31
Applied EVM to design of Mini Hydro Power Plant Fernando Roque [email protected]

Applied EVM to design of Mini Hydro Power Plant Fernando Roque [email protected]

Embed Size (px)

Citation preview

Page 1: Applied EVM to design of Mini Hydro Power Plant Fernando Roque fernando.roque@parm.com

Applied EVM to design of Mini Hydro Power Plant

Fernando [email protected]

Page 2: Applied EVM to design of Mini Hydro Power Plant Fernando Roque fernando.roque@parm.com

Agenda:

a) Institute of Energy of Japan: Potential of Guatemala to stop dependency of oil using hydro power plants to generate energy.b) Work Break down Structure for hydro power plant project. b.1) Stakeholders Managementc) Matrix of Responsabilities.d) Critical Path, Activities-Costs and Planned Value.e) Technical Requirements and it's Earned Value advance control.

Page 3: Applied EVM to design of Mini Hydro Power Plant Fernando Roque fernando.roque@parm.com

Hydro Santa Teresa. 16.5 MW. North of Guatemala Source:http://www.s21.com.gt/pulso/2012/04/16/hidroelectricas-aportan-35-energia

Page 4: Applied EVM to design of Mini Hydro Power Plant Fernando Roque fernando.roque@parm.com

Guatemala: Mini/Medium Hydro Power Plan: 5 - 20 MW of Power.

Hydro Power Plants in operation in Guatemala. source: Guatemala Government:

http://www.cnee.gob.gt/estudioselectricos/MapaPresas.html

Page 5: Applied EVM to design of Mini Hydro Power Plant Fernando Roque fernando.roque@parm.com

Target: Reduce the Oil energy dependence. Actual and future plans of Hydro Power Generation in Guatemala.

Souce: Institute Energy of Japan.Link: http://eneken.ieej.or.jp/data/4474.pdf

Page 6: Applied EVM to design of Mini Hydro Power Plant Fernando Roque fernando.roque@parm.com

Hydro Power Plant Design WBS

Quantitative & Qualitative RISK identification of negative stakeholders.

Communication strategy with Anthropology and Social Expert

Communication Project. Fail = No Hydro Power Plant construction. EVM evaluation outside of this conference scope.

Internal Project STAKEHOLDERS

Investors, Engineers, Project Manager

Communication Strategy

Technical requirements, resources & cost and advance criteria reports

Resp. Ass. Matrix, Int.BaseLine, Planned Value

Technical Requirements

HEAD & FLOW calculation

Optimal pipeline diameter calculation

Water Power Calculation

Turbine right choice. Generator AC calculations.

Page 7: Applied EVM to design of Mini Hydro Power Plant Fernando Roque fernando.roque@parm.com

Stakeholders ManagementIMPACT

POWER

Local Communities

Environmental Groups

Local Government

Press-Media

Public OpinionCentral Government

Page 8: Applied EVM to design of Mini Hydro Power Plant Fernando Roque fernando.roque@parm.com

Stakeholders Management PV Definition. EV outside of the scope of the presentation.

Page 9: Applied EVM to design of Mini Hydro Power Plant Fernando Roque fernando.roque@parm.com

Activity Time(days)

Responsible EVM 0-100% Metthod

Head Calculation Direct Distance Measurement

4 Finish after 25 measres

Head Calculation: Water pressure measurement

4 Finish after 25 measures.

Head Calculation: Final HEAD Calculations (Gross Head, Pipeline length)

1 Finish after calculations

Flow Calculation Container Fill 1 Finish after 25 measures.

Flow Calculation: Speed with Float 4 Finish after 25 measures.

Flow Calculation: Design Flow (most stable flow along the year)

1 Finish after calculation

NET HEAD: Optimal pipeline diameter to avoid friction

3 Finish after calculation

Water Power depending on the FLOW variation

2 Finish after calculation

Water Power: Turbine choose: fixed or variable orifice nozzle

3 Finish after calculation.

Water Power: Frequency: Depends on the flow speed

1 Finish after calculation.

INTERNAL STAKEHOLDERS COMMU-NICATION STRATEGY AND Resp. Ass. Mat.

