125
3 445b 00648L7 3 '

Application of the finite element groundwater model FEWA

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Application of the finite element groundwater model FEWA

3 4 4 5 b 00648L7 3 '

Page 2: Application of the finite element groundwater model FEWA

.................. -__ ..... __ .......... ~ .... ...... __ .......... __ .......... -

Cnis x;z.i 1.6:~~ przpai& as an accnunt of 1

Uniiod Sh!ssGove: ii?er;;: Ear any of assumes any leg?.! iissfulncss of any product, or process disclos;-l, 3r reprosx!s that i ts u ~ e \ ~ ~ ~ l d not infriirg5 CitVZtzly oaiiad ;,ghts. 3c:fc;ence herein to any spccific cot~it~ic;~:21 piujijiict, process, o~sc:vics by !rzde nailre, t r a l " r x k , aamfacturer, or otherwisc, does not nece ly con3i;krtC sr imply its sndorsszent. rrcsml-widation, or I. Q hy ths UnitedS;sissGov r

,y thzreof. The v!s'v and opinions of authors expicssed hc:cil: ctn not ncssss?.r!ly state or rcf!zct thoss =!?he Unitsd States Govc:n;;;en? ::I any agency ihc:ac!.

Page 3: Application of the finite element groundwater model FEWA

ORNL/TM -9678

ENVIRONMENTAL SCIENCES D I V I S I O N

APPLlCAlION OF THE F I N I T E ELEMENT GROUNDWATER MODEL FEWA TO THREE REGIONAL AQUIFERS

K-F.V. Wong* and G. T Yeh

env i ronmenta l Sciences D i v i s i o n P u b l i c a t i o n No. 2616

NUCLEAR AND CHEMICAL WASTE PROGRAMS ( A c t i v i t y No. AR 05 15 15 0; ONL-WL14)

U n i v e r s i t y o f Miami, Cora l Gables, F l o r i d a 33124 *

Date issued - June 1986

Prepared f o r the O f f i c e o f Defense Waste and T r a n s p o r t a t i o n Management

Prepared by the OAK R I D G E NATIONAL LABORATORY

Oak Ridge, Tennessee 37831 operated by

M A R T I N M A R I E T T A ENERGY SYSTEMS, I N C . f o r the

U.S. DEPAR’IMENT OF ENERGY under Con t rac t No. DE-AC05-840R21400

Page 4: Application of the finite element groundwater model FEWA
Page 5: Application of the finite element groundwater model FEWA

CONTENTS

Page

L I S T OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . V

A B S T R A C T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v f i

1. I N T R O D U C T I O N 1 . . . . . . . . . . . . . . . . . . . . . . . . . 1 .l Background . . . . . . . . . . . . . . . . . . . . . . . 1 1 . 2 Scope o f Study . . . . . . . . . . . . . . . . . . . . . 2

2 . C O M P A R I S O N OF FEWA AND THE USGS TWO-DIMENSIONAL MODEL . . . . 4

2.1 I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . 2.2 S i m i l a r i t i e s and D i f f e r e n c e s . . . . . . . . . . . . . . 2.3 Comparison o f Resu l t s . . . . . . . . . . . . . . . . . .

4 5 8

3. APPLICAlION OF FEWA 1 O LOVE CANAL, NEW YORK . . . . . . . . . 14

3.1 I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . 14 3 . 2 Lockpor t Do'Comite . . . . . . . . . . . . . . . . . . . . 16 3 . 3 Major Assumptions . . . . . . . . . . . . . . . . . . . . 18 3 . 4 A p p l i c a t i o n o f FEWA . . . . . . . . . . . . . . . . . . . 20 3 . 5 Comparison o f R e s u l t s . . . . . . . . . . . . . . . . . . 22

4. APPLICATION OF FEWA T O CONESVILLE, O H I O . . . . . . . . . . . 28

4 . 1 I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . 28 4.2 Conesvllle Study Area . . . . . . . . . . . . . . . . . . 28 4 .3 I n p u t Data . . . . . . . . . . . . . . . . . . . . . . . 30 4.4 A p p ? i c a t i o n o f FEWA . . . . . . . . . . . . . . . . . . . 32 4.5 Cornparison o f Resu l t s . . . . . . . . . . . . . . . . . . 37

5, P R E D E C l ' I V E APPLICATION OF FEWA . . . . . . . . . . . . . . . . 40

5.1 I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . 40 5 . 2 Biscayne A q u i f e r . . . . . . . . . . . . . . . . . . . . 41 5 . 3 Input Data . . . . . . . . . . . . . . . . . . . . . . . 44 5.4 Model C a l i b r a t i o n and P r e d i c t i o n . . . . . . . . . . . . 47 5 . 5 Comparison o f Modeled Resu l t s t o F i e l d Data . . . . . . . 50

6, SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . 54

REFERLNCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

APPENOIX A FEWA INPUS DATA FOR USGS OATA SET . . . . . . . . . . A-1 A P P E N D I X t3 FEWA I N P U T DATA F O R LOVE CANAL, NEW YORK . . . . . . . B-1 A P P E N D I X C FEWA I N P U T D A T A FOR CONESVILLE, OHIO . . . . . . . . . C - 1

MAY 3 , 1977 . . . . . . . . . . . . . . . . . . . . . Q-1 A P P E N D I X D FEWA INPUT DATA FOR HIALEAH-PRESTON WELLS,

A P P E N D I X E FEWA I N P U T DATA FOR HIALEAH-PRESTON WELLS . . . . . . E - 1

Page 6: Application of the finite element groundwater model FEWA
Page 7: Application of the finite element groundwater model FEWA

LIST OF FIGURES

- F i g u r e Page

1 Block-centered g r i d used f o r USGS two-dimensional model 6

2 F i n i t e element a r r a y used f o r FEWA s i m u l a t i o n model . . . 7

3 Tabulated r e s u l t s f rom USGS 2-D model . . . . . . . . . . 9

4 P l o t t e d r e s u l t s f rom USGS 2-D model . . . . . . . . . . . 11

5 Tabulated r e s u l t s f rom FEWA model . . . . . . . . . . . . 12

6 P l o t t e d r e s u l t s f rom FEWA model . . . . . . . . . . . . . 13

7 T y p i c a l s t r a t a in t h e Love Canal l a n d f i l l area . . . . . . 15

8 Genera l ized p o t e n t i o m e t r i c su r faces For t h e Lockpor t Dolomi te . . . . . . . . . . . . . . . . 17

9 F i n i t e d i f f e r e n c e g r i d f o r t h e Lockpor t Dolomi te . . . . . 21

10 Tabulated r e s u l t s o f G€OTRANS model, r i v e r head m a t r i x . . 23

11 Computed p o t e n t i o m e t r i c s u r f a c e f o r t h e Lockpor t Dolomi te u s i n g t h e USGS 2-D model . . . . . . . . . . . . . . . . . 25

12 Computer p o t e n t i o m e t r i c s u r f a c e f o r t h e Lockpor t Dolomi te u s i n g FEWA . . . . . . . . . . . . . . . 26

13 C o n e s v i l l e power s t a t i o n s tudy area . . . . . . . . . . . 29

14 C o n e s v i l l e unconf ined a q u i f e r bot tom con tou rs . . . . . . 33

15 March 28, 1979 f ie ld-measured groundwater p o t e n t i a l con tou rs . . . . . . . . . . . . . . . . . . . . 34

16 F i n i t e element. a r r a y o f C o n e s v i l l e area f o r i n p u t t o FEWA . . . . . . . . . . . . . . . . . . . . 35

1 7 F i n i t e element g r i d check o f t h e C o n e s v i l l e area . . . . . 36

18 March 28, 1979, model -predic ted groundwater p o t e n t i a l con tou rs u s i n g V T T model . . . . . . . . . . . . . . . . . 38

19 March 28, 1979, mode l -p red ic ted groundwater p o t e n t i a l con tou rs u s i n g FEWA . . . . . . . . . . . . . . . . . . . 39

V

Page 8: Application of the finite element groundwater model FEWA

F i gut? me Measured p o t e n t i o m e t r i c s u r f a c e o f t h e Hia leah-Preston wells on May 3, 1 9 1 7 42 . . . . . . . . . . . . . . . . . . .

20

21

22

23

24

25

26

27

28

Measured p o t e n t i o m e t r i c su r face o f t h e Hia leah-Preston w e l l s on October 4 , 1 9 7 7 . . . . . . . . . . . . . . . . . 43

S t r u c t u r e con tou r may o f Oade and Sroward c o u n t i e s showing base o f Biscayne a q u i f e r . . . . . . . . . . . . . 45

Month ly r a i n f a l l f o r 1 9 7 7 and long- term average month ly r a i n f a l l . . . . . . . . . . . . . . . . . . . . . 4 6

F i n i t e element network of t h e s tudy area . . . . . . . . . 4s

G r i d check o f t h e f i n i t e element network . . . . . . . . . 49

Computed p o t e n t i o m e t r i c su r face o f t h e Hia leah-Preston w e l l s on May 3, 1 9 7 7 . . . . . . . . . . . . . . . . . . . 51

I n t e g r a t e d f l u x a t t h e w e l l s and a t t h e Miami Canal, M a y 3 , 1 9 7 7 . . . . . . . . . . . . . . . . . . . . . . . 52

P red ic ted p o t e n t i o m e t r i c su r face o f t h e H ia leah -Pres ton wells on October 4, 197'1 . . . . . . . . . . . . . . . . . 53

v i

Page 9: Application of the finite element groundwater model FEWA

ABSTRACT

WONG, K-F V . and G. T . YEH. 1986. A p p l i c a t i o n o f t h e f i n i t e element groundwater model FEWA t o t h r e e r e g i o n a l a q u i f e r s . ORNL/TM-9678. Oak Ridge N a t i o n a l Laboratory , Oak Ridge, Tennessee. 126 pp.

Th is r e p o r t documents t h e c a l l b r a t i o n w i t h f i e l d da ta and

p r e d i c t l v e a p p l i c a t i o n of a f i n i t e element model o f wate r th rough

a q u i f e r s ( F E W A ) . FEWA was desc r ibed i n a r e p o r t w r i t t e n by G. T . Yeh

and D. D . H u f f i n 1983. The model was f i r s t compared w i t h t h e Un i ted

S ta tes Geo log ica l Survey (USGS) two-dimensional model and found

s u p e r i o r i n t r e a t i n g a n i s o t r o p i c media when t h e c o o r d i n a t e s cannot be

p r i n c i p a l d i r e c t i o n s o f h y d r a u l i c made t o c o i n c i d e w i t h t h e

c o n d u c t i v i t i e s . I n a d d i t

p o i n t s o u t s i d e t h e r e g i o n

on, t h e r e was no n e c e s s i t y t o d e f i n e nodal

as r e q u i r e d by t h e USGS model. FEWA was

n e x t c a l i b r a t e d w i t h measured p o t e n t i o m e t r i c su r faces f rom t h e Love

Canal area i n New York and t h e C o n e s v i l l e area i n Ohio. There were

s a t i s f a c t o r y matches between computed r e s u l t s and a v a i l a b l e f i e l d

da ta . The c a l i b r a t i o n and p r e d i c t i v e runs o f FEWA were then

accoriiplished w i t h t h e Hia leah-Preston w e l l f i e l d da ta ove r t h e Biscayne

a q u i f e r i n sou th F l o r i d a . The c a l i b r a t i o n r u n y i e l d e d two values o f

h y d r a u l i c c o n d u c t i v i t y i n t h e area, and t h e p r e d i c t i v e run gave r e s u l t s

t h a t matched w e l l w i t h a v a i l a b l e da td .

v i i

Page 10: Application of the finite element groundwater model FEWA
Page 11: Application of the finite element groundwater model FEWA

1. INTRODUCTION

1.1 BACKGROUND

This r e p o r t covers t h e c a l i b r a t i o n w i th f i e l d da ta and p r e d i c t i v e

a p p l i c a t i o n o f FEMA:

a q u i f e r s . For the purposes o f t h i s r e p o r t , an a q u i f e r i s de f i ned as a

water -sa tura ted s t ra tum o f permeable rocks, sand, o r g rave l . Thus,

FEWA a p p l i e s o n l y t o sa tu ra ted geo log ic media.

a f i n i t e element model o f water f l o w th rough

Groundwater i s n o t o n l y a va luab le resource, b u t an i n t e g r a l p a r t

o f t h e environment. Popu la t i on growth and i n d u s t r i a l and a g r i c u l t u r a l

p r o d u c t i o n s ince World War 11, coupled w i t h t h e increased requi rements

f o r energy development, a r e g e n e r a t i n g ever l a r g e r q u a n t i t i e s o f

hazardous and r a d i o a c t i v e wastes. The groundwater environment i s be ing

loaded w i t h an ever i n c r e a s i n g number o f contaminants and t h e p o t e n t i a l

f o r degradat ion o f f r e s h groundwater e x i s t s . Choice o f a waste

d i sposa l method r e q u i r e s a t t e n t i o n t o t h e p o s s i b l e damage t o t h e

environment.

Problems o f groundwater q u a l i t y degradat ion a r e d i f f i c u l t t o

overcome. F i r s t , owing t o t h e h e t e r o g e n e i t i e s i n h e r e n t i n subsurface

systems, zones o f degraded groundwater can be ext remely hard t o f i n d .

In a d d i t i o n , i t o r d i n a r i l y takes a l ong t ime be fo re a groundwater

problem becomes r e a d i l y de tec tab le . F i n a l l y , t h e f l u s h i n g t ime f o r a

contaminated a q u i f e r i s u s u a l l y very long. Thus, i t i s impor tan t t h a t

groundwater dynamics be w e l l understood and t h a t models a c c u r a t e l y

p r e d i c t t h e f a t e o f contaminants w i t h i n a q u i f e r s .

Page 12: Application of the finite element groundwater model FEWA

2 OR N L /'r M --9 6 7 8

FEWA i s a computer s i u l a t i o n model f o r t h e h y d r a u l i c aspects o f

a q u i f e r systems. I t s purpose i s t o model t h e e f f e c t s o f n a t u r a l and

a r t i f i c i a l d i s tu rbances on t h e p iezomet r i c head d i s t r i b u t i o n and

groundwater f l o w i n a system of a q u i f e r s . The ode1 computes t h e

t e m p o r a l - s p a t i a l d i s t r i b u t i o n s o f p i e z o m e t r i c head and f l o w v e l o c i t y i n

a two-dimensional a r e a l p lane. The v e l o c i t y f i e l d i s a necessary

f a c t o r i n de te rm in ing t h e t r a n s p o r t o f contaminants i n a q u i f e r

systems. Hence, t h e c o n s t r u c t i o n o f FEWA i s a necessary f i r s t s t e p i n

t h e u l t i m a t e a im o f b u i l d i n g a model t o s i m u l a t e contaminant t ranspor t .

i n subsur face media.

1 . 2 SCOPE OF STUDY

There a r e two major o b j e c t i v e s i n t h e p resen t work; t h e f i r s t i s

t o use f i e l d da ta t o c a l i b r a t e FE A , w h i l e t h e second i s t o e s t a b l i s h

t h e p r e d i c t i v e a b i l i t y o f t h e model.

I n Chapter 2, t h e a q u i f e r s i m u l a t i o n da ta f rom t h e USGS

two-dimensional model ( T r e s c o t t e t a l . 1976), i s used t o r u n FEWA. The

USGS model has been s e l e c t e d f o r comparison because i t i s a p o p u l a r

model and i t has been around f o r q u i t e some t ime ,

I n t h e f o l l o w i n g two chapters (Chapters 3 and 4 ) , f i e l d da ta f rom

t h e Love Canal area, New York, and f rom t h e C o n e s v i l l e area, Ohio, a r e

used as i n p u t t o FEWA. The Love Canal area was chosen f o r i t s

n o t o r i e t y as w e l l as a v a i l a b l e data, w h i l e t h e C o n e s v i l l e area was

i n v e s t i g a t e d because a computer model, o t h e r than t h e USGS

used p r e v i o u s l y i n i t s s tudy.

Page 13: Application of the finite element groundwater model FEWA

ORNL/fM-9678 3

Chapter 5 presents the work completed i n pursu i t o f the second

ob jec t ive ; t h a t i s an i n v e s t i g a t i o n o f the p r e d i c t i v e c a p a b i l i t i e s o f

FEWA. The s i t e selected was p a r t o f the Biscayne a q u i f e r i n south

F l o r i d a which i s the United States Environmental Protect lon Agency

(USEPA) number one p r i o r i t y f o r cleanup work under the superfund

p rog ram.

Page 14: Application of the finite element groundwater model FEWA

4

2.1 INTRODUCTION

?he USGS two-d imensional f i n i t e d i f f e r e n c e model f o r a q u l f e r

s i m u l a t i o n was w r i t t e n by T r e s c o t t , P inder , and barson ( 1 9 1 6 ) . The

model s imu la tes groundwater f l o w i n an a r t e s i a n a q u i f e r , a wate r - tab le

a q u i f e r , o r a comhined a r t e s i a n and wa te r - tab le a q u i f e r . The a q u i f e r

may be heterogeneous and a n i s o t r o p i c and have i r r e g u l a r boundar ies.

The source term i n t h e f l a w equa t ion may i n c l u d e w e l l d ischarge,

cons tan t recharge, leakage f rom c o n f i n i n g beds i n which t h e e f f e c t s of

s to rage a r e considered, and e v a p o t r a n s p i r a t i o n as a l i n e a r f u n c t i o n af

depth t o water .

The t h e o r e t i c a l development i n c l u d e s t h e a p p r o p r i a t e f l o w

equat ions and d e r i v a t i a n o f t h e f i n i t e - d i f f e r e n c e approx imat ions

( w r i t t e n f o r a v a r i a b l e g r i d ) o f t h e t h r e e numer ica l techniques

a v a i l a b l e i n t h e model, The s t r o n g l y i m p l i c i t procedure, i n genera l ,

r e q u i r e s l e s s computer t i m e and has fewer numer ica l d i f f i c u l t i e s than

do t h e i t e r a t i v e a l t e r n a t i n g - d i r e c t i o n i m p l i c i t procedure and l i n e

success ive ove r r e l a x a t i o n (which i n c l u d e s a two-dimensional c o r r e c t i v e

procedure t o a c c e l e r a t e convergence).

