K�K ¼ 0:5556 � R

Energy 1Btu ¼ 777:66ft lbf ¼ 252cal ¼ 1:054� 1010 erg ¼ 1054J

1J ¼ 107 erg ¼ 0:239cal ¼ 0:7375ft lbf ¼ 9:485� 10�4 Btu

Power 1Btu=h ¼ 2:778� 10�4 Btu=s ¼ 2:929� 106 erg=s ¼ 0:2929W

1W ¼ 107 erg=s ¼ 9:481� 10�4 Btu=s ¼ 3:414Btu=h

Pressure 1 lbf=ft2 ¼ 6:944� 10�3 lbf=in:2 ¼ 4:78:8dyne=cm2 ¼ 47:88N=m2

1lbf=in:2 ¼ 144 lbf=ft2 ¼ 68, 948dyne=cm2 ¼ 6894:8N=m2

1N=m2 ¼ 10dyne=cm2 ¼ 1:450� 10�4 lbf=in:2 ¼ 2:089� 10�2 lbf=ft2

(continued)

© Springer International Publishing Switzerland 2016

B. Zohuri, Heat Pipe Design and Technology, DOI 10.1007/978-3-319-29841-2451

Page 2: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Area 1ft2 ¼ 1:44 in:2 ¼ 929cm2 ¼ 0:0929m2

1m2 ¼ 104cm2 ¼ 1550 in2 ¼ 10:76ft2

Volume 1ft3 ¼ 1728 in:3 ¼ 2:832� 104 cm3 ¼ 0:02832m3

1m3 ¼ 106 cm3 ¼ 6:102 � 104 in:3 ¼ 35:31ft3

1gal US liquidð Þ ¼ 0:13368ft3 ¼ 0:003785m3

Density 1gal US liquidð Þ ¼ 0:13368ft3 ¼ 0:003785m3

1lbm=ft3 ¼ 0:03108slug=ft3 ¼ 1:602� 10�2 g=cm3 ¼ 16:02kg=m3

1kg=m3 ¼ 10�3 g=cm3 ¼ 0:00194slug=ft3 ¼ 0:06242 lbm=ft3

Viscosity (dynamic) 1 lbm=ft h ¼ 8:634� 10�6 slug=ft s ¼ 4:134� 10�3 g=cms ¼4:134� 10�4 kg=ms

1kg=ms ¼ 10g=cms ¼ 2:089� 10�2 slug=ft s ¼ 2:419� 103 lbm=ft h

Thermal

conductivity1Btu=ft hF ¼ 2:778� 10�4 Btu=ft sF ¼ 1:730� 105 erg=cmsK ¼1:730W=mK

1W=mK ¼ 105 erg=cmsK ¼ 1:606� 10�4 Btu=ft sF ¼ 0:578Btu=fthF

Surface tension 1 lbf=ft ¼ 1:459� 104 dyne=cm ¼ 14:59N=m

1N=m ¼ 103 dyne=cm ¼ 0:06854 lbf=ft

Latent heat of

vaporization1Btu=lbm ¼ 32:174Btu=slug ¼ 2:32� 107 erg=g ¼ 2:324� 103 J=kg

1J=kg ¼ 104 erg=g ¼ 1:384� 10�2 Btu=slug ¼ 4:303� 10�4 Btu=lbm

Heat transfer

coefficient1Btu=ft2 hF ¼ 5:674� 103 erg=cm2 sK ¼ 5:674W=m2K

1W=m2K ¼ 103 erg=cm2 sK ¼ 0:1762Btu=ft2 hF

Physical Constants

Gravitational acceleration (standard): g ¼ 32:174ft=s2 ¼ 980:7cm=s2 ¼ 9:807m=s2

Universal gas constant: �R ¼ 1545:2ft lb=molR ¼ 1:987Btu=lbmmolR ¼ 8:314

�107 erg=gmolK ¼ 8:314� 103 J=kgmolK

Mechanical equivalent of heat: J ¼ 777:66ft lbf=Btu ¼ 4:184� 107 erg=cal 1Nm=J

Stefan–Boltzmann constant: �σ ¼ 0:1713� 10�8 Btu=ft2 hR4 ¼ 5:670� 10�5 erg=cm2 sK4

¼ 5:657� 10�8W=m2K4

452 Appendix A: Dimensional Equivalents and Physical Constants

Page 3: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Appendix B: Properties of Solid Materials

Most of the content in this section is from Chi “Heat Pipe Theory and Practice” as

well as “Heat Pipe Design” from B & K Engineering volumes I and II written by

Patrick J. Berennan and Edward J. Kroliczek, published June 1979 under NASA

contract NAS5-23406.

In this appendix, properties of solid materials commonly used for heat pipe

containers and wicks are summarized and presented in graphical format. The

purpose of this appendix is to support the text for what the reader will need to do

to design their task and not necessarily fulfill all the requirements that are needed by

most common handbooks of this nature. For example, the ultimate tensile strength

of materials depends not only on the temperature but also on material processes and

treatment. For the presentation of graphics in this appendix, the average properties

of the most commonly commercially available materials have been used. For more

detailed properties of information and properties of materials, the readers of this

text can refer to the following references:

1. International Critical TableE. W. Washington, McGraw-Hill, New York, 1993.

2. Mechanical Engineers HandbookL. S. Marks, McGraw-Hill, New York, 1967.

3. Cryogenic EngineeringR. B. Scott, Van Nostrand, Princeton, New Jersey, 1959.

4. A Compendium of Properties of Materials at Low TemperatureV. J. Johnson, Wright Air Development Division of Air Research and Develop-

ment Command, Technical Report 60-56, Part I, July 1960, Part II, October 1960.

© Springer International Publishing Switzerland 2016

B. Zohuri, Heat Pipe Design and Technology, DOI 10.1007/978-3-319-29841-2453

Page 4: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

01

2

3

4

56789

2

3

4

56789

2

3

4

5

6789

101

102

103

250

Ti

Fe

Ni

SS 304

500 750

Cu

Al

1000Temperature, R

The

rmal

con

duct

ivity

, Btu

/ft.h

r.F

1250 1500 1750

Fig. B.1 Thermal conductivity of several solid materials Chi �R ¼ 0:556 �K, 1Btu=fthF ¼ð 1:730W=mKÞ [2]

454 Appendix B: Properties of Solid Materials

Page 5: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

0

100

200

300

400

500

600

500 1000

Cu

Ni

Ti

Al

Fe

SS 304

1500Temperature, R

Den

sity

, lbm

/ft3

2000 2500

Fig. B.2 Density of several solid materials Chi �R ¼ 0:556 �K, 1 lbm=ft3 ¼ 16:02 kg=m3� �

[2]

Appendix B: Properties of Solid Materials 455

Page 6: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

0

20

40

60

80

100

500 1000

Cu

Ni

Ti

AlFe

SS 304

1500

Temperature, R

Ulti

mat

e te

nsile

str

ess,

kps

i

2000 2500

Fig. B.3 Ultimate tensile strength of several solid materials Chi 1� R ¼ð 0:5556 �K, 1 kpsi ¼6:895� 106 N=m2Þ [2]

456 Appendix B: Properties of Solid Materials

Page 7: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Com

posi

tion

Pro

pert

ies

at 3

00 K

Mel

ting

Poi

nt(K

)

Alu

min

um

Pur

e93

327

02

2770

903

875

883

1825

231

449

385

420

355

380

384

322

129

447

447

237

97.1

302

65 473

237

163

787

240

186

925

231

218

186

1042

174

161

126

106

90.8

78.7

185

301

1114

2191

2604

2823

3018

3227

3519

203

203

99.3

222

111

384

90.9

80.7

71.3

65.4

616

682

61.9

57.2

779

937

49.4

581

542

484

242

94.7

198

159

192

482

252

413

356

42 785

41 ——

6574

7513

714

995

17 237

362

232

190

327

109

134

94.0

69.5

54.7

574

680

975

32.3

975

28.7

609

654

31.4

609

654

42.2

680

53.1

574

43.3

32.8

28.3

32.1

490

65.7

490

384

80.6

384

216

95.6

215

96.8

43.2

27.3

19.8

17.4

17.4

337

290

323

124

311

131

348

298

135

357

284

140

375

270

145

395

255

155

19360

395

425

460

545

5259

393

397

379

417

366

433

352

451

339

480

990

73.0

68.2

59.2

48.4

29.1

117

14 17 33.9

6.71

34.7

127

23.1

20.7

177

168

200

96.8

93.7

401

52 54 110

23 59.9

317

80.2

72.7

2790

1850

8650

7160

8933

8800

8780

8530

755

1550

594

2118

1358

1293

1104

1188

1439

1211

1336

1810

8920

5360

1930

0

1810

7870

Allo

y 20

24-T

6(4.

5% C

u, 1

.5%

Mg,

0.6

% M

n)

Allo

y 19

5,ca

st (

4.5%

Cu)

Ber

ylliu

m

Cad

miu

m

Chr

omiu

m

Cop

per

Pur

e

Com

mer

cial

bro

nze

(90°

Cu,

10%

Al)

Pho

spho

r ge

ar b

ronz

e (8

8%C

u,11

%S

n)

Car

trid

ge b

rass

(70

%C

u,30

%Z

n)

Con

stan

tan

(55%

Cu,

45%

Ni)

Ger

man

ium

Gol

d

Iron P

ure

Arm

co(9

9.75

% p

ure)

Pro

pert

ies

at V

ario

us T

empe

ratu

res

k(W

/m. K

)cP(I

/kg.

K)

rk

(kg/

m3 )

(l/kg

. K)

c p(W

/m. K

)

a1x

106

(m2 /s

)10

0 K

200

K20

0 K

2500

K40

0 K

600

K80

0 K

1000

K12

00 K

1500

K

Fig.B.4

Properties

ofsolidmaterials[3]

Appendix B: Properties of Solid Materials 457

Page 8: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Car

bon

Ste

els

7832

434

434

63.9

60.5

17.7

56.7

487

58.7

487

49.8

501

42.2

487

38.2

492

42.0

492

46.8

492

17.3

512

16.6

515

15.2

504

15.8

513

39.7

118

179

141

125

143

224

132

134

261

142

126

275

118

285

112

295

105

208

9890

230

280

459

86

36.7

34.0

31.4

559

585

606

18.9

21.9

24.7

557

18.3

21.3

24.2

602

576

550

19.8

22.6

25.4

28.0

31.7

682

640

611

582

559

585

606

9.2

272

402

12.6

36.7

575

39.1

575

42.1

575

20.0

688

22.8

25.4

36.3

28.2

969

33.3

688

34.5

688

26.9

969

27.4

969

559

685

1090

559

48.8

39.2

685

37.4

699

35.0

559

44.0

582

39.7

685

1169 31

.3

1168 29

.3

971

27.6

48.0

39.2

30.0

18.8

7832

7817

446

51.9

14.9

11.6

41.0

434

8131

7822

444

442

37.7

42.3

10.9

12.2

14.1

3.91

3.95

3.48

3.71

24.1

53.7

7858

7836

8055

1670

7900

8238

7978

1134

0

1024

0

8900

8400

8510

8570

129

251

444

420

439

265

138

90.7

23.0

164

232

383

107

80.2

65.6

67.6

530

562

71.8

76.2

82.6

616

594

592

485

14 480

13.5

17.0

20.5

24.0

27.6

33.0

79.1

72.1

67.5

64.4

626

546

61.3

510

58.2

473

55.2

10.3

372

52.6

16 525

545

21

8.7

55.2

3.4

3.1

23.6

12 11.7

53.7

601

2894

1728

1672

1665

2741

477

468

480

480

443

48.9

15.1

14.9

13.4

14.2

35.3

Pla

in c

arbo

n(M

n ≤

–1%

,Si ≤

0.1

%)

AIS

I 101

0

Car

bon-

silic

on (

Mn

≤ 1%

,0.1

% <

Si ≤

0.6

%)

Chr

omiu

m(lo

w)s

teel

s

1 C

r-

1 C

r-V

(0.

2%C

,1.0

2% C

r,0.

15%

V)

Sta

inle

ss s

teel

s

AIS

I 302

AIS

I 304

AIS

I 316

AIS

I 347

Lead

Mol

ybde

num

Nic

kel

Pur

e

Nic

hrom

e (8

0%N

i,20%

Cr)

Inco

nel X

-750

(73%

Ni,1

5%C

r,6.

7%F

e)

Nio

biumCr-

Mo-

Si (

0.18

%C

,0.6

5%C

r,0.

23%

Mo,

0.6%

Si)

Mo(

0.16

%C

,1%

Cr,

0.54

%M

o,0.

