60
Arkansas Water Resources Center TRACE METAL AND MAJOR ELEMENTS IN WATER- SOLUBLE ROCKS OF NORTHWEST ARKANSAS PREPARED BY: George H. Wagner, Kenneth F. Steele and Doy L. Zachry, Jr. PUB-036 October 1975 ARKANSAS WATER RESOURCES UNIVERSITY OF ARKANSAS 112 OZARK HALL FAYETTEVILLE, ARKANSAS 72701

Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

Embed Size (px)

Citation preview

Page 1: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

Arkansas Water Resources Center

TRACE METAL AND MAJOR ELEMENTS IN WATER-SOLUBLE ROCKS OF NORTHWEST ARKANSAS

PREPARED BY:

George H. Wagner, Kenneth F. Steele and Doy L. Zachry, Jr.

PUB-036

October 1975

ARKANSAS WATER RESOURCES UNIVERSITY OF ARKANSAS

112 OZARK HALL FAYETTEVILLE, ARKANSAS 72701

Page 2: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

1 1

!I !

I ec~

I TRACE METALS AND MAJOR ELEMENTS

INWATER-SOLUBLE ROCKS OF NORTHWEST ARKANSAS

I

I by

1,

.1 George H. Wagner, Kenneth F. Steele and Doy L. Zachry, Jr.

I .

IARKANSAS WATER RESOURCES RESEARCH CENTER

I Publication No. 36

I1 October, 1975

1II

II

I

Page 3: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

11 Table of Contents

Trace Metals and Major Elements inII Water-Soluble Rocks of Northwest Arkansas

~I I. Introduction 1

II. Experimental. 5

1 III. Discussion 8

IV. Tables. 17

1 Table 1 Comparison of Analyses on StandardsTable 2 Comparison of Hydrochloric and Acetic Acids

as Solvents for St. Joe Limestone. 1 Table 3 Comparison of N20-A?etylene and Air-Acetylene

Flames for Ana1ys1s of Ca and Mg'f Table 4 Kessler Limestone Analyses

1 Table 5 Brentwood Limestone Analyses

.Table 6 Pitkin Limestone Analyses

Table 7 St. Joe Limestone Analyses1 Table 8 Summary, Average Analyses for Kessler, Brentwood,

Pitkin and St. Joe LimestonesTable 9 Peaks in Areal Distribution of Fe, Mg, Mn and Sr

for Various Limestones

1 V. Figures.1 Figure 1 A Generalized Stratigraphic Column for Northwest

ArkansasFigure 2 Sampling LocationsFigure 3 E-W and N-S Variation of Fe Content of Limestones

1 Figure 4 E-W and N-S Variation of Mg Content of LimestonesFigure 5 E-W and N-S Variation of Mn Content of LimestonesFigure 6 E-W and N-S Variation of Sr Content of Limestones1 Figure 7 Na/Ca Ratio versus Mg/Ca Ratio of LimestonesFigure 8 Sr/Ca Ratio versus Mg/Ca Ratio of LimestonesFigure 9 Sr/Ca Ratio versus Na/Ca Ratio of LimestonesFigure 10 Zn/Ca Ratio versus Mg/Ca Ratio of Limestones

1 Figure 11 Mn/Ca Ratio versus Fe/Ca Ratio of LimestonesFigure 12 Co, Cr and Ni Content versus Mn Content for Kessler,

Brentwood, Pitkin and St. Joe Limestones1 Figure 13 Co, Cr and Ni Content versus Fe Content for Kessler,Brentwood, Pitkin and St. Joe Limestones

Figure 14 Co, Cr and Ni Content versus (Fe/Ca + Mn/Ca) for1 Kessler, Brentwood, Pitkin and St. Joe Limestones

1

11

Page 4: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

1

1 Trace Metals and Major Elements inWater-Soluble Rocks of Northwest Arkansas

1 George H. Wagner, Kenneth F. Steele and Doy L. Zachry Jr.,Department of Geology, University of Arkansas, Fayetteville, 72701

1 ABSTRACT

1 Trace metals in limestone are potential water contaminants be-

cause they can enter the ground water when the limestone is dissolved

1 by carbonic acid and other naturally occurring acids. Four local

1 limestones, the St. Joe and Pitkin Formations (Mississippian) and

the Brentwood and Kessler Members of the Bloyd Formation (Pennsylvanian)

.1 were sampled in a five county area in Northwest Arkansas. Atomic

absorption analyses were made for Na, K, Mg, Ca, Zh, Cu, Ba, Fe, Co,

1 Cr, Ni, Mn, Li and Sr on the acid soluble material of the samples.

1 All the limestones are relatively pure CaCO3 with Pitkin the purest,

93.4%. Calcium and acid soluble material values varied only 3-5%

1 from the average among the limestones whereas 71-108% variation

occurred for Fe, Mn, K and Cr. Other elements showed intermediate

1 variations. Only Fe and Mn are present on the average in the 1ime-

1 stones at concentration levels which might lead to contamination of

ground water to undesirably high levels. Analyses compare well with

1 the reported "average'! limestone except for acid insoluble elements

which were not dissolved in our scheme and lithium (1.5 ppm average

1 vs 20 in reference). Ratios of Sr/Ca and Mg/Ca were similar to

II reported values for limestones of comparable geologic age. Maxima

in the areal variation of these ratios occurred at about the same

1 latitude for three of the formations. The areal variation of Fe/Ca

and Mn/Ca was also determined for the four limestone formations.

1I

I

Page 5: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

IInterelement correlations in the limestones showed: Na, Sr, Li, I

Fe and Zn contents increased with Mg content; Mn and Cr increased

with Fe content. Indications were obtained that detrital and other I

materials not in the calcite structure can be determined by their

relative insolubility in acetic acid compared to hydrochloric acid. I

I

I

I

.I

I

I

I

II

I

II

II

I

I

Page 6: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

I.

I Trace Metals and Major Elements inWater-Soluble Rocks of Northwest Arkansas

I George H. Wagner, Kenneth F. Steele and Doy L. Zachry Jr.,Department of Geology, University of Arkansas, Fayetteville, AR 72701

I Introduction

I In previous reports (Wagner and Holloway, 1974; Wagner, 1975)

I the elemental content of local rain water, including trace metals

was given. The present report is concerned with another potential

I source of trace metals, the local water-soluble rocks. Data from

both sources, rain water and limestones, are being used in a report

-II now in progress to explain the elemental composition of local ground

II water.

Potential sources of trace metals in ground water must include

I the water soluble rocks such as limestone and dolomite. These two

are the principal water-soluble rocks for Northwest Arkansas because

I other candidates such as evaporites, gypsum and halite, are missing

and the silicates such as chert are less soluble. Both limestone

I and dolomite are rather insoluble in water by themselves.* However,

I as illustrated below for limestone (ls), the rocks are dissolved by

the CO2 of the air which dissolves in water to make carbonic acid

I (H2C03) , a weak acid.

I *Comparative water solubility data are given below.

