11
Application of Physiological Tests to Determine Specific Monovalent and Divalent Ion Supplementation for Culture of Marine Species Calvin FISHER *1 , Charlotte BODINIER *2 , Adam KUHL *3 , and Christopher C. GREEN *1 Abstract: The culture of marine and euryhaline fishes in low salinity or ion deficient waters has been an area of interest for many aquaculturists due to the expense of marine salt mixes. The Gulf killifish (Fundulus grandis) is a euryhaline teleost found abundantly in coastal marshes along the Gulf of Mexico. The ability to investigate the molecular underpinnings of specific ions in this model species could have a number of implications for other commercially important marine finfish species. Although studies have examined the influence of salinity on adults and juveniles, few have investigated the role of salinity or specific ion concentrations in larvae. These investigations utilize a model teleost to determine the role of specific monovalent and divalent ions at biochemical and molecular levels. Separate four week trials were conducted exposing newly hatched Gulf killifish to concentration gradients of potassium (K + ), calcium (Ca 2+ ), and magnesium (Mg 2+ ). The K + supplementation consisted of 0.3, 1.3, and 2.9 mM. Treatment groups for Ca 2+ consisted of 0.2, 1.1, 1.5, and 2.1 mM Ca 2+ , while trials using Mg 2+ consisted of 0.1, 2.7, 5.1, and 10.4 mM Mg 2+ . All treatments were maintained at a salinity of 9.5-10‰ using crystal salt (99.6% NaCl). Each investigation consisted of four 50-L aquariums stocked at 7 larvae per liter for each concentration. Fish were sampled at 0, 1, 3, 7, 10, 14, and 28 d post hatch (DPH). Upon each sampling the standpipe was adjusted to maintain a constant density for each treatment. Collected samples were analyzed for whole body ion concentrations (K + , Na + , Mg 2+ , Cl ), Na + /K + -ATPase (NKA) activity, dry weight, and expression/localization of ion transport proteins (NKA, Na + /K + /2Cl cotransporter (NKCC) and cystic fibrosis transmembrane conductance regulator (CFTR)). Mortality and growth was significantly influenced by K + concentration (P < 0.05). No differences were observed among treatment groups for NKA enzyme activity, however at 28-d post hatch (dph) there were significant differences in dry weight among K + treatment. At seven dph differences in intestinal NKA and CFTR staining were observed, and NKA mRNA expression was also found to be higher in the 0.3 mM [K + ] group than in other treatment groups. Survival was significantly influenced by both Mg 2+ and Ca 2+ concentration (P ≤ 0.05). Highest survival (71.1%) in the Ca 2+ trial was noted in the 0.2 mM [Ca 2+ ] treatment. In the Mg 2+ trial, highest survival was noted in the 2.7 mM [Mg 2+ ] treatment (82.9%). NKA enzyme activity was reduced and delayed peaks were observed in whole body ion composition in the Mg 2+ treatments. In addition, decreased CFTR intensity was observed at the gill and intestine epithelium for the 0.05 mM [Mg 2+ ] treatment at 1 dph, indicating that Mg 2+ deficiency has a possible effect on larval osmoregulatory capability. The role of intestinal epithelium in ion uptake not only allows the potential for uptake and maintenance of ion balance from dietary sources, but also demonstrates the potential to modulate concentrations of specific ions in prepared waters for euryhaline and marine teleosts. Key words: Gulf killifish, osmoregulation, potassium, magnesium, euryhaline 2015年 1 月30日受理(Received on January 30, 2015) *1 Aquaculture Research Station, Louisiana State University Agricultural Center, Baton Rouge, LA, USA *2 Rosenstiel School of Marine & Atmospheric Science, Miami, FL, USA *3 Huntsman Corporation, Houston, TX, USA Corresponding author:Christopher C. GREENE-mail: [email protected] 水研センター研報,第40号,97-107,平成27年 Bull. Fish. Res. Agen. No. 40,97-107,2015 97

Application of Physiological Tests to Determine Specific

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Application of Physiological Tests to Determine Specific

Application of Physiological Tests to Determine Specific Monovalent and Divalent Ion Supplementation for Culture of Marine Species