6%S

i)

1 2

1 21 4

Car

bon-

man

gane

se-s

ilico

n (1

%<

Mn≤

1.6

5%,

0

.1%

<S

i≤0.

6%)

Fig.B.5

Properties

ofsolidmaterials[3]

458 Appendix B: Properties of Solid Materials

Page 9: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Com

posi

ton

Pro

pert

ies

at 3

00K

Mel

ting

Poi

nt

(K)

Pc p

ka 1

x106

(kg/

m3 )

(l/kg

.K)

(W/m

-K)

(m2 /3

)

1800

1685

1235

505

1953

3660

1663

016

2

712

235

227

522

132

4717

.4

100

K20

0 K

200

K40

0 K

600

K80

0 K

1000

K12

00 K

1500

K25

00 K

52

——

——

——

5965

6973

76

884

264

98.9

790

425

239 62

.2

243

20.4

551

159

137

61.9

867

412

250

19.4

591

633

145

125

137

142

19.7

20.7

675

620

113

152

686

107

100

167

95 176

157

118

148

22.0

24.5

262

396

913

277

379

946

292

992

361

967

42.2

31.2

25.7

22.7

556

430

225 73

.3

215

24.5

465

186

122

259

444

187

85.2

188

30.5

300

208

87

89.2

174

40.1

9.32

68.3

148

429

66.6

21.9

174

2330

1050

0

7310

4500

1930

0

Pro

pert

ies

at V

ario

us T

empe

ratu

res

k(W

/m-Kk

P()

/Kg-

K)

Allo

y60P

t-40

Rh

(60%

Pt,4

0%R

h)

Sili

con

Silv

er

Tin

Tita

nium

Tun

gste

n

Fig.B.6

Properties

ofsolidmaterials[3]

Appendix B: Properties of Solid Materials 459

Page 10: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

References

1. Berennan, P. J., & Kroliczek, E. J. (1979). Heat pipe design. From B & K Engineering Volume

I and II. NASA contract NAS5-23406.

2. Chi, S. W. (1976). Heat pipe theory and practice. New York: McGraw-Hill.

3. Peterson, G. P. (1994). An introduction to heat pipes—Modeling, testing and applications.New York: John Wiley & Sons.

460 Appendix B: Properties of Solid Materials

Page 11: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Appendix C: Properties of Fluids

Most of the content in this section is from Chi “Heat Pipe Theory and Practice” as

well as “Heat Pipe Design” from B & K Engineering Volumes I and II written by

Patrick J. Berennan and Edward J. Kroliczek, published in June 1979 under NASA

contract NAS5-23406.

Fluid properties relevant to heat pipe performance in this text are presented in

this appendix in graphical presentation format for nine working fluids which are:

1. Neon

2. Nitrogen

3. Methane

4. Ammonia

5. Methanol

6. Water

7. Mercury

8. Potassium

9. Sodium

It is often necessary to collect these nine properties for each fluid from different

sources. Properties of liquid metal were first compiled by Deverall, Kemme, and

Florschuetz and by Frank, Smith, and Taylor. Refer to the following:

1. Sonic Limitation and Startup Problems of Heat PipesJ. E. Deverall, J. E. Kemme and L. W. Florschuetz, Los Alamos National

Laboratory, Report LA-4818, September 1970.

2. Heat Pipe Design ManualS. Frank, J. T. Smith and K. M. Taylor, Martin Marietta Corporation, Report

MND-3288, February 1967.

Properties of mercury have been compiled by Deverall.

3. Mercury as a Heat Pipes FluidDeverall, Los Alamos National Laboratory, LA-4300, October 1969.

© Springer International Publishing Switzerland 2016

B. Zohuri, Heat Pipe Design and Technology, DOI 10.1007/978-3-319-29841-2461

Page 12: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Properties of modern-temperature fluids have been compiled by:

4. Heat Pipe Design HandbookBienert and Skrabek and Taylor, Dynatherm Corporation, Report to NASA,

Contract No. NAS9-11927, August 1972.

5. Heat Pipe Design ManualS. Frank, J. T. Smith and K. M. Taylor, Martin Marietta Corporation, Report

MND-3288, February 1967.

Properties of cryogenic fluids have been compiled by Chi in the following

reference along with his computer codes that have been described in Chap. 3.

6. Mathematical Modeling of Cryogenic Heat PipesS. W. Chi, NASA CR-116175, September 1970.

The above compilations have been the sources of property values used in the

preparation of the graphs presented in this appendix.

Also, Reay and Kew [3] are providing a good list of properties of working fluids

for the following fluids:

Fluids listed

1. Helium

2. Ammonia

3. Acetone

4. Flutec PP2

5. Heptane

6. Flutec PP9

7. Mercury

8. Potassium

9. Lithium

10. Nitrogen

11. Water

12. High-temperature organics

13. Pentane

14. Cesium

15. Methanol

16. Sodium

17. Ethanol

Properties listed:

Latent heat of evaporation Vapor dynamic viscosity

Liquid density Vapor pressure

Vapor density Vapor-specific heat

Liquid thermal conductivity Liquid surface tension

Liquid dynamic viscosity

462 Appendix C: Properties of Fluids

Page 13: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

2

2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9

3

4

56789

2

3

4

56789

2

3

4

56789

101

1101

Ne

Hg K Na

N2

CH

4

NH

3

CH

3OH

H2O

102 103 104

102

103

Temperature, R

Vap

or p

ress

ure,

pv

psia

Fig. C.1 Saturation pressure of several heat pipe working fluids Chi [2] �R ¼ð0:556� K, 1 psi ¼ 6:895� 103 N=m2Þ

Appendix C: Properties of Fluids 463

Page 14: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

2

2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9

3

4

56789

2

3

4

56789

2

3

4

56789

1

10–1

101

Ne

Hg

K

Na

N2

CH4

NH3

CH3OHH2O

102 103 104

101

102

2

3

4

56789

2

3

4

56789

2

3

4

56789

101

1

102

103

Temperature, R

Den

sity

, lbm

/ft3

Fig. C.2 Saturation density of several heat pipe working fluids Chi [2] 1� R ¼ð0:5556� K, 1 lbm=ft3 ¼ 1:602 kg=m3Þ

464 Appendix C: Properties of Fluids

Page 15: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

2

2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9

3

4

56789

2

3

4

56789

2

3

4

56789

10–5

10–4

101

Ne

Hg

K

Na

N2CH4

NH3

CH

3 OH

H2O

102 103 104

10–3

10–2

2

3

4

56789

2

3

4

56789

2

3

4

56789

10–2

1

10–1

10–3

Temperature, R

Sur

face

tens

ion,

lbf/f

t

Fig. C.3 Viscosity of several heat pipe working fluids at saturation state Chi [2] 1� R ¼ð0:5556� K, 1 lbm=ft h ¼ 4:134� 10�4 kg=m sÞ

Appendix C: Properties of Fluids 465

Page 16: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

2

2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9

3

4

56789

2

3

4

56789

2

3

4

56789

10–3

10–2

101

Ne

Hg

K

NaN2

CH4

NH3

H2O

CH3OH

102 103 104

10–1

1

2

3

4

56789

2

3

4

56789

2

3

4

56789

10–1

101

1

10–2

Temperature, R

Vis

cosi

ty, l

bm/ft

.hr

Fig. C.4 Surface tension of saturated liquid for several heat pipe working fluids Chi [2]

1� R ¼ 0:5556� K, 1 lbf=ft ¼ 14:59 N=mð Þ

466 Appendix C: Properties of Fluids

Page 17: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

2

2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9

3

4

56789

2

3

4

56789

2

3

4

56789

102

101

101

Ne

Hg

K

Na

N2

CH4

NH3

CH3OH

H2O

102 103 104

103

104

Temperature, R

Late

nt h

eat o

f vap

oriz

atio

n, B

tu/lb

m

Fig. C.5 Latent heat of vaporization for several heat pipe working fluids Chi [2]

1� R ¼ 0:5556� K, 1 Btu=lbm ¼ 2:324� 103 J=kg� �

Appendix C: Properties of Fluids 467

Page 18: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

2

2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9

3

4

56789

2

3

4

56789

2

3

4

56789

10–2

10–1

101

Ne

Hg

K

Na

N2

CH4

NH3H2O

CH3OH

102 103 104

1

101

2

3

4

56789

2

3

4

56789

2

3

4

56789

1

102

101

10–1

Temperature, R

The

rmal

con

duct

ivity

, Btu

/ft.h

r.F

Fig. C.6 Liquid thermal conductivity for several heat pipe working fluids at saturated state Chi

[2] 1� R ¼ 0:5556� K, 1 Btu=ft h F ¼ 1:730 W=m Kð Þ

468 Appendix C: Properties of Fluids

Page 19: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

–271

–270

–269

–268

–203

–200

–195

–190

–185

–180

–175

–170

–160

–150

210.

020

5.5

198.

019

0.0

183.

017

3.7

163.

215

2.7

124.

266

.8

830.

081

8.0

798.

077

8.0

758.

073

2.0

702.

067

2.0

603.

047

4.0

1.84

3.81

7.10

10.3

913

.68

22.0

533

.80

45.5

580

.90

194.

00

0.15

00.

146

0.13

90.

132

0.12

50.

117

0.11

00.

103

0.08

90.

075

2.48

1.94

1.51

1.26

1.08

0.95

0.86

0.80

0.72

0.65

0.48

0.51

0.56

0.60

0.65

0.71

0.77

0.83

1.00

1.50

0.48

0.74

1.62

3.31

4.99

6.69

8.37

1.07

19.3

728

.80

1.08

31.

082

1.07

91.

077

1.07

41.

072

1.07

01.

068

1.06

31.

059

1.05

40.

985

0.87

00.

766

0.66

20.

561

0.46

40.

367

0.18

50.

110

22.8

23.6

20.9 4.0

148.

314

0.7

128.

011

3.8

26.0

17.0

10.0 8.5

1.81

2.24

2.77

3.50

3.90

3.70

2.90

1.34

0.20

0.30

0.60

0.90

0.06

0.32

1.00

2.29

2.04

52.

699

4.61

96.

642

0.26

0.19

0.09

0.01

Hel

ium

Nitr

ogen

Liqu

idvi

scos

.cP

x 1

02

Liqu

idvi

scos

.cP

x 1

01

vapo

urvi

scos

.cP

x 1

03

vapo

urvi

scos

.cP

x 1

02

Vap

our

pres

s.B

ar

Vap

our

pres

s.B

ar

Vap

our

spec

ific

heat

kJ/

kg°C

Vap

our

spec

ific

heat

kJ/

kg°C

Liqu

id s

urfa

ce

tens

ion

N/m

x 1

03

Liqu

id s

urfa

ce

tens

ion

N/m

x 1

02

Tem

p °C

Tem

p °C

Late

nt h

eat

kJ/k

g

Late

nt h

eat

kJ/k

g

Liqu

idde

nsity

kg/m

3

Liqu

idde

nsity

kg/m

3

Vap

our

dens

itykg

/m3

Vap

our

dens

itykg

/m3

Liqu

id th

erm

alco

nduc

tivity

W/m

°C x

10-2

Liqu

id th

erm

alco

nduc

tivity

W/m

°C

Fig.C.7

Workingfluid

properties

ofhelium

[3]

Appendix C: Properties of Fluids 469

Page 20: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Am

mon

ia

Tem

p ˚C

Tem

p ˚C

Late

nthe

atkJ

/kg

Late

nthe

atkJ

/kg

Liqu

idde

nsity

Kg/

m3

Liqu

idde

nsity

Kg/

m3

Vap

our

dens

ityK

g/m

3

Vap

our

dens

ityK

g/m

3

Liqu

id th

erm

alco

nduc

tivity

W/m

˚C

Liqu

id th

erm

alco

nduc

tivity

W/m

˚C

Liqu

idvi

scos

.cP

Liqu

idvi

scos

.cP

Vap

our

visc

os.

cP x

102

Vap

our

visc

os.