Solubilit6 ppm of Ca++ at Saturation(25OC)I Rock Mineral Formula Product(25 C) no CO2 added atmospheric CO2

limestone calcite CaC03 10=~735 5.4 20I dolomite dolomite CaMg(C03) 2 10_4 62 «5.4 ~20

gypsum gypsum CaS04.2H20 10. 600 600

I

I

Page 7: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

2. I

CO2 + H2O = H2CO3 (1) I

H2CO3 = H+ + HCO3 (2)

CaCO3(ls) + H+ = Ca++ + HCO3 (3) I

The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration with I

water atmospher~c CO2 would only br~ng the calc1um content to about

20 ppm in water. Ground water frequently contains 40 ppm or more of I

calcium. This is attributed to plant respiration and decay of or-

ganic matter which can cause soil air to contain many times as much I

CO2 as the air above ground (see p. 136 of Hem, 1970). The soil

also contains organic acids which can dissolve limestone. Magnesium, I

.either from dolomite, or as a substitute ion for calcium in limestone I

dissolves by similar mechanisms. Calcium and magnesium which toge-

ther make up almost all the hardness of water, originate in the I

water-soluble rocks and find their way'into water as illustrated above.

The same pathway should be followed by trace metals and other ions I

which substitute for calcium or magnesium in limestone or dolomite. I

Magnesium, up to about 5 mol percent, can substitute for calcium

in calcite, the limestone mineral. It is expected that heavy metals I

in trace amounts, less than 1%, can do the same. Strontium, iron,

barium, zinc, and other divalent ions which form carbonate minerals I

should form solid solutions in calcite of 1% or less. See pages 7-9 I

of Graf (1960) for a more detailed discussion. Monovalent ions such

as sodium and potassium may do the same. Furthermore, any of the I

trace elements could occur as interstitial or occluded minerals in

limestone. Many minerals such as pyrite, clays, etc. can form in I

the limestone by authigenic and diagenetic processes or occur as II

detrital material. All the trace elements listed above and others

II

I

Page 8: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

I 3

I have been found in carbonate rock (Wolf, et. al., 1967). .

Dissolution of limestone by carbon dioxide as illustrated by

I equations (1) to (3), and by natural organic acids or by a strong

acid such as sulfuric acid from oxidation of pyrite, would be

I expected to librate the trace elements. By such dissolution the

I trace elements become potential pollutants for ground water. The

extent to which the elements actually dissolve in the water is a

I function of the acidity (pH) and oxidation potential (Eh) of the

I solution and the solubility product of the chemical species involved.

The trace element content of the water-soluble rocks thus measures

-I potential water pollution.

A generalized stratigraphic column for the Pennsylvanian and

I Mississippian age rocks of Northwest Arkansas is shown in Figure 1.

There are five limestone formations which, proceeding from youngest

I to oldest are: Kessler, Brentwood, Pitkin, Hindsville*and St. Joe.

I This report is concerned with the elemental analyses of all of

these except the Hindsville. Dolomite rocks are much older (Ordovi-

I cian), are at much greater depths in Northwest Arkansas and become

exposed only in northcentral Arkansas. In addition to the limestone

I formations mentioned above the Prairie Grove and Boone Formations

I shown in Figure 1 can be highly calcareous. The Boone Formation is

the aquifer most used for wells in the rural areas of Northwest

I Arkansas.

Figure 2 shows the sampling locations for the limestones used

I in this report. As shown in the following summary, 65 samples from

I 25 locations were analyzed.

I* Member of Batesvi11e Formation

I

I

Page 9: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

4 I

Number of Total Number ofLimestone Locations Sampled Samples Analyzed I

Kessler 4 8Brentwood 10 18 IPitkin 4 18St. Joe 7 21

Grand Total E 65 I

Analyses were made by dissolving the samples in acid and analyzing

the acid soluble portion by atomic absorption for the following 14 I

elements: Na, K, Mg, Ca, Zn, Cu, Ba, Fe, Co, Cr, Ni, Mn, Li and

Sr. Calcium is the most concentrated element and because of the I

high calcite (CaCO3) content most of the samples approach the theore- I

tical maximum of 40% calcium. Magnesium and iron are usually the

.next most abundant elements, occurring up to a few percent, followed I

by manganese which is in the tenths of a percent range in several

samples. Other elements are in the O.OX% (XOO ppm) range or less. I

As pointed out earlier, trace metals can originate from sub-

stitution in the calcite structure or from diagenetically formed I

minerals outside the structure. The analyses do not differentiate I

as to which of these is the source of the trace metals. However,

by comparing the metals dissolved by a weak acid (acetic) with those I

dissolved by hydrochloric acid, indications were obtained that iron

Iand other trace heavy metals, except manganese, are predominantly

from interstitial sources. Magnesium can come from both sources I

and Mn, Na, K, Li, Sr and Ba come primarily from the structure.

Whether the interstitial material was formed by remobilizing of the I

limestone or from foreign sources is not known.

Interrelationship of the various elements in the limestones are I

examined in this report. Correlation of the atomic ratios with age I

of the rocks and with determinations by other workers on other lime-

I

I

I

Page 10: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

I 5

I stones is also examined. The areal variation of the concentration

of various elements in the limestones is depicted and discussed

I with relation to their depositional setting. Implications of the

I results to the water chemistry of the area are given.

Experimental

I All Kessler samples were supplied by Mr. John G. Williams and

I the samples are further described in his M.S. thesis (Williams, 1975).

Brentwood samples were collected by one of us (Zachry). Eight of

I the Pitkin limestone samples correspond to those in Bennett (1965),

while the remaining 10 were field collected by the authors from

-II known Pitkin localities. Samples of St. Joe limestone were supplied

II by Mr. John D. Mc.Farland III and correspond to samples in McFarland

(1975).

'II Field samples were crushed with a hammer and 25-50 grams, free

of surface weathering and large fossils, were selected for further

II crushing in a mortar and pestle to about minus 325 mesh. Five grams

of the 325 mesh material were treated with 10 ml of concentrated

II hydrochloric acid for 13-19 hours in a 250 ml Erlenmeyer flask, then

II diluted with 20 ml of deionized distilled water and filtered through

a weighed 0.45 ~m Millipore filter. The weight of the undissolved

II residue was determined and all results were calculated on the amount

of material dissolved. The filtrate was diluted to 100 ml with

II deionized distilled water and analyzed by atomic absorption (A.A)

II spectrophotometry. Because of the large amount of calcium there was

appreciable molecular absorption at the standard A.A. analytical

II lines and adjacent lines were used to make corrections for this

molecular absorption. A summary of the analytical and correction

II

II

I

Page 11: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

6 I

lines is given below. .IAnalytical Line for Measuring

E!e~e~~~ Line (A ) Molecular Absorption (A )

Zn 2139 2100 ICu 3247 2961Co 2407 2331 INi 2320 2326

No suitable lines for making corrections for molecular absorption

for Pb and Cd could be found and analyses for these elements were I

abandoned. In the case of nickel where the 2326 A line is not non- I

absorbing the following relationship was used to find the molecular

absorption (m): I

B-m S-= -= constant Ib-m s.where B = % absorption of unknown at 2320 A

b = % absorption of unknown at 2326 AIs = % absorption of Ni standard at 2320 A

s = % absorption of Ni standard at 2326 A

Values of B should be kept, by dilution, to 20 and below for greatest I

accuracy, because the assumption made here is that the absorptions

are proportional when in reality it is the absorbances. At low I

values of B this assumption is approximately true. I

Atomic absorption measurements were made with a Perkin Elmer

Model 303 spectrophotometer. Recommendations and methods of the I

Perkin Elmer Handbook (Anonymous, 1973) were followed. Detection

limits and sensitivities for the various elements are given in the I

Handbook. Results in this study are reported to the number of figures I

considered significant by the author based on noise level and size

and reproducability of blanks. II

To measure the accuracy of the analytical scheme used here, two

standard rock samples were analyzed along with the unknowns. The II

rock standards, No. 401 and No. 402, are limestone samples from G. II

II

I

Page 12: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

1 7

1 Frederick Smith Company of Columbus, Ohio. Results of our work and

1 that of the supplier are compared in Table 1. Agreement is excellent

except in the case of Ba and Fe. In our scheme BaSO4 would not be

1 dissolved. Thus Ba would be low in those samples containing sulfate.