I n t h i s chap te r t h e d i s c u s s i o n I s centered around t h e a q u i f e r

s i m u l a t i o n pub l i shed I n t h e USGS two-dimensional f i n i t e d i f f e r e n c e

model documentat ion ( T r e s c o t t 1975). The i n p u t da ta f rom t h e USGS are

used. A f t e r t h e a p p r o p r i a t e m o d i f i c a t i o n s t o t h e ORNb f i n i t e element

model ( F k W A ) , t h e s l r n l l a r l t l e s and d i f f e r e n c e s a r e h i g h l i g h t e d , and t h e

r e s u l t s compared.

Page 15: Application of the finite element groundwater model FEWA

5 ORNL/TM-9678

2.2 SIMILARITIES A N D DlFFEREMCES

For t h e user , t h e b a s i c d i f f e r e n c e between t h e USGS 2-0 model and

FEWA I s t h a t t h e former i s a f j n i t e d i f f e r e n c e model, and t h e l a t t e r i s

a f i n i t e element model. In t h e f i n i t e d l f f e r e n c e model, t h e g e n e r a t i o n

o f t h e g r i d i s r a t h e r easy.

p o i n t s i s c o n s i d e r a b l y e a s i e r t han t h e s i n g l e a r r a y d e s i g n a t i o n o f node

The double a r r a y d e s i g n a t i o n o f node

p o l n t s i n t h e f i n i t e element model. I n t h e f i n i t e element model, t h e

c o o r d i n a t e s of each o f t h e nodes have t o be en te red as d a t a i n p u t . It

does n o t t a k e much t o show t h a t i f t h e number o f elements goes beyond

300, t h e p o s s i b i l l t y o f human e r r o r i n e s t a b l i s h i n g t h e coo rd ina tes can

be r a t h e r h i g h .

becomes t e d i o u s and a lmost i m p r a c t i c a l w i t h o u t a d i g i t i z e r . T h i s i s

t h e ma jo r drawback i n u s i n g t h e f i n i t e element model.

Thus, t h e g e n e r a t i o n of c o o r d i n a t e s f o r 1000 elements

On t h e o t h e r hand, t h e f i n i t e element method i o capable o f

h a n d l i n g t h e s i t u a t i o n t h a t t h e f i n i t e d i f f e r e n c e method cannot.

f i n i t e d i f f e r e n c e method r e q u i r e s t h a t t h e p r i n c i p a l d i r e c t i o n s o f

a n i s o t r o p y i n an a n i s o t r o p i c f o r m a t i o n p a r a l l e l t h e c o o r d i n a t e

d i r e c t i o n s . I f t h e r e a r e two a n i s o t r o p i c fo rma t ions i n a f l o w f i e l d ,

each w i t h d i f f e r e n t p r i n c i p a l d i r e c t i o n s , t h e f i n i t e d i f f e r e n c e method

I s stymied, whereas t h e f i n i t e element method can p r o v i d e a s o l u t i o n .

The

The USGS 2-43 model uses a v a r i a b l e , b lock -cen te red g r i d approach.

F i g u r e 1 shows t h e g r i d used f o r t h e a q u i f e r s i m u l a t i o n . F i g u r e 2

shows t h e corresponding elements a r r a y used f o r t h e same a q u i f e r

s i m u l a t i o n w i t h FEWA. There a r e two obv ious d i f f e r e n c e s bes ides t h e

f a c t t h a t one i s b lock-centered and t h e o t h e r i s corner-centered; t h e

f i r s t i s t h a t , i n t h e USGS 2-0 model, t h e use r has t o d e f i n e two e x t r a

Page 16: Application of the finite element groundwater model FEWA

4

QRNL-DWG 85-11008

1 2 3 4 5

B Y

DlML

NODE SYMBOLS INSIDE AQUIFER (TRANSMISSIVITY >O)

W DISCHARGE WELL R RECHARGE W E L L V CONSTANT HEAD @ NODE WITHOUT W E L L S

OR SPECIFIED HEAD OUTSIDE AQUIFER

-.-I AQUIFER BOUNDARY - MATHEMATICAL BOUNDARY

0 TRANSMISSIVITY = 6

DlML NUMBER OF ROWS DlMW NUMBER QF COLUMNS

E] CONSTANT H E A D

OUNDARY CONDITIONS

CONSTANT FLUX U ah/ax = Q

F i g . 1. Block-centered g r i d used f o r USGS two-dimensional model.

Page 17: Application of the finite element groundwater model FEWA

7 ORNL/TM-9678

ORNL-DWG 85- 11004

W DISCHARGE WELL R RECHARGE WELL V CONSTANT HEAD o ZERO NEUMANN

F i g . 2 . Finite element array used far FEWA simulation.

Page 18: Application of the finite element groundwater model FEWA

e x t e r n a l columns and two e x t r a e x t e r n a l ~ Q W S when s e t t i n g up the g r i d .

There I s no need f o r t h i s w i t h FEWA, r e s u l t i n g i n a savings i n computes

memory s to rage space.

The second b l f f e r e n c e , though o f no consequence t o t h e a q u i f e r

s i r n u l a t i o n examined, i s t h a t t h e USGS 2- model cannot handle g r i d s

o t h e r than r e c t a n g u l a r o r square ones, On t h e a t h e r hand, FEhlA can

handle i r r e g u l a r g r i d s o f any s i z e a s l ong as t h e y a r e e i t h e r

f o u r - s i d e d o r th ree-s ided ).

I n t h e a q u i f e r s i r n u l a t l o n under d i scuss ion , e v a p o t r a n s p i r a t i o n i s

s imu la ted because i t i s s i g n i f i c a n t i f t h e wa te r t a b l e i s w i t h i n 4 .3 m

(14 f t ) o f t h e ground surface ( I r e s c o t t 1 9 7 5 ) . There are two l a r g e

pumping w e l l s i n t h e s i m u l a t i o n . I n the v i c i n i t y o f these w e l l s ,

e v a p o t r a n s p i r a t i o n i s n o t impor tan t because o f t h e rndgnitude o f t h e

assoc ia ted drawdown. Everywhere e l se , however, e v a p o t r a n s p i r a t i o n has

t o be taken i n t o account. Whereas t h e USGS model cons iders t h e

e v a p o t r a n s p i r a t i o n as a l i n e a r f u n c t i o n o f wa te r depth f rom t h e

sur face , F E W t r e a t s e v a p o t r a n s p i r a t i o n as presc r ibed s inks .

Therefore, t h e USGS model would r e q u i r e two se ts o f da ta t o s imu la te

t h i s process: one i s the e v a p o t r a n s p i r a t i o n p o t e n t i a l and t h e o t h e r i s

t h e depth below land sur face a t which e v a p o t r a n s p i r a t i o n ceases. On

t h e o t h e r hand, FEWA needs o n l y one s e t o f da ta t o s imu la te t h i s

process, t h a t i s , t h e measured e v a p o t r a n s p i r a t i o n r a t e .

2 . 3 COMPARISON OF RESULTS

The i n p u t da ta f o r FENA i s presented i n Appendix A . The r e s u l t s

o f the a q u i f e r s i m u l a t i o n I n t h e USGS 2-0 model a r e tabulated i n F i g , 3

Page 19: Application of the finite element groundwater model FEWA

9 a 0

F

9

z 0

0

0 0

r

?

0 0

7

9 0

0 c

0

0

z 0

0 0

P-

9

0

0 7

0

0 0

r

0

0

0

c

9 0

0

F

0

0

0

7

0

0

0

r

0

0 0

F

c

9 2

9

0

0 0

7

m

d

r-

co N

r-

N

0

m

01 L

n

m

9

$1 0

r- N

m

m

m

r- 9

03

r-

9 0 0 7

0

CY 0

7

9 0

0

c

9

0 0

F

N

9 0 0

P

c

UJ

r- rn

U

r- r- ?-

c-

?

m 0

P-

9

m

m

m

9

?

N

m

e

m

r- 0,

m

P

01 m

r-

9 a

0

r

0

0

0

r

9

0 0

?-

m

9

? c" 0

9

r-

0

v)

t-. Q1 r- dl F

c

m

Ln 9

W

m

9

m

?

m

N

r.

m

r-

e

m

P-

m

m

r-

9 0

0

F

0

0 0

?-

9 0 0

r-

Q

9

0

0

0

r-

r

0

W

m

m

r-

rn m

r-

c9 m

m

v)

m

m

m

h

m

r- N

m

0

r- r-

0

a3 r- 4

m

r-

0

0

0

r-

0

0

0

r-

0

0 0

7

Ln

0

b 0

.r

9

U

m

0: d

m

42 !n

m

s P.

m

"! 03

m

m

ID

m

9

m

m

c

N

14

v)

r- 14

9

aD r-

0

0

0

7

0

0

0

P

9 0

0

7

9

9 0 0

7

9

0 0

r

01 0

m

m 0

Q,

F

c

m

9

7

tn r

0

m

?

m

Lo

43

c

m

Q

7

m

Lo

F

m

9 8 r

0

0

0

r

9 0 0

P-

r-

0 0

a

r-

9 0 0

I--

I-"

rn Q

,

rn a

07

r; m

0,

c

m

m

d

m

01

rn IC. m

m

U

m

0

e

m

01 m

m

m

m 0

0

U

m

0

0

0

r-

m

0

0 0

c

9

0 0 7

; 7 0

0

0

c

9 0 0

r

9 0 0

c

9 2

9

0

0 0

r

0

0 0

r

9 0 0

7

9

z 9

0

0

0

v

0

0

z1 9 0 0

c

m

0

0

0

F

9 0

0

F-

9

0 0

7

9

$1

9

0

0 0

r-

0

0 0

c

9 0 0

c

9 0 0

c

0

0

? 0

0

0

c

9 0

0 7

9

0

0

7

9 0 0

F

9 0 0

7

0

P

ORM

L/T#-9678

Page 20: Application of the finite element groundwater model FEWA

0 R N k / Bivl--9 6 7 0 10

and p l o t t e d i n F i g . 4. The r e s u l t s ob ta ined w i t h FEWA a r e t a b u l a t e d

i n F i g . 5 and computer p l a t t e d I n F i g , 6. A l l t h e genera l t r e n d s a r e

t h e same.

The head va lues throughout t h e r e g i o n are comparable t o each

o t h e r . S ince t h e ground su r face i s at 32 m (105 f t ) and the

e v a p o t r a n s p i r a t i o n r e g i o n i s w i t h i n 4.3 m (14 f t ) o f t h e ground su r face ,

t h i s mechanism I s s i g n i f i c a n t a t 11 nodal p o i n t s because, a t these 1 1

nodal p o i n t s , t h e head values a r e above 28 m (91 f t ) . Since no measured

e v a p o t r a n s p i r a t i o n r a t e i s known f o r t h i s h y p o t h e t i c a l problem, i t i s

n o t i nc luded i n t h e s i m u l a t i o n u s i n g FEWA. The n e g l e c t o f

e v a p o t r a n s p i r a t i o n l e d t o s l i g h t o v e r p r e d i c t i o n s f head values by FEWA.

The above reason may account f o r t h e s l igh t d lsc repancy i n t h e

head values a t t h e two pumping w e l l s . The USGS model gave head values

of 21 ,9 m (72.1 f t ) and 20.6 rn ( 6 7 . 9 f t ) a t these w e l l s , whereas FEWA

gave head va lues o f (22 .4 rn (73.6 f t ) and 20.9 rn (68 .7 f t ) ,

r e s p e c t i v e l y . The maximum d isc repancy represented he re i s 2

Page 21: Application of the finite element groundwater model FEWA

11 ORNL/TM-9678

ORNL-DWG 85-10995 RESULTS FROM USGS 2-D MODEL

I /+ /+ / i

( f t ) ( f t ) 095 x 8 0 A 9 0 0 75 + 85 v 70

Fig . 4 . Plotted results from USGS 2-D model.

Page 22: Application of the finite element groundwater model FEWA

U U L V U L iau i t . J. nyuiauiic iirau { L J a~ ~ i i i t e = U . V . ( u e i r = , U U U U V - U L ) . ( a a n o w i o c r i = L Y J 1 1 = v S t e a d y - s t a t e i n i t i a l c o n d i t i o n s

Node I H y d r a u l i c head of node I . I + 1 ,

:

9

1 7

25

33

41

49

5 1

65

73

81

89

97

105

8 . (5390

I .ooooo 6.754113

9.79800

E . 71 69D

8.28190

8.81190

8.48070

6.22963

b. 96860

8.5353U

8.24270

7.72220

8.53900

01

02

01

01

3 1

0 1

01

01

01

01

01

01

01

01

6.77380

> . OOOOD 8.78460

1 . OOOOD

9.14573

8.26570

8.7743D

8.8b610

8.22680

7.98300

8.78900

8.24940

i.ao420

8.1 5530

01

02

01

02

01

01

O i

01

01

01

01

01

01

01

, 1+1

8.79110

1 . OOOOD

8.8585D

8.70070

9.28740

8.167 20

8.77 I 5 0

8.87070

8.1St77D

8.09090

8.70990

8.26140

7.92470

I . 77950

01

02

01

01

01

01

0.1

01

01

01

01

01

01

0 1

8.81 38U

1 .00000

9.09890

8 . 6 !OOO

9.293;;

7.3501 0

a.79050

8.49340

E. 23000

8. 14620

8.19860

8.32080

8.03760

7.81 59D

01

02

01

01

01

01

01

01

01

01

01

01

01

01

8.85320

1 .ooooo 9.40360

8.59470

9.28930

8.60470

8.22380

8.13130

8.5241 D

8.2413U

7.55960

8.52760

8.25770

1.85230

01

02

01

01

01

01

01

01

31

01

01

01

01

0'1

8.94980

8.73630

9.57 I70

8 . 5 4 5 8 0

9.Z639U

8.96660

8.20200

8.20390

8.81 040

8.24050

7.79660

8.79310

8.26770

01

01

01

01

01

01

01

01

31

01

01

01

01

9.1561D

8.73600

9.61292,

8 . 4 0 4 2 0

9.1513D

9.05470

8.0762D

8.34030

8.74400

8.24350

1 . 9 ~ 1 5 ~

8.67810

8.33800

01

G I

0 ;

01

01

01

01

01

31

01

01

01

01

1 . oooco

a . i 4 4 2 o

9 . 5 1 5 1 0

8 . 5 3 2 4 0

9.051 3D

8.91 23D

8.04220

8.37650

8.39550

E . 29480

8.04b50

8.16160

8.501 I O

02

01

0 ,

01

01

01

01

01

01

01

01

01

01

F-Bg. 5. Tabulated results from FEQJA model.

Page 23: Application of the finite element groundwater model FEWA

1 3 QRNLITM-9678

ORNL-OWG 85-10997

DISTRUBUTION OF PRESSURE HEAD

TIME = 0 s USGS AQUIFER SIMULATION

\ t

/

J

Fig . 6. Plotted results from FEWA model.

Page 24: Application of the finite element groundwater model FEWA

14

3. APPLICATION OF FEN8 TO L O V E CANAL, NEW YORK

3 . 1 IN'TRODUCT ION

A groundwater modeling s tudy was conducted a t t h e Love Canal area,

Niagara F a l l s , New York d u r i n g t h e f a l l o f 19t30 (Geotrans, I n c . 1981).

The s tudy was p a r t o f a comprehensive e v a l u a t l a n o f t h e contaminat lon

a t the Love Canal area, The hydrogeology u n d e r l y i n g Lave Canal

c o n s f s t s o f a sha l l ow system a f silts and f i n e sands u n d e r l a i n by

c o n f i n i n g l a y e r s o f l a c u s t r l n e and g l a c i a l c l a y s whlch a r e u n d e r l a i n by

t h e Lockpor t Oolornlte, which i s t h e l o c a l a q u i f e r . The f i e l d da ta o f

t h e deeper Lockpor t Dolami te a r e used f o r t h e c a l i b r a t i o n o f FEWA i n

t h i s chap te r . These f i e l d da ta have been used by Mercer e t a l . (1984)

f o r a two-dimensional computer model a l s o .

7he Love Canal s i t e i s l o c a t e d an t h e e a s t s i d e o f Niagara F a l l s ,

New York. The l a n d f i l l o f Love Canal was aperated f a r a 25 t o 30 y e a r

1953. The canal occupied a su r face area

ac res ) w i t h t h e south end 400 rn (0 .25 m i l e )

Cayuga I s l a n d . She canal v a r i e s f rom about

3 t o 11 in (10 t o 35 f t ) i n depth w i t h t h e o r i g i n a l s o i l cover v a r y i n g

f rom 0 t a 1 . 8 rn ( 0 t o 6 f t ) ( i n t h i c k n e s s (Leonard e t a l . 1977).

f i g u r e 7 shows t h e t y p i c a l s t r a t a a t t h e Love Canal s i t e . The

s o i l l a y e r s are u n d e r l a i n by glac la l l tll l, which i n t u r n i s u n d e r l a i n

by bedrock consisting af t h e Lockpor t Ooliomite (USDA 1972). I n genera l

terms, t h e groundwater hyd ro logy comprises: (1) a shallow system t h a t

I s seasona l l y s a t u r d t e d and c o n s i s t s o f t h e s i l t , f i l l and s i l t y sand,

per iod , f rom 1923-

o f app rox ima te l y b

from t h e Niagara R

928 u n t i

5 ha (16

v e r near

Page 25: Application of the finite element groundwater model FEWA

1 5 ORNL/TM-9678

DEPTH

1.8-2.5l (O,6-0.8 m)

4.0- 5.5' (1 2- 1.7 m)

7.5 - 8.5' (2.3-2.6 m)

10.5-11.5' (3.2-3.5 m)

1 9 $0 - 2 7.0' (5.8-8.2 m)

3 4.0 - 42 .O' 0.4-12.8 m)

ORNL-DWG 85-11005 DESCRIPTION

LAND SURFACE:

CLAYEY SILT FILL

SILTY SAND

VERY F 1 R M - EX T R E MELY FIRM SILTY C L A Y

TRANSITION ZONE

SOFT SILTY C L A Y

GLAC A L T LL

LOCKPORT DOLOMITE (RANGES IN THICKNESS FROM APPROXIMATELY 100 TO 150 fV30 TO 46 m

F i g . 7. Typical strata in the Love Canal landfill area.