cP x

102

Liqu

id s

urfa

cete

nsio

nN

/mx

102

Liqu

id s

urfa

cete

nsio

nN

/mx

102

Vap

our

pres

s.B

ar Vap

our

pres

s.B

ar

Vap

our

spec

ific

heat

kJ/k

g ˚C

Vap

our

spec

ific

heat

kJ/k

g ˚C

120

100

806040200––– 204060 –20

428

699

891

1026

1101

1187

1263

1338

1384

1343

374.4

455.1

505.7

545.2

579.5

610.3

638.6

665.5

690.4

714.4

0.03

0.05

1.62

3.48

6.69

12.00

20.49

34.13

54.92

113.16

0.29

40.30

30.30

40.29

80.28

60.27

20.25

50.23

50.21

20.18

40.07

0.11

0.15

0.17020

0.22

0.25

0.260.29

0.36

1.891.60

1.40

1.27

1.16

1.01

0.92

0.85

0.79

0.72

90.44

63.12

40.90

29.80

15.34

8.46

4.24

1.93

0.76

0.27

2.29

22.26

02.21

02.18

02.16

02.15

02.12

52.10

02.07

52.05

0

0.15

005

000.76

71.36

71.83

32.13

32.48

03.09

03.57

44.06

2

Pentan

e

120

100806040200

269.7

295.7

329.1

342.3

355.5

366.9

378.3

390.0

509.4

537.6

563.0

585.0

607.0

625.5

644.0

663.0

25.20

16.54

10.61

6.51

4.35

2.20

0.75

0.01

0.12

20.12

40.12

70.12

80.13

30.13

80.14

30.14

9

0.12

00.12

80.14

70.17

40.20

00.24

20.28

30.34

4

0.90

0.81

0.74

0.69

0.63

0.58

0.53

0.51

13.81

7.19

3.89

2.28

1.52

0.76

0.24

0.10

1.16

41.08

81.05

01.02

10.97

10.92

20.87

40.82

5

0.68

0.83

0.97

0.17

0.371.58

1.79

0.01

Fig.C.8

Workingfluid

properties

ofam

monia

[3]

470 Appendix C: Properties of Fluids

Page 21: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Ace

tone

Met

hano

l

Tem

p°C

Tem

p°C

Late

nthe

atkJ

/kg

Late

nthe

atkJ

/kg

Liqu

idde

nsity

kg/m

3

Liqu

idde

nsity

kg/m

3

Vap

our

dens

itykg

/m3

Vap

our

dens

itykg

/m3

Liqu

id th

erm

alco

nduc

tivity

W/m

°C

Liqu

id th

erm

alco

nduc

tivity

W/m

°C

Liqu

idvi

scos

. cP

Liqu

idvi

scos

. cP

Vap

our

visc

os.

cP x

102

Vap

our

visc

os.

cP x

102

Vap

our

pres

s.B

ar

Vap

our

pres

s.B

ar

Vap

our

spec

ific

heat

kJ/k

g°C

Vap

our

spec

ific

heat

kJ/

kg°C

Liqu

id s

urfa

cete

nsio

nN

/m x

102

Liqu

id s

urfa

cete

nsio

nN

/m x

102

–40

–20 0 20 40 60 80 100

120

140

–50

–30

–10 10 30 50 70 90 110

130

150

1194

1187

1182

1175

1155

1125

1085

1035 98

092

085

0

843.

583

3.5

818.

780

0.5

782.

076

4.1

746.

272

4.4

703.

668

5.2

653.

2

0.01

0.01

0.04

0.12

0.31

0.77

1.47

3.01

5.64

9.81

15.9

0

0.21

00.

208

0.20

60.

204

0.20

30.

202

0.20

10.

199

0.19

70.

195

0.19

3

1.70

01.

300

0.94

50.

701

0.52

10.

399

0.31

40.

259

0.21

10.

166

0.13

8

0.72

0.78

0.85

0.91

0.98

1.04

1.11

1.19

1.26

1.31

1.38

0.01

0.02

0.04

0.10

0.25

0.55

1.31

2.69

4.98

7.86

8.94

1.20

1.27

1.34

1.40

1.47

1.54

1.61

1.79

1.92

1.92

1.92

3.26

2.95

2.63

2.36

2.18

2.01

1.85

1.66

1.46

1.25

1.04

660.

061

5.6

564.

055

2.0

536.

051

7.0

495.

047

2.0

426.

139

4.4

860.

084

5.0

812.

079

0.0

768.

074

4.0

719.

068

9.6

660.

363

1.8

0.03

0.10

0.26

0.64

1.05

2.37

4.30

6.94

11.0

218

.61

0.20

00.

189

0.18

30.

181

0.17

50.

168

0.16

00.

148

0.13

50.

126

0.80

00.

500

0.39

50.

323

0.26

90.

226

0.19

20.

170

0.14

80.

132

0.68

0.73

0.78

0.82

0.86

0.90

0.95

0.98

0.99

1.03

0.01

0.03

0.10

0.27

0.60

1.15

2.15

4.43

6.70

10.4

9

2.00

2.06

2.11

2.16

2.22

2.28

2.34

2.39

2.45

2.50

3.10

2.76

2.62

2.37

2.12

1.86

1.62

1.34

1.07

0.81

Fig.C.9

Workingfluid

properties

ofacetone[3]

Appendix C: Properties of Fluids 471

Page 22: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Flu

tec

PP

2

Tem

p °C

Tem

p °C

–30

–10

10 30 50 70 90 110

130

160

–30

939.

482

5.0

0.02

0.17

73.

401.

251.

311.

371.

441.

511.

581.

651.

721.

78

2.76

2.66

2.57

2.44

2.31

2.17

2.04

1.89

1.75

0.01

0.02

0.03

0.10

0.29

0.76

1.43

2.66

4.30

0.75

0.80

0.85

0.91

0.97

1.02

1.07

1.13

1.18

2.20

1.50

1.02

0.72

0.51

0.37

0.28

0.21

0.17

30.

170

0.16

80.

166

0.16

50.

163

0.16

00.

159

0.03

0.05

0.38

0.72

1.32

2.59

5.17

9.25

813.

079

8.0

781.

076

2.2

743.

172

5.3

704.

167

8.7

928.

790

4.8

888.

687

2.3

858.

383

2.1

786.

673

4.4

–10

10 30 50 70 90 110

130

106.

219

4218

860.

441.

392.

966.

4311

.79

21.9

934

.92

57.2

110

3.63

0.13

0.63

75.

200

0.98

1.03

1.07

1.12

1.17

1.22

1.26

1.31

0.01

0.72

0.81

0.92

1.01

1.07

1.11

1.17

1.25

1.33

1.45

1.90

1.71

1.52

1.32

1.13

0.93

0.73

0.52

0.32

0.01

0.02

0.09

0.22

0.39

0.62

1.43

2.82

4.83

8.76

1.36

1.43

3.50

02.

140

1.43

51.

005

0.72

00.

543

0.42

90.

314

0.16

7

0.62

60.

613

0.60

10.

588

0.57

50.

563

0.55

00.

537

0.51

8

1829

1773

1716

1660

1599

1558

1515

1440

103.

199

.896

.391

.887

.082

.176

.570

.359

.1

Late

nthe

atkJ

/kg

Late

nthe

atkJ

/kg

Liqu

idde

nsity

kg/m

3

Liqu

idde

nsity

kg/m

3

Liqu

id th

erm

alco

nduc

tivity

W/m

°C

Liqu

id th

erm

alco

nduc

tivity

W/m

°C

Vap

our

dens

itykg

/m3

Vap

our

dens

itykg

/m3

Liqu

idvi

scos

. cP

Liqu

idvi

scos

. cP

Eth

anol

Vap

our

visc

os.

cPx1

02

Vap

our

visc

os.

cPx1

02

Vap

our

Pre

ss.

Bar

Vap

our

Pre

ss.B

ar

Vap

our

spec

ific

heat

kJ/k

g°C

Vap

our

spec

ific

heat

kJ/

kg°C

Liqu

id s

urfa

cete

nsio

nN

/mx1

02

Liqu

id s

urfa

cete

nsio

nN

/mx1

02

Fig.C.10

Workingfluid

properties

offlutecPP2[3]

472 Appendix C: Properties of Fluids

Page 23: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Wat

er

Hep

tane

Tem

p°C

−20

384.

037

2.6

362.

235

1.8

341.

533

1.2

319.

630

5.0

715.

50.

010.

170.

490.

971.

452.

313.

716.

08

0.14

30.

690.

570.

600.

530.

430.

340.

290.

240.

210.

18

0.63

0.66

0.70

0.74

0.77

0.82

0.01

0.02

0.08

0.20

0.32

0.62

1.10

1.85

0.83

0.87

0.92

0.97

1.02

1.05

1.09

1.16

2.42

2.21

2.01

1.81

1.62

1.43

1.28

1.10

0.14

10.

140

0.13

90.

137

0.13

50.

133

0.13

2

699.

0

683.

066

7.0

649.

063

1.0

612.

059

2.0

20 40 60 80 100

120

2024

4824

0223

5923

0922

5822

0021

39

2003

1967

2074

998.

299

2.3

983.

097

2.0

958.

094

5.0

928.

0

888.

086

5.0

909.

0

0.02

0.05

0.13

0.29

0.60

1.12

1.99

5.16

7.87

3.27

0.60

31.

000.

960.

021.

817.

286.

966.

626.

265.

895.

505.

064.

664.

293.

89

1.89

1.91

1.95

2.01

2.09

2.21

2.38

2.62

2.91

0.07

0.20

0.47

1.01

2.02

3.90

6.44

10.0

416

.19

1.04

1.12

1.19

1.27

1.34

1.41

1.49

1.57

1.65

0.65

0.47

0.36

0.28

0.23

0.20

0.17

0.15

0.14

0.63

00.

649

0.66

80.

680

0.68

20.

683

0.66

90.

659

0.67

9

40 60 80 100

120

140

160

180

2000

Vap

our

spec

fic h

eat

kJ/k

g°C

Vap

our

spec

fic

heat

kJ/

kg°C

Late

nthe

atkJ

/kg

Liqu

id s

urfa

cete

nsio

nN

/m x

102

Liqu

id s

urfa

cete

nsio

nN

/m x

102

Liqu

idde

nsity

kg/m

3

Vap

our

dens

itykg

/m3

Liqu

idvi

scos

.cP

Liqu

idvi

scos

.cP

x10

2

Vap

our

pres

sB

ar

Vap

our

pres

s.B

ar

Liqu

id th

enna

lco

nduc

tivity

W/m

°C

Tem

p°C

Late

nthe

atkJ

/kg

Liqu

idde

nsity

kg/m

3

Vap

our

dens

itykg

/m3

Liqu

idvi

scos

.cP

Vap

our

visc

os.

cP x

102

Liqu

id th

enna

lco

nduc

tivity

W/m

°C

Fig.C.11

Workingfluid

properties

ofheptane[3]

Appendix C: Properties of Fluids 473

Page 24: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Flu

tec

PP

9

Hig

h T

empe

ratu

re O

rgan

ic (

Dip

heny

l-Dip

heny

l Oxi

de E

utec

tic)

Vap

our

viac

os.

cPx1

02

Vap

our

visc

os.

cPx1

02

Vap

our

pres

s.B

ar

Vap

our

pres

s.B

ar

Vap

our

spec

ific

heat

kJ/k

g °C

Vap

our

spec

ific

heat

kJ/k

g °C

Liqu

id s

urfa

cete

nsio

nN

/mx1

02

Liqu

id s

urfa

cete

nsio

nN

/mx1

02

Liqu

idvi

scos

. cP

Liqu

idvi

scos

.cP

Liqu

id th

erm

alco

nduc

tivity

W/m

°C

Liqu

id th

erm

alco

nduc

tivity

W/m

°C

Tem

p°C

Tem

p°C

–30 0 30 60 90 120

150

180

225

100

150

200

250

300

350

400

450

354.

033

8.0

321.

030

1.0

278.

025

1.0

219.

018

5.0

992.

095

1.0

905.

085

8.0

809.

075

5.0

691.

062

5.0

0.03

0.22

0.94

3.60

8.74

19.3

741

.89

81.0

0

0.13

10.

125

0.11

90.

113

0.10

60.

099

0.09

30.

086

0.97

0.57

0.39

0.27

0.20

0.15

0.12

0.10

0.67

0.78

0.89

1.00

1.12

1.23

1.34

1.45

0.01

0.05

0.25

0.88

2.43

5.55

10.9

019

.00

1.34

1.51

1.67

1.81

1.95

2.03

2.11

2.19

3.50

3.00

2.50

2.00

1.50

1.00

0.50

0.03

Late

nthe

atkJ

/kg

Late

nthe

atkJ

/kg

Liqu

idde

nsity

kg/m

3

Liqu

idde

nsity

kg/m

3

Vap

our

dens

itykg

/m3

Vap

our

dens

itykg

/m3

103.

098

.494

.590

.286

.183

.077

.470

.859

.4

2098

2029

1960

1891

1822

1753

1685

1604

1455

0.01

0.01

0.12

0.61

1.93

4.52

11.8

125

.13

63.2

7

0.06

00.

059

0.05

70.

056

0.05

40.

053

0.05

20.