In the case of iron there is apparently an appreciable amount in the

1 acid insoluble material which would not be measured in our scheme.

In one set of experiments using St. Joe limestone samples, the

II relative solvent effects of acetic acid and hydrochloric acid were

1 measured. Acetic acid would not be expected to dissolve, at least

in the time intervals employed, iron oxide, pyrite and other expected

.1 interstitial compounds. However, because acetic acid does. dissolve

calcite those atoms substituted for Ca++ in the lattice should also

II be dissolved as well as fluid inclusions. Fluid inclusions have

II been reported in calcite (p 27 of Wolf, .et. al., 1967). These should

be dissolved by either of these acids as the calcite is dissolved.

1 Table 2 compares the relative dissolving power of acetic and

hydrochloric acid for 14 elements on 6 samples of St. Joe limestone.

II Those elements generally showing little or no difference between the

II two acids are Ca, K, Mn and Sr. Thus it is concluded that these

elements are solely in the structure. The elements Na, Ba and 1i

II show an increase of approximately 20% for acetic over hydrochloric

acid, which is the same amount that acetic exceeded hydrochloric in

II acid insoluble material. In other words, calculated on initial

II weight of sample basis rather than on the basis of "% dissolved",

the values for the Na, Ba and 1i are the same for the two samples.

II This indicates that about 20% of these three elements come from

easily dissolved structure sources, probably fluid inclusions.

II

II.

Page 13: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

8 I

Of the remaining elements, 32% of the magnesium is indicated as I

coming from non-lattice sources, 45% for Zn, 74% for Fe, 73% for Ni

and similarly large amounts for copper and cobalt. Chromium was I

below detection limit in the case of both acids. I

In the above cited experiments with acetic and hydrochloric

acids, magnesium was determined by the use of A.A. employing an I

air-acetylene flame. Calcium results were with a N20-acetylene

flame and were higher than with air-acetylene for the acetic acid I

samples. Calcium was the same for both flames on HCl dissolved I

samples. Apparently there is an acetate complex with calcium which

.requires the hotter N20-acetylene flame to break it. Because of I

the similarity of Ca and Mg in chemical properties, magnesium was

also determined using both flames. The results for calcium and I

magnesium on acetic acid and HCl dissolved samples using air-acety- I

lene and N20-acetylene flames are compared in Table 3. It will be

noted that for acetic acid dissolved samples, the results for cal- I

cium, on the average, are 29% greater using the N20-acetylene flame

and only 5% greater for magnesium. Because the higher calcium results I

agree more closely with the hydrochloric acid values which in turn

agreed with the standards, the higher values for calcium are assumed I

to be the correct ones. The magnesium values are, within experimental I

error, the same for the two flames.

D o 0 I1.SCUSS1.on

Analyses for Kesslert Brentwood, Pitkin and St. Joe Limestone I

are summarized respectively in Tables 4,5,6 and 7. Locations for

the collection dates are also given in the tables. Sample numbers in I

many cases correspond to those in cited M.S. theses where the lithology, I

I

I

Page 14: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

9 .

petrography and environment of the samples are given. Average .

analyses for the four limestones are compared in Table 8. Important questions are the amount of compositional variation ..,

at a given location, from location to location, and for the various

limestone formations. The last part of this question is answered

in Table 8 by the "per cent of maximum deviation from the average"

for the various analyses. These maximum deviations from the average

are: 3-5% for Ca and acid insoluble material; 17 to 34% for Co, Li,

Cu, Zn, and Ba; 45-56% for Mg, Sr, Na, Ni; 71-108% for Cr, Mn, K,

and Fe. These variations are considered small in view of the several

million years difference in geologic age and an areal extent of

several counties which are represented

All the limestones are relatively pure CaC03 with Pitkin having

the most acid soluble material, 9'7.4%, and of this 96.4% was CaC03

for an overall CaCO3 content of 93.4% (0.974 X 96.4). The remainder

is probably moisture (samples were air dried), sulfates, phosphates,

aluminates, silicates and organics, materials for which no analyses

were made. While having the highest CaCO3 content, the Pitkin was

lowest in Mg, Zn, Co, Mn and Li, again indicative of its higher

purity. The Kessler limestone was highest in Mg, Cu, Fe, Cr and Mn

and lowest in Ca and K. The Brentwood limestone had the lowest

average acid soluble material, 90.8%, a relatively high level of Mg,

Fe and Mg, but below Kessler and the highest Zn, Li and Sr. St. Joe

limestone was about tied with Brentwood for lowest acid soluble

material, 90.9%, but had as high a Ca content as Pitkin based on

soluble material, 38.6%, the highest K and lowest Fe, Cr, Na and Sr

contents, indicative of the high purity of the soluble material.

Page 15: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

10 I

The last line of Table 8 gives the composition of an average I

limestone from Wolf, et. al., (1967). The average of the four North-

west Arkansas limestones agree well with this "world" average in the I

case of Zn, Co, Cr, and Ni and agree with the higher value of 1400 I

ppm for Mn given by Wolf. Agreement is fair in the cases of Sr

(333 ppm vs 475 of reference) and Fe (0.84 wt. % vs 1.13 of reference). I

Agreement is poorest in the cases of K (44 ppm vs 1600 of reference),

Na (156 ppm vs 700 of reference), Cu (2.2 ppm vs 14 of reference), I

Ba (41 ppm vs 150 of reference) and Li (1.54 ppm vs 20 in reference). I

We have no explanation for Li but the other differences are believed

.to be due to the reference using a total analyses, which of cou~se I

includes acid insoluble material, whereas we have an analysis of

only acid soluble material. The much higher Na and K is probably I

due to the presence of clays in the "world" average samples which I

were commonly analyzed by emission spectrograph.

Sr/Ca and Mg/Ca average ratios are shoWn in Table 8 for the I

four limestones. Kessler and Brentwood are Pennsylvanian age lime-

stones. A Sr/Ca ratio of 0.05 atom % was obtained for these two I

limestones which compares to 0.072 obtained by Kulp, et. al. (1952) I

for Indiana limestones of Pennsylvanian age and a range of 0.043-0.13

for various other Pennsylvanian age limestones. The same investi- I

gators obtained 0.046 atom % Sr/Ca for Indiana limestones of Mississip-

pian age and a range of 0.014-0.173 for various other Mississippian I

age limestones. Our two Mississippian age limestones have Sr/Ca atom I

% ratios of 0.04 (Pitkin) and 0.02 (St. Joe), reasonably close to

the Indiana limestone values. I

The tabulated analyses for the various limestones in Tables 4

I

I

I

Page 16: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

11 I

-to 7 should be consulted for an appraisal of the vertical variation -.of the elements from location to location. At a given site the

.samples differ only in the level of the section from which they

were taken. It is difficult to make a general statement for so

many locations and for 14 elements.

