11
Applications and Advantages of Using Internally Restrained PVC Pipes for Installation by Horizontal Directional Drilling Mustafa Kanchwala 1 , Trupti Kulkarni 2 , Mohammad Najafi 3 , Craig Fisher 4 and Vijay Kumar Shivaji Rao 5 1 Research Assistant, Center for Underground Infrastructure Research and Education (CUIRE), Email: [email protected] 2 Research Assistant, Center for Underground Infrastructure Research and Education (CUIRE), Email: [email protected] 3 Director of the Center for Underground Infrastructure Research and Education (CUIRE), Department of Civil Engineering, The University of Texas at Arlington, Box 19308, Arlington, TX 76019, U.S.A., Phone: 817-272-0507, Email: [email protected] 4 Former Vice President - Technical and Municipal Services, S&B Technical Products, 1300 East Berry Street, Fort Worth, TX 76119, U.S.A., Phone: 817-921-8227, Email: [email protected] 5 Former Graduate Research Assistant, Center for Underground Infrastructure Research and Education (CUIRE), Email: [email protected] Abstract Horizontal Directional Drilling (HDD) has evolved steadily over the last 20 years and currently is the preferred method for municipal water installations due to its low impact on the surrounding areas. The Bulldog Restraint System (BRS) has added bell-and-spigot to PVC-U and PVC-M piping options for installation by HDD. In North America, BRS is designed for integration into diameters ranging from 3-in. (75-mm) to 16-in. (400-mm). This paper presents the methodology for testing the BRS joints under axial tension, and the corresponding results, for PVC pipes equipped with BRS. In order to compare the BRS capabilities to expected loads for an HDD installation, an Excel spreadsheet was developed to calculate the anticipated pull forces, using ASTM F1962-05 design procedures. In addition, to show the cost effectiveness of the HDD method as applied to the internally restrained PVC pipe, a cost comparison with the traditional open-cut installation is provided. Product Description An internal restraint system within the bell of a PVC pressure pipe has been developed by S&B Technical Products, and designated as the Bulldog Restraint System TM (BRS). In North America, the current version of the BRS is designed for integration into the following types of PVC pressure pipes: AWWA C900 PVC-U pipe and fabricated fittings in diameters 4-in. (100-mm) through 12- in. (300-mm), 1352 Pipelines 2011: A Sound Conduit for Sharing Solutions © ASCE 2011 Pipelines 2011 Downloaded from ascelibrary.org by Universidad Nacional Autonoma de Mexico on 07/01/15. Copyright ASCE. For personal use only; all rights reserved.

Applications and Advantages of Using Internally Restrained PVC Pipes for Installation HDD

Embed Size (px)

DESCRIPTION

HERRAMIENTAS Y APLICACIONES DE TUPERIA DE PPVC

Citation preview

  • 1

    Applications and Advantages of Using Internally Restrained PVC Pipes for Installation by Horizontal Directional Drilling

    Mustafa Kanchwala1, Trupti Kulkarni2, Mohammad Najafi3, Craig Fisher4 and

    Vijay Kumar Shivaji Rao5

    1Research Assistant, Center for Underground Infrastructure Research and Education (CUIRE), Email: [email protected]

    2Research Assistant, Center for Underground Infrastructure Research and Education (CUIRE), Email: [email protected] 3Director of the Center for Underground Infrastructure Research and Education (CUIRE), Department of Civil Engineering, The University of Texas at Arlington, Box 19308, Arlington, TX 76019, U.S.A., Phone: 817-272-0507, Email: [email protected] 4Former Vice President - Technical and Municipal Services, S&B Technical Products, 1300 East Berry Street, Fort Worth, TX 76119, U.S.A., Phone: 817-921-8227, Email: [email protected] 5Former Graduate Research Assistant, Center for Underground Infrastructure Research and Education (CUIRE), Email: [email protected] Abstract

    Horizontal Directional Drilling (HDD) has evolved steadily over the last 20 years and currently is the preferred method for municipal water installations due to its low impact on the surrounding areas. The Bulldog Restraint System (BRS) has added bell-and-spigot to PVC-U and PVC-M piping options for installation by HDD. In North America, BRS is designed for integration into diameters ranging from 3-in. (75-mm) to 16-in. (400-mm). This paper presents the methodology for testing the BRS joints under axial tension, and the corresponding results, for PVC pipes equipped with BRS. In order to compare the BRS capabilities to expected loads for an HDD installation, an Excel spreadsheet was developed to calculate the anticipated pull forces, using ASTM F1962-05 design procedures. In addition, to show the cost effectiveness of the HDD method as applied to the internally restrained PVC pipe, a cost comparison with the traditional open-cut installation is provided. Product Description