Page 26: Application of the finite element groundwater model FEWA

0 R N L / TM -9 6 7 8 16

and i s u n d e r l a i n by ( 2 ) beds o f c o n f i n l n g m a t e r i a l compose

t i l l t h a t o v e r l i e s ( 3 ) t h e Lockpor t Dolomikc which i s u n d e r l a i n by t h e

r e l a t i v e l y impermeable ( 4 ) Rochester Shale.

3 . 2 LQCKPQRT D O L O M I T E

The Lockpor t Dolom’ste i s o v e r l a i n by l e a k y c o n f i n i n g beds and

u n d e r l a i n by t h e r e l a t i v e l y impermeable Rochester Shale (Johnston

1964) . I t i s f a i r l y cont inuous i n t h e Niagara F a l l s area and i s

cons idered an a q u i f e r w i t h bo th c o n f i n e d and w a t e r - t a b l e c o n d i t i o n s .

It i s a f r a c t u r e d system, w i t h most o f t h e p e r m e a b i l i t y o c c u r r i n g i n

t h e t o p 3 t o 4 .6 m ( 1 0 t o 15 f e e t ) o f t h e u n i t . The do lomi te i s

p robab ly boclnded h y d r o g e o l o g i c a l l y i n t h e Niagara Falls area t a t h e

south by t h e upper Niagara R i v e r ( F i g . 8 ) . It i s bounded toward t h e

west by t h e lower Niagara R i v e r and assoc ia ted channel . The do lomi te

t h i n s nor thward where i t i s bounded by t h e Niagara escarpment.

Recharge occurs a t t h e j u n c t i o n w i t h t h e upper Niagara R i v e r near

t h e f a l l s and a t t h e h i g h e l e v a t i o n j u s t south o f t h e Niagara R i v e r .

Discharge occurred as seepage faces o r s p r i n g s a t t h e lower Niagara

Rive r , a long t h e Niagara escarpment, and a long p a r t o f t h e upper

Niagara R i v e r away f r o m t h e f a l l s . Annual p r e c i p i t a t i o n i s

app rox ima te l y 762 nm (30 i n . ) .

A p o t e n t i o m e t r i c map f o r t h e Lockpor t Dolomi te i s shown i n

F i g . 8. Th is was drawn u s i n g data f rom Johnston (1964) . I n many

l o c a t i o n s t h e p o t e n t i o m e t r i c h ighs correspond t o topographic h ighs .

Th is i s c l e a r l y e v i d e n t near t h e Niagara escarpment where a recharge

Page 27: Application of the finite element groundwater model FEWA

17 ORNL/TH-9678

ORNL-OWG 85-10999

Fig. 8. Generalized potentiometric surfaces for the tockport Dolomite (GEOTRANS 1981 ) .

Page 28: Application of the finite element groundwater model FEWA

ORNL/TM-9678 18

area produces f l o w toward t h e n o r t h , d i s c h a r g i n g a s s p r i n g s along t h e

escarpment, and toward t h e south t o t h e Love Canal s i t e .

3 . 3 NAJOR ASSUMPTIONS

The groundwater f l o w model t h a t was used by Geotrans I n c . (1981)

was t h e USGS 2-0 model presented by T r e s c o t t e t a l . (1976). The

important. assumptions made a r e a s f o l l o w s :

( 1 ) The boundary c o n d i t i o n a t t h e bot tom i s no- f low s i n c e below

t h e f i r s t 4.6 m (15 f t ) ex tens i ve p a r t s o f t h e Lockpor t Dolomi te

a r e r e l a t v e l y impermeable. There i s leakage th rough t h e upper

c o n f i n i n g beds.

( 2 ) roundwater f l o w and a q u i f e r parameters i n t h e Lockpor t

Dolomi te a r e v e r t i c a l l y averaged.

( 3 ) The f l o w i s quasi -s teady-state, a l t hough t h e r e a r e seasonal

v a r i a t i o n s ; over a long p e r i o d o f t i m e t h e system does n o t change

h y d r o l o g i c a l l y f rom some seasona l l y averaged su r face . T h i s assumption

i s based upon t h e f e w w e l l hydrographs a v a i l a b l e f o r t h i s area.

( 4 ) The a q u i f e r i n t h e Lockpor t Dolomi te i s cons idered t o be

conf ined, s i n c e t h a t i s t h e predominant c o n d i t i o n .

( 5 ) The a q u i f e r t r a n s m i s s i v i t y near t h e escarpment i s taken t o be

4.58 x I O m / s ( 4 . 9 2 x f t /SI, determined by t e s t s performed a t

t h e Love Canal s i t e and t h e h l g h e r a q u i f e r t r a n s m i s s i v i t y near t h e

r i v e r (Johnston 1 9 6 4 ) . A zone b o r d e r l n g t h e upper Niagara R i v e r was

considered t o have a t r a n s m l s s l v l t y o f 4.58 x

-5 2 2

m2/s (4 .92 x l o w 3 f t 2 / s ) .

Page 29: Application of the finite element groundwater model FEWA

19 ORNL/TM-9678

T h i s va lue 4 s about t h r e e t lmes l e s s than t h a t o b t a l n e d From t h e

a q u i f e r t e s t a n a l y s i s , y e t s l i g h t l y g r e a t e r t han p r e v i o u s l y r e p o r t e d

va lues (Johnston 1964). Th i s va lue f o r t r a n s m i s s i v i t y was chosen s i n c e

t h e a q u i f e r t e s t y i e l d e d a l o c a l i z e d number f o r t r a n s m l s s l v l t y , w h i l e

t h e l ower number used i n t h e model is never r e p r e s e n t a t i v e o f a larger

area. The t r a n s m i s s i v i t y i s t h e r e f o r e i s o t r o p i c , b u t nonhomogeneous.

( 6 ) Water f l o w s v e r t l c a l l y i n t o a r o u t o f t h e Lockpor t Dolomi te

th rough t h e o v e r l y i n g c o n f i n i n g l a y e r .

( 7 ) The c o n f i n i n g bed is 7.6 m ( 2 5 f t ) t h i c k .

(8 ) The h y d r a u l i c c o n d u c t i v i t y o f t h e c o n f i n i n g bed i s

3.28 x IO-’’ f t / s (lo-’’ m/s) (Leonard e t a l . 1977).

b e t t e r d r a i n e d s o i l s near t h e Niagara escarpment (USOA 1 9 7 2 ) , t h e

c o n d u c t i v i t y t h e r e was taken t o be 3.28 x lod9 f t / s ( l oc9 m / s f .

Thus, t h e h y d r a u l i c c o n d u c t i v i t y o f t h e c o n f i n i n g bed i s i s o t r o p i c , b u t

nonhomogeneous.

Owing t o t h e

( 9 ) A p o t e n t i o m e t r i c s u r f a c e f o r t h e s i l t y sand and silt f i l l

( i . e . t h e s h a l l o w system) cannot be drawn because t h e r e i s n o t enough

w e l l i n f o r m a t i o n . Work by Johnston (1964) shows t h a t t h e wa te r l e v e l s

a r e app rox ima te l y 3 m (10 f t ) below l a n d su r face . Consequently, va lues

ob ta ined f r o m a topograph ic map were used and 3.0 m (10 f t ) s u b t r a c t e d

t o produce a sha l l ow system p o t e n t i o m e t r i c su r face . Th is gave heads o f

1 7 2 m (565 f t ) i n t h e Love Canal area.

(10) The heads i n t h e sha l l ow system rep resen t an average va lue.

Seasonal v a r i a t i o n s and imposed s t r e s s e s a r e neg lec ted .

(11) The few w e l l hydrographs i n d i c a t e t h a t t h e pumped s to rage

r e s e r v o i r can be t r e a t e d as p r o v i d i n g cons tan t head boundary p o i n t s .

Page 30: Application of the finite element groundwater model FEWA

ORNL/TH -967 8 20

(12) The rock u n d e r l y i n g t h e permeable p a r t of t h e d o l o m i t e i s

t r e a t e d as impermeable.

(13) The Lockpor t Dolomi te can be modeled on a r e g i o n a l sca le .

The area o f i n t e r e s t was subd iv ided i n t o r e c t a n g u l a r b locks

compr is ing t h e f i n i t e d i f f e r e n c e g r i d shown i n F i g . 9 . The g r i d

c o n s i s t s o f 21 columns and 23 rows, The n o r t h e r n boundary i s

cons idered no- f low because I t I s l o c a t e d a long a recharge area

( 1 .e . , a groundwater d i v i d e ) . Discharge I s through t h e c o n f i n i n g bed.

Vhe eas te rn boundary i s approximated a s no-flow because i t f o l l o w s a

f l o w l i n e . The southern boundary i s t r e a t e d as c o n s t a n t head and

corresponds approx ima te l y w i t h t h e Upper Niagara R l v e r . The western

boundary f o l l o w s approx ima te l y t h e covered condu i t s o f t h e pump-storage

p r o j e c t and i s cons idered cons tan t head. The head values were

determined f rom e x i s t i n g da ta (Johnston 1964; and Pasny 1965).

3 .4 APPLICATION OF FEWA

The f i n i t e d i f f e r e n c e g r i d used by Geotrans I n c . (1981) i s shown

i n F i g . 9. The f i n i t e elements used f o r FEWA matched t h e g r i d , however,

s i n c e i t i s a f i n i t e element method, t h e r e was no n e c e s s i t y t o s t o r e

t he g r i d s t h a t a r c shaded i n F i g . 9 . Furthermore, t h e r e was no

n e c e s s i t y t o d e f i n e t h e two e x t r a e x t e r n a l rows and two e x t r a e x t e r n a l

columns, S ince t h e area was r a t h e r un i fo rm, and a l l t h e elements were

arranged i n a r e g u l a r a r r a y , t h e r e i s no n e c e s s i t y t o use a d i g i t i z e r

t o l o c a t e t h e coo rd ina tes o f each o f t h e nodal p o i n t s .

Page 31: Application of the finite element groundwater model FEWA

21 ORNL/TM-9678

ORNL-DWG 85-11006

......, ,....... ..... n -J E l ZERO TRANSMISSIVITY El WELL BLOCK

I * Y

Fig . 9 . Finite difference grid f o r the Lockport Dolomite Model.

Page 32: Application of the finite element groundwater model FEWA

ORNL/TM-9538 22

The same values of t h e indeptt den t v a r i a b l e s used by Geotrans Znc.

(1981) were a l s o used f o r F E W , I n essence, t h e same assurnptlons were

made r e g a r d i n g t h e geohydrology o f t h e Lackpor t Dolomi te.

3.5 COMPARISON OF RESULTS

The i n p u t da ta f o r FEMA I s presented i n Appendix B . The r e s u l t s

o f t h e Geotrans model (1981) a r e t a b u l a t e d i n F l g . 10 and p l o t t e d i n

F i g . 11 (Mercer 1984) . The r e s u l t s ob ta ined w i t h FEWA a r e computer

drawn and shown i n F i g . 1 2 . Compared t o F ig . 8 , i t can be seen t h a t

FEWA produced a good match on a r e g i o n a l sca le , w i t h t h e g r a d i e n t i n

t h e Love Canal Being toward the south and southwest. I n terms of

s p a t i a l d i s t r i b u t i o n , leakage I n t o t h e t o c k p o r t Dolornlte occu r re

t h e topographic h i g h i n t h e n o r t h e r n p a r t o f t h e s tudy area. leakage

o u t occurred toward t h e escarpment and down-gradient toward t h e Upper

Niagara R i v e r . I n t h e Love Canal area, the g r a d i e n t was g e n e r a l l y i n t o

t h e Lockpor t Dolomi te.

From t h e s imu la ted r e s u l t s o f Geotrans i n Fig. 10, it i s obv ious

t h a t t h e manual p l o t i n F i g , 11 i s n o t an accu ra te r e p r e s e n t a t i o n o f

t h e computed r e s u l t s . F i r s t l y , t h e h i g h e s t head o f 630 f t i s computed

o n l y as a s e m i - e l l i p t i c a l area by t h e USGS model and a l s o by FEWA, n o t

a f u l l e l l i p t i c a l area as d e p i c t e d i n Fig. 11, One can o n l y conclude

t h a t t h e manual p l o t was i n f l u e n c e d by t h e presence o f t h e f i e l d data.

Secondly, t h e p o t e n t i o m e t r i c l i n e s o f 560, 570, 580, 590, and 600 f t

should end a t t h e r e s e r v o i r o r a t t h e boundary, n o t w i t h i n t h e boundary

as shown i n F i g . 11.

Page 33: Application of the finite element groundwater model FEWA

Ln C

0

y1

C

.c

P .r u Y

9

0

9

0

9 0

9 0

9 0

9

0

4 0

? 0

9

0

9 0

9

0

9

0

0

0

0

0

0

0

0

0

9

0

9 a

Y 0

00

DO

..

-

9

.z 9

.z 9

R 9

9

a

9

0

N 9

0

0

0

9

9 0

* 9

9 0

0 9

9 0

m 9

9 0

m 9

0

0

m 9

9

0

m a

9

0

N 9

0

0

N 9

9

2

9

2

9

Q

9

0

N

Q

9 0

9

- 0

0

\D

0

0

c

!2 0

0

*

4 0 N

ro

9 0

N

4

9

R 9

E 9

a

9

0

N 9

9 0

N 9

9 0

N 9

9 0

N

ro

9 0

N 9

9 0

9

N

0

0

N 9

9 0

N

ro

0

0

a

N

9

2

9 2

9

9

0

0

N 9

9

0

=r

Q

0

0

-z ID

C

0

u

Q

99

00

m

9

0

N

ro

?

0

N

0

9

0

N

ro

O

R 9

9

0

N 9

9 0

N 9

9 0

N

9

9

0

N

9

9

0

N

9

0

0

N

ro

9 :: 9 0

N 9

a

0

0

N

9

0

0

N 9

0

9

0

0

rD

N

9 0

9

.r 9

0

Q

9

0

0

N

9

99

0

0

P

9

2 9 5

9

ro

a

0

a

r

0

2

9

9

0

9

?

9 0

9

- 9

0

9

r

0

0

9

,-.

0

0

9

?

0

0

a

.- 9 0

9

- 9

0

9

?

0

0

N 9

0

0

9 0

9

0

D

Q

9

0

0

0

9

0

0

cn u7

0

0

cn .n

99

00

m

23

4 0

01

VI

9

L2 0

0

0

z 9

w 4 B 9

Y)

m

0

01

Y)

9 0

Ln

m

9

m

9

z 9

0

VI

0

0

bn

m

9

0

m

m

9 0

51

m

9

0

m

LCI

9

m

9

0

al m

9 0

el m

0

0

P,

51

0

0

m

51

0

0

m

n

49

00

rD

9

0

c. m

0

0

* m

0

0

c

in

0

0

c

m

9

0

P

m

9 0

r- m

9

0

P

VI

9

0

P

VI

4 E! 9

m

0

i-

m

0

0

c

m

4 0

c

in

0

0

c

m

9 2

9

0

9

?

9

Ln

n

0

9

J7

9

0

u3 J7

9

e 94

VI

00

r-

0

m

9

in

9

m 9

m

9

m 9

m

0

m

a

VI

0

0

r- 51

4

0

c

in

9 0

P

m

4 L

n

9

m

9

Ln

9

VI

9

m

9

m

0

m 9

ul

9

m

9

v)

9

m

9

v)

9

m 9

v)

9

m

9

10

9

m

9

in

9 0

n

m

9 0

9

0

* "-, 0

0

a3

,? % 9

R m

m

0

m

% 9

% 9

m

m 9

VI

9

m

iD

VI

9

in

9

VI

9

m

9

m

9

ul 9

m

9

m 9

m

4 M

9

an 9

"-7 9

m

9

co 9 4

9

m

9

m

9

ro

Q

m

9

un 9

in

0

0

Ln

c

0

in

9

in

0

n

9

ro

09

0

0

m

9

m 9

Y,

d

m

9

m

0

m 9

VI

0

VI

9

m

9

* ro

VI

9

in

ro v)

9

in

9

m

9

Lo

9

VI

9

2

9

VI

Y-) 9

m

9

Ln 9

m

9

"3 9

In 9

m 9

VI

9

m

ro vi

9

Y)

9

dl

9

in

ro in

9

in

9

Lo

9

rn 9

m

9

.n 9

m

09

0

00

9

m 9

m

9

m 9

m

9

VI

9

m

9

v)

a2 v)

?

m 9

m

0

"l

ro V

I

4 m

9

.n

9

m 9

VI

9

m 9

m

9

VI

9

VI

4 V

I 9

VI

9

un 9

Y,

9

un 9

Ln

9

m

9

m

9

VI 9

m

9

m

a

m

9

ul

9

In

9

n

9

m

0

n

9

m

00

00

..

- -

ORNL/TM-9678

9

VI 9

ul

9

m

ro ul

0

*o 9

M

9

m 9

.n

9

m 9

m

9

m

9

m

9

m

UD 9

?

Lo

La

m

?

m

9

m

4 R 9

m

m

9

VI

9

m 9

Ln

9

m 9

m

9

VI 9

m

9

co 9

m

?

VI

9

m

9

"7 9

m

0

VI

9 0

0

in

9

in

00

00

.

.