Three pink limestone samples were selected from St. Joe lime-

stone samples and analyzed in order to determine if their pink

color is due to a unique concentration of some element. Manganese

was suspected because MnCO3 is pink. However, there is nothing

unusual about the Mn concentration nor of other elements. In sam-

ples 7 and 8 the pink was concentrated in the acid insoluble material.

Because of this the acid insolubles were analyzed and are shown in

Table 10. The acid insoluble material are high in Na and K (both

colorless ions), and in Fe, Ti and Ni. The latter are probably in

ilmenite, a dark mineral. It is suggested that the pink color is

due to organic material because the analysis of the inorganic

material does not suggest a likely candidate.

The areal variation of Fe, Mg, Mn and Sr for the four limestone

formations are shown in Figures 3 to 6. In these figures the North-

South distance, using 950 longitude as a base line, and the East-West

dist~nce, using 370 latitude as a base line, for a given sampling

site have been plotted against the average elemental concentrations

for that site. Pitkin limestone shows the least areal variation in

the concentration of Fe, Mg and Mn. St. Joe has the least areal

variation in Sr concentration. The distances corresponding to the

peak concentrations in Figure 3 to 6 have been summarized in Table 9.

Neglecting diagenetic effects and considering only the initialII

Page 17: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

.12II

environment of formation, the higher Mg/Ca and Sr/Ca ratio might

be expected near shore in lagoons where the life of calcareous

secreting organisms fluorished and the ratio of biogenic to inor-

ganic calcite is high. Using this as a criteria, shorelines are

indicated for: Kessler Formation at N-S distance of 75 miles and

E-W distance of 46 miles; Brentwood Formation at N-S distance of

73 to 79 miles and E-W distance of 36 and 61 miles, Pitkin Forma-

tion at N-S distance of 79-80 miles and E-W distance of 39 miles,

St. Joe Formation at N-S distances of 36 and 60 miles and E-W dis-

tance of 28 and 43 miles. It is interesting that the N-S distance

indicative of a shoreline is about the same, 73-80 miles, for the

Kessler, Brentwood and Pitkin Formations.

Interrelationships of the metals in limestone are shown in

Figures 7-14. In these figures average analyses for a given site

are plotted if more than one sample was analyzed from the site.

The data are given as atomic % of calcium in many cases. Sr and

Na contents of all four limestones correlate well and increase

smoothly with Mg content (Figures 7,8 and 9). In a less precise

way, Li, Fe and Zn increase with Mg content. This latter relation-

ship is exemplified by Figure 10 for Mg/Ca versus Zn/Ca. Potassium

showed rlO similar correlation with Mg. Fe and Mn correlate reasona-

bly well, incr~asing together as shown in Figure 11. Cr tends to

increase with Fe while Co and Ni correlate poorly with Fe (Figure

13). Co correlates better with Mn whereas Cr and Ni correlate poorly

(Figure 12). Cr correlates better with the SU!'1 of the atomic per-

cent of Fe + Mn (Figure 14). Determining the ,duses of these

correlations is very difficult because of many variables and processes

Page 18: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

1 13

II involved. Limestone may be formed by inorganic or biogenitic pro- .

cess. Each involves environmental factors. Biogenitic process

II involve phylogenic factors since different organisms synthesize

II skeletal material of unique trace element composition.

Implications of these results to the water chemistry of North-

II west Arkansas are listed below.

1) Limestones in Northwest Arkansas have normal compositions

II and are comparable to those of similar geologic ages in

II other areas. Thus no unusual contributions to the chemistry

of the local water is to be expected above the normal

.1 contribution to hardness.

2) Of the four limestone formations studied, Kessler has the

II greatest potential for contributing to the hardness and the

1 heavy metal content of ground water. This is because it

has the highest magnesium and heavy metal contents of the

II various limestones. However, it occurs highest in the

stratigraphic column and is least likely to be an aquifer.

II 3) The following metals in all samples analyzed were at such

II low concentrations as to pose no problem of water pollution

via the route of dissolving limestones: Zn, Cu, Ba and Cr.

1 This statement is based on the following type of calculations.

As an upper limit Northwest Arkansas waters contain 50-100

II ppm of Ca (Steele et a1, 1975). Assuming 100 ppm Ca in the

water, that all the calcium comes from a limestone and that

II the Ca/metal ratios in the limestone persist into the water,

II then the four limestones would yield water of the following

metal contents, using the average analyses for these 1ime-

II

I

Page 19: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

14 I

stones from Table 8. I

Ippb

limestone ~ ~ ~ ~ ~ .fE ~ ~ g ~ I

Kessler 9 1 12 4781 2 3 3 568 0.5 108

Brentwood 11 0.5 <5 3074 2 2 2 401 0.5 113 I

Pitkin 6 0.6 14 671 1 2 2 84 0.3 88

St. Joe 6 0.5 14 486 2 <0.5 4 448 0.3 44 I

Limits* 5000 1000 1000 300 -50 -50 --I

Co, Ni. Li and Sr based on the above table would also

.yield very low concentrations in water from dissolving I

limestones. However, no safe upper 1imits.are available I

for comparison. It will be noted that Fe and Mn could

easily exceed their recommended upper limits. I

4) It should be emphasized that the above statements are

based on averages. A unique composition of any of the I

limestones might be encountered at a given site. For

example, the St. Joe limestone which is the basal member II

of Boone Formation, a favorite aquifer in Northwest Arkansas, II

exhibited unusually high Mn and Ni contents at site GCG.

Several samples of St. Joe contained pyrite (FeS2) and I

could be a source of H2S in ground water.

III

* U.S. Public Health Service, 1962. II

I

I

Page 20: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

I 15 I

II Acknowledgements ~

II We wish to acknowledge the help in sample preparation and in

II the analyses given by Mr. Robert Tehan and Mr. S. J. Borengasser II.

Financial assistance was provided in part by the Office of Water

II Resources Research Act of 1964, Public Law 88-379 and administered

through the Water Resources Research Institute of Arkansas, and

II the Research Reserve Fund of the University of Arkansas, Fayetteville.

II

-I

I '

I .., ",

, '-':'

I11,

';'

I

Ii" ,I ,: .! c,,:

I " ," ~

II

I

I

Page 21: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

16 I

Literature Cited .I

Anonymous, 1973, Analytical Methods for Atomic Absorption Spectropho- Itometry, Perkin Elmer Corp., Norwalk, Conn. U.S.A.

Bennett, Robert L., 1965, A petrographic study of a Pitkin reef com-plex located near Wesley, Arkansas, M.S. Thesis, University of IArkansas.

Graf, D.L., 1960, Geochemistry of carbonate sediments and sedimentary Icarbonate rocks. Illinois State Geol. Surv. Circ. No. 297,39 pp.

Hem, John D., 1970, Study and interpretation of the chemi"cal charac-Iteristics of natural water: U.S. Geol. Survey Water-Supply

Paper 1473, 2nd ed., 363 p.