051

0.04

9

5.77

3.31

1.48

0.94

0.65

0.49

0.38

0.30

0.21

0.82

0.90

1.06

1.18

1.21

1.23

1.26

1.33

1.44

0.00

0.00

0.01

0.03

0.12

0.28

0.61

1.58

4.21

0.80

0.87

0.94

1.02

1.09

1.15

1.23

1.30

1.41

2.36

2.08

1.80

1.52

1.24

0.95

0.67

0.40

0.01

Fig.C.12

Workingfluid

properties

offlutecPP9[3]

474 Appendix C: Properties of Fluids

Page 25: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Liqu

idde

nsity

kg/m

3

Vap

our

dens

itykg

/m3

Liqu

idvi

scos

.cP

Mer

cury

Cae

sium

Vap

our

visc

os.

cP x

102

Vap

our

pres

sB

ar

Liqu

id th

enna

lco

nduc

tivity

W/m

°C

Vap

our

spec

ific

heat

kJ/k

g°C

Liqu

id s

urfa

cete

nsio

nN

/m x

102

Tem

p°C

Late

nthe

atkJ

/kg

Liqu

idde

nsity

kg/m

3

Vap

our

dens

itykg

/m3 x

102

Liqu

idvi

scos

.cP

Vap

our

visc

os.

cP x

102

Vap

our

pres

s B

arLi

quid

then

nal

cond

uctiv

ityW

/m°C

Vap

our

spec

ific

heat

kJ/k

g°C

x 1

0

Liqu

id s

urfa

cete

nsio

nN

/m x

102

Tem

p°C

150

308.

813

230

0.01

9.99

1.09

0.39

0.01

1.04

4.45

4.15

4.00

3.82

3.74

3.61

3.41

3.25

3.15

3.03

2.75

1.04

1.04

1.04

1.04

1.04

1.04

1.04

1.04

1.04

1.04

0.18

0.44

1.16

2.42

4.92

8.86

15.0

323

.77

34.9

563

.00

0.48

0.53

0.61

0.66

0.70

0.75

0.81

0.87

0.95

1.10

0.96

0.93

0.89

0.86

0.83

0.80

0.79

0.78

0.78

0.77

11.2

311

.73

12.1

812

.58

12.9

613

.31

13.6

213

.87

14.1

514

.80

0.60

1.73

4.45

8.75

16.8

028

.60

44.9

265

.75

94.3

917

0.00

1299

512

880

1276

312

656

1250

812

308

1215

412

054

1196

211

800

303.

830

1.8

298.

929

6.3

293.

829

1.3

288.

828

6.3

283.

527

7.0

250

300

350

400

450

500

550

600

650

750

375

530.

417

400.

0120

.76

0.25

2.20

0.02

1.56

1.56

1.56

1.56

1.56

1.56

1.56

1.56

1.56

1.56

5.81

5.61

5.36

5.11

4.81

4.51

4.21

3.91

3.66

3.41

0.04

0.09

0.16

0.36

0.57

1.04

1.52

2.46

3.41

2.30

2.40

2.50

2.55

2.60

2.67

2.75

2.28

2.90

0.23

0.22

0.20

0.19

0.18

0.17

0.17

0.16

0.16

20.5

120

.02

19.5

218

.83

18.1

317

.48

16.8

316

.18

15.5

3

0.01

0.02

0.03

0.07

0.10

0.18

0.26

0.40

0.55

1730

1720

1710

1700

1690

1680

1670

1655

1640

520.

451

5.2

510.

250

2.8

495.

349

0.2

485.

247

7.8

470.

3

425

475

525

575

625

675

725

775

825

Late

nthe

atkJ

/kg

Fig.C.13

Workingfluid

properties

ofmercury

[3]

Appendix C: Properties of Fluids 475

Page 26: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

350

400

450

500

550

600

650

700

750

800

850

500

600

700

800

900

1000

1100

1200

1300

4370

4243

4090

3977

3913

3827

3690

3577

3477

70.0

864

.62

60.8

157

.81

53.3

549

.08

45.0

841

.08

37.0

8

828.

180

5.4

763.

575

7.3

745.

472

5.4

690.

866

9.0

654.

0

9.50

9.04

8.69

8.44

8.16

7.86

7.51

7.12

6.72

6.32

5.92

2093

2078

2060

2040

2020

2000

1980

1969

1938

1913

1883

51.0

849

.08

47.0

845

.08

43.3

141

.81

40.0

838

.08

36.3

134

.81

33.3

1

0.00

20.

006

0.01

50.

031

0.06

20.

111

0.19

30.

314

0.48

60.

716

1.05

4

0.00

30.

013

0.05

00.

134

0.30

60.

667

1.30

62.

303

3.62

2

0.21

0.19

0.18

0.17

0.15

0.14

0.13

0.12

0.12

0.11

0.10 0.24

0.21

0.19

0.18

0.17

0.16

0.16

0.15

0.15

0.18

0.19

0.20

0.22

0.23

0.24

0.25

0.26

0.27

0.01

0.04

0.15

0.47

1.25

2.81

5.49

9.59

15.9

1

9.04

9.04

9.04

9.04

9.04

9.04

9.04

9.04

9.04

1.51

1.42

1.33

1.23

1.13

1.04

0.95

0.86

0.77

0.15

0.16

0.16

0.17

0.17

0.18

0.19

0.19

0.20

0.20

0.21

0.01

0.01

0.02

0.05

0.10

0.19

0.35

0.61

0.99

1.55

2.34

5.32

5.32

5.32

5.32

5.32

5.32

5.32

5.32

5.32

5.32

5.32

763.

174

8.1

735.

472

5.4

715.

470

5.4

695.

468

5.4

675.

466

5.4

653.

1

Tem

p °C

Late

nthe

atkJ

/kg

Liqu

idde

nsity

kg/m

3

Vap

our

dens

itykg

/m3

Liqu

id th

erm

alco

nduc

tivity

W/m

°C

Liqu

idvi

scos

. cP

Pot

asiu

m

Sod

ium

Vap

our

visc

os.

cP ×

102

Vap

our

pres

s.B

ar

Vap

our

spec

ific

heat

kJ/k

g °C

Liqu

id s

urfa

cete

nsio

nN

/m ×

102

Tem

p °C

Late

nthe

atkJ

/kg

Liqu

idde

nsity

kg/m

3

Vap

our

dens

itykg

/m3

Liqu

id th

erm

alco

nduc

tivity

W/m

°C

Liqu

idvi

scos

.cP

Vap

our

visc

os.

cP ×

10

Vap

our

pres

s.B

ar

Vap

our

spec

ific

heat

kJ/k

g °C

× 1

0

Liqu

id s

urfa

cete

nsio

nN

/m ×

102

Fig.C.14

Workingfluid

properties

ofpotassium

[3]

476 Appendix C: Properties of Fluids

Page 27: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Tem

p °C

Late

nthe

atkJ

/kg

Liqu

idde

nsity

kg/m

3

Vap

our

dens

itykg

/m3

Liqu

id th

erm

alco

nduc

tivity

W/m

°C

Liqu

idvi

scos

.cP

Lith

ium

Vap

our

visc

os.

cP ×

102

Vap

our

pres

s.B

ar

Vap

our

spec

ific

heat

kJ/k

g°C

Liqu

id s

urfa

cete

nsio

nN

/m ×

102

1030

1130

1230

1330

1430

1530

1630

1730

2050

045

00.

005

67 69 70 69 68 65 62 59

0.24

0.24

0.23

0.23

0.23

0.23

0.23

0.23

0.53

20.

532

0.53

20.

532

0.53

20.

532

0.53

20.

532

0.07

0.17

0.45

0.96

1.85

3.30

5.30

8.90

1.67

1.74

1.83

1.91

2.00

2.10

2.17

2.26

2.90

2.85

2.75

2.60

2.40

2.25

2.10

2.05

0.01

30.

028

0.05

70.

108

0.19

30.

340

0.49

0

440

430

420

410

405

400

398

2010

020

000

1970

019

200

1890

018

500

1820

0

Fig.C.15

Workingfluid

properties

oflithium

[3]

Appendix C: Properties of Fluids 477

Page 28: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

References

1. Berennan, P. J., & Kroliczek, E. J. (1979). Heat pipe design. From B & K Engineering Volume

I and II. NASA contract NAS5-23406.

2. Chi, S. W. (1976). Heat pipe theory and practice. New York: McGraw-Hill.

3. Reay, D., & Kew, P. (2006). Heat pipes theory, design and application (5th Ed.). Oxford:

Butterworth-Heinemann.

478 Appendix C: Properties of Fluids

Page 29: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Appendix D: Different Heat Pipe DesignExamples

Different design examples from different resources and references are presented in

this appendix to help the reader to have better understanding and approach to design

a heat pipe under different conditions and functional requirement while heat pipe is

operating under normal condition.

Design Example 1

This example is part of The Effects of Transverse Vibration on the Performance of

an Axial Groove Wick Heat Pipe, Master’s thesis, By Kenneth A. Carpenter,

December 1994. Defense Technical Information Center under Accession Number:

ADA289349

An experimental investigation was performed to determine the effects of trans-

verse vibrations on the performance of an ammonia–aluminum axial groove wick

heat pipe. Theoretical calculations predicted performance degradation due to the

working fluid being shaken out of the upper capillary grooves.

A bench top shaker was used to apply transverse, sinusoidal vibrations of 30, 35,

and 40 Hz, corresponding to peak acceleration amplitudes of 1.84 g, 2.50 g, and

3.27 g, respectively.Maximumheat throughput,Q submax, of the vibrating heat pipe

was measured. A comparison of these values and static Q sub max values indicated

degradation in heat pipe performance. A mean performance deterioration of 27.6 W

was measured for the 1.84 g case, an average degradation of 12.9% from static heat

pipe performance. At 2.50 g peak acceleration, the degradation rose to 37.3 W, an

average decrease of 14.8% from static performance. An average deterioration in

performance of 28.1% was recorded for the 3.27 g case. This amounted to a mean

performance degradation of 69.3 W. The results of this investigation revealed that

transverse, sinusoidal vibrations have a detrimental impact on the performance of an

ammonia/axial groove wick heat pipe. Further, the performance degradation

increases with increasing vibration peak acceleration amplitude.

© Springer International Publishing Switzerland 2016

B. Zohuri, Heat Pipe Design and Technology, DOI 10.1007/978-3-319-29841-2479

Page 30: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Heat Pipe Geometry

Heat pipe performance is as much a function of the wick geometry as it is a function

of the working fluid. The heat pipe for this experiment was supplied by Dynatherm

Corporation. It was an axial groove wick heat pipe of extruded aluminum. For a

working fluid, the heat pipe was charged with 8.6 g of anhydrous ammonia.

Figure D.1 shows the tested heat pipe in cross section, while Table D.1 presents

critical heat pipe dimensions. The tested heat pipe is shown in profile in Fig. D.2

and includes the dimensions for the evaporator, adiabatic, and the condenser

sections

Heat Transport Limits

All heat pipes are constrained by four operating heat transport limits. These are the

sonic limit, the entrainment limit, the capillary limit, and the boiling limit. The heat

transport limits are functions of the heat pipe geometry, the working fluid proper-

ties, and the heat pipe operational environment. This last category includes heat

pipe inclinations, heat pipe section lengths, and other external influences.

11.379 mm

11.379 mm

α

9.398 mm

Fig. D.1 Heat pipe cross-

sectional drawing

Table D.1 Heat pipe cross-

sectional parametersLand thickness (bottom) t1 0.020 in. 0.508 mm

Groove opening (top) w 0.025 in. 0.635 mm

Groove opening (bottom) wb 0.048 in. 1.219 mm

Groove depth δ 0.055 in. 1.397 mm

Groove angle α 13.9� 0.2426 rad

Number of grooves n 17 17

480 Appendix D: Different Heat Pipe Design Examples

Page 31: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

The complete explanations and derivations for the heat transport limits of the

tested heat pipe are provided below. Table D.2 is a representation of the theoretical

operating limits of the tested heat pipe. Column 1 of this table gives the heat pipe

operating temperature, which is the temperature of the adiabatic section of the heat

pipe. The remaining columns give the values for the four heat transport limits at the

various operating temperatures. An examination of Table D.2 reveals that for the

anticipated operating temperature range of 40–80 �C, the boiling limit was expected

to constrain the maximum heat transport of the test article since it has the lowest

heat transport value for the entire operating range. However, as Chi points out [2],

the boiling limit of a heat pipe must be verified experimentally.

Experimental investigation showed the theoretical boiling limit to be overly

conservative. This agrees with the findings of Brennan and Kroliczek [1]. They

point out that boiling limit models are very conservative.

In their work, they found that the theoretical boiling limit could be an order of

magnitude lower than the actual boiling limit. The true heat transport limit in the

operating temperature range of 40–80 �C proved to be the capillary limit.