Page 10: Applied EVM to design of Mini Hydro Power Plant Fernando Roque fernando.roque@parm.com

Technical Requirements WBSCalculations and field data

Head Flow Optimal Pipeline diameter

Turbines

Depends on HEAD and Flow

Fixed or adjustable orifice nozzle to keep flow spped.

Generators

Current AC/DC.Frequency depends on flow speed and rotation.

Page 11: Applied EVM to design of Mini Hydro Power Plant Fernando Roque fernando.roque@parm.com

Critical Path

Page 12: Applied EVM to design of Mini Hydro Power Plant Fernando Roque fernando.roque@parm.com

The most important data in Hydro Power Plant design

Turbine

Head= Water pressure created by difference in elevation.

Flow= volume per time unit of water into the turbine.

Pipeline=waterintake. Diameter important for net flow.

water fall

Page 13: Applied EVM to design of Mini Hydro Power Plant Fernando Roque fernando.roque@parm.com

Resource Cost per Activity -> PV Definition

Page 14: Applied EVM to design of Mini Hydro Power Plant Fernando Roque fernando.roque@parm.com

Resource Cost per Activity -> PV Definition

Page 15: Applied EVM to design of Mini Hydro Power Plant Fernando Roque fernando.roque@parm.com

Planned Value for each Execution day to calculate EV

Page 16: Applied EVM to design of Mini Hydro Power Plant Fernando Roque fernando.roque@parm.com

Measuring HEADa) Direct Distance Measurement

Vertical measurements. A/B/C/D/Eusing a transit level. The HEAD must me measured from pipeline intake to water turbine. 1 vertical foot = 0.433 psi

1 psi = 2.31 vertical feet

A B C D EWATER INTAKE

TURBINE

Page 17: Applied EVM to design of Mini Hydro Power Plant Fernando Roque fernando.roque@parm.com

Measuring HEAD: EV

Page 18: Applied EVM to design of Mini Hydro Power Plant Fernando Roque fernando.roque@parm.com

Measuring HEAD

b) Water pressure measurement -Attach one long garden hose from the pipeline intake to the water turbine. Then measure the pressure and do the conversion to vertical feet. -One PSI equals to 2.31 vertical feet.

-The above measurements are for gross head. The net head is 85-90% of the gross head due to pipeline friction loss.The above data is for GROSS HEAD. The NET HEAD is after calculate the friction loss due of the pipeline (see below).

Page 19: Applied EVM to design of Mini Hydro Power Plant Fernando Roque fernando.roque@parm.com

EV: HEAD Water Pressure Measurement

Page 20: Applied EVM to design of Mini Hydro Power Plant Fernando Roque fernando.roque@parm.com

Measuring FLOW Measuring with FLOAT:

It can be used for large streams. Locate a section of 10 feet long where stream is stable in depth and width.

Step One: Average depth of the stream. Take different measurements of the depth of the stream and then get the average.

Step Two: Area section. Multiply the average depth by the width of the stream. For example 12 feet wide by 3 feet will give an area of 36 square feet.Step three: Measure the speed of the flow using an orange or a ball. For example: 12 feet / 2 seconds = 2 feet per second. Equals to 120 feet per minute.

Step Four: Compute flow. Multiply feet traveled by area.

120 feet * 36 square feet= 4,320 cubic feet per minute.

Friction factor 0.83. 3,585.6 cubic feet per minute.

Page 21: Applied EVM to design of Mini Hydro Power Plant Fernando Roque fernando.roque@parm.com

Measuring FLOW

Average Depth

Water Level

Distance/TIME

FLOAT

Page 22: Applied EVM to design of Mini Hydro Power Plant Fernando Roque fernando.roque@parm.com

Measuring FLOW

-The above calculation is the Gross Flow.-The NET FLOW is the most stable flow of the system along all seasons of the year, even in summer.