Kulp, J.L., 1961, Geologic time scale, Science, 11l (No. 3459), 1105- I1114.

, Turekian, K.K. and Boyd, D.W., 1952, Sr content of lime- I.stones and fossils. Bull. Geol. Soc. Am., 63: 701-716.

McFarland, John D. III, 1975, Lithostratigraphy and conodont biostrati-Igraphy of Lower Mississippian strata, Northw~st Arkansas, M.S.

thesis, University of Arkansas.

Shaji, R. and Folk, R.L., 1964, Surface morphology of some limestoneItypes as revealed by electron microscope. J. Sediment. Petrol.,

34: 144-155.

Steele, K.F., MacDonald, H.C. and Grubbs, R.S., 1975, Composition of Iground water in Northwest Arkansas, Arkansas Farm Research,January-February, p 15.

U.S. Public Health Service, 1962, Drinking water standards, 1962: IU.S. Public Health Service Pub. 956, 61 p.

Wagner, G.H., and Holloway, R.W., 1974, Sodium, potassium, calcium Iand magnesium content of Northwest Arkansas rain water in 1973and trace metal analyses of 1974 rains, Arkansas Water Resources IResearch Center, Publication No. 25.

Wagner, G.H., 1975, Sodium, potassium, calcium and magnesium contentof Northwest Arkansas rain water in 1974, Arkansas Water Resources IResearch Center, Publication No. 29.

Williams, John G., 1975, Sedimentary petrology of the Kessler lime-Istone, Washington and Crawford counties, Arkansas, M.S. thesis,

University of Arkansas.

Wolf, K.H., Chilingar, G.V., and Beales, F.W., 1967, Elemental com- Iposition of carbonate skeletons, minerals, and sediments, inDevelopments in Sedimentology 9 B, Carbonate Rocks, Physicaland Chemical Aspects (Chilingar, Bissel and Fairbridge editors), IElsevier, New York, N.Y., 413 p.

I

I

Page 22: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

I 17

II~

I'M

."0Q

) C

X>

N

r-.. ~

N

"O

Q)

U

\o.N

Q)

>~

~

~

..,j"~

~~

O~

of( ~

~Q

) O

CX

>+

I-+I

\O+

C

-ti+c-ti+

lof( U

OI

~

I I..,j"O

N..,j"~

NN

r-..

N

~

Q)O

OQ

) 0.

...°'" 00

\!..I M

M,

M\O

ON

Nr-..N

NM

, Q

).MN

Q

) M

N

V

\0

O~

"""0

0 ~

~

~

,j" ~

~~

rota

I.Q

) O

M

'M

~

~

"" ""

:3Q)

QJ

a ~

~

oo~

~

rota"0

OM

U

) aa

""I

~Q

) "0

~

QJQ

J"O

~

"".Y.

NN

~

~

~

~~

ro

"" r-..\O

O

""'~

CX

>

CX

>

.c..cro"O

"0

0 0.

0.. ..=

' =

'~

~

~)

r-..OM

N~

~M

O~

M~

\OO

M~

~

~.

U)ro

ro 0\0

M..,j"

..,j" ~

~

CO

(/)I

~

00 ~

~

O

OO

Oor-t

~~

U

) or-t

~~

OO

.0 U

.c

OM

oM' >

.E

-- ~

~

of( ~

"O

"Oro

OO

bO

~~

~Q

) Il)~

ro~

roI

~

(/).c

>.~

~

~

~~

~

Q-

~~

~

..,j" M

~

~O

E--

~

Q)

Q)

of( U

U\!..l

~U

U

~

M

~O

N

~O

r-..of( =

t:=t:

<>

<

~

N~

+t+

C..,j"-ti

+t-ti+

c+co

"0Q

) Q

) ~

~~

N

~O

C

X>

M

."o"O

Q)

I\!..I

~

11..0 C

X>

Q

)(1)~0

~

QJ

N~

\Or

::-OM

N..,j"N

~C

X>

~

~~

'Ma

\!..I M

r-..

V

~

M

~~

.c~

Q-

Q)

0 ~

.-i ~

""aO

Q-

~

~

~~

O00

~

~~

UO

M

~

0 Q

) Q

)I

~oM

-::-

UU

OO

ro ~

~~

Q-ro

Q)

000a~

~

U

Uo.-!

0 ro

~

oU

"O

a ~

~=

'oI

.ro °M

OM

~O

~

U

) o~

~

"O"O

(/)~

"0

\0 Q

JQJ

S"-"

~.Y

. ~

N

N

\0 »00

ro ""

M~

~

CX

>

~

~

~~

:3~"00

OO

~\!..I

I~

~

O

CX

>N

\O\O

M~

ON

~""'~

OM

"'" 0000

ro O

..,j" M

~

V

~

~

~

OO

OO

Q)

N~

00

~

~

.-! °M

OM

.coU

) 'M

"0

"0 .u

o'"..c

U)

E--

(/)(/)"0I

Q)Q

)~~

~

.-i~

Q-Q

- \!..I

asQ)o

~

~

~Q

) (/)ooro~

~

~

0.c

~"

0 O

MI

='

'y'Q).c~

~

~

urou

0 o~

.u~U

) :3aJQ

)!-I!-I

S

~"0

(/)aJ 00

I'M

O

M

\!..I e

~~

U

.caJ~

='

~

<

~!-I'M

OO

aJ ro

bO~

~=

'~aJO

!-lor-t~'M

~

"0S

Z

~~

UN

U~

~U

UZ

~~

U)~

~

~O

>.

aJ H

HO

O~

~I

~

of( ~

III

Page 23: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

.18 I

II)~~

~

~N

~~

~~

MO

O~

~O

O~

~

IC

J) Il'lO

OO

OO

~O

NM

II'I~N

N+

0

~~

N~

NN

~~

~~

~~

.C

o

~~

O~

M

~~

OO

~~

N

N0...1

OM

II'IM~

~~

~~

M~

M~

~

~

~I

~~

~~

~~

~~

~~

~~

+

0

~(.)~

~

~~

~1I"\~

~0~

OO

~N

M

..-j~

~

~~

OO

N~

II'I...;OO

~~

~I

+oJ

oj( ~

II'I~~

~II'IO

M~

~N

~

aJI

II) -~

~

~M

(.)

aJ P

tj ~

~

QJ

0 ~

..-j

~~

~~

MM

II'I~~

~O

~M

~

+oJ

~

Z

N~

~

V

N

~

~II)

0 I

..-jQ

J II)

(.)I

e II)

~..-j

0...1 ~

~

Ptj

~

~~

~~

~~

~~

~~

~~

I ~

U

VV

VV

VV

VV

VV

VV

OJ

+oJ

~0

~

0..,

:='

~

11'1I

0 .

.S

0 ~

NII'IO

II'I~N

~~

NII'III'II

M+

oJ C

U

U

eC

J)

~

0~

0

~I

0 ~

O~

II'IOO

~..j-~

M~

OO

~

~

Ptj

QJ

~N

~~

~~

OM

NN

NM

~

-

OJ

~

OO

NO

OO

~O

~O

~O

~

OJ~

II) II)

'..".'.~.C

oU+

oJ ~

0000000000001

~~

~

.cO

J ..~

I~

~

1I)..-j

.~

~

~

~O

O~

~M

OM

OO

~N

O~

~

0 <

~

~

M~

~~

~II'IO

O~

~~

~~

~

~C

J) +

00

.co...lII)

.+oJ

~

~

~~

I~

11'111'1

11'1011'1011'111'111'111'111'1 M

~N

il). U

'

1 +

oJP

tj +

oJ O

OO

OO

~O

MO

OO

~O

~

~O

J ..-j:3

v v

v v

v v

0 Q

J~

(.)