CalvinFISHER*1,CharlotteBODINIER*2,AdamKUHL*3,andChristopherC.GREEN*1

Abstract:Thecultureofmarineandeuryhalinefishesinlowsalinityoriondeficientwatershasbeenanareaof interest formanyaquaculturistsdueto theexpenseofmarinesaltmixes.TheGulfkillifish(Fundulus grandis)isaeuryhalineteleostfoundabundantlyincoastalmarshesalongtheGulfofMexico.Theabilitytoinvestigatethemolecularunderpinningsofspecificionsinthismodelspeciescouldhaveanumberofimplicationsforothercommerciallyimportantmarinefinfishspecies.Althoughstudieshaveexaminedtheinfluenceofsalinityonadultsandjuveniles,fewhaveinvestigatedtheroleofsalinityorspecificionconcentrationsinlarvae.Theseinvestigationsutilizeamodelteleosttodeterminetheroleofspecificmonovalentanddivalentionsatbiochemicalandmolecularlevels. SeparatefourweektrialswereconductedexposingnewlyhatchedGulfkillifishtoconcentrationgradients ofpotassium (K+), calcium (Ca2+), andmagnesium (Mg2+).TheK+ supplementationconsistedof0.3, 1.3,and2.9mM.TreatmentgroupsforCa2+consistedof0.2, 1.1, 1.5,and2.1mMCa2+,while trialsusingMg2+consistedof0.1, 2.7, 5.1,and10.4mMMg2+.All treatmentsweremaintainedatasalinityof9.5-10‰usingcrystalsalt (99.6%NaCl).Each investigationconsistedof four50-Laquariumsstockedat7 larvaeper liter foreachconcentration.Fishweresampledat0, 1, 3, 7, 10, 14,and28dposthatch(DPH).Uponeachsamplingthestandpipewasadjustedtomaintainaconstantdensity foreach treatment.Collectedsampleswereanalyzed forwholebody ionconcentrations (K+,Na+,Mg2+,Cl-),Na+/K+-ATPase (NKA)activity,dryweight, andexpression/localizationof ion transportproteins (NKA,Na+/K+/2Cl-cotransporter (NKCC)andcysticfibrosistransmembraneconductanceregulator(CFTR)). MortalityandgrowthwassignificantlyinfluencedbyK+concentration(P< 0.05).NodifferenceswereobservedamongtreatmentgroupsforNKAenzymeactivity,howeverat28-dposthatch(dph)thereweresignificantdifferencesindryweightamongK+treatment.AtsevendphdifferencesinintestinalNKAandCFTRstainingwereobserved,andNKAmRNAexpressionwasalso foundtobehigherinthe0.3mM[K+]groupthaninothertreatmentgroups.SurvivalwassignificantlyinfluencedbybothMg2+andCa2+concentration (P≤ 0.05).Highestsurvival (71.1%) intheCa2+trialwasnoted inthe0.2mM[Ca2+] treatment. IntheMg2+trial,highestsurvivalwasnoted inthe2.7mM[Mg2+]treatment(82.9%).NKAenzymeactivitywasreducedanddelayedpeakswereobserved inwholebody ioncomposition in theMg2+ treatments. Inaddition,decreasedCFTRintensitywasobservedatthegillandintestineepitheliumforthe0.05mM[Mg2+]treatmentat1dph,indicatingthatMg2+deficiencyhasapossibleeffectonlarvalosmoregulatorycapability.Theroleofintestinalepitheliuminionuptakenotonlyallowsthepotentialforuptakeandmaintenanceofionbalancefromdietarysources,butalsodemonstratesthepotentialtomodulateconcentrationsofspecificionsinpreparedwatersforeuryhalineandmarineteleosts.

Key words:Gulfkillifish,osmoregulation,potassium,magnesium,euryhaline2015年 1 月30日受理(ReceivedonJanuary30, 2015)*1 AquacultureResearchStation,LouisianaStateUniversityAgriculturalCenter,BatonRouge,LA,USA*2 RosenstielSchoolofMarine&AtmosphericScience,Miami,FL,USA*3 HuntsmanCorporation,Houston,TX,USA Correspondingauthor:ChristopherC.GREENE-mail:[email protected]

水研センター研報,第40号,97-107,平成27年Bull.Fish.Res.Agen.No. 40,97-107,2015

97

Page 2: Application of Physiological Tests to Determine Specific

Calvin FISHER, Charlotte BODINIER, Adam KUHL, and Christopher C. GREEN

 Themajor ions in seawater are; chloride (Cl-),sodium (Na+),magnesium (Mg2+), Calcium (Ca2+),sulfate (SO4-), andpotassium (K+),withavarietyof other ionspresent in lowconcentrations.Thethree ionsCa2+,Mg2+, andK+ are necessary formaintainingelectrolyteandacid-basehomeostasis,and the regulationof osmolality and intracellularfluids(Fielderet al., 2001).Thehighcostofsyntheticmarine salt mixes has facil itated interest inalternative low-costsaltsourcesandsupplementingphysiologicallyimportantions.Potassiumisinvolvedin ionregulationof intracellular fluidsandcanbeaddeddirectly to thewater, usually in the formofKCl, or supplemented in thediet (Wilson andElNaggar, 1992).Calcium andmagnesium bothinfluence the permeability of osmoregulatorymembranesmaking them critical ions in teleostionic regulation (Silva et al., 2005).Magnesium isresponsiblefortheactivationofnumerousenzymesmaking it a necessary cofactor to the transferof phosphategroups and the activation ofATP-dependent ion pumps such asNKA (Bijvelds et al., 1998). In freshwater fish,Mg2+ deficiency isassociatedwithincreasedNa+andCa2+levelsaswellaslowK+levels(Bijveldset al., 1997).  Ionregulationiscontrolledbyionocytesinwhichthere are several proteins involved in ion andwaterexchange (Evanset al., 2005;Lorin-Nebel et al., 2006).Previous investigationshave focusedonNa+/K+-ATPase (NKA),Na+/K+/2Cl-cotransporter(NKCC), and the cystic fibrosis transmembraneconductanceregulator(CFTR)asthethreeprimaryproteins involved in ionoregulatory processes(Hirose et al., 2003).The ionoregulatory processis initiatedbyabasolaterally locatedNKAwhichcouplestwoextracellularK+withthreeintracellularNa+generating an electrochemical gradient thatdrives the ions according to expression, location,andabundanceofNKCCandCFTR(Bodinieret al., 2009;Kanget al., 2008).NKAisresponsible fortheloweringofintracellularNa+concentrationsallowingthebasolateralNKCCto importNa+,K+, andCl-,theexcessCl-isthensecretedthroughthechloridechannelCFTR.AdditionalwaterexchangeandCl-

ionregulationoccurs intestinally (Christensenet al., 2012)andithasalsobeensuggestedthatsubstantialMg2+ uptake occurs intestinally (Marshall and