    An internal restraint system within the bell of a PVC pressure pipe has been developed by S&B Technical Products, and designated as the Bulldog Restraint SystemTM (BRS). In North America, the current version of the BRS is designed for integration into the following types of PVC pressure pipes: AWWA C900 PVC-U pipe and fabricated fittings in diameters 4-in. (100-mm) through 12-

    in. (300-mm),

    1352Pipelines 2011: A Sound Conduit for Sharing Solutions ASCE 2011

    Pipelines 2011

    Dow

    nloa

    ded

    from

    asc

    elib

    rary

    .org

    by

    Uni

    vers

    idad

    Nac

    iona

    l Aut

    onom

    a de

    Mex

    ico

    on 0

    7/01

    /15.

    Cop

    yrig

    ht A

    SCE.

    For

    per

    sona

    l use

    onl

    y; al

    l rig

    hts r

    eser

    ved.

  • 2

    AWWA C905 PVC-U pipe and fabricated fittings in diameters 14-in. (350-mm) through 16-in. (400-mm), and

    ASTM D2241 PVC-U pipe and fabricated fittings in diameters of 3-in. (75-mm) through 8-in. (200-mm). The BRS mechanism consists of a metal casing that sits adjacent to the Rieber gasket in the

    bell; the casing is molded into the raceway of the bell during the pipe belling process. A C-shaped grip-ring with several rows of uni-directional serrations is manually inserted into the casing at the manufacturing facility. Both the casing and the grip-ring are made of ductile iron that has been coated using an electrophoretic coating (e-coat) that achieves a uniform thickness and provides superior corrosion resistance. Since the bell already contains the casing with the grip-ring when the pipe arrives at the jobsite, no additional hardware is needed to provide a restrained joint. Figure 1 illustrates a cross-sectional view of the BRS joint components. In the field, the joint is assembled typical push-on joint, with the spigot pushed into the bell to the insertion mark.

    Figure 1: Integral PVC Joint Restraint Components (Source: S&B Technical Products)

    Joint Tensile Strength

    BRS was originally designed to eliminate the need for concrete thrust blocks by providing an internally restrained piping system, capable of accommodating changes in pipe diameter or load direction. The system has been used in the market place since its product launch in 2006. The investigation of the suitability of PVC-U pipe equipped with BRS for installation by HDD began in 2008. In 2009, S&B Technical Products contracted with the University of Texas of Arlington (UTA) to conduct tensile strength tests on the BRS joint, verifying its usage with HDD. At UTA, this research was coordinated by the Center for Underground Infrastructure Research and Education (CUIRE) under the guidance of its Director, Dr. Mohammad Najafi. The research facility used was UTAs Civil Engineering Laboratory Building (Figure 2). Table 1 summarizes

    Grip Ring

    Rieber Gasket

    Casing

    PVC Pipe Spigot Gas PVC Pipe Bell Gas

    1353Pipelines 2011: A Sound Conduit for Sharing Solutions ASCE 2011

    Pipelines 2011

    Dow

    nloa

    ded

    from

    asc

    elib

    rary

    .org

    by

    Uni

    vers

    idad

    Nac

    iona

    l Aut

    onom

    a de

    Mex

    ico

    on 0

    7/01

    /15.

    Cop

    yrig

    ht A

    SCE.

    For

    per

    sona

    l use

    onl

    y; al

    l rig

    hts r

    eser

    ved.

  • 3

    the joint tensile strengths of DR18, AWWA C900 product. DR18 has a pressure rating of 235 psi (1620.3 kN/m2), which is comparable to PN 161.

    Figure 2: Joint Tensile Testing of 12-in. DR18, AWWA C900

    Table 1: DR18, AWWA C900 Joint Tensile Strengths (Sharma, et.al 2010) Nominal Diameter

    (in.) Actual Outside Diameter

    (in.) Dimension Ratio (DR)

    Load at Failure (lbs)

    4 4.800 18 19,479 4 4.800 18 21,237 6 6.900 18 38,163 6 6.900 18 35,722 8 9.050 18 54,249 8 9.050 18 54,181

    10 11.100 18 72,700 12 13.200 18 110,100

    Additional details on the testing equipment and procedures are provided in Sharma, et.al,

    2010. The testing was conducted in a straight alignment at a constant displacement rate of 0.2-in./min (5.1 mm/min). The displacement, load, and strain data were collected during each test. Strains were measured on the bell and the spigot using strain gauges.