~

(.).0

<

~

.~~

..-j

~

1I'I0OO

M~

II'IOO

Il'lIl'lOO

~O

OIl'l

cn O

J 0

IE

-I (.)

N

M~

~

~

~

~

~U

..-j O

J 1

~O

'-"~

~

0

OJ

.Cocn-

(.) P

tj ~

NO

~~

~N

OO

~O

O~

M

~U

<

~

co ~

e<I

co U

O

O~

OO

~~

~~

~~

~C

C~

N

~..-jO

Ptj

MM

MM

MM

MM

MM

MM

+

~~

~

..~co

co O

.~U

~

O

C..-j

(.) N

~~

O~

II'INO

~~

~N

..-j ..~

O

OO

MM

~~

~II'IM

~~

~

aJlI'I ~

I~

~

~

N

~~

NN

N~

~N

~M

~N

~

0

0 ~

M

0

~

..-j~

0000000000001

+oJO

~.C

o +

oJ cn

CU

(.) 0.

~~

~0

OJ

~

OIl'l~

~O

~N

~~

O~

II'IO

ee+oJ

~

(.) ~

M~

~O

O~

II'I~~

II'III'III'I'.-j ~

IPtj

~ NN

~OOJ

>. QJ

N(')

~

...~..co

~O

O~

O~

~M

II'I~M

Il'lOO

~

~-O

~

e z

OO

~~

O~

OO

M~

~O

..j-II'IN

(.)U0

0. ~

~

+

11'1<

I0.

0 I

~

~~

0 ~

O

'-"~II)

..-j U

..-j 1

Ptj

~

Ptj

~~

co

II) Q

J N

OO

~~

II'IOO

~~

II'IO~

~~

e..-j

co ~

..-j~

"'...N

(.)~I

0. co

A~

~

~~

MM

OO

~II'I~

O~

N

I 0

CU

..-jS

A

0

~O

OO

O~

~~

~~

~~

~~

~

0 '-"

~II)

oj( (.)~

U

oj( j

0O

J ~

~

..-j

U

UO

J+oJ

Ptj

(.) (.)

(.) U

(.)

(.)~

~uC

OI

..-j ~

<~

<~

<~

<~

<~

<

aJ C

O ~

(.)

UO

UO

UO

UO

UO

UO

~

Ptj

+oJ

<

~~

~~

~~

~~

~~

~~

~

QJM

~~

+

oJ CO

OJ

~

~..-j

(.)0...1

~

(.) ~

.A

+oJ C

O 0

I0

~~

UZ

~

~N

N~

Q

J~'-"

M~

NN

NN

MM

I

I 1

1 Q

J (.)

OJ

IIIIIIII~~

~~

~

~~

OM

»»~

~~

~~

~~

~~

000

0. ~

~~

~~

~~

~~

~~

~~

U

II'IM

I@

~

oj(

oj(C

J) <

oj(

I

I

Page 24: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

119

ITable 3

I Comparison of N20-Acety1ene and Air-Acetylene Flames

for Analysis of Ca and Mg

1 Wt. % of Acid Solub1es Wt. % of Acid Solub1es

Flame Calcium % Dev!ation(N20/air)for: Magnesium % Devi.ation(N2.2L~!:2ii.1 Sample No. Oxidant HC1* HOAc* HC1 HOAc HOAc* HOAc

BV-1 air 38.6 29.8 0.187N20 38.8 39.2 + 0.52 + 31.5 0.197 + 5.3

1 BV-2 air 38.0 31.0 0.230N20 39.0 39.6 + 2.6 + 27.7 0.249 + 8.3

1 BV-3 air 37.5 --N20 36.5 --2.7 -

.1 BV-4 air 39.7 --N20 39.9 -+ 0.50 -

BV-5 air 36.1 --1 N20 37.2 -+ 3.0 -

WEP-1 air 39.6 32.0 0.1941 N20 39.8 39.9 + 0.50 + 24.7 0.203 + 4.6

WEP-2 air 38.4 30.2 0.162N20 38.5 39.1 + 0.26 + 30.1 0.165 + 1.9

1 WEP-3 air 39.6 --N20 38.9 --1.8 --

1 WEP-4 air 37.4 --N20 37.3 --0.27 -

I WEP-5 air 40.0 --N20 39.7 --0.76 -

BF-1 air 40.0 --1 N20 39.8 --0.50 -

BF-2 air .40.1 31.8 0.2151 N20 39.1 40.1 -2.5 + 26.1 0.233 + 8.4

BF-3 air 39.3 29.5 0.150N20 39.2 39.8 -0.25 + 34.9 0.155 + 3.3

1 BF-4 air 39.3 --N20 39.4 -+ 0.25 -

1 401** air 36.1 --N20 36.5 -+ 1.1 -

1I

Page 25: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

I20 I

Table 3 (continued) II

Wt. % of Acid Solubles Wt. % of Acid SolublesFlame Calci\nn % Deviation (N20/air) for: Magnesi\nn % Deviation(N20/air)for:

ISample No. Oxidant HCl* HOAc* HCI HOAc HOAc* HOAc

402** air 32.6 --N20 34.0 -+ 4.3 ---I

GCG-U3B6 air 37.2 --N20 38.8 -+ 4.3 ---

GCG-U3T air 38.6 --IN20 38.9 -+ 0.78 ---

GCG-U5A air 37.7 -- IN20 38.2 -+ 1.3 ---

GCG-U5C air 38.1 -- I.N20 39.0 -+ 2.4 '- --

GCG-U6T4 air 37.5 --N20 43.1 -+14.9 ---I

Average deviation % --+ 1.3 + 29.2 -+ 5.3 I

* Solvent for limestone, HOAc = acitic acid (50%); HCI = conc. hydrochloric acid. I** Analyses on dry wt. basis, all others on amount dissolved.

II

I

I

I

I

II

Page 26: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

1:3=

:3=

:3=:3=

.-j.-j

\21

.-j .-jM

M

:3=

M

M

~

~:3=

.-j ~

~

~

~

:3=

:3=.-jM

~

~

Z

Z

0\

0\M

~

Z

Z

\0 \0

N

NI

~

~

M

M

.-j.-j ~

~

~Z

.-j.-j

H

H

.~Z

..;t H

H

~

. Z

Z

..;t.-j ~

. \0

\0 \0

\0.-j

H

M

M

M

M

.-j.-jH

N

N

H

H

~

..U

U

~.