Grosell, 2005).The apically locatedNKCC2mostlikelyplays an active role in the reabsorption ofions(Lorin-Nebelet al., 2006).Theexactmechanismby which Mg2+ uptake occurs has yet to bedescribed indetail. It is suggested thatsignificantdifferences inMg2+regulationexistamongspecies,knowledgeofMg2+ transportacrossepitheliaandcellmembranesisstill limited(Bijveldset al., 1998).Byexposingeuryhalineteleoststovaryingsalinitiesor individual ionconcentrations, itmaybepossibleto immunolocalizespecificosmoregulatoryproteinsin thegill filaments and intestinal epithelium tobetter understand the physiological adaptationsthesespeciesundergo tocopewithenvironmentalchallenges. TheGulfkillifish,F. grandis,inhabitstheestuarinewatersof theGulfofMexicoandAtlanticcoastofFloridawhere it iscommonlyusedasabaitfishbyanglers for speckled trout,Cynoscion nebulosus,flounder,Paralichthys lethostigma, and reddrum,Sciaenops ocellatus. FromTexas toFlorida it isreferred to by many regional names includingbutnot limited to:mudminnow,mudfish, cocahoeminnow, andbullminnow.F. grandis are closelyrelated to themummichog,F. heteroclitus,whichinhabitstheAtlanticcoastandissimilarlyutilizedbyanglersasalivebait.Bothspeciesarecharacterizedasa“hardy”baittolerantofwideswingsinsalinity,temperature,andotherconditionsencounteredbylivemarinebait.F. grandisoccupycoastalmarsheswheresalinitycanchangedramaticallyoverashorttimeperiod.These fishhave theability to live insalinitiesthatrangefromfreshwater(0 ‰ )toneardouble the concentration of seawater (up to 70ppt) for severaldays.Exploitation of this salinitytolerance in F. grandis allows investigators theabilitytoillicitphysiologicalresponsesacrossawiderangeofionconcentrations. Severalstudieshave investigatedtheuseof lowsalinity inland seawater orwater frombrackishaquifersasasource formarineaquaculture.Muchoftheseinlandsalinewaterswerefoundtohaveiondeficiencies,wherespecificmanipulationofthemajorionsinsaltwaterhavesignificantlyincreasedgrowthandsurvival(Doroudiet al., 2006;Fielderet al., 2001;Fotedaret al., 2008).Manystudieshaveinvestigatedtheeffectsof lowsalinitywaterson juvenileand

98

Page 3: Application of Physiological Tests to Determine Specific

Ion Supplementation for Culture of Marine Species

adulteuryhalinespecies(Coulonet al., 2012;Doroudiet al., 2006;Fielderet al., 2001;Fotedaret al., 2008;Pattersonet al., 2012;Royet al., 2007).Fewstudieshave attempted to explore the importance ofspecific ion supplementation ineuryhaline teleostlarviculture.Theobjectives of thisworkwere todemonstrate theuseofphysiologicalexaminationsatbiochemical andmolecular levels todeterminespecific supplementation ofmonovalent (K+) anddivalent ions (Ca2+ andMg2+) as replacements forsaltwaterinthecultureofF. grandislarvae.

Materials and Methods

 Three separate four-week experiments wereconductedto investigatethe impactofexternalK+,Ca2+andMg2+concentrationson larvalF. grandis.

Newlyhatched (< 4hold)F. grandis larvaewerestocked, in triplicate, at adensityof 7 larvaeperL into 50-L aquaria maintained on a commonrecirculating systemutilizingbiological andultravioletfilters.Larvaewere fedadietofArtemia sp.nauplii (30Artemiafish-1d-1) forthefirst7datarateof threetimesperday followedbyOtohimeTMB1 (ReedMaricultureInc.,Campbell,CA,USA)dietfed toapparent satiation4 timesperday for theremainderofthestudy.After4weeks,survivalwascalculatedbydrainingallaquariaandcountingeachindividual. Treatmentswereestablishedbyaddingcrystalsalt(DiamondCrystalSolarSalt, 99.6%NaCl)to10‰withionsupplementation.Potassiumsupplementationconsistedof0.3, 1.3, 2.0and2.9mM(Table1).Thisinvestigationrepresents [K+] fromvaluessimilar to

Table 1.Meansalinityandionconcentrations(±SEM)givenforeachK+ ,Ca2+,andMg2+Concentrationtreatmentgroup. Superscriptlettersdenotestatisticallysignificantdifferences inspecific ionconcentrationsamongtreatmentgroups(P< 0.05)

Table 1. Mean salinity and ion concentrations (± SEM) given for each K+ ,Ca2+, and Mg2+ Concentration treatment group. Superscript letters denote statistically significant differences in specific ion concentrations among treatment groups (P < 0.05)

K+ Treatment group Parameter 1 2 3 4** K+ (mM) 0.33 ± 0.05A 1.31 ± 0.04B 2.06 ± 0.04C 2.96 ± 0.04D

Na+ (mM) 170.19 ± 3.40A 157.52 ± 6.08AB 151.56 ± 7.03AB 138.01 ± 0.83B

Mg2+ (mM) 0.04 ± 0.00A 0.12 ± .01A 0.11 ± 0.01A 11.55 ± 0.10B

Ca2+ (mM) 0.31 ±0.00A 0.43 ± 0.05A 0.30 ± 0.03A 2.25 ± 0.02B

Salinity(‰) 9.8 ± 0.28 9.4 ± 0.4 9.4 ± 0.4 9.6 ± 0.1 pH 8.56 ± 0.05 8.27 ± 0.10 8.24 ± 0.09 8.07 ± 0.11 TAN (mg/L) 0.03 ± 0.01 0.02 ± 0.00 0.01 ± 0.00 0.04 ± 0.03 NO2 (mg/L) 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 Hardness (mg/L)* 37.25 ± 1.55 39.17 ± 2.06 33.83 ± 2.20 1442.67 ± 11.04Alkalinity (mg/L)* 184.00 ± 25.16 186.00 ± 6.55 182.50 ± 6.98 209.83 ± 3.06*Reported as CaCO3 ** Represents reference salt group

Ca2 Treatment groupsParameter 1 2 3 4 K+ (mM) 2.37 ± 0.03 2.32 ± 0.02 2.33 ± 0.02 2.31 ± 0.05 Na+ (mM) 165.31 ± 3.07 166.72 ± 4.83 166.72 ± 4.83 165.84 ± 2.97 Mg2+ (mM) 0.11 ± 0.01 0.16 ± 0.02 0.15 ± 0.01 0.12 ± 0.01 Ca2+ (mM) 0.20 ± 0.02A 1.08 ± 0.03B 1.50 ± 0.04C 2.07 ± 0.05D