N

c

Page 34: Application of the finite element groundwater model FEWA

CONFINING BED THICKNCSS = 25.00000 R i V E R H E A D H A l R I X

(dimensions are in f e e t - I f t = 0.3 m)

; 3 G.C 565.0 565.0 565.0 565.0 565.0 565.3 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 O.6

14 0.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 0.0

15 0.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 0.0

16 0.0 565.0 565.3 555.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 0.0

1 7 0.0 565.0 565.3 5b5.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 0 .o

N 18 0.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 545.0 565.0 565.0

0.0 8

19 0.0 0.0 565.0 565.0 565.3 565.0 565.0 565.0 535.0 555.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 0.0

20 0.3 0.0 0.0 0.0 565.2 565.8 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 565.0 545.0 565.0 0.0

21 0.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 565.0 565.0 565.0 565.0 545.0 565.0 565.0 565.0 0.0

22 0.0 0.0 0.0 0 .0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 565.0 565.0 565.0 565.0 565.3 565.3 0.0

23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Page 35: Application of the finite element groundwater model FEWA

25 ORNL/TH-9678

ORNL-DWG 85-10998

COMPUTED STEADY STATE POTENTIOMETRIC SURFACE LOCKPORT DOLOMITE

FEET ABOVE MSL

PUMPED STORAGE

RE SE R VOI R BLOCKS

600

590

580

570 560

0 1

MILE - A

LOVE CANAL

A'

Fig . 11. Computed potentiometric surface for the Lockport Dolomite using the USGS 2-D model (Geotrans 1981).

Page 36: Application of the finite element groundwater model FEWA
Page 37: Application of the finite element groundwater model FEWA

In F i g . 12 it

630 f t as a semi-el

potentiometric llne

boundary. In addit

boundaries.

27 ORNUTM-9678

ti noted that FEWA computes a highest head o f

lptlcal area. The computer plot of the 630 f t

does not close onto Itself, but ends at t h e

an, all the other potentiometric lines end at the

Page 38: Application of the finite element groundwater model FEWA

ORNL/TM-9618 28

4 . APPLICATION OF FE ESMILLE, OH1[6

4 . 1 INTRODUCTION

The l e a c h i n g and o t e n t i a l groundwater con tamina t ion aspects o f

f l u e gas desulfurimat- lon (FGO) sludge d i s p o s a l a t t h e Conesv' i l le s i t e

were s t u d i e d (8ond 1980) t o p r o v i d e i n f o r m a t i o n u s e f u l t o a u t h o r i t i e s

making d e c i s i o n s r e g a r d i n g t h e d i s p a s a l o f FGD s ludges. The C o n e s v i l l e

g e n e r a t i n g s t a t i o n i s l o c a t e d on t h e e a s t bank o f t h e Muskingum R i v e r

i n Coshocton County, Ohio. The s tudy reg ion , F i g . 13, i s app rox ima te l y

5.29 km (2.3 m i l e i n s i z e and c o n s j s t s a f t h e p l a n t f a c i l i t i e s ,

t h e d i s p o s a l area f o r ash and sludge (Poz-0-lec), sed imen ta t i on and

h o l d i n g wa te r ponds, and surrounding a g r i c u l t u r a l f i e l d s . The station

i s s i t u a t e d near t h e c e n t e r o f a smal l g lac ia l -ou twash f i l l e d v a l l e y

surrounded by h i l l y t e r r a i n . The a q u i f e r cons idered i n t h e s tudy i s

unconf ined and ranges i n t h i c k n e s s f r o 46 m (150 f t ) near t h e c e n t e r

o f t h e v a l l e y t o zero where t h e bedrock ( a q u i f e r bottom) crops ou t

a long t h e face o f t h e surrounding h i l l s . The unconf ined a q u i f e r

composed o f t h e g l a c i a l outwash m a t e r i a l i s t h e main s i t e a q u i f e r o f

i n t e r e s t here. The bedrock below t h e unconf ined a q u i f e r comprises t h e

Conemaugh and Al legheny Ser ies o f t h e Pennsylvania system. These

s e r i e s a r e composed m a i n l y o f beds o f sandstone, shale, and li

(Bond 1980).

2 2

4.2 CONESVILLE STUDY A R E A

The a c t u a l s tudy area comprises t h e power p l a n t f a c i l i t i e s , t h e

d i s p o s a l areas f o r ash and s ludge (Poz-O-'Tec), sedimentat ion and

Page 39: Application of the finite element groundwater model FEWA

29 ORNL/T#-9678

ORNL-OWG 85-41000

F i g . 13. Conesville power station study area (Bond 1980).

Page 40: Application of the finite element groundwater model FEWA

QRNL/T#-9678 30

h o l d i n g wa te r ponds, and su r round ing a g r i c u l t u r a l f i e l d s ( F i g . 13) .

The area i s approx ima te l y 6 krn (2.3 m i l e s ) i n s i z e , w i t h t h e

Muskingum R i v e r fo rm ing t h e n o r t h and west boundary, and t h e low h i l l s

f o rm ing t h e boundary t o t h e e a s t and south. An unnamed creek t o t h e

n o r t h e a s t i s hydraulically connected t o the groundwater a q u i f e r and was

used as a boundary.

2 2

Water i s ponded i n an area a long t h e n o r t h e a s t e r n p e r i m e t e r o f t he

Poz-0-Tec d i s p o s a l area. A l l d ra inage i n t h e area j 5 d i r e c t e d t o t h e

Poz-0-Tec r u n o f f c o l l e c t i a n pond which i s apprax ima te l y 0.4 ha ( 1 a c r e )

i n s i z e . The pond i s a s u r f a c e express ion o f t h e r e g i o n a l groundwater

system (Bond 1980).

The r e g i o n a l groundwater f l o w p a t t e r n i n the s tudy area i s f rom

t h e low h i l l s west and no r thwes t t o t h e Muskingum R i v e r .

i s ve ry small over most o f t h e s tudy area and increases r a p i d l y near

t h e h411s. The Muskingum R ive r , t h e creek t o t h e no r theas t , t h e

Poz-O-Tec pond, t h e ash sed imen ta t i on pond, and t h e h o l d i n g w a t e r pond

a r e a l l h y d r a u l i c a l l y connected t o t h e groundwater system. The

Fluskingurn R i v e r and t h e creek a r e n a t u r a l , w h i l e t h e remainder o f t h e

sur face-water bodies a r e man-made.

The g r a d i e n t

4.3 I N P U T DATA

The two-dimensional v a r i a b l e t h i c k n e s s t r a n s i e n t (VTT) model

(K ipp e t a l . 1 9 7 2 ) was used by Bond (1980) t o s tudy t h e C o n e s v i l l e

area. N a t u r a l recharge t o t h e C o n e s v i l l e g e n e r a t i n g s t a t i o n model

r e g i o n c o n s i s t s o f r a l n f a l l , under f l ow (groundwater f l o w f rom t h e h i l l s

t o t h e eas t ) , and/or under f l ow f rom t h e Muskingum R i v e r t o t h e west and

Page 41: Application of the finite element groundwater model FEWA

31 ORNLiTM-9678

n o r t h (depending on r l v e r s tage ) , Na tu ra l d ischarge f rom t h e model

r e g i o n takes t h e forms o f e v a p o t r a n s p i r a t i o n and under f low t o t h e

Husklngum R i v e r ,

For model lng purposes, t h e recharge r a t e t o t h e a q u i f e r I s taken 3 3 a s 54.8 f t /d (1.55 rn i d ) a t each i n t e r i o r node o f t h i s model

r e g i o n which represents an area o f 40,054 f t ( 3 7 2 1 m ) . This

r a t e Is computed f rom t h e average p r e c i p l t a t l o n , t h e a c t u a l p o t e n t i a l

e v a p o t r a n s p i r a t i o n ( A E T ) (Thorn thwa i te and W51m 1944), and t h e

sur face r u n o f f ,

2 2

The water l e v e l a t t h e nodes rep resen t ing t h e Muskingum R i v e r i s

h e l d a t t h e f i e l d - d e t e r m l n e d r i v e r e l e v a t i o n s . The m a j o r i t y o f t h e

eas te rn boundary i s e i t h e r represented by s t a t i o n a r y e l e v a t i o n s a t

nodes o r i s assumed t o have l i t t l e o r no under f low moving across i t .

However, t h e r e i s a c o n s i d e r a b l e amount o f subsur face recharge i n t h e

smal l r e g i o n between t h e ash pond and t h e creek d i r e c t l y t o t h e n o r t h

o f t h e pond. It was es t imated by Bond (1980) t h a t t h e t o t a l subsurface

f l o w over t h i s 133 m (600 f t ) boundary was 100,000 f t / d (2831 m/d).

Ttie man-made sed imenta t ion pond i n t h e ash d i sposa l area i s

h y d r a u l i c a l l y connected t o t h e water t a b l e . For t h i s reason t h e pond

was s e t as a h e l d p o t e n t i a l boundary. There i s a s i n g l e pumping w e l l

i n t h e reg ion ; however, t h e w e l l i s w i t h i n 75 m (246 f t ) o f t he r i v e r

i n h i g h l y permeable m a t e r i a l .

the r l v e r (Bond 19&0), t h e d ischarge f rom t h e w e l l was d iscounted.

Bond (1980) determined t h e t r a n s m i s s i v i t y d i s t r i b u t i o n i n t h e

Due t o u n c e r t a i n t i e s I n t h e pump t e s t s and

Since i t p u l l s most o f t h e water f rom

C o n e s v l l l e s tudy area.

Page 42: Application of the finite element groundwater model FEWA

analyses, he n a t u r a l l y used the t r a n s m i s s i v i t y t o be t h e p r i n c i p a l

v a r i a b l e a d j u s t e d when c a l i b r a t i n g t h e model-

model t o agree w i t h t h e measured t r a n s m i s s i v i t i e s , t h e pump t e s t

r e s u l t s were used as a s t a r t l n g p o i n t and changes were made i n the

process o f madell c a l i b r a t j o n . A f t e r c a l i b r a t i o n and v e r i f i c a t i o n t h e

f i n a l t r a n s r n i s s l v i t y su r face was determined by Bond (1980) . On t h e

average, t h i s corresponded t o a s a t u r a t e d h y d r a u l f c c o n d u c t i v i t y o f

0.0145 f t / s e c ove r much o f t h e area. The area o f t h e f l y ash d j s p o s a l

pond had a h y d r a u l i c c o n d u c t i v i t y o f 0.003 f t / s e c .

Rather than change t h e

The a q u i f e r s t u d i e d here i s a s i n g l e unconf lned a q u i f e r . As such,

t h e a q u i f e r t o p i s t h e land s u r f a c e e l e v a t i o n which can be ob ta ined

from a topograph ic map a f t h e reg lon . The t o p was s e t a t 245 m

(800 f t ) above sea l e v e l . The a q u i f e r bot tom s u r f a c e i s shown i n

F i g . 14. The bot tom su r face c o n s i s t s o f s i l t , c l a y , o r bedrock and,

thus, i s cons idered t o be impermeable.

4.4 A P P L I C A l l O N OF FEWA

The March 28, 1979 f ie ld-measured groundwater p o t e n t i a l contours

a r e presented I n F i g . 15, Th is r e g l o n was d i v i d e d i n t o f i n i t e elements,

and a d i g i t i z e r board was used t o i n p u t t h e coo rd ina tes o f t h e nodes .

The f i n i t e elements a r e shown i n F i g . 16. A g r l d check was done t o

ensure t h a t t h e r e were no e r r o r s i n s e t t i n g up t h e coo rd ina tes . The

ou tpu t f r o m t h j s g r l d check I s presented I n F l g . 1 7 . An e r r o r i s

i n d i c a t e d i f two l i n e s c ross .

Page 43: Application of the finite element groundwater model FEWA

33 ORNt/fM-9678

ORNL-DWG 86-1559

F i g . 14. Conesvll’le unconfined a q u i f e r bottom contours.

Page 44: Application of the finite element groundwater model FEWA

ORNL/TM-9618

ORHL-DWG 86-1 568

. . . . . . . . . . . . , ) . . . . . . .

. . . . . . b . r . r . + . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 7 3 0 - W A T E R EVEL CONTOUR (ft l . . . . . . . . . .

Fig. 1 5 . March 28, 1979, field-measured groundwater p o t e n t l a 1 contours (Bond 1980) .

Page 45: Application of the finite element groundwater model FEWA

35 ORNL/TM-9678

QRNL-DWG 86-1 561

F i g . 16. Finite element array of ConesvSlle area for Input to FEWA.

Page 46: Application of the finite element groundwater model FEWA

719s e-98 SMO-1NYO

Page 47: Application of the finite element groundwater model FEWA

37 ORNL/TM-9678

4 . 5 COMPARISON OF RESULTS

The i n p u t da ta f o r FEWA i s presented i n Appendlx C . The r e s u l t s

o f t h e VTT model a re p l o t t e d i n F i g , 18 and those o f FEWA a r e p l o t t e d

i n F ig . 19. The VTT r e s u l t s a r e hand- in te rpre ted p o t e n t i a l contours

over t h e e n t i r e mode reg ion . The p o t e n t i a l con tours computed by FEWA

a re computer - in te rpo la ted and computer-drawn, as they were i n t h e

prev ious cases.

The match between t h e r e s u l t s o f FEWA and t h e f i e l d da ta ( F i g . 15)

I s g e n e r a l l y e x c e l l e n t . The match between t h e r e s u l t s o f FEWA and

those o f t h e VTT model i s a lmost p e r f e c t . I n genera l , bo th computer

models p r e d i c t e d sur faces which were s l i g h t l y lower than t h e

f ie ld-measured sur face . The area o f g r e a t e s t d iscrepancy i s .In t h e

area o f t h e f l y ash pond where t h e s teepes t g r a d i e n t e x i s t s .

maximum d i f f e r e n c e between FEWA-predicted and f ie ld-measured p o t e n t i a l

a t any node i s about 76.2 cm (2.5 f t ) .

7 2 6 - f t p o t e n t i o m e t r i c l i n e i s due t o an i so t ropy .

The

The asymmetric bu lge on t h e

Page 48: Application of the finite element groundwater model FEWA

0 R N L /'TM -- 9 6 7 8 38

I I

F i g . 18. March 28, 1979, model-predicted groundwater potential contours using WTT el (Bond 1980).

Page 49: Application of the finite element groundwater model FEWA

39

nistrubution of Pressu re Head a t T i m e * 0.0 6eC

ConesviLLe Ohio

ORNL/TH-9678

ORWL-DWG 86-1 564

(’ 0 0

0 - 724. A - 726 . f - 728. x - 730. 0 . . 7 3 2 . v - 734 a

I- 736.

F i g . 19. March 28, 1979, model-predicted groundwater potent contours using FEWA.

LEGEND f t f t f t f t f t f t f t

i a l

Page 50: Application of the finite element groundwater model FEWA

ORNb/TM-9678 40

5. P R E D I C T I V E A P P L I C A T I O N OF FE

5.1 INTRODUCTION

I n t h i s chap te r t he p r e d i c t i v e c a p a b i l i t y o f FEMA i s t e s t e d . A

h y d r o l o g l c s i t e i s chosen where f i e l d d a t a a r e a v a i l a b l e f o r two dates,

and i n f o r m a t i o n i s o b t a i n a b l e f o r t h e p e r i o d between those dates,

r e g a r d i n g r a i n f a l l , sur face r u n o f f and evaporat ion, pumping r a t e r , and

o t h e r r e l e v a n t f a c t o r s . The f i r s t s e t o f f i e l d d a t a i s used t o

c a l i b r a t e t h e model f o r one o f t h e r e q u i r e d parameters, say h y d r a u l i c

c o n d u c t i v i t y (accuracy o f exper imenta l de te rm ina t ions o f h y d r a u l i c

c o n d u c t i v i t y a r e u s u a l l y n o t ve ry good).

c a l c u l a t e d p o t e n t i o m e t r i c s u r f a c e a t va r ious va lues o f t h e parameter

w i t h the measured p o t e n t i o m e t r i c su r face , A f t e r c a l i b r a t i o n , FEWA i s

used t o i n t e g r a t e over t h e p e r i o d u s i n g t h e r e l e v a n t f i g u r e s on t h e n e t

i n f i l t r a t i o n , pumping r a t e s , e t c . The computed p o t e n t i o m e t r i c s u r f a c e

a t t h e second d a t e i s t hen compared t o t h e measured one. A good match

e s t a b l i s h e s t h e p r e d i c t i v e c a p a b i l i t y o f t h e model.

Th i s i s done by matching t h e

When t h e p r e d i c t i v e c a p a b i l i t i e s o f FEWA have been e s t a b l i s h e d ,

i t s use fu lness i s g r e a t l y enhanced. Fo r example, i n wa te r management

p l a n n i n g i t i s r e q u i r e d t o p r e d i c t t h e behav io r o f t h e a q u i f e r as

pumping rates va ry t o meet demand. The model can be c a l i b r a t e d w i t h

c u r r e n t f i e l d data. Using t h e p r o j e c t e d pumplng r a t e s and known f a c t s

about t h e average r a i n f a l l , recharge r a t e s , e t c . , t h e model can be used

t o p r e d i c t t h e c o n d i t i o n s o f t h e a q u i f e r a t any t i m e i n t h e f u t u r e .

Page 51: Application of the finite element groundwater model FEWA

41 ORNL/TM-9678

5 . 2 BISCAYNE AQUXFER

The c h i e f source o f f r e s h groundwater i n south F l o r l d a i s t h e

Biscayne a q u i f e r . T h i s i s a h i g h l y permeable l imes tone and sandstone

a q u i f e r capable o f y i e l d i n g l a r g e q u a n t i t i e s of w a t e r s u i t a b l e f o r

m u n j c i p a l , i n d u s t r l a l , and a g r i c u l t u r a l use. The a q u i f e r i s recharged

by r a i n f a l l and a r e s e r v o i r a t Lake Okeechobee, which l l e s n o r t h e a s t of

t h e t h r e e sou theas te rn c o u n t i e s o f Palm Beach, Broward, and Oade.

The unconf ined a q u i f e r I s 24 t o 46 m (80 t o 150 f t ) t h ck a long

t h e west edge o f t h e c o u n t i e s . The groundwater l e v e l r i s e s i n response

t o r a i n f a l l and s u r f a c e wa te r i n f l o w , b u t d e c l i n e s i n respo se t o

e v a p o t r a n s p l r a t i o n , s u r f a c e wa te r ou t f l ow , seepage t o t h e ocean, and

pumping o f w e l l s .