Heat pipes are subject to four different heat transport limits, depending upon the

portion of the operational range in which they are being used. These limits are, from

the lowest operating temperature to the highest, as follows: sonic limit, entrainment

limit, capillary limit, and boiling limit. Table D.2 is a summary of the four

abovementioned limits, and they are summarized as follows.

Evaporator

10.7442 cm

Adiabatic section

36.5906 cm

62.3367 cm66.1467 cm

Condenser section

15.0019 cm

Fig. D.2 Heat pipe profile view

Table D.2 Theoretical heat transport limits

Top QS,max Qe,max Qc,max Qb,max

Operating

temperature (�C)Sonic

limit (W)

Entrainment

limit (W)

Capillary

limit (W)

Boiling

limit (W)

40 99,050 529.29 289.09 18.22

50 124,740 543.15 263.78 12.69

60 158,550 554.04 234.78 8.58

70 202,230 558.36 202.64 5.63

80 256,760 551.02 168.05 3.59

Appendix D: Different Heat Pipe Design Examples 481

Page 32: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Sonic Limit Analysis

When the vapor leaving the evaporator, or if there exists an adiabatic section,

reaches the sonic limit, then Eq. (2.20) (or Eq. (D.1) here) can be used and is

presented here again. This equation for the sonic heat transport limit was first

derived by Levy [3] and is known as the Levy equation. Chi has reproduced the

derivation of this equation as well [2]:

QSmax¼ Avρ0λ

γ0RvT0

2 γ0 þ 1ð Þ� �1=2

ðEq:D:1ðor Eq:2:20ÞÞ

where

QSmax¼ Sonic heat transport limit (W).

Av¼Vapor core cross-sectional area (m2).

ρ0¼Vapor density at stagnation temperature (kg/m3).

λ¼Latent heat of vaporization (J/kg).

γ0¼ Specific gas constant.

Rv¼Vapor gas constant (J/kg K)

T0¼ Stagnation temperature (K).

The sonic heat transport limit for this heat pipe example is represented in

Fig. D.3.

2400.00E+00

5.00E+04

1.00E+05

1.50E+05

2.00E+05

2.50E+05

3.00E+05

3.50E+05

4.00E+05

4.50E+05

5.00E+05

250 260 270 280 290 300 310

Operating Temperature (Degrees Kelvin)

Hea

t Tra

nspo

rt L

imit

(Wat

ts)

320 330 340 350 360 370 380 390 400

Fig. D.3 Sonic heat transport limit

482 Appendix D: Different Heat Pipe Design Examples

Page 33: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Entrainment Limit Analysis

The entrainment limit is a result of the interactions of the vapor stream and the

liquid stream. The interface between these opposite flowing streams is a mutual

shear layer. If the relative velocity between the two streams is great enough, liquid

droplets will be torn from the liquid stream and become entrained in the vapor

stream [1]. When this occurs, evaporator wick dryout follows rapidly [2]. Chi

derives the equation for computing the entrainment heat transport limit:

Qemax¼ Avλ

σρv2rh, s

� �1=2ðEq:D:2Þ

where

Qemax¼Entrainment heat transport limit (W).

Av¼Vapor core cross-sectional area (m2)

λ¼Latent heat of vaporization (J/kg).

σ¼ Surface tension coefficient (N/m).

ρv¼Vapor density (kg/m3).

rh,s¼Hydraulic radius of wick at vapor/wick interface (m).

The entrainment heat transport limit for the heat pipe used in this experiment is

represented in Fig. D.4.

2400

50

100

150

200

250

300

350

400

450

500

550

250 260 270 280 290 300 310

Operating Temperature (Degrees Kelvin)

Hea

t Tra

nspo

rt L

imit

(Wat

ts)

320 330 340 350 360 370 380 390 400

Fig. D.4 Entrainment heat transport limit

Appendix D: Different Heat Pipe Design Examples 483

Page 34: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Capillary or Wick Limit Analysis

The capillary limit occurs when liquid is evaporating more rapidly than capillary

forces can replenish the liquid. This condition results in local wick dryout and

increased wall temperatures [1]. Chi [2] has derived the equations for determining

the capillary or wick heat transport limit:

Qcmax¼ QLð Þcmax

12Lc þ La þ 1

2Le

� � ðEq:D:3Þ

with

QLð Þcmax¼

2σrc� ΔP⊥ � ρlgLt sinΦ

� �Fl þ Fvð Þ ðEq:D:4Þ

where

Fl ¼ μlKAwρlλ

ðEq:D:5Þ

and

Fv ¼ f vRevð Þμv2r2hvAvρvλ� � ðEq:D:6Þ

where

Qcmax¼Capillary heat transport limit (W).

Lc¼Length of condenser section (m).

La¼Length of adiabatic section (m).

Le¼Length of evaporator section (m).

Lt¼Total length of the heat pipe (m).

σ¼ Surface tension coefficient (N/m).

rc¼Effective pore radius (m).

rh¼Hydraulic vapor radius.

ΔP⊥ ¼Hydrostatic pressure perpendicular to pipe axis (N/m2).

ρl¼Liquid density (kg/m3).

ρv¼Vapor density (kg/m3).

λ¼Heat of vaporization (J/kg).

Φ¼Heat pipe inclination (radians).

g¼Gravitational force (9.81m/s3).

Fl¼Liquid frictional coefficient.

Fv¼Vapor frictional coefficient.

μl¼Liquid viscosity (kg/m s).

484 Appendix D: Different Heat Pipe Design Examples

Page 35: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

μv¼Vapor viscosity (kg/m s).

K¼Effective wick permeability (m�2).

fv¼Vapor drag coefficient.

Rev¼Reynolds number.

Aw¼Wick cross-sectional area (m2).

For this example, some simplifications can be made to Eq. (D.4). Since there is

no connection between the grooves in the tested heat pipe, the hydrostatic pressure

term, ΔP⊥, is zero. The heat pipe was maintained in a nearly horizontal position

throughout the test; therefore, the pipe inclination angle, Φ is zero. These simpli-

fications reduce Eq. (D.4) to

QLð Þcmax¼

2σrc

� �Fl þ Fvð Þ ðEq:D:7Þ

The effective wick permeability used in Eq. (D.5) is a function of the wick

geometry. For the axial groove wick used in this study, the equation for the effective

wick permeability of the trapezoidal shaped groove is assumed by Brennan and

Kroliczek [1]:

K ¼ 0:435wδþ δ2 tan α� �1=2w02 2δ

cos α 1� sin αð Þþw

h i28><>:

9>=>; ðEq:D:8Þ

where

K¼Effective wick permeability (m�2).

w¼Groove width at the inner radius (m).

δ¼Groove depth (m).

α¼Groove angle (�).The capillary or wick heat transport limit for the heat pipe used in this example is

shown below (Fig. D.5);

Boiling Limit Analysis

The boiling limit results when the heat flux density is great enough to cause the

saturation vapor pressure at the interface between the wick and the wall to exceed

the liquid pressure at the same point. When this occurs, vapor bubbles form in the

liquid stream. These bubbles cause hot spots and restrict liquid circulation, leading

to wick dryout [2]. The heat transport limit at which this occurs is known as the

boiling limit. Chi derives the equation for computing the boiling heat transport

limit:

Appendix D: Different Heat Pipe Design Examples 485

Page 36: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Qbmax¼ 2πLekeTv

λρvln ri=rvð Þ2σ

rn� Pc

� ðEq:D:9Þ

where

Qbmax¼Boiling heat transport limit (W).

Le¼Evaporator section length (m).

ke¼Effective thermal conductivity of the liquid or saturated wick matrix

(W/m K).

Tv¼Vapor temperature (K).

λ¼Latent heat of vaporization (J/kg).

ρv¼Vapor density (kg/m2).

ri¼ Inside radius of pipe (m).

rv¼Vapor core radius (m).

σ¼ Surface tension coefficient (N/m).

rn¼Boiling nucleation radius (m).

Pc¼Capillary pressure (N/m2).

The effective thermal conductivity, Ke, used in Eq. (D.9) is highly dependent

upon the wick geometry. Chi gives the equation for finding the effective thermal

conductivity of an axially grooved heat pipe;

ke ¼ wkl 0:185wfkw þ δklð Þ þ wfklkwδð Þwþ wfð Þ 0:185wfkw þ δklð Þ ðEq:D:10Þ

2400

50

100

150

200

250

300

350

250 260 270 280 290 300 310Operating Temperature (Degrees Kelvin)

Hea

t Tra

nspo

rt L

imit

(Wat

ts)

320 330 340 350 360 370 380 390 400

Fig. D.5 Capillary or wick heat transport limit

486 Appendix D: Different Heat Pipe Design Examples

Page 37: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

where

wf¼Groove fin thickness (m).

w¼Groove width (m).

δ¼Groove depth (m).

kl¼Liquid thermal conductivity (W/m K).

kw¼Wall thermal conductivity (W/m K).

The radius of nucleation, r, used in Eq. (D.9) is also a function of the boiling

surface [2]. A wide range of values for r have been reported. Chi gives typical

nucleation radii of 254–2540 nm, while Silverstein reports values ranging from 1 to

7 μm (Silverstein [3] Page 162). A third source, Brennan and Kroliczek, give typical

nucleation radii of 1–10 μm [1]. Brennan and Kroliczek also point out that the

boiling limit model is very conservative. Even using their lower limit for nucleation

radius, they’ve found that the model boiling limit can easily be an order of

magnitude lower than the actual measured boiling limit. The boiling limit for the

heat pipe used in this experiment, using Chi’s lower limit of 254 nm, is represented

in Fig. D.6.

Note: Recommended Values for Nucleation Site Radius [3]. It is reasonable to

assume that the nucleation site radius in properly fabricated and conditioned heat

pipes lies within the range of 1–7 μm. A value of 3 μm is suggested for preliminary

design purpose.

Evaluation of this Example

The heat transport for this investigation was based on an anticipated heat pipe

operating temperature of 313–353 K (40–80 �C). Based on the theoretical curves

shown in Figs. D.3, D.4, D.5, and D.6, the boiling heat transport limit is expected to

2400

100

50

150

250

350

450

550

200

300

400

500

600

650

250 260 270 280 290 300 310Operating Temperature (Degrees Kelvin)

Hea

t Tra

nspo

rt L

imit

(Wat

ts)

320 330 340 350 360 370 380 390 400

Fig. D.6 Boiling heat transport limit

Appendix D: Different Heat Pipe Design Examples 487

Page 38: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

be the performance-limiting condition for the tested heat pipe. This is based on the

boiling limit having the lowest heat transport capability over the expected operating

temperature range.

Design Example 2

This example is given by Larry W. Swanson [4].

Heat Transfer Research Institute College Station, TexasDesign a water heat pipe to transport 80 W of waste heat from an electronic

package to cooling water. The heat pipe specifications are:

1. Axial orientation—Complete gravity-assisted operation (condenser above the

evaporator; Ψ ¼ 180�).2. Maximum heat transfer rate—80 W.

3. Nominal operating temperature—40 �C.4. Inner pipe diameter—3 cm.

5. Pipe length—25-cm evaporator length, 50-cm adiabatic section, and 25-cm

condenser length.