Salinity(‰) 10.3 ± 0.03 10.1 ± 0.07 10.1 ± 0.06 10.0 ± 0.09 TAN (mg/L) 0.03 ± 0.02 0.03 ± 0.02 0.01 ± 0.01 0.02 ± 0.02 NO2 (mg/L) 0.05 ± 0.02 0.03 ± 0.02 0.02 ± 0.01 0.01 ± 0.00 Hardness (mg/L)* 193 ± 32.76A 1090 ± 15.81B 1433 ± 32.24C 1740 ± 31.52D

Alkalinity (mg/L)* 178 ± 17.97 263 ± 57.64 140 ± 4.08 170 ± 7.07 *Reported as CaCO3

Mg2+ Treatment groupsParameter 1 2 3 4 K+ (mM) 2.37 ± 0.03 2.40 ± 0.04 2.29 ± 0.05 2.41 ± 0.02 Na+ (mM) 168.48 ± 3.64 169.96 ± 4.11 162. 64 ± 4.83 170.55 ± 4.97 Mg2+ (mM) 0.05 ± 0.01A 2.88 ± 0.08B 5.76 ± 0.16C 11.52 ± 0.19D

Ca2+ (mM) 0.19 ± 0.02 0.24 ± 0.02 0.15 ± 0.01 0.26 ± 0.02 Salinity(‰) 9.9 ± 0.04 10.2 ± 0.03 10.1 ± 0.03 10.0 ± 0.05 TAN (mg/L) 0.02 ± 0.01 0.01 ± 0.02 0.02 ± 0.02 0.03 ± 0.02 NO2 (mg/L) 0.01 ± 0.03 0.03 ± 0.02 0.00 ± 0.00 0.02 ± 0.01 Hardness (mg/L)* 102 ± 25.82A 320 ± 44.82B 530 ± 29.35C 1040 ± 36.21D

Alkalinity (mg/L)* 165 ± 19.53 160 ± 4.71 150 ± 10. 62 185 ± 21.83 *Reported as CaCO3

99

Page 4: Application of Physiological Tests to Determine Specific

Calvin FISHER, Charlotte BODINIER, Adam KUHL, and Christopher C. GREEN

freshwater sources (0.33mM) toconcentrationsof2.96mM, foundsalinewatersat10 ‰.Potassiumconcentration in [Ca2+] and [Mg2+] experimentsweremaintainedat2.35mM,asdeterminedbyaprevious study (Fisher et al., 2013).Calciumwassupplemented togive final concentrationsof 0.20, 1.08, 1.50, and2.07mM (Table1),whileMg2+wassupplemented togiveconcentrationsof 0.05, 2.88, 5.76, and 11.52mM.The [Mg2+] experiment alsoreceivedCa2+ supplementation to thewater inthe formofCaCO2,asdetermined in thepreviousexperiment (Table1).Weeklywatersampleswerecollected to quantify ion concentrations via ICPanalysisbytheLSUAgricultureCenter;AgricultureChemistryDepartment(BatonRouge,LA,USA). Fishweresampledat0, 1, 3, 7, 10, 14,and28dposthatch(DPH).Uponeachsamplingthestandpipewas adjusted tomaintain a constantdensity foreach treatment.Threereplicatesof5 larvaewereused toestablishanaveragedesiccateddrymassduetotheinabilitytoaccuratelymeasureindividualdrymass of larvae less than 7dph.Wholebodyionconcentration (Na+,K+andMg2+)wasanalyzedusing themethodsdescribedby (VanGenderen, 2003;Fisheret al., 2013).Threereplicatesof5larvaewerecollectedateachtimepointtodetermineNa+/K+-ATPaseactivityusing theprotocoldescribed inMcCormick (1993)andexpressedasµmolADPmgprotein-1h-1. Six larvaewere collectedper treatmentgroupat1, 3,and7dphandpreserved inZ-fix (Anatech,LTD,BattleCreek,MI,USA).Immunocytochemistryreactionswereperformed according tomethodsdescribed inBodinier et al. (2010) andFisher et al. (2013) forNKA,CFTR, andNKCC1. IonocytelengthmeasurementsweretakenusingImageTool®version 3.0 (University ofTexasHealth ScienceCenter,SanAntonio,TX,USA).Aminimumof50cellsweremeasuredpersamplingperiod foreachtreatment.

Results

Growth and survival:The0.3mM [K+] treatmentresulted in 100%mortalitywithin 24h of hatch.No significant differenceswere seen in survivalbetweenthe1.3and2.0mM[K+]groups(survival≤

5%);howeverthe2.9mM[K+]treatmentresultedinsignificantlygreatersurvivalafter4weeks(survival~60%).Finaldrymassofthe2.9mM[K+]referencegroupwassignificantlyhigherthanboththe1.3and2.0mM[K+]treatments(P≤ 0.05).The2.9mM[K+]referencegrouphadafinaldrymassof4.93 ± 0.54mgwhile the1.3and2.0mM [K+] treatmentshaddrymassof2.39 ± 0.19mgand2.21 ± 1.55mg,respectively. Survival and dry mass were signif icantlyinfluencedbyboth [Ca2+] and [Mg2+] experiments.Supplementation of Ca2+ showed a decrease inmeanfinalmassandmeansurvivalwith increasingconcentrations of Ca2+ in the absence of Mg2+ (Fig. 1A). Supplementation ofMg2+ resulted inapproximatelya5-foldincreaseinsurvivalwithMg2+supplementationascomparedtonosupplementation,nodifferenceswereobservedamongsupplementedtreatmentgroups.Finalmasswasnotsignificantly

Fig. 1.FinalmassandsurvivalofGulfkillifishlarvaeafter4weeksin(A) [Ca2+]treatmentsor(B) [Mg2+]treatments.Lettersrepresentsignificantdifferencesamongtreatmentgroups.Lettersdenotesignificantdifferencesamongtreatments.