The s tudy area chosen I s t h e Hlaleah-Preston w e l l s i n Dade County,

which supp ly t h e c i t i e s o f H i a l e a h and Miami Spr ings w i t h d r i n k i n g

wa te r . F i g u r e 20 shows t h e measured p o t e n t i o m e t r i c s u r f a c e o f t h i s

area on May 3, 1977, and F i g . 21 g i v e s t h e corresponding da ta f o r

October 4 , 1977. The f i e l d d a t a f o r May 3 , 1977, i s used f o r

c a l i b r a t i o n o f FEWA, and t h a t f o r October 4, 1977, used f o r p r e d i c t i v e

a n a l y s i s . The pumping w e l l s a r e marked as s o l i d squares i n F i g s . 20

and 21. The Miami canal runs n e x t t o aiid p a r a l l e l t o Okeechobee road

marked i n F i g s . 20 and 21. The H i a l e a h w e l l s a r e t h e w e l l s south o f

t h e Mlarnl Canal which runs f r o m no r thwes t t o southeast , and t h e Preston

w e l l s a r e t h e w e l l s n o r t h o f t h e cana l . S ince Lake Okeechobee a c t s as

a r e s e r v o i r f o r t h e Biscayne a q u i f e r , and t h e s tudy area i s ve ry smal l

compared t o t h e whole a q u i f e r area, any one of t h e p o t e n t i o m e t r i c lines

can be used as a demarcat ion f o r t h e s tudy area.

Page 52: Application of the finite element groundwater model FEWA

0 R N L / TM -9 6 7 8 4 2

\

w z

I- l c

0 :

0 a

F i g . 20. Measured potentiometric surface o f t h e Hialeah-Preston wells on May 3, 1977.

Page 53: Application of the finite element groundwater model FEWA

43 ORNL/TM-9678

ORWL-DWG 86-1 566

\ eF246 I

F 247

H I A L E A H

W > ' F 242

q l

Fig. 21. Measured potentiometric surface of the Hialeah-Preston wells on October 4, 1977.

Page 54: Application of the finite element groundwater model FEWA

0 R N b / TM -9 6 'I 8 44

The bot tom o f t h e Riscayne a q u i f e r i s u n d e r l a i n by impermeable

rock . F i g u r e 22 i s the s t r u c t u r e c o n t o u r map o f Dade and Braward

c o u n t i e s showing t h e base o f t h e Biscayne a q u i f e r .

5.3 INPUT D A T A

The h y d r a u l i c c o n d u c t i v i t y was found t o be 36 mbd (0.12 f t / d )

( M i l l e r 1978). Th i s va lue I s used as a s t a r t i n g p a l n t o f t h e

i n v e s t i g a t j o n s i n t h t s chap te r .

(1978) t h a t 46% o f t h e t o t a l w e l l - f i e l d pumpage was c o n t r i b u t e d by

i n f i l t r a t i o n f rom t h e canals . I t has been p r e v i o u s l y shown t h a t the

Miami canal was n o t h y d r a u l i c a l l y connected t o t h e Biscayne a q u i f e r .

It has a l s o been es t ima ted hy M l l l e r

H u l l (1977, 1978, and 1979) r e p o r t e d r a i n f a l l averaged 58.69 i n . ,

1.52 i n . above t h e long- term average. R a i n f a l l on t h e approx ima te l y

2,300-mile Dade County area d u r i n g 1977 ranged f rom 51.90 i n . a t t h e

Miami Beach s t a t i o n t o 64.95 i n . a t t h e Miami I n t e r n a t i o n a l A i r p o r t .

F i g u r e 23 shows t h e month ly r a i n f a l l d u r i n g 1977 and t h e month ly

long- term average. The r a i n f a l l was above average i n May, August,

September, and November. The peak r a i n f a l l month was May w i t h 8.26 i n .

above t h e long- term average.

2

The maps p rov ided by t h e Miami USGS, F igs . 20 and 21, p rov ided

I n f o r m a t i o n about pumpage. The pumpage f o r t h e H ia leah w e l l s f o r

May 1, 2, 3, and 4 was 64, 88.1, 82.7, and 72.2 m i l l i o n ga l l ons /d . The

corresponding pumpage f o r t h e Preston w e l l s was 40, 41, 4Q and

32 m i l l i o n g a l l o n s / d . The pumpage f o r t h e H ia leah w e l l s f o r October 1,

2 , 3, 4, and 5 was 37, 3 1 , 37, 3 5 , an 36 m i l l i o n g a l l o n s / d w h i l e those

f o r t h e Preston w e l l s was 75.5, 76, 79.2, 7 7 . 5 , and 76.5 m i l l i o n

g a l l o n s / d ,

Page 55: Application of the finite element groundwater model FEWA

45 OfiNL/TH-9678

ORNL-OWG 86-1567

F i g , 22. Structure contour map of Dade and Sroward counties showing base o f Biscayne aquifer.

Page 56: Application of the finite element groundwater model FEWA

QRNL/TM-9678 46

0

AVERAGE OF FOU 197 7

LONG-TERM AVERAGE

F i g . 23. Monthly rainfall for 1977 and long-term average monthly rainfall.

Page 57: Application of the finite element groundwater model FEWA

47 ORNL/TM-9678

5.4 MODEL CALIBRATION AND P R E D I C T I O N

The l - f t p o t e n t l o m e t r l c l i n e on May 3, 1977, was s e l e c t e d as t h e

c o n s t a n t head boundary o f t h e s tudy area.

f i n i t e elements as shown i n F i g . 24. Since t h e p o t e n t i o m e t r i c l i n e was

g e n e r a l l y c i r c u l a r , t h e elements had t o be chosen f l n e enough so t h a t

t h e t r i a n g u l a r elements on t h e o u t e r edge cou ld g i v e a f a i r

r e p r e s e n t a t i o n o f t h e boundary. f u r the rmore , i t was ensured t h a t a l l

t h e pumping w e l l s ac ted as nodes, and t h e Miami canal was represented

as s i d e s o f t h e f i n i t e elements.

t h e r e were no e r r o r s i n s e t t i n g up t h e c o o r d i n a t e s . The o u t p u t f rom

t h i s g r i d check i s presented i n F i g . 25.

The area was d i v i d e d I n t o

A g r i d check was done t o ensure t h a t

By t r i a l and e r r o r , a va lue o f 2495 f t / d a y f o r h y d r a u l i c

c o n d u c t i v i t y (2.888 x lo-* f t / s e c ) was found t o g i v e an accep tdb le

match, b u t n o t accep tab le around t h e P res ton w e l l area. Var ious va lues

were then t r i e d f o r t h i s area unt41 a s a t i s f a c t o r y one was found a t

120 f t / d a y (1.388 x f t / s e c ) . Thus, t h e h y d r a u l i c c o n d u c t i v i t y

was found t o be i s o t r o p i c and nonhomogeneous. The i n p u t d a t a f o r FEWA

i s presented i n Appendix D .

The model was then i n t e g r a t e d f rom May 3, 1977, t o October 4 ,

1977, u s l n g t h e known values o f i n f i l t r a t i o n and pumpage. The i n p u t

da ta f o r FEWA Ss presented i n Appendix E, By seve ra l exper imenta l

computer runs i t was e s t a b l i s h e d t h a t t h e r e s u l t s were n o t s i g n i f i c a n t l y

a f f e c t e d by t h e i n f i l t r a t i o n r a t e s . T h i s a l s o meant t h a t t h e

phenomenon of e v a p o t r a n s p i r a t i o n i s n o t i m p o r t a n t i n t h e s tudy area.

The reason f o r t h i s i s t h a t t h e h i g h pumpage exper ienced i n t h e area

Page 58: Application of the finite element groundwater model FEWA

ORNL/TM-9678 48

ORNL-BWG 86-1 568

--_ - -_

... .

335 335 137 353

~ ........... I 314 775 326 127

312 313 3!4 315

..............

3011 302 303

. ___ 269 2% 291 _-

27 I

.... ???L i~ 2 5 . -

..... l~ .......... 1 .............. ~

212 1 213 1 Z i t 1 215

191 ,.... :.?? .... ~ . ~ ! 33... L 1 9 4

........ +&+ 152

131 132 153

"?

F i g . 24. F i n i t e element network of the study area.

Page 59: Application of the finite element groundwater model FEWA

49 ORNL/TH-9678

ORNL-DWG 86-1 569

F i g . 25. Grid check of the finite element network.

Page 60: Application of the finite element groundwater model FEWA

ORN L/TN-9 67 8 50

overwhelms t h e o t h e r components o f t h e water budget, A f a c t t o no te

about FEWA I s t h a t f o r t r a n s l e n t runs, t h e i n i t i a l c o n d i t l o n s can

e i t h e r be p u t i n t o t h e computer manual ly o r computed.

5 .5 C O M P A R I S O N O f MODELED RESULTS TO F I E L D DATA

The r e s u l t s o f t h e c a l i b r a t i o n r u n a r e p l o t t e d i n F i g . 26 , and

t h e r e appears t o be good match t o t h e f i e l d da ta ( F l g . 20) . I t 1s

noted t h a t FEWA c o r r e c t l y p r e d i c t s t h e drawdown a t t h e Preston w e l l s ,

as w e l l as t h e upper and lower H ia leah w e l l s .

F i g u r e 27 shows t h e i n t e g r a t e d f l u x a t t h e w e l l s and a t t h e Miami

canal drawn t o sca le . The l e n g t h o f t h e a r row i s a measure o f t h e

niagnltude o f t h e f l u x , and t h e d i r e c t i o n of t h e f l u x i s as shown i n t h e

f i g u r e . I t i s i n t e r e s t i n g t o no te t h e r a t h e r complex f l o w i n t h e

Preston w e l l s area.

The r e s u l t s o f t h e p r e d i c t i v e r u n a r e p l o t t e d i n F i g . 28. I n

genera l , t h e match i s good, however, t h e smal l drawdown around t h e

lower H ia leah w e l l s i s n o t p r e d i c t e d . T h i s c o u l d be due t o

i n s u f f i c i e n t d e t a i l e d i n f o r m a t i o n r e g a r d i n g pumpage a t these lower

H ia leah w e l l s . On t h e o t h e r hand, i t cou ld be due t o a d i f f e r e n c e j n

i n t e r p r e t a t i o n .

Page 61: Application of the finite element groundwater model FEWA

51 ORNL/TM-9678

ORNL-OW6 85- 40994 DISTRIBUTION OF PRESSURE HEAD

TIME = 0 s BISCAYNE AQUIFER FLORIDA

A 0 V -6 f - 1 8 -8 x - 2 * -10

k I

F i g . 26. Computed potentiometric surface o f t h e Hialeah-Preston wells on Hay 3 , 1977.

Page 62: Application of the finite element groundwater model FEWA

ORNL/TM-9678 5 2

QRNL-DWG 85-11003

J4

a \ ’ hh

a

F i g . 27. Integrated f l u x a t t h e wells and a t t h e M i a m i Canal, Hay 3, 1977.

Page 63: Application of the finite element groundwater model FEWA

53 ORNL/TH-9678

DISTR BUT

TIME =0.133 d 0% s

ORNL-DWG 85-11001

ON OF PRESSURE HEAD

F i g . 28. Predicted potentlometric surface o f the Hialeah-Preston wells on October 4, 1977.

Page 64: Application of the finite element groundwater model FEWA

ORNL/TM-9678 54

FEWA: A f i n i t e element model o f wa te r f l o w th rough a q u i f e r s ,

i s a s i m u l a t i o n model o f two-dlmensional f l o w in s a t u r a t e d subsur face

medla. It has been f o m l i n t h l s s tudy t o be bo th e f f i c i e n t and

accu ra te .

c o n d i t i o n s i s an asset.

The a b i l i t y of FE R t o handle inhomogeneity and a n i s o t r o p i c

When compared t o t h e USGS two-dimensional model ( T r e s c o t t e t a l .

19761, FEWA was found s u p e r l o r I n t r e ting boundary c o n d i t i o n s and i n

h a n d l i n g a n i s o t r o p i c medla when t h e coo rd ina tes cannot be made t o

c o i n c i d e w i t h t h e p r i n c i p a l d i r e c t i o n s o f h y d r a u l i c c o n d u c t i v i t i e s .

FEWA i s a cont inuous model, whereas t h e USGS model i s a d i s c r e t e one.

T h i s means t h a t i n FEWA t h e v e l o c i t y f i e l d i s computed as a continuum,

w h i l e t h e v e l o c l t j e s a r e computed a t d i s c r e t e p o i n t s i n t h e USGS

model. U s i n g a cont inuous v e l o c i t y i n t h e subsequent contaminant

t r a n s p o r t model ing, mass c o n s e r v a t i o n w i l l be preserved.

FEWA was c a l i b r a t e d w i t h measured p o t e n t i o m e t r i c su r faces f rom t h e

Love Canal area , New York, and t h e C o n e s v l l l e area, Ohio. There were

s a t i s f a c t o r y matches between computed resu l t s and f j e l d data. The

computer t i m e used f o r t h e runs showed t h a t FEWA was e f f i c i e n t l y

designed, and t h e r e s u l t s i n d i c a t e d p r e c i s i o n i n the computat ion.

The c a l i b r a t i o n and p r e d i c t i v e runs o f FEWA were done w i t h

t h e Hia leah-Preston w e l l f i e l d d a t a over t h e 8iscayne aquifer i n

South F l o r i d a .

c o n d u c t i v i t y i n t h e area and t h e p r e d i c t i v e run gave r e s u l t s t h a t

The c a l i b r a t i o n r u n y i e l d e d two values o f h y d r a u l i c

Page 65: Application of the finite element groundwater model FEWA

5 5 ORNUTM-9678

matched w e l l wdth field da ta . This I l l u s t r a t e d t h e power o f FEWA as a

p r e d i c t i v e t o o l , and t h e r e f o r e I t s usefu lness as a t o o l i n groundwater

management.

The uses of FEWA as a s l m u l a t l o n model go beyond t h e immediate

need as

i n sha l

i n many

d ema nd s

a r e o f

a f i r s t and necessary s t e p t o s i m u l a t i n g contaminant t r a n s p o r t

ow l a n d b u r i a l o f l ow- leve l r a d i o a c t i v e wastes. It can be used

aspec ts of groundwater s tudy, i n c l u d i n g p r e d i c t i n g f u t u r e

on a q u i f e r s ( s t u d i e s by USGS), and r e s e r v o i r s i m u l a t i o n s which

m e d i a t e i n t e r e s t t o U . S . o i l companies.

Page 66: Application of the finite element groundwater model FEWA

56

REFERENCES

Bond, F . 1980. Model ing t h e F ixed Sludge L a n d f i l l - Conesv i l l e , Ohio

(Phase I ) . CS-13550 8 a t t e l l e P a c i f i c Nor thwest Labora to r ies ,

Rich land, Washington.

Geotrans, I n c . 1981. F i n a l Repor t on Groundwater Flow Model ing Study

o f t h e Love Canal Area, New York. LC1-619-026-14-FR-8000.

Geotrans, I n c . , Reston, V i r g i n i a ,

H u l l , J . E . , and T . R . Beaven. 1979. Summary o f Hyd ro log i c Data

C o l l e c t e d Dur ing 1975 i n Dade County, F l o r i d a , Open f i l e r e p o r t

FL 77-803, Un i ted S ta tes Geo log ica l Survey, Tal lahassee, F l o r i d a .

H u l l , J. E . 1978. Summary o f Hyd ro log i c Data C o l l e c t e d Dur ing 1976 i n

Dade County, F l o r i d a . Open f i l e r e p o r t 78-883, U . S . Geolog icd l

Survey, Tal lahassee, F l o r i d a .

H u l l , J. E . 1979. Summary o f Hydro log i c Data C o l l e c t e d Dur ing 1977 i n

Uade County, F l o r i d a . Open f i l e r e p o r t 79-514. U . S . Geolog ica l

Survey , Ta 1 1 a has s ec , F 1 o r i da . Jacob, C . E . 1947. Drawdown Tes t t o Beterrnine E f f e c t i v e Radius o f

A r t e s i a n We l l s . Trans. Am. S O C . C i v i l Engrs., Vol . 112,

pp. 1047 -1 079

Johnston, R . H . 1964. Groundwater i n t h e Niagat-a F a l l r Area, New Yark

w i t h Emphasis on t h e Water-Bearing C h d r a c t e r i s t i c s o f Bedrock.

B u l l e t i n GW-53. S t a t e o f New York Conservat ion Department Water

Resources Commission.

Page 67: Application of the finite element groundwater model FEWA

5 7 ORNL/TM-9678

Kipp, K . L., e t a l . 1 9 7 2 . Updated (1976) . V a r i a b l e Thickness

T r a n s i e n t Groundwater F l o w Model - Theory and Numerjcal

Implementat ion. BNWL-1703. P a c i f i c Nor thwest Labora to ry ,

Rich land, Washington.

Leonard, R . P., P. H. Werthman, and R . C . P i e g l e r . 1977.

C h a r a c t e r i z a t i o n and Abatement of Groundwater P o l l u t i o n f rom Love

Canal Chemlcal L a n d f i l l . Niagara F a l l s , New York. Calspan Report

NO, ND-6097-W-1.

Mercer, J . W . , C. R , Faust, and L. R . S l l k a . 1984. Groundwater Flow

Model ing Study o f t h e Love Canal Area, New York. Groundwater

Contaminat ion, N a t i o n a l Academy Press, Washington, D . C .

M i l l e r , W. L. 1978. E f f e c t s o f Bottom Sediments I n I n f i l t r a t i o n f rom

t h e Miami and T r i b u t a r y Canals t o t h e Biscayne A q u i f e r . Dade

County, F l o r i d a . Water-Resources I n v e s t i g a t i o n s 78-36,

U . S . Geo log ica l Survey, Miami, F l o r l d a .