10

MM

U

U

Q

) Q

) .-j.-j

j.-j Q

) Q

) (/)

(/) .-j.-j

~

(/) (/)

~

~U

U

U

~

~

..~

.:)(t U

U

I: Q

) Q

) Q

) ..)f'..~

~

~

Q

) Q

)O

~

(/) (/)

~

~

Z

Z

(/) (/)

01"41

~

I: I:

~

I: I:

I: I:

I:to

0 0

0 0

0 0

0 0

U

~

~

~

~

~

~

~

~0>

- bO

bO

bO

bO

bO

bO

bO

bO

H~

I:

I: I:

I: I:

I: ~

~

I: 01"4

'1"4 01"4

01"4 '1"4

01"4 01"4

='

.!:.!: .!:.!:

.!:.!: .!:.!:

10

(/) (/)

(/) (/)

(/) (/)

(/) (/)

U

to to

to to

co to

to to

:3=:3=

:3=

:3=

:3=:3=

:3=

:3=

~

Nr"-.

0 <

X)

r"-. N

\o.-j

<X

) \0

Lt'\ 0

Lt'\~

..;tr"-. \0

<X

).-j Lt'\

Lt'\ N

M

..;t.-j M

0\

1Lt'\Lt'\

Lt'\..;t..;t..;t..;t N

M

N

N

N

M

.-j N

.-j

\0 .-j

<X

) ..;t

..;t ..;t

Lt'\ M

..;t

..;t,~

N

0

\0 r"-.

\0 .-j

r"-. r"-.

N

0 \0

M

IX>

H

0 0

0 .

"""' .-j

N

.-j .-j

N

N

.-j N

N

.-j

.-j .-j

.-j~

1~

00

Lt'\ 0

0 0

0 0

0 Lt'\

M..;t

0~

~

0\

<X

) M

<

X)

\0 r"-.

NO

\0

o\.-j Lt'\

<X

)~

\O

Lt'\ \O

..;t 0

r"-. O

\..;t \0

M.-j

NO

~

.-j.-j.-j M

N

N

N

N

N

.-j.-j.-j N

'1"4

1-IC

Q)

01"4 \D

N

0\

\0 <

X)

r"-. r"-.

0\ IX

>

Lt'\ 0

r"-. 0

.(/)~

Z

.-j .-j.-j.-j

.-j.-j

QI

(/)~>

-1: !04

\0 r"-.

.-j <

X)

..;t \0

M

N

N

, <

X)

r"-. N

.-jtO

U

.-j.-j.-j.-j.-j.-j.-j.-j .-!

to

1~

~

8 <

X)

<X

) <

X)

\0 <

X)

r"-. IX

>

<X

) IX

>

r"-. Lt'\

\0 r"-.

..;t Q

I ~

~bO

0

N

.-jQ

I o~

0

0 0

\0 0

<X

) ..;t

N

M

0 <

X)

0\ Lt'\

.-j ~

Q

I \00

<X

) r"-.

0 <

X)

\O..;t

Lt'\ 0\

\0 r"-.

r"-.1

.0 (/)~

~

""

0 0"",

0 0

to Q

lQ.

.-j..;t N

.-!

N

.-j .-j

.-j .-j

0 0

0 .-!

H

S

QI

01"4 UH

~

to N

\0

..;t <

X)

NO

M

M

M

..;t r"-.

0 ..;t

QI

~.-!Lt'\

M

\0 Lt'\

\0 M

M

M

..;t Lt'\

Lt'\..;t~

1Q

lS

.-jQ.

r"-. M

Lt'\

N

M

r"-. 0\

0\ 0\

IX>

..;t

.-j IX

>

~

(/)Q.

='

QI

C/)

U

NN

N

N

M

N

N

N

N

N

M

M

N

>

(\I I:

.-!~

01"4

0~

M

\O..;t

N

<X

) Lt'\

N

\0 0\

N

r"-. O

\..;t rJ)

1to

N

NN

N

M

Lt'\..;t..;t

M

M

N

M

N

M

CI)

~

'r"'to

~~

r"-.

Lt'\ .-j

.-j <

X)

0\ .-j

M

r"-. IX

>

0\ IX

>

\0to

0 ~

.-j U

Lt'\..;t

Lt'\ r"-.

\0 \0

\0 r"-.

\0 r"-.

r"-. r"-.

\0 I:

.-j M

M

M

M

M

M

M

M

M

M

M

M

M

='

1to

0 '""

S

..;t .-j

r"-. .-j

r"-. -.:t

\0 Lt'\

0 N

to

..;t r"-.

Lt'\ .-j

\0 <

X)

M

0\ \0

0 r"-.

-.:t .-j

bO

.-j .-j

.-j r"-.

<X

) r"-.

\0 ..;t

Lt'\ M

M

M

r"-.

'I-'~

..0

.0 0

.0.-j

.-j .-j

0 0

0 0

0 0

0 0

0 0

1C

/) '1"4

~

N..;t

<X

).-j \0

<X

) N

Lt'\

IX>

r"-.

M

0 0\

C/)

N

.-j .-!

.-j N

.-j

.-j N

.-j

.-! N

N

.-j co

.0C

O..;tN

<

X)

N

0\ Lt'\

0 Lt'\

r"-. <

x)..;t.-j 0

I:1

Z

0\\0 r"-.

O..;t

r"-. r"-.

N

0\ IX

>

M.-j..;t

0M

M

M

M

N

N

N.-j.-j

.-j.-j N

~Q)

QI

~.-j

<X

) N

Lt'\

N

<X

) 0

M

r"-. 0

\0 0

M

0\ to

' ~

.o'", 0""""

.-jI

" ~

'1"4=',..;

Lt'\ M

N

0\

M

M

N

M

Lt'\ M

..;t

N

='

UM

0\

0\ 0\

0\ IX

>

0\ 0\

0\ 0\

0\ 0\

0\ 0\

U<

0

M~

co

C/)

UM

M

~

Q

I ~

~..;t

II C

/) (\I

M

M

.-j=,

C/)Q

I

I I

M

M

.-j .-j

I I

~

.-jM

~~

1~

M

01"4

~

~

C/)

r"-. r"-.

~

co ~

M

C

/)(\I

~

~

>..

C/)

~:>

=

,t/J~

.Q

)~

I: ~

Q

I ~

-IC

~-IC

Q

I ~

.0"'"

C/)

(\IQ

I ~

~

H

(\I(\I (\I

~

~-IC

~-IC

~

..~

O~

(\I~

M

(\I <

1/ Q

I~

~

I: M

\0

.~

~

.(\I ~

Q.

(\I (\I

(\I~

QlQ

I~I~

IQ)~

~

~

(\I~Q

I.-! (\I

1S

~

~

bO

U(/)

C/)

bO~

Q)N

(\IN

bO~

bO

~bO

C/)

~p.

to U

U

to

M

.-j to

M

~

co ~

~

to

~C

/) ~

>.