0

20

40

60

80

100

0

20

40

60

80

0.20 1.08 1.50 2.07

Mea

n su

rviv

al %

Mea

n fin

al m

ass (

mg)

[Ca2+] mM

Mean final mass Mean survival

0

20

40

60

80

100

0

20

40

60

80

100

0.05 2.88 5.76 11.52

Mea

n su

rviv

al %

Mea

n fin

al m

ass (

mg)

[Mg2+] mM

Mean final mass Mean survival

A

B

AAB B

W

XY

Z

AA A

B

X

Y

YZZ

100

Page 5: Application of Physiological Tests to Determine Specific

Ion Supplementation for Culture of Marine Species

influenceduntilaconcentrationof11.52mMMg2+wasreached(Fig. 1B).

Whole-body ion concentrations & Na+/K+-ATPase activity : No differenceswere found inNa+/K+-ATPase activity among [K+] treatment groupsor among time (P ≥ 0.05) . Whole body Mg2+concentration showednodifference for treatmentortreatment×dphinteraction;howeversignificantdifferencewasdeterminedfordph(P≤ 0.05).Therewasasignificant increase in [Mg2+]withinthefirstweekfollowedbyarapiddecrease forall three[K+]treatmentgroups.Whole bodyK+ concentrationhadno significantdifference in treatment×dphinteraction, although significantdifferenceswereobservedamongtreatmentsandfordph(P≤ 0.05). Nodifferenceswereobservedamongtreatmentsforwholebody ioncomposition in the [Ca2+]study.The [Mg2+] experiment showeddelayedpeaks inwholebody [Na+], [Ca2+],and [K+] for the0.05mM[Mg2+] treatment group,with ion concentrationsreaching their highest point 7 days later thanother treatments.Asexpected, theMg2+deficienttreatmentgroups (0.05 and 2.70mM [Mg2+]) alsoshowedasignificantdecreaseinwholebody[Mg2+]. Na+/K+ -ATPase activity in the [Ca2+] studywas significantly lower at 0 and 1 dph followed

by a significant increase in activity throughoutthe experiment, however no treatment specificdi f ferences in act ivity were determined atany specific sample dates. The [Mg2+] studydemonstrated significant differences inNa+/K+-ATPaseactivitybetweenMg2+deficienttreatmentsandthosewithsufficientsupplyat0dphfollowedbyminor,butnotsignificant, increasesthroughouttheexperiment(Fig. 2).

Immunocytochemistry & cell volume:Allnegativeslides, with no primary antibody, showed noimmunostaining as expected (not illustrated). In[K+] treatmentsat7dph,nosignificantdifferenceswere determined among treatments for gi l lionocyte length.Gill ionocytes from the 1.3mM[K+] treatmentwere found tohavea significantlylargerarea than those in the2.0and2.9mM [K+]treatments.IntestinalCFTRandNKAwerepresentat7dph inallsurviving [K+] treatmentgroups.Nochangeswere observed inNKAorCFTR in thegill ionocytes. IntestinalNKAandCFTRstainingappeared to show a decrease in intensity asK+concentration increased (Fig. 3).Very littlestainingwasobservedforNKCCbothintestinallyandatthegillepithelium. Nodifferencesamongtreatmentswereobserved

Fig. 2.WholebodyNKAactivityforlarvaestockedin[Mg2+]treatmentsafter0, 1, 3,and7dph.Lettersrepresentsignificantdifferencesamongtreatmentgroupsatthatday.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 1 3 7

ATPa

se a

ctiv

ity (µ

mol

/mg

prot

ein/

hr)

Days post hatch

0.05 2.88

5.76 11.52

A A

B B

[Mg2+] mM

101

Page 6: Application of Physiological Tests to Determine Specific

Calvin FISHER, Charlotte BODINIER, Adam KUHL, and Christopher C. GREEN

forNKAorNKCCstaining intensity inthegillsorintestine,norwerethereanysignificantdifferencesamong treatments for gill ionocyte length orquantityat1, 3,and7dph forboththe [Ca2+]and[Mg2+] experiments. In the [Mg2+] experiment, adecrease inCFTRstaining intensitywasobservedat 1dph inboth the intestine (Fig. 4) andgill inthe0.05mM[Mg2+] treatment,nootherchanges inCFTRstainingintensitywereobserved.

Discussion

 ThechemicalgradientgeneratedbytheactivationofNKAisoneoftheprimarydrivingforcesbehindion regulation, thus theability tomeasurewholebodyNKAactivitymayallowfortheevaluationoflarval fish osmoregulation capacity inhyper andhypo-osmoticenvironments. It ispossible thatK+isa limiting factor inkillifish larvalosmoregulationandadeficiencycanrestrict theabilityofNKAtofunction.Thecurrentmodel forchloridesecretionasdescribedbyMcCormicket al. (2003)suggestsabasolateralNKAandNKCCcoupledwithanapicallylocatedCFTR-likeprotein.BecauseK+ isalsoused

by the chloride cotransporter,NKCC, to assistin the transport of chloride ions, anextracellularK+ shortagecould reducea larval fish’s ability toregulatesodiumandchloride ionconcentrationsatcriticalbiologicalmembranes.Despite the fact thattherewerenostatisticaldifferencesinNKAactivitybetweenanytreatmentgroups,itisstillconceivablethatsufficientK+wasnotavailableforthefunctionofNKCC. If so then the inabilityof the larvae toregulateeitherNa+orCl- ionsmaypossiblyhavebeenafactorinthelowsurvivalofthe0.3, 1.3and2.0mM [K+]groups.Thereferencegroup (marinemixsalt)was theonlygroup thatdidnotdisplaypoorsurvivalanditispossiblethatthepresenceofotheressential ionssuchasMg2+andCa2+playedasignificant role in thesurvivalof this treatmentgroup. Potassiumsupplementation across thegradientexaminedinthecurrentstudyataconstantsalinitynotonlyaltered survival,butaffecteddifferencesamong molecular components o f intest ina lepithelium. Although potassium treatments inthe current studydidnot appear to alterwholebodyNa/KATPaseactivity, immunofluorescence

Fig. 3.Representativehistological sections from larval intestinesafteroneweek in [K+] treatmentgroupscut transverselyat5µm intervals. ImmunofluorescenceofNKA (red)andCFTR (green).The2.9mmolK+grouprepresentsa reference saltusedandcontainsother ionswhichmaybeessential for the functionofosmoregulatoryproteins.L:lumen;v:villi