Power A u t h o r i t y of t h e S t a t e o f New York (Pasny), 1965. Niagara Power

P r o j e c t Data S t a t i s t i c s , Pasny, Mew York. 48 pp.

T h e i s , C . V . 1935. The R e l a t i o n Between t h e Lowering o f t h e

P iezomet r i c Su r face and t h e Rate and D u r a t i o n o f Discharge o f a

Wel l Us ing Groundwater Storage. Trans. Am. Geophys. Union.

VOl. 16, pp. 519-524.

Thornthwal te , C . W., and H. 6. W i l m . 1944. Report o f t h e Committee on

T r a n s p i r a t i o n and Evaporat ion. 1943-44. Trans. Am. Geophys.

Union. Vol. 2 5 , P t . V . pp. 683-693.

Page 68: Application of the finite element groundwater model FEWA

ORNL/TM-9678 st$

T r e s c o t t , P . C . 1945. Docurnentatlon o f F i n i t e - D i f f e r e n c e Nodel for

S l m u l a t l o n o f Three-Dimensional Groundwater Flow. USGS Open FSle

Report 75-438. U . S . Geological Survey, Reston, V l rgSn ia .

T r e s c o t t , P. C,, G. F. P inder , and S . P. barson. 1976.

F i n i t e - D i f f e r e n c e Nodel f o r A q u i f e r Slmulatlon i n Two Dimensions

w i t h Resu l t s o f Nu e r i c a 1 Experiments, Book 7, Chapter C 1 .

Technique o f Water-Resources I n v e s t i g a t i o n s of t he U n i t e d S t a t e s

Geo log ica l Survey, U , S . Geo log ica l Survey, Reston, V i r g i n i a .

U.S. Department o f A g r i c u l t u r e . 1972. Soil Survey o f Niagara County,

New Yark. U . S . Government Printing O f f i c e . Q-459-901.

Yeh, G, T., and D , 0. H u f f . 1983. FE A : A F i n l t e Element Model o f

Water Flow Through A q u i f e r s . ORNL-5976. Oak Ridge Nat iona l

Laboratory, Oak Ridge, Tennessee.

Page 69: Application of the finite element groundwater model FEWA

APPENDIX A

FEWA INPUT DATA FOR USGA DATA SET

Page 70: Application of the finite element groundwater model FEWA
Page 71: Application of the finite element groundwater model FEWA

A-3

1 108 t a I ) ii 0 .0

THE 1 2 3 c 5 b 7 8 9

1 3 1 1 I.? 15 1 4 1 5 16 1 7 1 8 1 9 2 b 2 1 22 2 3 24 2s 2 b 2 7 2 8 2 9 30 3 1 32 3 3 3 4 3 5 36 3 7 3 d 3 9 4 0 4 1 4 2 4 3 9'4 4 5 4 b 4 7 4 5 4 3 5 <:

FOLLOuXNd cw

Page 72: Application of the finite element groundwater model FEWA

A - 4

5 1 5 2 5 3

b 5 6 6 b 7 bt l 5 9 7 3 7 1 7 2 7; 7 4

9 1 9 2 9 3 9 % 9s 9 b 9 7 9 5 9 9

I d a 102 lg -5 AtiQ 1 5 5 136 1 5 7 1 3 d

1 2 3

Page 73: Application of the finite element groundwater model FEWA

A- 5

1 14 2 7 41 5 3 b 5 7 7 89 10 1

12 12 1 3 11 1 1 1 1 1 1 I 1 8

1 1 1

[HE F O L L O k X N G C A R D S C O h r T A I l J E L C Y E N T I Y C S D E k C E S AND T Y P E 1 1 2 15 1 4 - 1 12 2

2 5 2 9 3u 42 41 - 1 1 1 1 3 L U l 92 54 5 3 - 1 l i 4

9 0 91 3112 101 - 1 3 1 114 9 5 9 6 1 C 6 105 - 1 rr 1 THE F O L L O J I N G C A R D S C O N T A I N P A T E R I A L T Y P E C O R R E C T I O N

2t i 4 1 - 2 2 5 2 1 - 3 J b 13 I - 3 4 7 3 I - Y 5 1 6 1 - 3 5.9 3 1 -9 62 -3

83 2 1 - 9 8 3 3 1 - 3 f t iE FOLLO*I IkG CARDS C O N Y A I N PRE- I ;d IT IAL C O N D I T I O N S

1 6 1 - 2 0

1 106 1 1oLi. 0.

b o o 0 7 2 1 2 1 2 1 2 6 2 2 ?HE FOLLOUIhG C A R D 2 C O I U T A I V 5 3 U R C E S A Y D WELLS

1 8 5 1 1 0

THE FOLLObItdC CARD C O V T A I N S T R A N S I E N T COYTROLLING I N T E G E R S

0 .o 0 OZE - 6 9 9 9 9 9 9 9 .U 0 .OZE -6

J .u 0.0 5 9 9 9 9 9 9 9 . 0 0.05 0 .a - 1 0 . 9 9 9 9 9 9 9 . 5 - 1 0 .

J L 4 2 5 4 66 r)r) 7 3 1 3 1 1 J S I 1 2 0

THE FOLLOUIh; CARDS C O N T A I V D I Q I c H L ~ T BOUNOARY C O N D I T I O N S

1 h 1 1 0

0 .o 100 .o 9 9 9 9 9 9 9 . 9 1 0 0 . 0 9 10 11 12 1 3 2 6

THE FOLLOUlhG CAROL C O N T A I N U P P E R L E A K I U G A P J I F E R S C . 2 10G .Li 9 9 Y 9 9 9 9 . 0 ICO.0 3. i l

1 8 5 1 1 U

THL F D L L O r l I h G CARDS C O N T I P I P I L O d E R L E A K I N G A O J I F C R S

3. J E - R 1 6 5 1 1 0

J . 2 1 1) il 5 3 9 9 9 9 9 . 0 1 C O .

Page 74: Application of the finite element groundwater model FEWA
Page 75: Application of the finite element groundwater model FEWA

APPENDIX B

FEWA INPUT DATA FOR LOVE CANAL, NEW YORK

Page 76: Application of the finite element groundwater model FEWA
Page 77: Application of the finite element groundwater model FEWA

6-3

~ J u N G I ~ ) O V E 0 4 7 1 1 ) S V H C R E A T E D C N b S t P 84 A T 1 9 . 1 0 : 2 1 1 i t u a A ~ P L I E ~ 1 3 Lout CANAL, L * E J V Q R ~ 1 THE F O L L O l i I N T j C A R B O C O N T A I N S T H E B A S I C f g T E G E R PARAMETERS I 1 & O O O I H E FOLLObING T U 0 C A W S CONTAIN THE B A S I C REAL PARAMETERS

THE FGLLOuING lid0 C S R 3 5 C O N T A I N P R I N T C R - ANQ STORAGE- CONTROL

0 0 1 408 363 2 I144 0 I -1.

2 . U93f -5 I .u 1.30 I .as 0.91 0.0 0.08 0 9 9 9 9 9 9 0 5 0 s G 00 I n.000 1 b2.5 32 e 2

3 3 _. 1 1

0 .il 0.0 a. 3 0 e O U U 9 2 O O Y ~ Z 0.0 0.3

1 -0005U [HE F O L L O U I N G CARCIS f O t ' d T R I N M A T E R I A L P R O P E R T I E S

THE f O L L O U I h ' t C A R D S C O : 4 T A f N BCD E L E V A T I O N AN0 AOUIFER T H I C K N E S S 1 405 1 5CQ.O 3 .o

3 .u 0.0 0.3 0 .OOUQ92 &: 0 0 0 4 9 2 0.0 0.

1 407 1 15.0 0 .u THE 1 2 3 4 5 6 7 d P

1 0 1 1 1 2 1 3 1 9 1 5 1 6 1 7 I 8 19

21 2 2 23

26 27 Z b 2 9 3J 3 1 3 2 3 3 3 4 35 3 6 3 1 3 b

20

z

4 1 :: ;; '4b ' 47 48 4 Y 53 5 1 5 2

FOLLOlr IMFi A l Y N O O A C COOROINATES

Page 78: Application of the finite element groundwater model FEWA

B-4

5 3 51, 5 5 5 b 5 1 5 6 5 ' ) 6 d 61 b h b 3 64 6 5 G b 6 7 6 6 6 9 7 t i 71 7 2 73 7 r 7 5 7 0 7 7 T d 7 9 S J 81 8 2 9 3 9 Y 8 5 8 b 8 7 REI 89 9 J 9 1 9 ; ? 3 9 % 9 5 9 b 97 Y f9 9 9

i o 4 1 I1 f l

1 0 6 l l l 7

1 3 9 1 1 i. 1 1 1 1 1 c! 11 3 1 1 4 i 1 5

Page 79: Application of the finite element groundwater model FEWA

B-5

i z s 121) 1 2 7 1 2 6 1 2 9 1 3 3 1 3 1 132 1.33 134 1 3 5 1 3 b 1 3 7 1 J d 1.59 14J 1 4 1 A42 1 4 3 1 4 4 14 5 14 tJ 1 q I 1 4 0 149 1 5 ~ 151 152 1 5 3 154 A55 1 5 f J i57 1 5 8 1 5 9 16J 1 6 1 1 6 2 1 6 3 1 6 4 1 6 h A66 1 6 7 l b b

1 7 4

Page 80: Application of the finite element groundwater model FEWA
Page 81: Application of the finite element groundwater model FEWA

B-7

3 3 4 3:; 5 3 ,I i, 33 7 3 3 8 3 3 9 3 1 d 3 1 1 3 1 2 3 1 J

Page 82: Application of the finite element groundwater model FEWA
Page 83: Application of the finite element groundwater model FEWA
Page 84: Application of the finite element groundwater model FEWA
Page 85: Application of the finite element groundwater model FEWA

6-11

i 4 5 1 4 b 147 1 4 8 1 4 9 A5L 1 S l 1 5 2 1 5 3 1 5 4 1 s S’ 156 1 5 7 l 5 b I S 9 1 b E! 1 6 1 1 6 2 l b 3 1 6 Li

1 6 5 1 b u 1 6 7 1 6 8 169 1 7 2 1 7 1 1 7 2 1 7 3 1 7 4 1 7 5 1 7 6 1 7 7 1 7 8 1 7 9 I E C 181

:I2 2 1 3 21’4

Page 86: Application of the finite element groundwater model FEWA
Page 87: Application of the finite element groundwater model FEWA

8-13

2 Y b 2 3 7 2 > b 2 9 9 33" 3 3 ]I 3 3 2 J C J 3 3 4 !C 5 3 2 b 3s 7 J J & 3 2 't

Page 88: Application of the finite element groundwater model FEWA

0

Page 89: Application of the finite element groundwater model FEWA

OI-3ZfZ'I 01-3ZlE.I 01-3LIf *i

SNOIP ION03 AM VONfl00

CL c3

00

Os 31 29 CL E9 os 0 GI P h Of LIZ OE 0.2 D I C I Of 02 C I

r6

E5

nz

11-3 1-32T'i'I 11-7 0'66666 66 r'6666666 0' 66666 66 C'66bbbb6 @* 6666666 C' 66666 66 Po 66666 66 0.6666666 0' 66 666 66 0' 66666 66 NO3 508V3 9Nf

0 0 0 3 0 n 0 9 0

: e 0 0 0 0 3 0

El I1 zr

li 01 6 8 L 9 S c E z I z I

I 5 roc I! c (>5C I I LSI 1 E SSE I h E tri 1 1 Otrf C c SbZ

62 SIC I 1 I1 Fr!F

c rnr r! I Z 662 c 0 862 I I 9h7 _. . I 9r 6LZ

n c PSZ

f I 1LZ I SI 197

I fl;Z I

I E hSZ I 2 152 1

0 0 1 h I 0 0 0 0 I I I 1 I h h E 6

I hZ 6rz 21

-321C , -3LTE: :

00 0" 0 0" 0 C"0 0'0 0°C 0" 0 own 0"0 0" 0

3HP 6h Oh 9h Ih 6f Bf LS 9s ST EX IS 62 LZ sz PZ 51

1 0'0

3'0

0°C 0'0 0'0 0'0 0'0 0'0 0'0 0'0 n* 0

ne 3

oan

3ni

Page 90: Application of the finite element groundwater model FEWA
Page 91: Application of the finite element groundwater model FEWA

APPENDIX C

FEWA I N P U T DATA FOR CONESVILLE, O H I O

Page 92: Application of the finite element groundwater model FEWA
Page 93: Application of the finite element groundwater model FEWA

c-3

1 mOBD50 ii

THE F O L L 0 U I N i . i C A R D C O N T A I N S MATERIAL P R O P E R T I E S 0.0 0.0 0. L( 0.0145 0 . 0 1 4 5 0.0 0.3 0 .o 3.0 0 . 3 0 -003 0.d[3 0 .o 0.3

THE FOLLO!ING CAKOS CON'lAIN B O T T O n L E V A T I O N 7 1 d, 1

3 5 4 d

10 1 1 1 0 l b

S n 2 6 28 29 3 3 35 3 1 3Y

4 5 '4b 48 5 2 5 2 54 5 d b d 6 2 64 6 b 6 8 6Y 7 1 7 4 7 6 7 9 Sl

91J 9 I 9b 9 7

liJl 102 l f l b 10 I 112 1 1 3 il9 :.-4 12 lJ 1 3 3 1 3 4 1: ri I 4 1

: I

a:

1 4 -

1

d 1 0 2 1 3 1 3 1 0 3 1 1 1

! n 1 1 I 1 3 1 1 1 1 1 3 1 2 1 2 1 1 6 0 4 3 3 3 3 2 2 3 2

1 3 r) 1

4,

y

1 A il 1 1 0 1 A 1 1 1 1 0 1 1 1 1

i u 1 1 1 1 1 1 1 1 1 1 i) 1 1 1 1 1 1 1 ij ; 1 .I 1 1 1 1 1 I 1 1 1 1 1 y

0 . Z C .

1 c. 2 c . 0. 1 c. 40. 5 . bC. 5 . 25. 5. 5 . 1 7 . a . 5 .

n.

2 a .

4 2: 9: 7 . 2 0. 25. 5, 1 5 .

5 .

U. 5. 5. 12. 5. 4. 7. 4. E . 4 . J. 2 . J. 3 . 3 .s Y . 2 . Q .

2 C .

i s . a .

; .E, L .

4. 3 . 3 3 2 . 3 . 3 . *.

Page 94: Application of the finite element groundwater model FEWA

c - 4

1 5 7 1 5 9 1 6 1 1 b J 1 6 5 157 169 A73 1 7 3 1 7 5 1 7 Y 1 8 1 1 8 3

1 8 7 i a t ,

1 9 6 K 1 9 b 1 Y b 2 J ,; 2 0 1 211 3 z c 5 2 U 8

2 3 . 3 "5 2 3 7

2'1 1 2 5 3

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I A 1 1 3 3 2 1 I 1 3 1 1 1 1 1 1 1 1 i 0 .d

1 1 1 1 3 i I A 1 1 3 J I i 1 1 L 1 3

I, i 1 1 1 1 1 1 1 1 1 1

1 i 1 1 2 1 2 1 1 1 I 1 2 1 3 1 1 3 1

1.

J

2 . 4 . -4m

7 , 5,

.- I . .I 2 . 1 L . 3 , 7 , 3 . 3 . - 1 1 . 3 . 3 .

,'I V D

rl ".

3 . n U.

5 , 4 - 5 .

> k .

A .

5 . -3.

a .

3 . z 05 4. 1, . 1 2 . - l a * 4 . - 2 , -2. 2 . _- 2 1 . 2.

3 . 3 . 2 1. .- 2 . - Q * 2 .

1. 2 . '9 .

:I .

L O

> .J a

7 .J

L .

..1 . - 'i . . I . < I . 1

1 . i . 2 . t. L 1 . . _, C

7 . ._ 1 . 1 .

._ ? 4 .

i C .

Page 95: Application of the finite element groundwater model FEWA

c- 5

J d U 3 3 d 3 1 I; 31 1 31 3 31 7 3 2 i 3 2 4 2 2 Y 3 3 -

335 3 3 7 3 4 1 3 4 4 3 4 0 35;; 3 5 4 3 5 7 3 5 9 3 6 1 J 6 t 56 7 3t 9 371 3 7 b

3 8 3 3 8 5

3 3 3

3 a 1

1. 1 i: 1 1 1 1 1 1 1 1 1 1

1 1 1

.) . I . - 1. - 1. - 2 . 2 . 2 .5

1 " *

5 . 1. 0 . -1. -1. -2.

3 . 1. il. - 1. - 1. ;.I . 6.

4 . L .

! e L-.

631.. 64 1. b43.5 1

1 1 1

4 5 1 1 4

1 1 1 2 5

2.2 1 . 3 . -1. - 1 . >

1 . .

4

-5. 2. 2 .2 1. 3 . -1. -1. 2 . 3 . - 3 . 3 . 2 . 1. 2 . 1 .

434 4 d 9 4 1 1 413 Y i l , i i zc ; 4 2 3 4 2 L( 4 2 6 4 2 d 43il 4:: 4 3 3 44 i 4 4 1

0 4 11. 64 3.5 64 3 .

2 3

i u 1 1 1 1 1 1 J 1 I 1

-1 . u * -1.

b q u b G3t.

-1 . 2. .? J .

- i . - L o 1. 1 .5 1 .

- 1. 2 .

-1.

1 . 1.

- 7 2.

1 L J

L. -

f i 1 1 I 1 1 1 Lj

1 1

46L( 4 7.;

1 2

1 7

3 &?

1

J . - 1. - 4 * 1 L . 5 1 ? i

Page 96: Application of the finite element groundwater model FEWA

C-6

5 7 4 5 7 7 5 7 7

5 6 4 5 3 3 5 9 6

3 5 3 6 5 b

A

7 1 3

1 a 1 2 1 4 9 4 3 1 1 z 1 4 7 3 1 1 2 2 2 6 3 2 1 2 1 1 7 2 i 1 i

7 3 4 17

b Y 5

1 L

1 1 1 1

I ,

U

1 1 1 A 1 1 1 1 1 I 1 1 1 1 1 1 1 1

L J I

1

1. 3 . 4 .