The simplest type of wick structure to use is the single-layer wire mesh screen

wick shown in the table below. The geometric and thermophysical properties of the

wick have been selected as (this takes some forethought):

• d ¼ 2:0� 10�5 m

• w ¼ 6:0� 10�5 m

• 12N ¼ rc ¼ 1=2 2:0� 10�5 þ 6� 10�5

� � ¼ 4:0� 10�5 m

• ε ¼ 1

• keff ¼ k1 ¼ 0:630 W=m K

• tw ¼ 1:0� 10�3 m

• K ¼ t2w12¼ 1�10�3ð Þ2

12¼ 8:33� 10�8 m2

The other heat pipe geometric properties are:

• rv ¼ ri � tw ¼ 0:015� 0:001 ¼ 0:014 m

• leff ¼ 0:25þ0:252

þ 0:5 ¼ 0:75 m

• Lt ¼ 0:25þ 0:50þ 0:25 ¼ 1:0 m

• Aw ¼ π r2i � r2v� � ¼ π 0:015ð Þ2 � 0:014ð Þ2

h i¼ 9:11� 10�15 m2

• Av ¼ πr2v ¼ π 0:014ð Þ2 ¼ 6:16� 10�4 m2

The thermophysical properties of water at 40 �C are (see Table D.3):

• ρl ¼ 992:1 kg=m3

• ρv ¼ 0:05 kg=m3

• σl ¼ 2:402� 106 J=kg

488 Appendix D: Different Heat Pipe Design Examples

Page 39: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Table

D.3

Physicalproperties

ofwickstructure

Wicktypea

Thermal

conductivity

Porosity

Minim

um

capillary

radius

Permeability

Single-layer

wiremeshscreens

(heatpipeaxisin

theplaneofthe

paper

inthissketch)

Scr

een

Ann

ular

d

w

k eff¼

k eε¼

1r c

¼1=2N

ðÞ

t2 w=12

1/N

¼d+w

N¼number

ofaperturesper

unitlength

t wMultiplewiremeshscreens,

bplain

orsintered(screen

dim

ensionsas

forsingle

layersillustratedabove)

k eff¼

k ek e

þk s

�1�ε

ðÞk

e�k s

ðÞ

½�

k eþk s

þ1�ε

ðÞk

e�k s

ðÞ

Estim

ated

from

ε¼

1�

πNd

ðÞ=4

r c¼

1=2N

ðÞ

d2ε2

1221�ε

ðÞ2

(continued)

Page 40: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Table

D.3

(continued)

Wicktypea

Thermal

conductivity

Porosity

Minim

um

capillary

radius

Permeability

Unconsolidated

packed

spherical

particles

(d¼average

particle

diameter)

Plain

Sintered

k eff¼

k e2k e

þk s

�21�ε

ðÞk

e�k s

ðÞ

½�

2k e

þk s

þ1�ε

ðÞ k

e�k s

ðÞ

k eff¼

k e2k s

þk e

�2εk s

�k e

ðÞ

½�

2k s

þk e

þεk s

�k e

ðÞ

Estim

ated

from

(assumingcubic

packing)ε¼0.48

r c¼

0:21d

d2ε2

1501�ε

ðÞ2

C1

y2�1

y2�1

where

Page 41: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Sinteredmetal

fibers(d

¼fiber

diameter)

k eff¼

ε2k e

1�ε

ðÞ2 k

sþ4ε1�ε

ðÞk e

k sk e

þk s

Use

manufac-

turers

data

r c¼

d

21�ε

ðÞ

C2d2ε3

1�ε

ðÞ2

C1¼

6:0�10�1

0m

2

C2¼

3:3�107l=m

2

Revised

from

Peterson,G.P.,AnIntrod

uction

toHeatPipes:Mod

eling,

Testing

,an

dApp

lication

s,JohnWiley

&Sons,New

York,1994

aTheaxisofthepipeanddirectionoffluid

flow

arenorm

alto

thepaper

bThesewicksarepositioned

sothat

thelayersfollow

thecontours

oftheinner

surfaceofthepipewall

Page 42: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

• μl ¼ 6:5� 10�3 kg=m s

• μv ¼ 1:04� 10�4 kg=m s• Pv ¼ 7000 Pa

• hfg ¼ 2:402� 106 is the latent heat of vaporization for water at the range of�40

to +40 �C.

The various heat transfer limitations can now be determined to ensure that the

heat pipe meets the 80 W heat transfer rate specification. The vapor pressure

(viscous limitation) limitation is:

Qvpmax¼ πr4vhfgρvePve

12μveleff

Qvpmax¼ π 0:014ð Þ4 2:402� 106

� �0:05ð Þ 7000ð Þ

12 1:04� 10�4� �

0:75ð Þ¼ 1:08� 105 W

The sonic limitation is

Qsmax¼ 0:474Avhfg ρvPvð Þ1=2

Qsmax¼ 0:474 6:16� 10�4

� �2:402� 106� �

0:05ð Þ 7000ð Þ½ �1=2¼ 1:31� 104 W

The entrainment limitation is:

Qemax¼ Avhfg

ρvσl2rcave

� �1=2

Qemax¼ 6:16� 10�4� �

2:402� 106� �

0:05ð Þ 0:07ð Þ2 4:0�10�5ð Þ� �1=2

¼ 9:979� 103 W

Noting that cosΨ ¼ 1, the capillary limitation is:

Qcmax¼ ρlσlhfg

μl

� �AwK

leff

� �2

rc, e� ρl

σl

� �gLt cosΨ

Qcmax¼ 992:1ð Þ 0:07ð Þ 2:402� 106

� �6:5� 10�3

" #9:11� 10�5� �

8:33� 10�8� �

0:75

" #

� 2

4:0� 10�5þ 992:1

0:079:8 1:0ð Þ

� �

492 Appendix D: Different Heat Pipe Design Examples

Page 43: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Finally the boiling limitation is:

Qbmax¼ 4πleffTvσv

hfgρlln ri=rvð Þ1

rn� 1

rc, e

Qbmax¼ 4π 0:75ð Þ 0:63ð Þ 313ð Þ 0:07ð Þ

2:402� 106� �

992:1ð Þln 0:015

0:014

� 1

2:0� 10�6� 1

4:0� 10�5

� �

¼ 0:376 W

All of the heat transfer limitations, with the exception of the boiling limitation,

exceed the specified heat transfer rate of 80 W. The low value of 0.376 for the

boiling limitation strongly suggests that the liquid will boil in the evaporator and

possibly cause local dry spots to develop. The reason the liquid boils is that the

effective thermal conductivity of the wick is equal to the conductivity of the liquid,

which is very low in this case. Because the liquid is saturated at the vapor–liquid

interface, a low-effective thermal conductivity requires a large amount of wall

superheat, which, in turn, causes the liquid to boil. This problem can be

circumvented by using a high-conductivity wire mesh or sintered metal wick,

which greatly increases the effective conductivity. It should be noted, however,

that because porous wicks have lower permeabilities, the capillary limitation should

be lower as well. Let us try a sintered particle wick made of copper with the

following properties (see Table D.3):

• d ¼ 1:91� 10�4 m

• rc ¼ 0:21d ¼ 4:0� 10�5 m

• ε ¼ 0:48

• K ¼ 1:91�10�4ð Þ 0:48ð Þ150 1�0:48ð Þ2 ¼ 2:07� 10�10 m2

• K1 ¼ 400 W=m K Copperð Þ• K1 ¼ 0:630 W=m K Waterð Þ• keff ¼ 400 2

�400þ0:63�2 0:48ð Þ 400�0:63ð Þ

�2 400ð Þþ0:63þ0:48 400�0:63ð Þ ¼ 168 W=m K

All other geometric and thermophysical properties are the same. The heat

transfer limitations affected by the change in wick structure are the capillary and

boiling limitations. The sintered metal wick produces a capillary limitation of

Qcmax¼ 992:1ð Þ 0:07ð Þ 2:402� 106

� �6:5� 10�3

" #9:1� 110�5 2:07� 10�10

� �0:75

" #

� 2

4:0� 10�5þ 992:1

0:079:8 1:0ð Þð Þ

� �¼ 122 W

Appendix D: Different Heat Pipe Design Examples 493

Page 44: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

The boiling limitation for the sintered wick is

Qbmax¼ 4π 0:75ð Þ 168ð Þ 313ð Þ 0:07ð Þ

2:402� 106� �

992:1ð Þln 0:015

0:014

� 1

2:0� 10�6� 1

4:0� 10�5

� �¼ 100 W

This design now meets all the specifications defined in the problem statement. More

points can be calculated to reveal that for the anticipated operating temperature

range of �40 to +40 �C, the boiling limit was expected to constrain the maximum

heat transport of the test article since it has the lowest heat transport value for the

entire operating range. This will allow one to plot all the limiting operation of this

heat in order to come up with best optimum design and envelope of operating range

where under that the heat up pipe operates according to its spec. See Example 1.

Design Example 3

This example is given by G. P. Peterson [5].

G. P. Peterson: An Introduction to Heat Pipes—Modeling, Testing, and Appli-

cations, John Wiley & Sons, Inc., 1994.

A simple horizontal copper–water heat pipe is to be constructed from a 1.5-cm

internal diameter, 0.75-m-long tube to cool an enclosed electrical cabinet as shown

in Fig. D.7. The evaporator and condenser lengths of the heat pipe are 0.25 m each,

Cabinet

Evaporator (0.25 m)

Adiabatic Region(0.25 m) Condenser (0.25 m)

Cool Air

Fins

A

A

Warm AirCopperTube

100 MeshCopper Screen(2 Layers)

2.75

cm

Fig. D.7 Sketch of copper–water heat pipe of Example 3 [5]

494 Appendix D: Different Heat Pipe Design Examples

Page 45: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

and the wicking structure consists of two layers of 100-mesh copper screen. The

maximum heat transport capacity of the heat pipe is estimated to be 20 W and to

occur at an adiabatic vapor temperature of 30 �C:

1. If the working fluid is water and is assumed to fully wet the wicking structure,

will this heat pipe be adequate?

2. What happens to the maximum transport capacity if the wetting angle is

increased to 45 �C due to poor cleaning?

Solutions

First it is necessary to summarize the physical parameters and known information

for this application:

Wick geometry

N ¼ 100 in:�1 ¼ 3937 m�1 (Mesh number)

dw ¼ 0:0045 in: ¼ 1:143� 10�4 m (Wire diameter)

Spacing ¼ dw ¼ 1:143� 10�4 m (Assume)

Fluid properties at 30 �C

λ ¼ 2425� 10 3 J=kg (Latent heat of vaporization)

ρ‘ ¼ 995:3 kg=m 3 (Working liquid density)

ρv ¼ 0:035 kg= m 3 (Vapor density)

μ‘ ¼ 769� 10�6 N s=m2 (Working liquid absolute viscosity)

μv ¼ 70:9� 10�6 N s=m2 (Vapor absolute viscosity)

σ ¼ 70:9� 10�3 N=m

Next, calculate the vapor diameter:

dv ¼ d � 2 Two Layersþ Two Spaceð Þ¼ 00:015� 2 4 1:143� 10�4

� � �¼ 0:0141 m

To evaluate the maximum heat transport capacity, the capillary limit must be

evaluated. This is represented by Eq. (2.8):

ΔPcð Þm �ðLeff

∂Pv

∂xdxþ

ðLeff

∂Pl

∂xdxþ ΔPephase þ ΔPcphase þ ΔP⊥ þ ΔPk

where

(ΔPc)m¼Maximum capillary pressure difference generated within capillary

wicking structure between wet and dry points.

Appendix D: Different Heat Pipe Design Examples 495

Page 46: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

ðLeff

dPv

dxdx¼Vapor pressure drop (Eq. 2.55).ð

Leff

dPl

dxdx¼Liquid pressure drop (Eq. 2.38).

ΔPephase ¼ Pressure gradient across phase transition in evaporator.

ΔP⊥ ¼ ρlgdv cosψ Normal hydrostatic pressure (Eq. 2.8a)

ΔPk ¼ ρlgL sinψ Axial hydrostatic pressure (Eq. 2.8b).

Assuming that one-dimensional flow and the wet point are at the end of the

condenser yields,ðLeff

dPv

dxdx ¼ ΔPv ¼ C f vRevð Þμv

2 rhvð Þ2Avρvλ

!Leffq (Eqs. 2.55 and 2.55a)ð

Leff

dPl

dxdx ¼ ΔPl ¼ μl

KAwρlλ

� �Leffq (Eqs. 2.38 and 2.38a)

ΔP⊥ ¼ ρlgdv cosψ ¼ ρlgdvΔPk ¼ 0

�.

For horizontal heat pipe where ψ ¼ 0, then sinψ ¼ 0.

ψ is the inclination angle of heat pipe in respect to horizontal frame of reference.