[K+] Treatment Group

1.3

2.0

2.9

Merged CFTR NKA

L

L

L

v

v

v

Lv Lv

Lv

Lv

Lv

Lv

102

Page 7: Application of Physiological Tests to Determine Specific

Ion Supplementation for Culture of Marine Species

showed increased density of NKA and CFTRproteinsasK+concentrationdecreased.WholebodyK+concentrationwasgreater in the referenceascomparedtotreatmentswith1.3and2.0mMofK+bothofwhichremainedlowerthroughoutthestudyasexpectedduetotheinabilitytoselectivelyretainK+ ions. It is important tonote that thereferencegroupcontaining thehighest concentrationofK+was also comprised of greater concentrations ofMg2+andCa2+,whichcouldhavemodulatedNa+andCl-absorption inthe intestinerelativeto lowerK+treatmentsinthecurrentstudythatwererelativelylow in thesedivalent ions (Marshall andSinger, 2002;O’Grady, 1989).Growthandsurvivalmetricsfor thereference treatmentmayreflectcombinedeffectsofa full topartialcomplementofother ionsinadditiontotheK+gradientexamined.Theroleofintestinalepithelium in ionuptakenotonlyallows

thepotential for uptake andmaintenance of ionbalancefromdietarysourcesandthusimportantinaquaculture,butalsodemonstrates thepotential tomodulateconcentrationsofspecificionsinpreparedwatersforeuryhalineandmarineteleosts. CalciumandMagnesiumare critical in teleostion regulation,varyingconcentrationsofCa2+andMg2+canimpactthepermeabilityofosmoregulatoryepitheliatobothionsandwater(Silvaet al., 2005).Intheseawateradaptedeel,removalofCa2+fromtheexternalmediumdiminishedtheactiveexcretionofsodiumbyhalf, excretionreturnedtonormal levelafterthereintroductionofCa2+tothemedium(IsaiaandMasoni, 1976). Properdevelopment ofmanyeuryhalineteleosts isrelatedtoenvironmentalCa2+concentration, for example red drum (Sciaenops ocellatus) frydisplayedadrop inbloodosmolaritywhen transferred from salt to freshwater, this

[Mg2+] Treatment

Group

0.05

2.88

5.76

11.52

DIC with CFTR CFTR

Lv

L

L

L

v

v

v

Fig. 4.Representativehistologicalsectionsoftheintestinefrom1dayposthatch(dph)Gulfkillifish larvae in [Mg2+] treatmentgroups, cut transverselyat5µmintervals.Differentialinterferencecontrast (DIC) imageswith immunofluorescenceofCFTRL:lumen;v:vill

103

Page 8: Application of Physiological Tests to Determine Specific

Calvin FISHER, Charlotte BODINIER, Adam KUHL, and Christopher C. GREEN

decline inosmolaritywasreducedby theadditionof Ca2+(Wurts and Stickney, 1989) . PreviousstudieshavedeterminedthatMg2+ iscritical intheactivationofATP-dependent ionpumps (Bijveldset al., 1998)making itcritical for theactivationofNKA.Inthisstudy,boththe0.05and2.88mM[Mg2+]treatmentgroupsdisplayed significantly reducedNKAactivityathatch. In the current study both Ca2+ and Mg2+had effects on survival, growth, andmolecularcomponentsatboththegillfilamentsand intestinalepithelium.IntheabsenceofMg2+supplementationlarvalF. grandishadreducedsurvival,decreasedNa+/K+ -ATPase activity, and adelayedpeak inwholebodycompositionsforseveralionsessentialforlarvaldevelopment.Adecrease inCFTR intensitywasalsoobservedinthegillsandintestineofMg2+deficienttreatmentasseenbyimmunocytochemistrystainingat1dph.ThisisanindicationthatMg2+isanecessity for larvalF. grandisgrowth, survival,and ion regulation. However, the Mg2+ of 10‰seawater is approximately 11.52 mM and thegreatestgrowthandsurvivalwereachievedinthisstudyataconcentrationof 2.88mMMg2+.Theseresultsdemonstratethatthepotentialforeuryhalineteleostculture inpreparedwatermayonlyrequirea fractionof the ionconcentrations found in10‰seawater.Alsotheroleofintestinalepitheliuminionuptakeallows forthepotential for ionmaintenancethroughdietarysources.

Acknowledgements

 Thisworkwassupported,inpart,throughgrantsfrom theSouthernRegionalAquacultureCenterandLouisianaSeaGrant.The authorswould liketoacknowledge the faculty, studentsandsupportstaff thatassistedwith these investigations:PaigeO’Malley, EmilyMcArdle, ChrisMariani,MikeCoulon,JoshPatterson,CharlieBrown.

References

BijveldsM.J.C.,FlikG.,andBongaS.E.W., 1997:Mineralbalance inOreochromismossambicus:dependenceonmagnesium indietandwater.Fish Physiol. Biochem., 16, 323-331.

BijveldsM.,VeldenJ.,KolarZ., andFlikG., 1998:Magnesiumtransport in freshwater teleosts. J. Exp. Biol., 201, 1981-1990.

Bodin ier C . , Boulo V . , Lor in -Nebe l C . , andCharmantierG., 2009:InfluenceofsalinityonthelocalizationandexpressionoftheCFTRchloridechannelintheionocytesofDicentrarchus labraxduringontogeny.J. Anat., 214, 318-329.

BodinierC.,SucréE.,Lecurieux-BelfondL.,Blondeau-BidetE., andCharmantierG., 2010:Ontogenyof osmoregulation and salinity tolerance inthegiltheadseabreamSparusaurata.Comp. Biochem. Physiol. - Part A: Mol. Integrat. Physiol., 157, 220-228.