3 . - 1. -Q. 1 . 1 . 1.6 1 c. 3 . .c 1 . - 1. - Y . 1 . 1. L ) .

J. il. -1.

-^ 1 . - 4 . 1. 1.75 3 . 2 ?. -1. -1. -i. 1. 1.2 3 . 4 . - 1. -1. -2. 2 . i - 2 5 2 . 2 .

.- 1 . -7 L .

2 . 1 * 2 5

'I. 7 2.

7 .. .

1

1 i i

IJ

I .

Page 97: Application of the finite element groundwater model FEWA

C-7

-1 5 5 i 7 J

S?2 60 1 0 2 7 6 5 1 b F 3 L Y L c 9 7

1 3 b

1 1 : 6 2 2 24 37 4 b 5 4 6 2 6 3 7 u a 3 9 3 Tt ,

l a 1 139 1 1 '3

2 2 d L 2 Y

111 A 1 7 i 19 1, 20 1 20 1 zn 1

23 2 5 1 2 7 2 0 1 2 5 I 2 9 f ZY 1 2 9 1 2 9 1 2 8 1 2 5 1 2 3 1 21 1 1 9 1 4 1 9 2

$ 3 1

1 1 2 1 4 1 4 1

1 5 b 1 7 8 7 1

i 7 1 6 1 6 1 6 1 6 1 5 1 (1 1 7 1 9 1

1 2 1 11 1 1 2 1 1 4 i 1 7 1 19 1 2 0 1 2 0 1 2 0 i 2 1 1

1

2 5 1 5 ; 1

2 7 1 Z R 1 2t i 1 2.3 1 29 1 r 9 1 2 3 i 213 1 2 5 1 23 i 2 1 i 1 R i q 1

lL3c;CJ. 2ilLIo. 2243. ZrJ? . 26.10 2bLl3. 3 J U i l . 32 d 0 . 34bJa. 3 6 J U . 3 8 J i l . 4 5 4 3 . 423:. 4433. 4 6 3 3

5 C d 3 . 4 8 ~ 3 .

2 c o . z c n . 2 c o . 2GO. 2cu. Z C D . ZC3. 2 30 . 200.

20o. zoo. - 2co. 2 30. 2 C O . zcu. 2 CLI. 253. 2 c 3 . 2c0 . 2c3. L C 3 . 2 c c . 2f3. 3 .

a. 3 . 3 . J. [3 . 0 . 3 . il 3 . J. 2 . 3 . 3 . 9. 0 . C. a . 3 . J. 3 . 0. il. 0. 0 . 0 . 3 . 4 . . d o

J. Lj. i]. .I . 0 . 0 .

3. :J 3 .

" J .

s. 0 .

3 . L!.

..I . L i .

-I J .

U. 0. S. u. 3. il. U. U. a. 0. 3. 0. 0. U. 0. J c 3 . 3 . 3. 3 . 3 . :I . 3 . 3 .

3. a. 0. 0. J. a. 0. 3 . KJ. il. 3. U. i). 2. 3 . 0 . 3. 3. a. 3 .

u. U. 3 . a. 3. 3. J. 3 . 3 . 3 . J. Q. 3. J. > J .

3. rJ .

I _ .

LJ

Li. 3. J. i! b

J.

Page 98: Application of the finite element groundwater model FEWA

L I I 1

c I I 0 1

r

3 I

I

I 0 r 0 3 1

r! LZ c jz I!

t- T-

I- 1- I- I- 1- I- 1- 1- I- I- I- I- I- I- I ,-

ST I s5z

C: 2 I- cz I- n 1- 11 I- fl I- 61 i- e 1- LI 1- Q I .-

1- +lI I- C 1- 0 1- PI i- C I-

c( L.i

61 1.- 0 I .- fll I- a 1- o I- h I- 0 1- L I- 0 I- h t-

+l I- I-

0 r-

? I-

8-3

Page 99: Application of the finite element groundwater model FEWA

c-9

586 58 7 5 8 8 6 1 1 b l z 6 1 3 b3Y 635 636 6 5 4 6 5 5 6 5 b b 6 0 6 6 1 6 6 2

5 7 2 573 5 9 8 6 0 1 b 0 2 6 2 5 6 2 7 6 2 9 6 4 9 6 5 2 6 5 3 6 7 1 6 8 5 b d 6

6 9 5 t 2

5 7 3 5 74 5 99 6 0 2 6 0 3 6 2 6 6 2 d b 2 9 6 5G 6 5 3 b 5 4 b 72 6 6 6 6 8 7 6 9 1 6 9 5 b 9 b

bC1 6 0 2 6 2 6 6 2 7 6 2 8 6 50 6 5 1 6 5 2 b 72 6 1 3 6 1 4 6 9 1 6 9 2 6 5 3 b 9 6 b 97 6 9 7

0 b 7 3

D 0

u 9 2 0

0 n

THE F O L L O d I N G C A R D S 144 1 5 9 1 7 7 1 9 7 218 2 3 9 2 5 9 2 0 1 3 0 4 32 7 3 5 1 3 7 7 405 4 3 3 4 6 2 4 9 i 5 2 0

5 5 b 8

10 10 10 1u I O 10

1 1

- 7 .

-2 -? -2 -2 -2 - 7 -2 -2 - 2 - 2 - 2 - 2 -2 -2 -2 - 2

3 E u 3 E 0 J 0 3 0 cl 0 D

J 0 3

n

I H E F 0LLCw I P i G C A a D S 1 h 9 6 I 7JL1.

- 1 - 1 - 1 - 1 - 1 - 1 ." 1 - 1 -1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - I

0 2 5

c U

23 0 0

Z l 0 0

I & C U 4 0 LI 0

C O % T A I N

0 1 0 u 1 Q 0 1 0 0 1 0

1 U

a

a

a

M A T E R I A L TYPE C O R R E C T I O N

C O N T A I Y a . P R E - I ? J I T I A L C O N O I T I O N S

THE F J L L C * I N G C A R D C O M T A I N S T R A N S I E N T C O N T R O L L I N G l N 7 E b E R S 2 3 1 2 9 4 l M 2 1 2 1 2 0 T H L F O L L O u I k G C d i i D S C O N T A I N E L E A E N T ' U I D E S O U R C E S

1 b 6 l I 1 0 u .a 1 a 5 F - R 9 9 9 9 9 9 . 3 i . 5 E - a

T H E F O L L O ? I N G C A R D S C O N T A I N D I R I C H L E T BOUNDARY C O N D I T I O N S 9 7 9 9 9 9 9 . 3 7 9 5 9 9 9 9 9 .J 7 f S : Z

D .n 1 2 2 . 3 3 . 0 723.0 J .o 1 2 5 . 5 9 9 9 9 9 9 Y . 0 7 2 3 . 5 0 .a 7 2 4 . 0 9 9 9 9 9 9 9 . 3 7 2 4 . I1

0 0

3 J 99Y9V99.Y 7 Z U . i 0 . [1 ;;;:c 9 9 9 9 9 9 9 . 0 7 2 5 . .J 0 7 5 .5 9 9 ~ 9 9 9 9 . d 7 2 5 . 8 0 .a 7 2 6 . 2 9 9 4 9 9 9 9 . 0 7 2 6 . 0 il .o Z Z O 5 9 9 V 9 9 9 9 . 0 7 2 6 . 5 c .O 7 2 7 .L V 9 Y 9 9 9 9 . J 7 2 7 . 0 3. t i 7 2 7 . 5 9 9 9 9 9 9 9 . 5 7 2 7 . 5 0 (; 72d .J 9 9 9 9 9 9 9 . i l 7 2 8 . 0 0 . i J 1 2 0 - 5 9 9 9 9 9 9 9 . 0 7 2 9 . 5 J . (I 7 2 9 *-I 9 7 9 3 9 9 9 . 0 729.5 3 . [I 7 2 9 . 5 9 9 9 9 9 9 9 . 0 7 d 9 . 5 J .a 7 3 U . C 9 9 9 9 9 9 9 . 9 730.9 J " C 7 3 a . d 9 9 9 9 9 9 9 . u 7 3 0 . 3 n .u 7 4 0 . 3 9 9 5 9 9 9 9 . 2 743.3

1 3 u 11 1 6 2 2 2 9 3 7 U b 5 4 6 2 b9 7 6 8 3 90 96 1 9 1 IO? 1 I V 1 3 7 1 4 3 1 4 2 1 5 5 1 7 1 1 7 3 189 1 8 8 2 0 8 2 2 9 2 5 0 2 7 293 3 1 1 3 4 4 3 h l 3 5 5 'i2lc ' t 5 3 4 8 2 5 1 5 5'42 5 7 2 6 C 1 6 2 7 b 5 1 6 5 2 6 7 1 674

b ? l 6 7 - 6 5 . ~ 6 2 6 >'+Y 5 1 1 491 -452 4 2 3 394 393 3 b b J b ? 3U0 316 2 9 2 27u 24'' 2 2 b 1 2 9 1 1 8 1 1 7 1 0 8 1 3 7 100 Y4 9 5 89 E L 7 5

6 7 5 6 7 2 6 7 7 6 7 s 079 D S O 6 9 1 6 8 L b e 3 b a r 6 9 5 b 9 7 6 9 3 694 6 9 7 6 9 6

Page 100: Application of the finite element groundwater model FEWA

1 Y

1 5 2 1 2 2 3 4 35 4 7 6 U 64 6 5 b b b 7 b 8 6 9 70

8 7 9 u

a 2 a 4

7 5 5 3

11 0

11 1 2

3 0 0 !I 0

1 1 1 t 2 4

13

1 A 1 a A G 1 1 1

D LJ J 3 0 1 1 1 1 1

a

1 2 3 4 3 4 5 5 5

12 1 3 14 15 1 6 17 16 1 1 10

9

a

T H E F OLL. O * I N G

1 6 6 1 1

2.J 8 0 0 . 3.L

T H E F CLL Om INS

1 b b 1 1

0 .a 585. U.2

THE FOLLOh1,bG C A d D S C O N T A I N N f U M A N h B O U N D A R Y C O N D I T I O U S J -0 - 0 . 0 0 1 9 2 9 9939999.0 -C.001929

5 Q l 5 7 1 600 1 2 A 1 0

A 1 1 2 1 1

C P d D S C G V T A I N U P P E R L E I K I N G A O U I F E R S 9999999.0 8CO.

0

C A d O S C O N T A I N L O d E R L E A K I N G A Q U I F E R S 9999999.0 R C O .

3

Page 101: Application of the finite element groundwater model FEWA

APPENDIX D

FEWA INPUT DATA FOR HIALEAH-PRESTON WELLS, MAY 3 , 1977

Page 102: Application of the finite element groundwater model FEWA
Page 103: Application of the finite element groundwater model FEWA

D-3

3 2 . 2

C O Y 1 QOL

Page 104: Application of the finite element groundwater model FEWA
Page 105: Application of the finite element groundwater model FEWA
Page 106: Application of the finite element groundwater model FEWA
Page 107: Application of the finite element groundwater model FEWA

D- 7

Page 108: Application of the finite element groundwater model FEWA

D-8

1 3 1 4 5 r, 7

?

1 1

". 7 Y .

Page 109: Application of the finite element groundwater model FEWA

D- 9

1 1 0 1

i 1

1 1 I 1 L 1 1 1 1 0 1

l b 1

- 1 - I - + - A -1 -1 - 1

- 1 -1 - 1 - I - 1 - I -1

-; -1

- 1

- 1 - I - L - 1 - 1 - 1 - 1 - I -1 - i - A - 1 - A - 1 - i - i

- J

- I

I;

- I - L

- A

- - I

- - A

- i

- L

- 1 - 1 - I - I

- 1 - 1

- ' - 1

1

1

1 1

1

1

1 1

1 A

1 1

1

L

A

1

i

1

1 1 1

1

1

A

Page 110: Application of the finite element groundwater model FEWA

D-10

4 1

Page 111: Application of the finite element groundwater model FEWA

APPENDIX E

FEWA INPUT DATA FOR HIALEAH-PRESTON WELLS

Page 112: Application of the finite element groundwater model FEWA
Page 113: Application of the finite element groundwater model FEWA

E-3

3

3 J

0 U 1.0 G .O

THE F OLLO*; 1NG 1 3 6 5 A

A 3 6 5 1 THE F OLL O r ING 1 2 7 4

4 5 h 7 8 9

1 0 1 1 1 2 1 3 1 9 1 5 16 A7 1 8 1 9

2 7 23

;p 24 25 2 6 2 7 2 s 2Y 3 u 3 1 3 2 3.5 3 4 35 35 3 7 3 8 3 9 41; 9 1 4 2 4 3 9 4 (15 4 0 't 7 4 d 'I Y 5 J 5A 5 .'

8 9 A 1 0 - 5 9 . 2 3 ELL!,, B ~ ~ C ~ Y N E AQU O N A A I N S ' T H E B A S I C INTEGER PARAME

ROS C O N T A I P ~ T H E L~ASIC REAL P A R A 1 0 0 6DlJ U 0

1330S603. 3.001 3.301 5 2 L 1 .on

R O S C O N T A I k P R I N T E R - A N D S T O R A t i E 11S1 l 1 1 1 1 1 1 i 1 3 o m o n o o o o o o o o 1

I I F E R , FLOR T E R S 0 1

C A R D C O l J l A I N S HATERXAL P R O P E R T I E S 0.55 z. B B B E -2 z . 8 m E - t a . o 0.35 0.35 1 - 3 8 8 E - 3 1 -3B8E-30.0 0 .35 C A R O S C O N T A I N B 3 T T O M ELEVATION -1 i Ib . a .O 0. ;3 il .O CAKDS C O N T A I N NOGAL COORDINATES - 3 1 U 6 f l D *iI 0 . J88200+04 . I t b 5 9 0 0 4 0 0 .S 9 3500*0Q e 6 2 B 2 0 G * 0 9 .b 9 8 8 O O * Q U -7 7Q50D*J4

.10099D*05

- 1 1 6 4 7 0 * U 5 .1242404JS .2 7 9 5 0 0 * 5 9

3 1 C 6 OD+O9 - 3 a8230 *OQ .4 659OO*JU . s* 3530+n4 .621i200*09 . b Y a 8 0 0 * U 4 . 7 7 b 5 D D * J 9 .J 5 % 1 O U * i I Q . 9 3 1 8 3 D * 3 4

a E 5 0 1 O D * 0 4 .93aaoa*oo . I O R ~ I ~ * O S

- CONTROL

.1 uil9ro*os

.I u 8 7 13*3 5

. 1 1 6 4 7 U * l l S

Page 114: Application of the finite element groundwater model FEWA
Page 115: Application of the finite element groundwater model FEWA

E-5

1 2 5 1 2 6 1 2 7

129 13il 1 3 1 1312

. 1 3 3 134

128

135 1 3 6 1 3 7 1 3 8

142 14 3 144 14s 14 5 14 7 14 d 14 Y 1 5 3 1 5 1 152 1 5 3 1 5 4 1 5 5 156 15 7 158 1 5 9 1 6 U 161 162 163 10'4 1 6 5 166 167

169 173 171 172 1 7 3

i b a

174 175 176 1 7 7 176 179

liil 132 1 3 3

l a ;

Page 116: Application of the finite element groundwater model FEWA

E-6

2 1 b 2 1 7

518 223 hi? 1 222 2 2 3 224 2 2 5 2 2 6 2 2 7 2 2 8 229 238 231 232 2 3 3 2344 2 3 5 2 3 0 2 3 3 239 239 24 3 29 1 2 4 2 2'4 3 2 4 4 2 4 5 2 4 b 2 4 7 2 4 8 2 4 9 2 5 d 2s 1 2 5 2

263 2 6 2 2 6 3 2 6 q 2 5 s 2 6 5 Z b ? L h A

Page 117: Application of the finite element groundwater model FEWA

E-7

269

f;P 2 7 2 2 7 3 274 2 7 5 2 7 6 2 7 7

2 7 9 2 8 0 2 8 1 2 3 2

2 7 8

2 8 3 284 2 8 5 2 8 0 2 8 7 2aa 2 8 3 230 2 9 I 2 9 2 2 9 3 294 295 2 9 6 29 7 2 9 8 2 9 9 30 0 30 1 302 3Q 3 30 r) 3 0 5 336 3il7 338 309 3 1, u 31 1 3 1 2 31 3 3 1 4 31 5 3 1 6 31 7 31 a 3 1 9 32i; 3 2 1 32 2 773 -I&

3 2 4 32 5 326 32 7 3 2 8 3 2 9 3 3 3 3 3 1 332 3 3 3 3 3 4 3 : 5 3 3 6 3 3 7 3.36 3 2 Y 3 4 u

.3 10600+04 3 372 00+04

0 5 4 35 ui3 4 0 4 a 7 7 5 5 0 0 + 0 4 e 8 32900+U4

1 il8 f 10 *U 5

Page 118: Application of the finite element groundwater model FEWA

E-8

36 3 36 4 36 s 3 6 6

z 3

b 7 8

1 2 1 3 14 z '3

966.

1% A t 3 1 5 1 b

'4 b 6 3 9 3 8 1 3 % 8 9 8 9

5 1

1 1

9L3 l i l i I C 5

11 ?

11 1 7 1 7 1 d 1 9

3

1 2

1 1

9 3 1 1 2 5 9 .

1 1 3 3 7 - 1 1 2 5 9 . 1 1 2 2 6 . 1 1 2 5 9 0

7

1

Page 119: Application of the finite element groundwater model FEWA

E-9

1 2

1 4 1 5 2 9 3 0 3 1 4 7 6 2 0 3 7 7

i! 92 84 1 5 9 5 9 6 9 7

10 1 1 1 2 1 1 3 I 1 4 119 129 1 3 J 1 3 1 1 3 7 1 1 6 14 1 148 1 4 9 150 1 5 7 l b 5 l b b l b 7 1 b Y

3 1 9 1

n 1 6 1

1 0 1 6 1 1 1 a 1

1 1 10 1

11 1 6 1

3 i

l l i l 2 b . 1 0 9 4 8 * 13071. 12055 . 1 1 2 5 9 . 1 1 4 5 3 9 11647. 12812. 12535 m 132.701 1 2 5 0 1 13230.