-The NET FLOW determines the decision of the type of turbine to choose.

a) fixed orifice nozzleb) Adjustable orifice nozzle to adapt the

water speed when the flow changes during different year's seasons.

Page 23: Applied EVM to design of Mini Hydro Power Plant Fernando Roque fernando.roque@parm.com

EV FLOW: Speed with a Float

Page 24: Applied EVM to design of Mini Hydro Power Plant Fernando Roque fernando.roque@parm.com

EV: Head and Flow Consolidated

Page 25: Applied EVM to design of Mini Hydro Power Plant Fernando Roque fernando.roque@parm.com

PIPELINE Design-The pipeline diameter determines the NET HEAD.

-The optimal calculation of diameter will impact on Water Power. Since the flow changes over season to season, the NET HEAD is constant. But it has to be optimized to avoid friction losses due of the pipeline.

-The INPUT data to calculate are:1)Gross Head. 2)Pipeline length 3)Design Flow4) Accept HEAD loose 5) Pipeline Friction loss tableWider diameter is more optimal but more expensive.

Page 26: Applied EVM to design of Mini Hydro Power Plant Fernando Roque fernando.roque@parm.com

Water Power & PIPELINE DesignHorse Power =

NET HEAD_Pressure * Design Flow / 8.8

Kilo Watts = NET HEAD_Pressure * Design Flow / 11.81Pipeline friction loss table per 100 feet:

NET FLOW GALS. PIPELINE

DIAMETERLOSS

200 4'' 2.02

200 6'' 0.29

For Example:Gross HEAD: 100 feet.PIPELINE length: 400 feetDesign Flow: 200 gals. per minute.Accept loss: 10-15%. Equals 10-15 feet.

Page 27: Applied EVM to design of Mini Hydro Power Plant Fernando Roque fernando.roque@parm.com

EV: Head, Flow, Pipeline Consolidated

Page 28: Applied EVM to design of Mini Hydro Power Plant Fernando Roque fernando.roque@parm.com

Turbinesa) Reaction:

works totally immersed in water. Designed for low-HEAD (pressure) systems with high FLOW. b) Impulse:Operate in the air. Driven by one or two velocity jets of water. Designed for high HEAD systems. c) Cross flow:it is not entirely immersed in water. It is used for low-head, high flow systems.Power depends of HEAD and FLOW. So a wider orifice moves more water (Flow) at the same velocity, generates more electricity. In dry season, FLOW drops so the a smaller orifice will keep the FLOW at the same optimum velocity.

d) A fixed orifice turbine can be chosen. The operation must shut down to change the orifice diameter.

e) A more expensive turbine has a variable orifice. Can be changed during operation. (guide to Hydropower. A Publication of Canyon Hydro.)

Page 29: Applied EVM to design of Mini Hydro Power Plant Fernando Roque fernando.roque@parm.com

Generator

a) Converts the rotational power of the turbine into electrical power. It generates Direct Current and Alternate Current. AC is used for most appliances.

b) Another point important for design is the frequency measured in Hertz. Again the Herz depends on the rotational speed of the turbine. And it depends on HEAD and FLOW.(guide to Hydropower. A Publication of Canyon Hydro.)

Page 30: Applied EVM to design of Mini Hydro Power Plant Fernando Roque fernando.roque@parm.com

Head, Flow, Pipeline, Turbine: EV Consolidated

Page 31: Applied EVM to design of Mini Hydro Power Plant Fernando Roque fernando.roque@parm.com

BibliographyGuide to Hydropower. A Publication of Canyon Hydro.

http://www.canyonhydro.com/guide/Guide%20to%20Hydropower.pdf

Guatemala Government Electrical Commission:http://www.cnee.gob.gt/estudioselectricos/MapaPresas.html

Institute of Energy of Japan:

http://eneken.ieej.or.jp/data/4474.pdf

Siglo XXI newspaper from Guatemala:http://www.s21.com.gt/pulso/2012/04/16/hidroelectricas-aportan-35-energia