Christensen A. K., Hiroi J., Schultz E. T., andMcCormick S. D., 2012: Branchial ionocyteorgan izat ion and ion - transport prote inexpression in juvenile alewives acclimated tofreshwaterorseawater.J. Exp. Biol., 215, 642-652.

Coulon M., Gothreaux C., and Green C., 2012:Influence of substrate and salinity on air-incubatedGulfkillifishembryos.North American J.Aquacult., 74, 54-59.

DoroudiM.S.,FielderSD.,AllanGL.,andWebsterG.K., 2006:Combined effects of salinity andpotassiumconcentrationon juvenilemulloway(Argyrosomus japonicus , Temminck andSchlegel)ininlandsalinegroundwater.Aquacult. Res., 37, 1034-1039.

EvansD.H.,PiermariniP.M.,andChoeK.P., 2005:Themultifunctional fish gill: Dominant siteof gas exchange, osmoregulation, acid-baseregulation,andexcretionofnitrogenouswaste.Physiological Rev., 85, 97-177.

FielderS.D.,BardsleyW.J.,andAllanG.L., 2001:Survival and growth ofAustralian snapper,Pagrus auratus, in saline groundwater frominlandNewSouthWales,Australia.Aquacult., 201, 73-90.

FisherC.,BodinierC.,KuhlA.,andGreenC., 2013:Effects of potassium ion supplementation onsurvival and ion regulation in Gulf killifishFundulus grandis larvaereared in iondeficientsalinewaters.Comp. Biochem. Physiol. Part A: Mol Integrat. Physiol., 164, 572-578.

FotedarR.,HarriesS.,andSavageS., 2008:Survival,

104

Page 9: Application of Physiological Tests to Determine Specific

Ion Supplementation for Culture of Marine Species

growth and osmolality of greenlip abaloneHaliotis laevigata(Donovan1808)whenexposedtodifferent ionicprofilesof inlandsalinewater.Aquacult. Res., 39, 441-448.

HiroseS.,KanekoT.,NaitoN., andTakeiY., 2003:Molecular biology of major components ofchloridecells.Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol., 136, 593-620.

Isaia J. , and Masoni A., 1976: The effects ofcalcium andmagnesium onwater and ionicpermeabilities in the seawater adapted eel,Anguilla anguillaL. J. Comp. Physiol. B, 109, 221-233.

KangC.K.,TsaiS.C.,LeeT.H.,andHwangP.P., 2008:DifferentialexpressionofbranchialNa+/K+-ATPase of twomedaka species,Oryziaslatipes andOryzias dancena,with differentsalinity tolerances acclimated to freshwater,brackishwaterandseawater.Comp. Biochem.Physiol. - Part A: Mol. Integrative Physiol., 151, 566-575.

LorinNebelC.,BouloV.,BodinierC.,andCharmantierG., 2006:TheNa+/K+/2Cl-cotransporterintheseabassDicentrarchus labraxduringontogeny:involvement in osmoregulation. J. Exp. Biol., 209, 4908-4922.

MarshallW.S.,andGrosellM., 2005: Iontransport,osmoregulation, and acid-base balance, Fish Physiol., 177-230.

MarshallW.S.,andSingerT.D., 2002:Cysticfibrosistransmembraneconductanceregulatorinteleostfish.Biochim. Biophys. Acta-Biomembr., 1566, 16-27.

McCormickS.D., 1993:Methods fornonlethalgillbiopsyandmeasurementofNa+,K+-ATPaseactivity.Can. J. Fisheries Aquat. Sci., 50, 656-658.

McCormickS.D.,SundellK.,BjornssonB.T.,BrownC.L., andHiroi J., 2003: Influenceof salinityon the localization ofNa+/K+-ATPase,Na+/K+/2Cl-cotransporter(NKCC)andCFTRanionchannel inchloridecellsof theHawaiiangoby(Stenogobius hawaiiensis). J. Exp. Biol., 206, 4575-4583.

O’Grady S.M., 1989: Cyclic nucleotide-mediatedeffectsofANFandVIPon flounder intestinaliontransport.Am. J. Physiol.-Cell Physiol., 256,

C142-C146.PattersonJ.,BodinierC.,andGreenC., 2012:Effects

of lowsalinitymediaongrowth,condition,andgill ion transporterexpression in juvenileGulfkillifish, Fundulus grandis. Comp. Biochem.Physiol.-PartA:Mol.IntegrativePhysiol., 161, 415-421.

RoyL.A.,DavisD.A.,SaoudIP.,andHenryR.P., 2007:Supplementationofpotassium,magnesiumandsodiumchloride inpracticaldiets for thePacificwhite shrimp,Litopenaeus vannamei,reared in low salinity waters. Aquacult. Nutrition, 13, 104-113.

SilvaL.V.F.D.,GolombieskiJ.I.,andBaldisserottoB., 2005:Growthandsurvivalof silvercatfishlarvae, Rhamdia quelen (Heptapteridae), atdifferentcalciumandmagnesiumconcentrations.Neotropical Ichthyology, 3, 299-304.

VanGenderenE.J., 2003: Influenceofsoftsurfacewater condit ions on copper toxic i ty toPimephales promelasRafinesque: responsesatmechanistic-,population-,andwatershed- levelsof organization.ClemsonUniversity,Clemson,SC,USA.

WilsonR.P., andElNaggarG., 1992: Potassiumrequirement of fingerling channel catfish,Ictalurus punctatus.Aquacult., 108, 169-175.

WurtsW.A.,andStickneyR.R., 1989:ResponsesofReddrum (Sciaenops ocellatus) tocalciumandmagnesium concentrations in fresh and saltwater.Aquacult., 76, 21-35.

Annotated Bibliography

FisherC.,BodinierC.,KuhlA.,andGreenC., 2013:Effects of potassium ion supplementation onsurvival and ion regulation in Gulf killifishFundulus grandis larvaereared in iondeficientsalinewaters.Comp. Biochem. Physiol., Part A., 164, 572-578.