Utilizing Eq. (2.7a) and (2.7b), we can write:

ΔPcð Þm ¼ 2σ cos θ

rcwhere rc ¼ 1

2N

Thus Eqs. (2.8a and 2.8b) takes the form of

2σ cos θ

rc¼ C f vRevð Þμv

2 rhvð Þ2Avρvλ

!Leffqþ μl

KAwρlλ

� Leffqþ ρlgdv

Next it is necessary to find the capillary radius rc from Table 2.1.

rc ¼ 1

2N¼ 1

2 3937ð Þ ¼ 1:27� 10�4 m

The vapor space area of Av is then given by the following relationship:

Av ¼ 1

4π dvð Þ2 ¼ 1

4π 0:0141 mð Þ2 ¼ 1:56� 10�4 m2

The liquid flow area Al is given by the following relationship:

Al ¼ 1

4π d2 � dv� �2 ¼ 1

4π 0:015 mð Þ2 � 0:014 mð Þ2h i

¼ 1:057� 10�5 m2

496 Appendix D: Different Heat Pipe Design Examples

Page 47: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

And the wick permeability K can be calculated from Table 2.2 as follows;

K ¼ d2l ε3

122 1� εð Þ2 where ε ¼ 1� 1:05πNdl4

ε ¼ 1� 1:05πNdl4

¼ 1� 1:05π 3937ð Þ 1:143� 10�4� �4

¼ 0:629

And as a result for permeability K, we have

K ¼ d2l ε3

122 1� εð Þ2 ¼1:143� 10�4� �2

0:629ð Þ3122 1� 0:629ð Þ2 ¼ 1:94� 10�10 m2

Because, at this point, it is not known if the vapor flow is laminar or turbulent or

compressible or even incompressible; it is necessary to, as a first approximation,

assume laminar, incompressible flow situations, which means f vRev ¼ 16 and

C¼ 1:0 in Eq. (2.55a). Substituting these and the other values from above into

modified Eqs. (2.8a and 2.8b) that is shown above, we have:

2 70:9� 10�3� �

cos θ�

1:27� 10�4¼ 1:0 16ð Þ 9:29� 10�6

� �0:50ð Þq

2 0:00705ð Þ2 1:56� 10�4� �

0:035ð Þ 2425� 103� �

þ 769� 10�6� �

0:50ð Þq1:94� 10�10� �

2:057� 10�5� �

2425� 103� �

995:3ð Þþ 995:3 9:81ð Þ 0:0141ð Þ

or

1116:5 ¼ 0:0565qþ 25:1qþ 137:7

Solving for q yields,

q ¼ 1116:5� 137:7

0:0565þ 39:9

or the value which represents the maximum axial heat transfer that heat pipe can

transport prior to reaching the capillary limit is given by

qm ¼ 24:5 W

Next, the assumption of laminar, incompressible flow must be verified. This can be

done by evaluating the Reynolds number:

Appendix D: Different Heat Pipe Design Examples 497

Page 48: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Re ¼ 4m�

πdvμ¼ 4q

πdvμλ¼ 4 24:5ð Þ

π 0:0141ð Þ 2:29� 10�6� �

2425� 103� �

) Re ¼ 97:9

This value of Reynolds number validates the laminar flow assumption. For uniform

mass addition (vaporization) and uniform mass removal (condensation), the Leff isgiven by

Leff ¼ 0:5Le þ La þ 0:5Lc

Finally, the Mach number must be calculated to verify the assumption of incom-

pressible flow as follows:

Mach ¼ vmc

¼ m�=AvffiffiffiffiffiffiffiffiffiffiγRTv

p ¼ 4q= λπd2v� �ffiffiffiffiffiffiffiffiffiffiγRTv

p

¼4 38:91ð Þ= 2425� 103

� �π 0:0141ð Þ2

� �1:22ð Þ 461:89 30þ 273ð Þð �1=2

¼ 0:1028

431:4¼ 2:38� 10�4 ¼ 0:3 ) Incompressible flow

Because the original assumptions are valid, the maximum heat transport capacity is

equal approximately to 24.5 W.

If θ approaches to 45� due to poor cleaning, then the maximum capillary

pressure becomes

ΔPcð Þm ¼ 2σ cos θ

rc¼ 2 70:9� 10�3� �

cos 45�

1:27� 10�4¼ 789:5 Pa

and qm ¼ 15:98 W or 66% of qm with θ ¼ 0�

The preceding example illustrates the procedure for finding and estimating the

maximum transport capacity as determined by the capillary limit and assumption

was that the heat pipe is horizontal, which may not always be the case of somebody

application.

Design Example 4

This example is given by G. P. Peterson [5].

G. P. Peterson: An Introduction to Heat Pipes—Modeling, Testing, and Appli-

cations, John Wiley & Sons, Inc., 1994.

For the heat pipe of Design Example 3, determine the effects of tilt angle

(evaporator elevated above the condenser) on the heat pipe performance. What is

the maximum tilt angle at which heat pipe will still operate?

498 Appendix D: Different Heat Pipe Design Examples

Page 49: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Solutions

IfΔPk is no longer equal to zero, then the capillary limit is represented by (Fig. D.8

and Table D.4)

ΔPcð Þm �ðLeff

∂Pv

∂xdxþ

ðLeff

∂Pl

∂xdxþ ΔP⊥ þ ΔPk

At 30 �C, these terms are equal to

1116:5 ¼ 0:0565qþ 39:9qþ 137:7þ ρlgL sinψ

or

0

0

5

10

15

20

25

10 20 30 40 50Evaporator Elevation (mm)

Hea

t Tra

nspo

rt C

apac

ity (

Wat

ts)

60 70 80 90 100

Fig. D.8 Evaporator

elevation vs. heat transport

capacity of Example 4 [5]

Table D.4 Heat pipe data for

different inclined angles of

Example 4 [5]

ψ (�) h ¼ L sin ψ cmð Þ qm(W)

0 0 24.5

1 1.31 21.28

2 2.62 18.18

3 3.92 14.89

4 5.23 11.70

5 6.54 8.52

6 7.83 5.33

7 9.14 2.16

8 10.43 –

Appendix D: Different Heat Pipe Design Examples 499

Page 50: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

978:8 ¼ 39:96qþ 995:3 9:81ð Þ 0:75ð Þ sinψ

) qm ¼ 978:8� 7323 sinψ

39:96

The maximum angle at which the heat pipe will still operate occurs when qm ¼ 0 or

ψ ¼ 7:68� h ¼ 10:02 cmð Þ. However, to still transfer the required thermal load of

20 W, the tilt angle must be less than approximately 1.4�.

Note: ΔP⊥ will not change for small angles of ψ since cos θ ’ 1:0 (e.g. cos 7�

¼ 0:993).In addition to determine the effect of tilt angle on the transport capacity,

variations in the mean operating temperature may also have a significant impact

on the transport capacity. While in practice, it is difficult to estimate what this value

will be, the capillary transport limit can be estimated for a reasonable temperature

range, allowing the designer to determine if the design is appropriate.

Design Example 5

This example is given by G. P. Peterson [5].

G. P. Peterson: An Introduction to Heat Pipes—Modeling, Testing, and Appli-

cations, John Wiley & Sons, Inc., 1994.

For the heat pipe described in Design Example 3, determine the effects of the

capillary limit of varying the adiabatic vapor temperature over a range of

10–120 �C.

Solutions

Variations in the adiabatic vapor temperature will cause corresponding changes in

the properties of the working fluid. This in turn will affect the performance and the

capillary limit. The basic equation is

2σ cos θ

rc¼ C f vRevð Þμv

2 rhvð Þ2Avρvλ

!Leffqþ μl

KAwρlλ

� Leffqþ ρlgdv

which in terms of the fluid properties reduces to

500 Appendix D: Different Heat Pipe Design Examples

Page 51: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

1:27� 10�4¼ 1 16ð Þμv 0:5ð Þq

2 0:0075ð Þ2 1:56� 10�4� �

ρvλ

þ μl 0:50ð Þ1:94� 10�10� �

2:057� 10�5� �

ρlλ

þ ρl 9:81ð Þ 0:0141ð Þ

or

1:575� 104σ ¼ 4:546� 108μvρvλ

þ 1:25� 1014μlρlλ

� qþ ρl 0:138ð Þ

Simplifying yields

q ¼ 1:575� 104� �

σ � 0:138ð Þρl4:56� 108� �

μv=ρvλð Þ þ 1:25� 1014� �

μl=ρlλð Þ

The results as a function of temperature can be calculated and tabulated as follows.

Appendix D: Different Heat Pipe Design Examples 501

Page 52: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Tλ(kJ/kg)

σ(N

/m)

ρ v(kg/m

3)

ρ l(kg/m

3)

μ v(N

s/m

2)

μ l(N

s/m

2)

ΔPe(Pa)

ΔPl/q(Pa/w)

ΔPv/q

(Pa/w)

ΔP+

(Pa)

q(W

)

10

2478.0

0.075

0.006

1000.0

82.9�10�7

14.2�10�4

1181.3

71.6

0.191

138.0

14.5

20

2453.8

0.073

0.0173

999.0

88.5�10�7

10.0�10�4

1149.8

51.0

0.095

137.86

19.8

40

2406.5

0.069

0.051

993.1

96.6�10�7

6.51�10�4

1086.8

34.1

0.036

137.05

27.8

60

2358.4

0.066

0.130

983.3

105.0�10�7

4.63�10�4

1039.5

25.0

0.016

135.7

36.0

80

2308.9

0.063

0.293

971.8

113.0�10�7

3.51�10�4

992.3

19.55

0.008

134.1

43.9

100

2251.2

0.059

0.597

958.8

121.0�10�7

2.79�10�4

929.3

16.2

0.004

132.3

49.2

120

2202.2

0.055

1.121

943.4

128.0�10�7

2.3�10�4

866.3

13.8

0.002

130.2

53.3

502 Appendix D: Different Heat Pipe Design Examples

Page 53: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

or shown graphically (Fig. D.9).

The preceding examples illustrate the effects the gravitational environment and

operating temperature can have on the capillary limit of heat pipes, but as men-

tioned previously, this is only one of the several limits encountered during the

design and operation of heat pipes. The following example illustrates the modeling

procedures for finding the other limitations outlined in Chap. 2.

Design Example 6

This example is given by G. P. Peterson [5].

G. P. Peterson: An Introduction to Heat Pipes—Modeling, Testing and Appli-

cations, John Wiley & Sons, Inc., 1994.

In addition to the capillary limit, it is also necessary in many applications to

determine the capillary, sonic, boiling, and entrainment limits as function of mean

operating temperature and the tilt angle of the heat pipe described in Design

Example 3. Assume a round copper–water heat pipe with an overall length of

25.4 mm; a finned condenser section 9.39 mm long; an evaporator section

11.81 mm long, constructed from 3.2-mm diameter copper tubing with a wall

thickness of 0.9 mm; a wicking structure constructed from phosphor bronze wire

mesh (No. 325) with a wire diameter of 0.0355 mm; and a condenser section with a

series of ten fins approximately 6-mm square, 0.2 mm thick, at a spacing of 1 mm.

These limits can be found as follows.

100

10

20

30

40

50

60

20 30 40 50 60Adiabatic Temperature (�C)

Hea

t Tra

nspo

rt C

apac

ity (

W)

70 80 90 100 110 120

Fig. D.9 Plot of heat

transport capacity versus

adiabatic temperature

Appendix D: Different Heat Pipe Design Examples 503

Page 54: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Solutions

The thermophysical properties of the working fluid are summarized below.

Operating

temperature (K) ρl ρv μl μv keff σ λ

298.15 996.92 0.024 9.47� 10�4 1.03� 10�5 0.605 7.29� 10�2 2.347

323.15 996.92 0.083 5.5� 10�4 1.116� 10�5 0.640 6.93� 10�2 2.324

348.15 974.50 0.247 3.93� 10�4 1.119� 10�5 0.657 6.20� 10�2 2.254

373.15 960.72 0.580 2.82� 10�5 1.28� 10�5 0.680 5.84� 10�2 2.1

where

ρl¼Liquid density (kg/m 3)

ρv¼Vapor density (kg/m 3)

μl¼Liquid viscosity (kg/m s)

μv¼Vapor viscosity (kg/m s)

σ¼ Surface tension (N/m)

keff¼Thermal conductivity (W/m K)

For screen mesh, the capillary radius can be found in Table 2.1 as follows:

rc ¼ 1

2N¼ 1

2 12; 795:25ð Þ ¼ 3:91� 10�5 m

The maximum capillary pressure can be found in Eq. (2.10) as follows:

PCapillarymax¼ 2σ

rcN=m2� �

The normal hydrostatic pressure can be found in Eq. (2.8a) as follows:

ΔP⊥ ¼ ρlgdv cosψ N=m2� �

The axial hydrostatic pressure can be found in Eq. (2.28b) as follows:

ΔPk ¼ ρlgL sinψ N=m2� �

And the maximum effective pumping pressure can be expressed as

Pp,m ¼ Pc,m � ΔP⊥ � ΔPk

Using these expressions, the contributions of each of the pressure terms can be

summarized in tabular form as shown below.

504 Appendix D: Different Heat Pipe Design Examples

Page 55: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Operating temperature (K) σ Pc,m ΔP+ ΔP|| Pp,m

298.15 7.29� 10�2 3728.90 12.21 0 3716.70

232.15 6.93� 10�2 3544.76 12.10 0 3532.66

348.15 6.20� 10�2 3171.35 11.94 0 3159.41

373.15 5.84� 10�2 2987.21 11.77 0 2975.44

Other intermediate values that must be evaluated are as follows:

Wick cross-sectional area: Aw ¼ 14π d2i � d2v� � ¼ 2:9� 10�7 m2

Wick porosity, ε ¼ 1� 14πSNd ¼ 0:625 (Table 2.2, Eq. (2.53), where a wick

crimping factor S ¼ 1:05 is used).

Wick permeability, K ¼ d2 t3=122 1� tð Þ2h i

¼ 2� 10�11 m2 (Table 2.2,

Eq. (2.52)).

Liquid frictional coefficient, Fl ¼ μlKAwλρl

(Eq. 2.44).