IWk ACUS4- 1 3 V 7 J . l S S 2 9 1 8 b 3 5 . 19179.

21 7 4 1 . 21 896 rn 210119~ 21 5 8 6 - 2 1 2 7 5 . 20576

i r aez. z 3 3 8 e -

2 1 5 8 6 .

R D S D

1 5 0

2 9 O 0

46 6 3 0

8 2 0 0

132 a D a

i k b 1 2 1

0 J

133 139

0 0

153 U

1 S6 0 0

168 0

17’1 Ll 0 3 3

1.37 D

197

9!!l

104

C O N T A I N ELEMENT - 1 - 1 12 1

1 -1 -1 I 4 - I - 1 - 1 1 6 1 -1 1 5 1 - 1 - 1 I4 1 - 1 - 1

2 1 - 1 2 1 - 1 -1 I O 1 - 1 - 1 - 1 4 1 - 1 1 1 1 - 1 - 1

- 1

- 1 5 1 - 1 10 1 -1 - 1

b 1 -1 - 1 - 1 9 1 -1 -1 -! 7 1 - 1 - 1 8 1 - 1 - 1 - 1 -1 - 1 & 1 - 1 -1 9 1

I N C I O ENC ES A N D T Y P E

Page 120: Application of the finite element groundwater model FEWA

E-10

l a I 1 8 8 1 9 8 2 1 Y 2 2 8 2 2 9 2 4 0 2 4 1 2 4 7 2 4 8 ? 4 q 26U

2 6 6 2 6 a 2 7 8 2 7 9 2 8 2

2 8 4

2 8 6 2 9 5 2 9 6 30 1 31Y 32 u 33 1 3 3 2 3 4 1 3 4 2 3 4 3 34 F

2 b 5

2 n 3 2 8 5

1 0 5 1 8 5 1 9 6 21A 2 2 7 2 2 8

2 4 7 24 8 2u9 2 6 1 2 6 6 2 6 5 2 6 7 2 7 9 2 d a 2 8 3 2 8 4 2 9 4 2 8 5 2 8 7 3 0 0 3 0 0 3 1 2 3 2 s 326 3 3 6 3 3 9 3 4 8 3 5 0 3 5 1 3 5 7

I:!

2 0 7 1 8 6 1 9 7 2 1 9 2 2 6 2 29 2 4 1 2 42 298 2 4 9 2 5 i i Z 6 2 2 6 7 2 8 5 2 68 2 6 5 2 8 1 2 8 4 3 0 1 2 8 5 2 8 6 2 8 6 3 1 3 3 0 1 3 1 3 3 2 0 3 2 7 z 3 9 341) 3 4 9 3 5 1 3 5 2 3 5 8

ZC6 2 C8 2 19 2 4 1 2 Y 9 2 5 0 2 6 1 2 62 2 6 7 2 6 7 2 60

2 8 4 2 06 2 8 8 2 9 7 2 9 8 3 c u 3 cfl 3 0 2 2 8 7 3 c 3 3 1 2 3 I@ 3 26 3 38 3 3 9 3 5 0 3 5 1 3 5 9 3 6 0 3 b J 3 6 6

2 eo

il 2 3 7 2 1 8 2 4 3 n 2 4 9

3 2 6 1

0 267 2 79

0 u 2 8 5

0 2 9 7

0 0

30 1 3 0 2 302

0 3 1 3 3 2 5

0 3 3 8

c1 3 5 0

0 C

3 6 0 0

n

- 1 -1 - 1 - 1 .- 1 - 1 -1 - 1 -1 - 1 - 1 - 1 - 1 -1 -1 -1 - 1 -1 ’̂ 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -1 - 1 - 1 - 1 - 1 -1

I l l 2 1

9

1 1

6

1 1 5

1 1

3

9

1 1 1 2

1 1

9

6

1 1

1

THE F O L L O d I ! v t CAIiOS C O Y : A I Y Y,ATERIAL TYPE C O R R E C T I O N 2 u 7 1 1 - 2 0 22 9 1 1 - 2 0 2 5 0 1 1 - 2 0 2 6 d 1 1 -2 0 2 8 6 1 1 -2 0

THL F 3 L L O r I N G CA8DS C J N T A I N PRE-INITJAL C O N O I T I O N S 1 305 A 1. I).

THE F O L L O t I N G CAdD CONTAINS TRANSIENT COUTROLLING ;IdTEGERS 3 0 d 0 7 2 7 4 1 1 3 Tt4L FOLLOwING C A M O S CONTAIN S O U R C E S AN0 JELLS

2 3 3 4 4

3 .U 3.0 8 6 4 3 0 . 2.72E - 7 2 4 1 9 2 3 0 . 2.72E-724 1 9 2 10. 0.00E-7 1.29E-7

1 2 1

5 0 1 1 ZOJ. 1 “ J b Y O O C , l j 3 3 b f l ~ 1 [ 3.C

2 SUE-750 A 1 2 10. 1 .29 E - 7 1 :I 56 8 0 1 0 a

0.8 1 E - 7 7 6 8 9 6 0 0 . 0 a 8 1E - 7 7 6 8 96 10 1.13E-712961)OUO. 1 1 3 E - 7 12Y 6 U 100. 0.0

1 4;e 1 1 3

J .U -1J .480 12971701p. -1D.*d6 1 2 9 7 2 9 6 0 . -4,1660 1 3 3 0 6 0 0 0 . - G e l 5 6 J .U - 6 . 3 q 4 1 2 9 7 2 9 3 0 . -6.7‘4’10 1 2 9 7 2 9 6 0 . -11.992 1 3 3 0 b 0 0 0 . -11.992 n .fl 8 . 3 5 3 6 1 2 9 I 2 9 J 0 ~ 8 . 3 5 3 4 1 2 9 7 9 6 0 7.2 00 13JObOCO. 7.289 J .!I 10.7,72 1 2 ~ 7 2 9 n C I . 16.7072 129739bO: 1q . f ‘ 1 3 3 3 6 0 0 0 . 1 4 - 5 6

b y 1 0 7 1 0 8 2.27 L 2 6 2 1 5 2 2 4 2 2 3 2 2 7 2 0 0 2 3 1 2 0 2 2 0 3 2 0 8 2 0 7 2 3 0 2;l 7 6 9 2 8 7 2 8 6 268 2 3 0 2 2 9 1 3 2 1 4 7 l b 7 2 0 6 2 2 8 2 4 9 2 6 7 2 8 4 3G0 l h 5

1 1 2 1 1 0 1Q 9 1 2 0 2 9 8 1 3 i l 3 3 0 1 4 G

“ . d

F LLLC. ? b G 1.9 1 . d 1.0 i s 3 1.0 1.3 1 .d

Li I R I C H L E T ~ ~ U N D A P Y 1 2 9 7 2 9 6 0 . 1.1

9 7 060. 1.3 fI 9 7 I 953. 1.S 1 2 9 7 2 9 6 0 . 1.6 1 2 9 7 2 9 6 0 . 1.7 1 2 9 7 2 9 6 0 . 1.8 1 2 9 7 2 9 6 3 . 2.2

C O N D 1 T I 3 N S 133ObOOO. 1 3 3 0 6 0 0 0 .

1 3 3 0 6 0 0 0 . i 3 306OOO. 1 3 3 C 6 0 0 0 .

06000.

1 3 3 f l 6 0 0 0 .

1.1 1.3 1 .5 1.6 1.7 1.8

2.n

Page 121: Application of the finite element groundwater model FEWA

E-11

1 2 7 0 3 6

239 763 360 3 5 0 1 3 9 121

1 3 5 8 :? 1 3

2 9 1 31 1 3 3 2 3 6 8 4 5 2 5 8 1 50 3 5 4 B 63 1 6 5 6 6 6 7 18 1 7 c a

3 1 1 % 2 78 5 3 8 I O 2

1 1

A 1 1 I 1 1 1 1 1 1

1 1

9 1 3 2 2 9 1 3 25

a 2 b 5 6 7 6 5 4 3 4 5 I 2 1 2 J 5 7 6

THL FGLL.Oa Ik l j i ; A L ) S O N T A I N UPPER L E A K I N G A O U I F E R S

1 398 1 1 0 THE F O L L O r I N G C A R D S C O N T A I W L O h E R L E I K I h G A O U I F E R S

1 348 1 1 J

3 .L! 1.0 153rlbr108. 1 .n 0 .c

I] .U C.0 1 3 30 ‘a000. 0 -0 n .o

Page 122: Application of the finite element groundwater model FEWA
Page 123: Application of the finite element groundwater model FEWA

ORNL/l”M-9678

INTERNAL DISTRIBUTION

1. 2. 3 . 4. 5. 6. 7 . 8. 9.

10. 11. 12. 13.

55.

56.

57 *

58.

59.

60.

61.

62 .

6 3 .

64.

65.

s. I . J . S . w. J . R. 0. R. 8. N. M. E. e. L. R . s. 6 . D. 0. R . 5 . 1. w . F . G.

Auerbac h Baldwin Boegly, Jr . Chester ClaPP C u t s h a l l Davis Dole H i ldebrand H u f f Lowr i e Oakes P i n

14. 15. 16. 17.

18-27. 28.

29-33. 34.

35-49. 50-51.

52. 53. 54.

D. E . R e i c h l e C. R . Richmond E. D . Smith 8. P. Spa ld ing L. E. S t r a t t o n R . 6, Wymer 6. T . Yeh C e n t r a l Research L i b r a r y ESD L i b r a r y Labora to ry Records Department Labora to ry Records -0RNL-RC ORNL Pa ten t S e c t i o n ORNL Y-12 Technica l L i b r a r y

EXTERNAL DISTRIBUTION

M. Bara inca, Program Manager, Low-Level Waste Management Program, U.S . Department o f Energy, 550 Second S t r e e t , Idaho F a l l s , I D 83401 J . J . Blakeslee, Program Manager, Nuc lea r Waste Processing, Rocky F l a t s P l a n t , Rockwell I n t e r n a t i o n a l , P.O. Box 464, Golden, CO 85401 J . Thomas Cal lahan, Associate D i r e c t o r , Ecosystem S tud ies Program, Room 336, 1800 G S t r e e t , NW, N a t i o n a l Science Foundat ion, Washington, DC 20550 T . C. Chee, R&D and Byproducts D i v i s i o n , DP-123 (GTN), U.S. Department o f Energy, Washington, DC 20545 A . T . Cla rk , J r . , D i v i s i o n o f Fuel M a t e r i a l Sa fe ty , U.S. Nuc lea r Regu la to ry Commission, Washington, DC 20555 P e t e r Colombo, Group Leader, Nuclear Waste Research, Brookhaven N a t i o n a l Labora to ry , B ldg. 701, Upton, NY 11973 E. F . C o n t i , O f f i c e of Nuclear Regu la to ry Research, Nuc lea r Regu la to ry Commission, flS-1130-SS, washington, DC 20555 3 , E. Dieckhoner, A c t i n g D i r e c t o r , Operat ions and T r a f f i c D i v i s i o n , DP-122 (GTN), U.S. Department o f Energy, Washington, DC 20545 G. J . Foley, O f f i c e o f Environmental Process and E f f e c t s Research, U.S. Environmental P r o t e c t j o n Agency, 401 M S t r e e t , SW, RD-682, Washington, DC 20460 C a r l Gertz, D i r e c t o r , Rad ioac t i ve Waste Technology D i v i s i o n , Idaho Operat ions O f f i c e , U.S. Department o f Energy, 550 Second S t r e e t , Idaho F a l l s , I D 83401 C . R. Goldman, P ro fesso r o f Limnology, D i r e c t o r o f Tahoe Research Group, D i v i s i o n o f Environmental S tud ies , U n i v e r s i t y o f C a l i f o r n i a , Davis, CA 94615

Page 124: Application of the finite element groundwater model FEWA

6 6 .

57.

68.

69.

70.

7 1 .

7 2 .

73.

74.

75.

7 6 .

7 7 .

78.

79.

80.

81.

82.

$ 3 .

84.

W . H . Hannum, D i r e c t o r , West V a l l e y P r o j e c t O f f i c e , U.S. Uepartment o f Energy, P . Q . BOX 1 9 1 , West V a l l e y , NY 14771 J. W. Huckabee, P r o j e c t #anager, Environmental Assessment Department, E l e c t r i c Power Research I n s t i t u t e , 3412 H i l l v i e w Avenue, P.O. Box 10412, Palo A l t o , CA 94303 E. A , Jennr ich, Program Wanager, Low-Level Waste Management Program, EG&G Idaho, Inc,, P . O . Bow 1625, Idaho F a l l s , I D 83415 J , J e J i cha , D i r e c t o r , R&D and Byproducts D i v i s i o n , DP-123 (GTN), U.S. Department of Energy, Washington, BC 20545 E . A . Jordan, Low Level Waste Program Manager, D i v i s i o n o f S%orage and Treatment P r o j e c t s , NE-25 ( G I N ) , U . S . Department o f Energy, Washingtaw, DC 20545 George Y . Jordy, D i r e c t o r , O f f i c e o f Program Ana lys i s , O f f i c e o f Energy Research, ER-30, G-226, U . S . Department. o f Energy, Washington, DC 20545 J . Howard K i t t e l , Manager, O f f i c e o f a s t e ~ a ~ a g e m e ~ ~ Programs, Argonne N a t i o n a l Labora to ry 9709 S . Cass Ave", B ldg. 205, Argonne, I L 60439 L. T . Lakey, Waste I s o l a t i o n , P a c i f f c Northwest Laboratory , Rich land, WA 99352 Leonard Lane, Los Alamos National Laboratory , P . O . Box 1663, Los Alamas, NM 87545 0, 8. L e c l a i r e , D i r e c t o r , O f f i c e o f Defense Waste and Byproducts Management, DP--12 (GPN), U,S. Department a f

ington, DC 20545 on, D i r e c t o r , Ecological Research D i v i s i o n , a l t h and Environmental Research, O f f i c e o f

Energy Research, blS--E201, ER-75 , oom E - 2 3 3 , Department o f Energy, Washington, QC 20545 Michael Plcfadden, Waste Management, Albuquerque Operat ions O f f i c e , U.S. Department o f Energy, Albuquerque, NM 37115 G . L. Meyer, Environmental P r o t e c t i o n Agency, 401 M S t r e e t Shl, MS-ANR459 , Washington, DC 20460 Edward O'Donnell, D i v i s i o o f R a d i a t i o n Programs and E a r t h Sciences, U . S . Nuclear Re u l a t o r y Commission, Wai l Stop 1130 S S , Washington, DC 20555 J . W . Pat terson, Program D i r e c t o r , Waste Management Program O f f i c e , Rockwell Hanford Operat ions, P . Q . Box 8QQ, Richland, MA 99352 I r w i n Remron, Department o f Appl ied E a r t h Sciences, S tan fo rd Uni vers i t y , S t i i r i f ord , C A 94305 Paul 6 . Risser , O f f i c e o f t h e Ch ie f , I l l i n o i s N a t u r a l t l i s t o r y Survey, N a t u r a l Resources B u i l d i n g , 697 E . Peabody A v e . , Champaign, I L 51820 Jackson Robertson, USGS, 410 N a t i o n a l Center, Reston, V A 22092 E . M. Romney, U n i v e r s i t y o f C a l i f o r n i a , Los Angeles, 900 Veteran Avenue, Los Angeles, CA 90024

Page 125: Application of the finite element groundwater model FEWA

85.

86.

87.

88.

89.

90.

91.

92.

93-97. 98.

99.

100 -1 26.

R . J . Starmer, HLW Techn ica l Development Branch, O f f i c e o f Nuc lea r M a t e r i a l S a f e t y and Safeguards, Nuc lea r Regulatory Commission, Room 427-SS, Washington, DC 20555 J , G. Steger, Environmental Sciences Group, Los Alamos S c i e n t i f f c Laboratory , MS-K495, P.Q. Box 1663, Los Alamos, NM 87545 R. J . Ste rn , D i r e c t o r , O f f i c e o f Environmental Compliance, MS PE-25 , FORRESTAL, U.S. Department o f Energy, 1000 Independence Avenue, SW, Washington, OC 20585 J . A. Stone, Savannah R i v e r Laboratory , E. I . DuPont de Nemours and Company, B ldg. 7 7 3 4 , Room E-112, Aiken, SC 29808 Leonard ti . Weinste in , Program D i r e c t o r o f Environmental B io logy , Cornel1 U n i v e r s i t y , 8oyce Thompson I n s t i t u t e f o r P l a n t Research, I t h a c a , NY 14853 Raymond 6. Wi lhour , Ch ie f , A i r P o l l u t i o n E f f e c t s Branch, C o r v a l l i s Environmental Research Laboratory , U.S. Environmental P r o t e c t i o n Agency, 200 SW 3 5 t h S t r e e t , C o r v a l l i s , OR 97330 Frank J . Wobber, E c o l o g i c a l Research D i v i s i o n , Q f f i c e o f H e a l t h and Environmental Research, O f f i c e o f Energy Research, NS-E201 Qepartment o f Energy, Washington, DC 20545 M. Gordon Wolman, The Johns Hopkins U n i v e r s i t y , Department o f Geography and Environmental Engineer ing, Ba l t imore , MO 21218 K - F . V. Wong, U n i v e r s i t y o f Miami. Cora l Gables, FL 33124 Robert W. Wood, D i r e c t o r , D i v i s i o n o f P o l l u t a n t C h a r a c t e r i z a t i o n and S a f e t y Research, U.S. Department o f Energy, Wash i ngton , DC 20545 O f f i c e o f A s s i s t a n t Manager f o r Energy Research and Development, Oak Ridge Operat ions, P. 0. Box E, U.S. Department o f Energy, Oak Ridge, TN 37831 Technica l I n f o r m a t i o n Center, Oak Ridge, TN 37831