 This study encompasses results pertaining totheK+ ionmanipulationportions of the abstractpresentedabovefortheUJNRScientificSymposium.Thisinvestigationincreased[K+]fromvaluessimilarto freshwatersources (0.33mM) toconcentrationsof 2.96 mM, found in saline waters at 10‰. Anumberofbiochemical andmolecular techniques

105

Page 10: Application of Physiological Tests to Determine Specific

Calvin FISHER, Charlotte BODINIER, Adam KUHL, and Christopher C. GREEN

were performed to examine the effect of thisK+ iongradient,which included:wholebody ioncomposition,Na+/K+ -ATPase (NKA)activity, gillionocytemorphometrics, relativegeneexpression(NKA, NKCC, and CFTR), and correspondingimmunocytochemistry at the gill and intestinalepithelium.Resultsmore tangible toaquaculturist,suchasgrowthandsurvival,indicatedthepresenceofathresholdwithinthegradientexaminedwherebysurvivalwasnotdifferentbetween1.3 to2.9mM[K+].Utilizing immunocytochemistry,thedifferencesbetweentheseseeminglysimilar treatmentgroupsindicatedthatthetreatmentsgroupsbetween1.3to2.9mM[K+]wasdifferent in termsofgill ionocytearea,NKAandCTFRlocalization.

OstrowskiA.D.,WatanabeW.O.,MontgomeryF.P.,RezekT.C., ShaferT.H.,Morris Jr J.A., 2011:Effectsofsalinityandtemperatureonthegrowth, survival,wholebodyosmolality, andexpressionofNa+/K+ATPasemRNA in redporgy (Pagrus pagrus) larvae.Aquacult., 314, 193-201.

 These authors invest igated a number ofphysiologicalparameterspertainingtosalinityandtemperature in embryosand larvaeof redporgy(Pagrus pagrus),which isviewedasahigh-marketvaluemarine specieswith good potential as anaquaculturespecies.Embryosandresulting larvaewererearedatfourtemperatures(17, 19, 21, 23℃)andtwosalinities(24and34‰).Larvae(16dph)weretransferred fromtheirrespectivesalinities to44‰to represent a sublethal hyperosmotic challenge.TheseauthorsdemonstratedsignificantincreasesinNKAmRNAexpressioninindividualsacclimatedto24 ‰at24haftertransferredto increasedsalinity,while individuals from34‰exhibitednosignificantchanges inNKAexpression.Temperaturewasnotobserved to influence expression ofNKA,whilemetabolic parameters related to growth wereinfluencedby the temperature gradient in theirstudy. The authors utilized traditional growthmetrics includingmolecular tools to anticipateoptimum salinity (24‰) and temperature (23℃)conditionsthatareoptimumforlarvalrearingofthisspecies.

BodinierC.,SucréE.,Lecurieux-BelfondL.,Blondeau-BidetE.,CharmantierG., 2010:Ontogeny ofosmoregulation and salinity tolerance in thegilthead sea bream Sparus aurata. Comp.Biochem.Physiol. -PartA:Mol. IntegrativePhysiol., 157, 220-228.

 The gilthead sea bream (Sparus aurata) is acommercially importantaquaculturespecies,whichspawnsintheoceanandwhoseresultinglarvaeandjuvenilesmigrate to lower salinity estuaries andlagoons.Theseauthorsinvestigatedthedevelopmentof salinity tolerance ingiltheadseabreamfrom3, 30, 75, 96,and300dposthatch(dph)bychallengingthemwith9salinitiesrangingbetween freshwaterand45.1‰.Utilizing immunohistochemistry, theseauthors localized the NKA throughout thesechallenges todocument location of ion regulationwithinrespecttothisionoregulatoryprotein.Initially,immunopositiveNKAionocyteswere laocted intheintegumentalong theyolksacand integumentaryfoldsrepresenting thebranchial slits.A functionalshift from integument togillswasdemonstrated30and70dph,whenboththe integumentandgillswere observed to locally expressNKA,wherebyfrom70 to300dph thegills remain themainsiteof osmoregulation. Increases in osmoregulatorycapacity for thisspeciesat the intervalsexaminedwithinthisstudyrelatedtotheshiftsandpatternsobservedthroughimmunohistochemistry.

ChristensenA.K.,HiroiJ.,SchultzE.T.,McCormickS.D., 2012:Branchialionocyteorganizationandion-transport protein expression in juvenilealewivesacclimatedto freshwaterorseawater. J. Exp. Biol., 215, 642-652.

 Ingill ionocytes, ion transport is activatedbythe basolaterally locatedNKAwhich generatesan electrochemical gradient by coupling twoextracellular K+ with three intracellular Na+,driving the ionsaccording toexpression, location,and abundance of other proteins such asNKCCandCFTR.Christensenet al. investigatedchangesin alewife physiology and branchial epitheliumas individualswere acclimated to freshwater orsaltwaterandrepresentsthefirststudyof itskindto characterizemultiple ion-transportproteins ina non-salmonid anadromous fish. Corresponding

106

Page 11: Application of Physiological Tests to Determine Specific

Ion Supplementation for Culture of Marine Species

increasesinNKA,NKCC1,andCFTRabundanceatthegillepitheliumwithincreasingsalinitywasusedto establish agillmodel forhypo-osmoregulation.Ingill ionocytes,NKA is responsible for loweringintracellularNa+allowingthebasolateralNKCC1toimportNa+,K+,andtwoCl-ions.ExcessintracellularCl- is then secreted through theCFTRchloridechannel.NKCC1,thesecretoryisoformisexpressedbasolaterally in thegill ionocytes,whileNKCC2 isidentifiedasanabsorptiveisoformandisexpressedapically along the intestinal andurinarybladderepitheliumofsaltwaterandeuryhalineteleosts.Theauthorsdetermined thekeydifferencesbetweenfreshwaterandseawateracclimatedalewivesinthecontextof ion transportersat thegill epithelium.The implicationsof these investigationhasassistedinincreasingtheinformationmulticellularcomplexesofmature ionocytes and the role of salinity andspecificioninthemaintenanceofhomeostasis.

107