Vapor core cross-sectional area, Av ¼ 14πd2v ¼ 1:277� 10�6 m2.

Vapor core hydraulic radius, rhv ¼ 12dv ¼ 0:000625 m.

Drag coefficient, f vRevð Þ ¼ 16 (circular vapor flow passage).

Vapor frictional coefficient, Fv ¼ f vRevð Þμv2r2

hvAvρvλ

(Eq. 2.59).

Assuming that phase transition pressure is almost 0, then, we have

ΔPPh � 0

The governing equation becomes

Pc ¼ FlLeffqþ FvLeffqþ ΔP⊥ þ ΔPk þ ΔPPh

The friction factors can be summarized as follows:

Temperature (K) Fe Fv (qL)c,m qc,m

298.15 69,782.83 3052.10 0.0510 3.45

323.15 41,287.91 965.68 0.0836 5.65

348.15 30,848.13 335.50 0.1013 6.85

373.15 23,182.43 168.66 0.1275 8.61

Computing the effective length as

Leff ¼ 0:5Lc þ La þ 0:5Le ¼ 0:0148 m

The transport capacity can be found as a function of length or in terms of the total

power:

qc,mL� � ¼ Pp,m

Fl þ Fv

W mð Þ or qc,mL� � ¼ qc,mL

Leff

Using a similar approach, the individual pressure terms and transport capacities can

be determined for tilt angles of 15� as follows.

Appendix D: Different Heat Pipe Design Examples 505

Page 56: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Temperature (K) Pc,m ΔP⊥ ΔPk Pp,m

298.15 3728.90 11.79 63.26 3653.85

323.15 3544.76 11.69 62.71 3470.36

348.15 3171.35 11.53 31.84 3097.98

373.15 2987.21 11.38 60.96 2914.87

Temperature (K) qc,mL qc,m

298.15 0.0502 3.39

323.15 0.0821 5.55

348.15 0.0993 6.71

373.15 0.1249 8.44

And for tilt angles of 45� can be determined as follows.

Temperature (K) qc,mL ΔP⊥ ΔP⊥ Pp,m

298.15 3728.90 8.64 172.64 3547.62

323.15 3544.76 8.56 171.14 3365.06

348.15 3171.35 8.44 168.75 2994.16

378.15 2987.21 8.32 166.37 2812.52

Temperature (K) qc,mL qc,m

298.15 0.0487 3.29

323.15 0.0796 5.38

348.15 0.0960 6.48

373.15 0.1205 8.14

Sonic Limit

The sonic limit can be found in Eq. 2.20:

Qsmax¼ Avρ0λ

γ0RvT0

2 γ0 þ 1ð Þ� �1=2

Wð Þ

Vapor molecular weight M ¼ 18

Vapor specific heat ration γ0 ¼ 1:33

Universal gas constant eR ¼ 8:314� 103 J=kg mol K

Vapor constant Rv ¼ 8:314�103

18¼ 462 J=kg K

506 Appendix D: Different Heat Pipe Design Examples

Page 57: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Temperature (K) qs,m

298.15 13.70

323.15 48.85

348.15 146.36

373.15 344.76

Boiling Limit

The boiling limit can be found in Eq. 2.96;

Qbmax¼ 2πLekeffTv

λρvln ri=rvð Þ2σ

rn� Pc,m

� where Pc,m is the capillary pressure in the wicking structure or, if Pc < Pc,m the

maximum capillary pressure found earlier, and the nucleation radius rn is in the

range 2:54� 10�5 � 2:54� 10�7. The effective conductivity of the saturated wick,

keff can be found in

keff ¼ kl klþkw� 1�εð Þ kl�kwð Þð Þklþkw 1�εð Þ kl�kwð Þ

where Le ¼ 0:0118 m and rn ¼ 2:54� 10�7 m or

kw ¼ 402 W=m K.

Temperature (K) keff qb,m

298.15 1.327 2797.53

323.15 1.404 890.54

348.15 1.441 305.24

373.15 1.491 140.35

Entrainment Limit

The entrainment limit can be estimated using Eq. (2.34)

Qemax¼ Avλ

σρv2rh,w

� �1=2where the wick surface pore hydraulic radius is rh,w ¼ 1

2N � d2¼ 2:13� 10�5m

Appendix D: Different Heat Pipe Design Examples 507

Page 58: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Temperature (K) qc,m

298.15 18.45

323.15 33.13

348.15 52.44

373.15 75.56

Viscous Limit

Finally the viscous limit can be estimated using Eq. 2.109:

Qvapormax¼ πr4vhfgρvePve

12μve leff

where f vRevð Þ ¼ 16 and

Temperature (K) Pv(N/m2) qv,m

298.15 3293 42.93

323.15 12,349 219.25

348.15 37,290 760.72

373.15 101,350 2095.25

The five limits can be represented graphically as a function of the mean adiabatic

or operation temperature as shown below (Fig. D.10).

As shown above, this configuration is a capillary limit over the entire tempera-

ture range.

10

100

1000

20 30 40 50ADIABATIC VAPOR TEMPERATURE (�C)

HE

AT

TR

AN

SP

OR

T C

AP

AC

ITY

(W

atts

)

60 70

CAPILLARYSONICBOILINGENTRAINMENTVISCOUS

80 90 100 110

Fig. D.10 Heat transport capacity versus adiabatic vapor temperature

508 Appendix D: Different Heat Pipe Design Examples

Page 59: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Note: It is important to note that in order to determine the actual heat transport

capacity in the preceding Example 6 from Peterson [5], the mean operating

temperature or adiabatic vapor temperature must be known, a priori, which is not

usually the case.

There are many more examples following this one in Peterson’s book [5] that is

recommended for the reader to refer to it.

References

1. Berennan, P. J., & Kroliczek, E. J. (1979). Heat pipe design. From B & K Engineering Volume

I and II. NASA contract NAS5-23406.

2. Chi, S. W. (1976). Heat pipe theory and practice. New York: McGraw-Hill.

3. Silverstein, C. C. (1992). Design and technology of heat pipes for cooling and heat exchange.Washington, DC: Taylor and Francis.

4. Swanson, L. W. Heat Transfer Research Institute College Station, Texas. The CRC Handbookof Mechanical Engineering (2nd Ed., Handbook Series for Mechanical Engineering).

5. Peterson, G. P. (1994). An introduction to heat pipes—Modeling, testing and applications.New York: John Wiley & Sons.

Appendix D: Different Heat Pipe Design Examples 509

Page 60: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

Index

AAavid Engineering, 20

Advanced High Temperature Reactor

(AHTR), 342

Aligned Parallel Rectangles, 242

American Society of Mechanical

Engineering (AMSE), 189

Assembly of heat pipe parts, 408

ATS-6, 36

Axial Power Rating (APC), 20

Axial Reynolds Number, 67, 68

BBessel functions, 240

Biot (Bi) number, 238

Bouk fast reactor, 349

Butt joints, 397

CCapillary limit, 88, 139

Capillary pressure, 57

Capillary Pumped Loop (CPL), 10, 289

Charging heat pipe, 414

Cleaning techniques, 405

Closed Loop Pulsating Heat Pipes

(CLPHP), 434

Coaxial Cylinders, 242

Coaxial Parallel Disks, 242

Compressed Air Energy Storage (CAES), 369

Computer Aided Design (CAD), 288

Concentrated Solar Power (CSP), 369, 390

Condenser, 79

Constant Conductance Heat Pipe (CCHP),

12, 13, 431, 439

Cullimore & Ring Technologies (C&R), 287

DData Center Cooling, 343

Design Guidelines, 20

Designed Analysis of Heat-Pipe Wicks, 261

Diffusitivity, 220

Dirty envelope, 403

Dirty wick, 403

Dropwise Condensation, 75

EEddying motions, 66

Electro-Magnetic Interference (EMI), 357

End cap installation, 409

End closure design guidelines, 410

ERATO program, 351

ERIDAN 214, 36

ESRO (the IKE Institute in Stuttgart), 36

Evacuated Tube Heat Pipe Solar Collectors

(ETHPSC), 390

Evaporator, 79

FFirst Law of Thermodynamics, 71

Fixed Conductance, 185

Fixed Conductance Heat Pipe (FCHP), 12, 13

Fluid Integrator (FLUINT), 287

Forced convection, 73

Free convection, 73

© Springer International Publishing Switzerland 2016

B. Zohuri, Heat Pipe Design and Technology, DOI 10.1007/978-3-319-29841-2511

Page 61: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

French National Center for Space Research, 36

Fully Inherent, 342

Furukawa Electric, 229

GGas gap, 78

General Purpose Heat Source (GPHS), 348

GFW (Dornier), 36

Goddard Space Flight Center (GSFC), 353

Graphics User Interface (GUI), 288

HHeat Pipe Assemblies, 20

Heat Pipe Heat Exchanger (HPHE), 364

Heat Pipe Operated Mars Exploration

Reactor (HOMER), 344

Heat Transfer Coefficient, 231

Heat Transfer Fluid (HTF), 375, 379,

382, 383

Heat Transfer Unit NTU, 272

High Power Electric Propulsion (HiPEP), 353

HOMER-15 - the Heat Pipe Operated Mars

Exploration Reactor, 351

Hughes (Hughes), 36

IInsulated Gate Bipolar Transistors

(IGBT’s), 358

KKinematic viscosity, 65

Kolmogorov length scale, 65

LLaminar flow, 64, 65, 96

Latent Heat Thermal Energy Storage

(LHTES), 370, 371, 374, 376,

379, 390

Levelized Cost of Energy (LCOE), 369

Liquid Controlled Heat Pipe (LCHP), 13

Liquid Metal Fast Breeder Reactors

(LMFBR), 342

Liquid Transport Factor, 30

Liquid-Vapor Interface, 219

Log Mean Temperature Difference, 231

Loop Heat Pipe (LHP), 10, 34, 121, 289

MMach number, 80

Manufacturing cycle, 401

Maximum capillary pressure, 61

Maximum Expected Operating Pressures

(MEOP), 31

Maximum heat transport rate, 81

Mesh screen, fiberglass, 261

Multi-Mission RTG (MMRTG), 348

NNaK coolant, 349

NASA/Ames (Hughes), 36

NASA/GSFC (Grumman and TRW), 36

Non-Condensable Gas (NCG), 23, 28, 49, 414

Non-Operating Thermal Environment, 258

Nuclear electric systems, 350

OOAO-III, 36

Ocean Reconnaissance Satellites

(RORSATs), 349

Ocean Thermal Energy Conversion

(OTEC), 233

PPartial Differential Equations (PDEs),

220, 326

Performance degradation, 405, 414

Perpendicular Rectangles with a Common

Edge, 242

Phase Change Materials (PCMs), 368,

370–372, 374–377, 379, 383, 385–387,

389, 390

Photovoltaics (PV), 368

Pipe blockage, 422

Prandtl number, 236

Pumped Hydro-Power storage (PHPS), 369

RRadioactive Heater Units (RHUs), 348

Radioisotope Thermoelectric Generators

(RTGs), 347

Reciprocity, 243

Reduced Basis (RB), 240

Reynolds Number, 65

Romashka reactors, 349

512 Index

Page 62: Appendix A: Dimensional Equivalents and Physical Constants978-3-319-29841-2/1.pdf · Appendix B: Properties of Solid Materials Most of the content in this section is from Chi “Heat

SSABCA, 37

SAFE-400 space fission reactor, 350

Seamless and butt welded, 396

Sensible Thermal Energy Storage Systems

(STES), 370

Silicon Controlled Rectifiers (SCR’s), 358Skylab, 36

Small Business Innovation Research

(SBIR), 288

Sound structural design, 427

Spiral artery design, 396

Steady-State Design, 212

Steady-State mode, 209

Stirling Radioisotope Generator (SRG), 348

Surface tension, 52

TThermal Energy Storage (TES), 369,

371, 386

Timberwind pebble bed reactor, 349

Tokamak, 350

Topaz reactors, 349

Total thermal capacity, 217

Turbulent flow, 64

Two Phase Flow, 68

Two-Dimensional analyses, 233

UU.S. Department of energy SunShot, 385

VVapor pressure, 415

Vapor-pressure limitation, 133

Variable Conductance, 185

Variable Conductance Heat Pipe (VCHP),

12–14, 16, 28, 49, 431

Variable Cryogenic Heat Pipe, 213

Variable Specific Impulse Magneto plasma

Rocket (VASIMR), 350

Ventilating, and Air Conditioning (HVAC), 2

Viscous limitation, 82, 133

WWeber number, 86

Wick structure, 201, 255

Wicking limit, 88

Wick-liquid dynamics, 68

Working fluid, 399

YYoung-Laplace equation, 52, 57, 58

Index 513