    1 PN 16 pipe can withstand 232 psi (1599.6 kN/m2) at 68oF (20oC)

    1354Pipelines 2011: A Sound Conduit for Sharing Solutions ASCE 2011

    Pipelines 2011

    Dow

    nloa

    ded

    from

    asc

    elib

    rary

    .org

    by

    Uni

    vers

    idad

    Nac

    iona

    l Aut

    onom

    a de

    Mex

    ico

    on 0

    7/01

    /15.

    Cop

    yrig

    ht A

    SCE.

    For

    per

    sona

    l use

    onl

    y; al

    l rig

    hts r

    eser

    ved.

  • 4

    In addition to obtaining the joint tensile strength of the product, the research also validated two different pulling head designs: the pinned external connection and the serrated internal grip. The heads shown in Figure 3 (a and b) were able to achieve the full joint tensile strength of the product equipped with BRS and without causing failure at the pulling heads gripping location. The external pulling heads were tested on all AWWA C900 sizes, and the internal pulling heads were validated on sizes 4-in. (100-mm) through 8-in. (200-mm).

    Figure 3: Pulling Head Designs Validated Through Testing

    Figure 4 plots the joint tensile strength as a function of the actual outside diameter. A best

    fitting polynomial trend line has been added to the figure, as well as the corresponding formula.

    Figure 4: Joint Tensile Strength vs. Pipe outside Diameter

    (Sharma, et.al 2010)

    The test results show that the tensile capability of BRS PVC system is comparable to those of other thermoplastic piping options, such as HDPE and fusible PVC, which are typically installed by HDD. The safe pulling load, in straight alignment, is usually obtained by dividing the joint tensile strength by a safety factor of two. Although the test results demonstrate that the joint tensile strength achieved with PVC pipe equipped with BRS is suitable for installation by

    Figure 3a: External Pulling Head, Pinned Connection

    Figure 3b: Internal Pulling Head, Mechanical Connection via Serrated Grips

    1355Pipelines 2011: A Sound Conduit for Sharing Solutions ASCE 2011

    Pipelines 2011

    Dow

    nloa

    ded

    from

    asc

    elib

    rary

    .org

    by

    Uni

    vers

    idad

    Nac

    iona

    l Aut

    onom

    a de

    Mex

    ico

    on 0

    7/01

    /15.

    Cop

    yrig

    ht A

    SCE.

    For

    per

    sona

    l use

    onl

    y; al

    l rig

    hts r

    eser

    ved.

  • 5

    HDD in general, similar to other pipe products, the product may not be sufficient for a particular HDD application. HDD Pull Loads

    To determine whether or not a particular pipe and jointing system is feasible for a specific HDD installation, the safe (allowable) pull loads are compared to the predicted pull loads for the project. The pull loads on the pipe string are the greatest at the leading end where it connects to the pulling head. The actual pull load that the pipe string experiences; may be significantly less than the load experienced by the drilling rig. In addition to the load from the pipe string, the drilling rig will also bear the load from the drill rods still in the borehole, as well as the resistance from the reamer immediately in front of the pipe string. Najafi (2010) provides more details on HDD and pipe load estimation procedures for different HDD categories.

    A conservative design procedure for estimating the pull forces that the pipe string will experience during an HDD installation is provided in ASTM F1962. To simplify the design process, CUIRE developed a simple, user friendly, spreadsheet2 that calculates these loads as per ASTM F1962 (Shivajirao, 2010). It is desirable to calculate pulling loads at critical locations, while the product pipe is being pulled towards the drill rig. To calculate these pulling loads, the geometry of the bore paths profile is needed. Figure 5 shows a bore path profile similar to that illustrated in ASTM F1962. The design formulas in F1962 use the following terms and units:

    L1 = Additional length of pipe required for handling and thermal contraction, ft L2 = Horizontal distance to achieve desired depth, ft L3 = Additional distance traversed at desired depth, ft L4 = Horizontal distance to rise to surface, ft H = Depth of bore hole from ground surface, ft = Borehole angle at pipe entry, radians = Borehole angle at pipe exit, radians

    Figure 5 - Geometric Variables for Defining the Bore Path

    2 This spreadsheet is available upon request to [email protected]

    1356Pipelines 2011: A Sound Conduit for Sharing Solutions ASCE 2011

    Pipelines 2011

    Dow

    nloa

    ded

    from

    asc

    elib

    rary

    .org

    by

    Uni

    vers

    idad

    Nac

    iona

    l Aut

    onom

    a de

    Mex

    ico

    on 0

    7/01

    /15.

    Cop

    yrig

    ht A

    SCE.

    For

    per

    sona

    l use

    onl

    y; al

    l rig

    hts r

    eser

    ved.

  • 6

    The pullback forces are calculated at four critical locations; where the leading point of the pipe string reaches points A, B, C, and D respectively. These four locations are illustrated in Figures 6 (a, b, c, and d). Although the pulling forces at the leading end of the pipes is typically a maximum at the completion of the pull back, this does not necessarily occur for all projects and site conditions. The pullback force on the pipe string is a combination of the frictional drag forces as the pipe string is pulled along the ground on the pipe entry side, the drag forces as the pipe slides against the surface of the borehole, and the force amplification (capstan effects) as the pipe string is pulled around curves. For simplicity, the relatively small contribution of the hydrokinetic forces due to the pipe string being pulled against the slurry flow, as calculated in the ASTM F1962 procedure, are not addressed in this paper; however, the spreadsheet performs these calculations.

    Figure 6a - Pipe String Entirely above Ground and about to Enter the Insertion Pit

    Figure 6c - Pipe String has Completed Horizontal Run at Desired Depth

    Figure 6b - Pipe String has Reached Desired Depth

    Figure 6d - Pullback Complete

    Figure 6: Four Scenarios Checked for Calculating Maximum Pullback Force Design Example: Clay County, Florida

    The following sample calculation demonstrates the use of the ASTM F1962 design formula and the convenience of a spreadsheet that facilitates the procedure. The given data is based on a recent pipe replacement project in Clay County, Florida. Additional information on this project is provided in the Cost Analysis Example Section of this paper. Given Total Length = 540 ft Pipe Entry Angle, = 20 = 0.3491 radians Pipe Exit Angle, = 10 = 0.1745 radians Piping Product: 4-in. DR-18, AWWA C900 Depth of Path, H = 5 ft Outside Diameter, Do = 4.8-in. Distance from Pipe Entry to Point A, L1 = 0 ft

    1357Pipelines 2011: A Sound Conduit for Sharing Solutions ASCE 2011

    Pipelines 2011

    Dow

    nloa

    ded

    from

    asc

    elib

    rary

    .org

    by

    Uni

    vers

    idad

    Nac

    iona

    l Aut

    onom

    a de

    Mex

    ico

    on 0

    7/01

    /15.

    Cop

    yrig

    ht A

    SCE.

    For

    per

    sona

    l use

    onl

    y; al

    l rig

    hts r

    eser

    ved.

  • 7

    Assumptions Coefficient of Friction at the surface before the pipe enters borehole, va = 0.4 Coefficient of Friction within the lubricated borehole, vb = 0.25 Specific Gravity of the slurry, g(slurry) = 1.5 Specific Gravity of pipe material, g(PVC) = 1.4 Unit Weight of water = 62.4 lbs/ft3 Pipe Properties Wall Thickness, t = Do/DR = 4.800-in./18 = 0.267-in. Inside Diameter, Di = Do 2t = 4.800-in. 2 (0.267-in.) = 4.267-in. Pipe Cross-sectional Area, Ax = (/4) (Do2- Di2) = (/4) (4.8002- 4.2672) = 3.798-in.2 Ax = 0.026374 ft2 wa = (Ax) (g(PVC)) (Unit Weight of Water) = (0.026374 ft2) (1.4) (62.4 lbs/ft3) wa = 2.305 lbs/ft Area of Slurry displaced when pipe is submerged = (/4) (Do2) = (/4) (4.82) Adisp = 18.096-in2 = 0.1257 ft2 Buoyant Force acting on pipe, Fb = (Adisp) (g(slurry)) (Unit Weight of Water) Fb = (0.1257 ft2) (1.5) (62.4 lbs/ft3) = 11.762 lbs/ft wb = Fb - wa = 11.762 lbs/ft 2.305 lbs/ft = 9.458 lbs/ft Bore Path Distances L1 = 0 ft (known) L2 = 2H/ = 2(5 ft) /0.3491 rad = 28.6 ft L4 = 2H/ = 2(5 ft) /0.3491 rad = 57.3 ft L3 = Total Length L1 L2 L4 = (540 0 28.6 57.3) ft = 454.1 ft Natural Log Products e(va ) = e (0.4)(0.3491) = 1.1498 e(vb ) = e (0.25)(0.3491) = 1.0912 e(vb ) = e(0.25)(0.1745) = 1.0446 Pullback Force at Point A, TA (ASTM F1962, Eq. 8) TA = e(va ) (va) (wa) (L1 + L2 + L3 + L4) = (1.1498) (0.4) (2.305 lbs/ft) (540 ft) TA = 572 lbs Pullback Force at Point B, TB (ASTM F1962, Eq. 9) TB = e (vb ) [ TA + (vb)(|wa|)(L2) + (wb) (H) - (va)(wa)(L2)( e (va ))] TB = (1.0912) [572 lbs + (0.25) (9.458 lbs/ft) (28.6 ft) + (9.458 lbs/ft) (5 ft)

    (0.4) (2.305 lbs/ft) (28.6 ft) (1.1498)] TB = (1.0912) (572 + 67.6 + 47.3 30.3) lbs = 716.5 lbs Pullback Force at Point C, TC (ASTM F1962, Eq. 10) TC = TB + (vb) (|wb|) (L3) [( e(vb )) (va) (wa) (L3) ( e(va ))] TC = (716.5 lbs) + (0.25) (9.458 lbs/ft) (57.3 ft) [(1.0912) (0.4) (2.305 lbs/ft) (454.1 ft) (1.1498)]

    1358Pipelines 2011: A Sound Conduit for Sharing Solutions ASCE 2011

    Pipelines 2011

    Dow

    nloa

    ded

    from

    asc

    elib

    rary

    .org

    by

    Uni

    vers

    idad

    Nac

    iona

    l Aut

    onom

    a de

    Mex

    ico

    on 0

    7/01

    /15.

    Cop

    yrig

    ht A

    SCE.

    For

    per

    sona

    l use

    onl

    y; al

    l rig

    hts r

    eser

    ved.

  • 8

    TC = (716.5 + 1073.7 525.3) lbs = 1,264.9 lbs Pullback Force at Point D, TD (ASTM F1962, Eq. 11) TD = ( e(va )) {TC + (vb) (|wb|) (L4) (wb) (H) - [(e(vb )) (va) (wa) (L4) ( e(va ))]} TD = (1.0446) {1,264.9 lbs + (0.25) (9.458 lbs/ft) (57.3 ft) (9.458 lbs/ft) (5 ft) - [(1.0912) (0.4) (2.305 lbs/ft) (57.3 ft) (1.1498)]} TD = (1.0446) (1,264.9 + 135.5 47.3 66.3) lbs = 1,344.2 lbs

    The above design example shows how the peak pullback forces change during the HDD

    operation. This information is necessary in the planning and design of HDD projects. Figure 7 plots the pullback forces at the four critical points. These calculations verify that the 4-in. (100-mm) BRS pipe system has sufficient joint tensile strength for the installation, since the joint pulling capacity was determined through testing to be approximately 10,000 lbs (44.51 kN). As shown above, ASTM F1962 conservatively estimates safe pulling force to be in order of magnitude of 1,344 lbs (5.98 kN).

    Figure 7: Pullback Forces at Point A, B, C and D Cost Analysis Example: Clay County-Florida

    Pipe installation cost depends on many parameters, such as the pipe size, pipe length, pipe materials, project location, surface and subsurface conditions, existing utilities, frequency of connections, etc. Thus, while each project cost is unique, cost comparisons can be made as reality checks when there is consistency among major variables. For this paper, the cost for HDD installation was obtained from the contractors bid, and the estimated open-cut cost was obtained using R.S. Means Cost Data (2010).

    The Clay County project included replacement of existing 2-in. (50-mm) cast iron water pipe with 4-in. (100-mm) DR 18 PVC pipe (AWWA C900) using HDD. Figure 8 illustrates the site conditions and alignment of the project. The project was bounded on the North by Aquarius Concourse and on the south by Blairmore Blvd West, and the new pipe was installed on the east side of Libra Lane. The new alignment followed the eastern curve of Libra Lane. Table 2 presents Clay County installation project specifics for using PVC pipe with the BRS joint.

    1359Pipelines 2011: A Sound Conduit for Sharing Solutions ASCE 2011

    Pipelines 2011

    Dow

    nloa

    ded

    from

    asc

    elib

    rary

    .org

    by

    Uni

    vers

    idad

    Nac

    iona

    l Aut

    onom

    a de

    Mex

    ico

    on 0

    7/01

    /15.

    Cop

    yrig

    ht A

    SCE.

    For

    per

    sona

    l use

    onl

    y; al

    l rig

    hts r

    eser

    ved.

  • 9

    Figure 8: Site Conditions and Existing Utilities near Proposed Alignment

    Table 2: Specifics of HDD Project in Clay County, Florida

    Project Description Date of Installation 02-24-2010 Owner Clay County Utility Authority Contractor Bore Hawg, Inc, Contact: Jason Riggs, President Project Contact Steve Rencarge, Operations Coordinator, Length of Pipe Installation 540 ft (165 m) Nominal Diameter of the Pipe 4-in. (100-mm) Dimension Ratio (DR) AWWA C900-18 Depth from Ground to the Center of the Pipe 5 ft (1.52 m)

    Crew Details 1 Superintendent 3 Workers 1 Backhoe Operator

    1 HDD Rig 1 HDD Rig Operator 1 Truck Operator

    Equipment HDD Machine Model: Ditch Witch JT 1720

    Vacuum Excavator Slurry Truck, Backhoe

    For HDD, the major cost items are attributed to the boring and pullback operations using

    the HDD drilling rig, vacuum truck and backhoe. For open-cut, the major cost items are trench excavations using a backhoe, pipe placement and proper embedment, including service laterals, fire hydrant connections and installations, trench backfill and compaction, traffic management, and surface reinstatement. The lateral and fire hydrant connections also apply to the HDD alternative. Pipe is the major material cost for both methods. Table 3 presents a comparison and cost breakdown of the work related items for the Clay County HDD and open-cut installation methods. Kulkarni, et. al, (2011) provides detailed cost information for HDD and open-cut operations. The calculations indicate that the HDD alternative is estimated to be only half the

    1360Pipelines 2011: A Sound Conduit for Sharing Solutions ASCE 2011

    Pipelines 2011

    Dow

    nloa

    ded

    from

    asc

    elib

    rary

    .org

    by

    Uni

    vers

    idad

    Nac

    iona

    l Aut

    onom

    a de

    Mex

    ico

    on 0

    7/01

    /15.

    Cop

    yrig

    ht A

    SCE.

    For

    per

    sona

    l use

    onl

    y; al

    l rig

    hts r

    eser

    ved.

  • 10

    cost of the traditional open-cut method, illustrating the cost-effectiveness of the BRS system. Although open-cut costs as obtained from R.S. Means Cost Data (2010) are generally considered to be conservative, the results nonetheless suggest a potentially large major cost savings for the HDD procedure.

    Table 3: Costs Breakdown for Open-cut and HDD Methods using PVC Restraint Joint Pipe

    Clay County, Florida, 4-in. PVC Installation Length 540 ft 540 ft

    Installation Method Open-cut (Estimated) HDD (Bid) Cost, $/ft % Cost, $/ft % Labor Cost 10,708 17 4,923 15 Material Cost (Pipe, Consumable Materials, etc.) 21,766 35 15,794 49

    Equipment Cost 3,830 6 1,138 5 Labor Burden 6,773 11 3,102 10 General Expenses 5,446 9 2,767 7 Project Markup 4,555 7 2,277 7 Misc. Cost (Bond, Taxes, Mobilization) 9,554 15 2,193 7

    Total Cost ($) 62,632 100 32,194 100 Unit Cost ($/ft) $116/ft $60/ft

    Conclusions and Limitations The results obtained from the tensile tests and subsequent calculations show the BRS

    joint can safely withstand HDD pulling loads as per ASTM F1962. The tensile strength of the BRS is well within the capability of other thermoplastic products typically used in HDD applications. Future research efforts will include tests on PVC pipes equipped with BRS joints under combined loading of tension and bending.

    Based on the cost comparison case study for the recent water pipe replacement project in Clay County, Florida, the conventional open-cut method would have potentially been twice as expensive as the HDD method actually used for the installation of 4-in. (100-mm) diameter PVC pipe equipped with the BRS joint. The unit costs obtained in this study are specific to Clay County project and cannot be generalized to other projects; however, the methodology could be used to obtain similar cost comparisons.

    Acknowledgements

    The authors would like to thank S&B Technical Products, Fort Worth, Texas, for providing the opportunity and financial supports to work on this project. S&B Technical Products owns Bulldog Restraint System (BRS) technology, enabling bell-and-spigot PVC technology to be used in HDD applications. The authors would also like to thank Dr. Lawrence Slavin of Outside Plant Consulting Services, Inc., Rockaway, New Jersey, for reviewing and providing valuable feedback on this paper. This study would not have been possible without cooperation and help of Clay County Utility Authority, Florida.

    1361Pipelines 2011: A Sound Conduit for Sharing Solutions ASCE 2011

    Pipelines 2011

    Dow

    nloa

    ded

    from

    asc

    elib

    rary

    .org

    by

    Uni

    vers

    idad

    Nac

    iona

    l Aut

    onom

    a de

    Mex

    ico

    on 0

    7/01

    /15.

    Cop

    yrig

    ht A

    SCE.

    For

    per

    sona

    l use

    onl

    y; al

    l rig

    hts r

    eser

    ved.

  • 11

    List of Abbreviations ASTM AWWA BRS CUIRE DR HDD PN PVC-M PVC-U UTA

    American Society for Testing and Materials American Water Works Association Bulldog Restraint System Center for Underground Infrastructure Research & Education Dimension Ratio Horizontal Directional Drilling Pressure Rating of a Pipe Polyvinyl Chloride-Modified Polyvinyl Chloride-Unplasticized The University of Texas at Arlington

    References ASTM F1962 (2005). Standard Guide for Use of Maxi-Horizontal Directional Drilling for

    Placement of Polyethylene Pipe or Conduit under Obstacles, Including River Crossings. American Society for Testing and Materials, West Conshohocken, Pa.

    AWWA C900 (2007), Standard for Polyvinyl Chloride (PVC) Pressure Pipe and Fabricated Fittings, 4-in Through 12-in (100 mm Through 300 mm), for Water Transmission and Distribution. American Water Works Association, Denver

    AWWA C905 (2008), Standard for Polyvinyl Chloride (PVC) Pressure Pipe and Fabricated Fittings, 14-in Through 48-in. (350 mm Through 1,200 mm), for Water Transmission and Distribution. American Water Works Association, Denver.

    ASTM D2241 (2009), Standard Specification for Poly (Vinyl Chloride) (PVC) Pressure-Rated Pipe (SDR Series). American Society for Testing and Materials, W. Conshohocken, Pa.

    Kulkarni, A., Kanchwala, M., Najafi, M., and Fisher, C. (2011). Cost Comparison of Small Diameter Horizontal Directional Drilling (HDD) and Open-cut for PVC and HDPE Pipe Options. Proceedings of Underground Construction Technology (UCT), January 2011, Houston, TX.

    Kulkarni, A., Kanchwala, M., Najafi, M., and Fisher, C. (2011). Cost Comparison of Different Pipe Options for Horizontal Direction Drilling (HDD) & Open-Cut Projects. Proceedings of North American Society of Trenchless Technology (NASTT), March 2011, Washington, DC.

    Najafi, M. (2010). Trenchless Technology Piping Installation & Inspection, McGraw-Hill, NY. R.S. Means Cost Data (2010). Building Construction Cost Data. Construction Publishers &

    Consultants, Kingston, MA. Shivajirao, V., (2010). Applicability of Restrained Joint Polyvinyl Chloride (PVC) Pipe in

    Horizontal Directional Drilling. Unpublished Masters Project, Department of Civil Engineering, The University of Texas at Arlington.

    Sharma, J. R., Najafi, M., Fisher, C., Jain, A., Huli, A., and Shivaji, V.R. (2010). Applicability of Restrained Joint PVC Pipe in Horizontal Directional Drilling. Proceedings of ASCE Pipelines Conference August 2010, Colorado, Keystone.

    1362Pipelines 2011: A Sound Conduit for Sharing Solutions ASCE 2011

    Pipelines 2011

    Dow

    nloa

    ded

    from

    asc

    elib

    rary

    .org

    by

    Uni

    vers

    idad

    Nac

    iona

    l Aut

    onom

    a de

    Mex

    ico

    on 0

    7/01

    /15.

    Cop

    yrig

    ht A

    SCE.

    For

    per

    sona

    l use

    onl

    y; al

    l rig

    hts r

    eser

    ved.