~

~

01"4 01"4

~

(/) C

/) ~

~

~

!-;!-;QI

<C

HQ

I (\I

Q)

>

>

(\I (/)

(/) Q

I =

' =

' Q

) (\I~

(\I Q

I >

Q

I Q

) >

Q

I (\I

>:

0 0

>

>

-IC-IC

H

H

<C

~

~

<

~

~

-<

~

~

-<

-<

oj(

1I

Page 27: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

, ~

~

~3

~~

~

I

~

~

~

~

N

N

<X

) 00 <

X) <X

) r-.. ~

~

22

~~

~

~

NN

~

NN

M

~

NN

N

N

N~

~M

M

NN

M

M

NM

M

~~

~

~

~~

~

NN

MM

M

M

~~

M

~~

~

~

~

~

~

~

~

~~

I~

~

~~

~

~

~

~

~

z

z zz

zz' z

~

~~

~

~~

zz

~zz

..;t..;t ..;t..;t

U"IU

"I U

"IZZ

zz Z

Z

MM

z..;t..;t

~~

~

~

~~

~

U"IU

"I~

M

M

NN

~

~

M~

~

~~

~

~

~~

~

~~

0 ~

~

~~

~

~

~~

~

~

~

~

~

~

~

~~

~~

~

~~

~

~

~

~~

00

~~

..;t..;t

M

~~

~

~~

~

~

~~

~

NN

~

~

~~

M

M

MN

NI

tJ M

M..;t..;t

..;tNN

QI

tJtJ tJtJ

tJtJ tJtJ

tJtJtJt/)

tJ tJ

tJ tJ

ClJ

ClJ

tJ tJ

tJ !»

ClJ

ClJ

ClJ

ClJ

ClJ

QI

ClJ

QI

ClJ

ClJ

ClJ

ClJ

(I) (I)

ClJ

QI

QI

(I) fJ)

!1J (I)

!1J (I)

!1J fJ)

fJ)!1Jt/)

(l)fJ) ~

~

t/)!1J(I) ~

~

~~

~

~

~~

~~

~

~

~

~

~

~

~

~

~f

~

~~

~

~~

~~

~

0 ~

~

~~

~~

~

~

~~

~~

~

3~

~

~

~~

It/)t/)

zz t/)t/)

zzz Z

t/)~

t/)t/)

t/)~

~~tJ ~

~

~~

~

~~

~

~0

00 00

000 00

~

~~

'0'0

~~

~

~~

~

~~

~

~

~~

~

~

~~

~

~~

~

~

~~

~

~~

~

~~

00

~~

~

~~

~

~

00 00

000I

~

~~

t/)t/)

(1)00 t/)00fJ)

~

~~

~

~

~~

~

~~

~

~

0 (l)t/)

~~

(I)!1J

000000 (1)(1)

'0'0 '0'0

'0'0'0

U

~~

~

~

~~

~

~~

~

~

~tU

tU

tU

tUtU

~~

~

UU

~

~

~~

~

~~

~

~

~~

~

~~

~

U"IN

MO

~~

M~

~~

N~

U"IU

"INM

U"I~

NU

"IU"IO

U"lM

~..;t~

I~

~

U"Ir-..~

O..;tN

~~

O~

O<

X)..;tN

<x)N

~N

M<

x)~N

~r-..~

NN

..;tMM

U"I..;tM

MM

~M

..;tMN

MN

Mr-..U

"I..;tU"lU

"l~U

"I..;t..;t..;t

MU

"I..;tMM

<X

)..;t~N

..;tr-..~~

..;t~N

<x)<

x)MN

~~

..;t..;tMM

MU

"I~N

M~

..;t..;t..;t..;t~r-..M

OU

"lM..;t<

X)U

"Ir-..Nr

;tU"lN

..;tM~

I'""

~

~

~N

N~

~~

~~

~O

~N

N~

~~

~U

"IM~

~~

N~

~~

~

~~

ON

~~

~N

OU

"lr-..~~

OU

"l~r-..<

X)U

"I~N

~..;t~

r-..~~

..;t~~

r-..N

~~

~~

~O

..;tNM

..;t<x)M

r-..U"I~

..;t<X

)<X

)<X

)<X

)r-..~<

x)~N

~

~

N~

O~

OO

~M

~M

NM

N~

U"I<

X)M

~..;t~

~~

~~

~~

U"I

~

~~

~~

~

~~

~~

~N

~~

~~

~N

..;tMN

~

I.ok

QI

(I)~

~..;t<

x)OU

"lr ;t~

NM

~~

MO

Mr-..~

<x)..;t~

~~

M~

~~

~

-Q

I Z

~

~

v

~V

~

N

~

vvv!1J'O~

~

.

~~

~

U

"I~<

X)U

"IU"IU

"IU"IU

"IU"Ir

;tor-..U"I~

~r-..U

"I~~

U"IO

r-..U"I~

U"Ir-..

I~

u

~

~

~

~~

~

~

~~

0 r

;tO~

N..;tr-..<

X)<

X)U

"I..;t..;t..;tU"l~

r ;tO

r-..~M

~O

..;tM..;tr-..

ClJ

~

U

~~

~

~

~

U"I

~~

o~

..;t ~

<

X)O

U"lN

<

X)..;tr-..

~

N..;t<

X)~

IC

lJ ~

O

~O

~<

X)<

x)~<

x)NM

..;t<X

)~r-..~

Mr-..r-..N

~~

..;t..;tMO

~~

~

~~

&

~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~

SQ

I O

~~

O~

OO

OO

N~

~~

O~

OO

N~

O..;tN

~O

OO

~

.~

tJ

..~~

x

~C

lJ ~

O

OO

OO

OO

OO

O~

O~

OO

OO

OO

O~

OO

NM

r-..O

'0 ~

N

NN

NN

NN

NN

N..;tN

NN

NN

NN

NN

MN

NM

NN

N

~I

0 ~

vvvvvvvvvv

v vvvvvvv

v 0

S

.0

~~

~

Nr-..~

r-..<X

)U"I~

U"IM

~r-..~

U"I~

~M

O~

~~

~N

..;t..;t..;tr-.. 'O

~~

~

~

ClJ~

~

U

OM

~O

OO

OO

O~

OO

OO

OO

~~

~N

NN

M~

~~

~

>0

ClJ~

v

vvv vvv

~!1J

~

0I

~

~

~r

;t<X

)r-..N~

NO

MM

~~

..;t~..;tr-..~

~N

~<

X)~

~~

r-..o m

'O~

N

M

MM

r ;t~

NM

M..;t~

~~

NN

NM

Or-..N

~M

~~

MN

..;t (I)"'"

~

~

tJ~

'0

~'0

~~

o..;tr-..O~

~r-..M

<X

)~..;t..;t~

~O

U"lr-..~

r-..~o~

~~

~~

~

~~

U

<

X)r-..<

X)<

X)r-..<

X)<

X)<

X)<

X)~

<X

)<X

)<X

)~r-..<

X)r-..~

~~

N..;t~

~~

~r-..

~O

I~

M

MM

MM

MM

MM

MM

MM

MM

MM

MM

MM

MM

MM

MM

~

~~

0

v'-'

aO

~<

X)r-..~

<X

)U"Ir-..~

<x)~

~<

x)~M

N..;t

r-..~

r-..~~

~<

X)

~O

NM

N<

X)..;t~

M~

~N

~N

~O

..;tNM

O~

M~

r-..~~

<x)N

<x)

~~

M

~..;tM

~..;tM

NM

..;t..;t~~

M~

..;t~~

<X

)..;tr-..o<X

)U"I..;t~

~

~~

ooooooooooooooooo~

oo~~

ooooo o~

I(1)'0

MN

M~

<x)..;t~

U"Ir-..<

x)~~

N<

x)<x)<

x)NN

r-..N~

~U

"IU"IM

~M

!1JC

lJ~

~

~~

NM

M~

~~

r-..M..;t..;tM

~N

~~

<x)N

MN

r-..NM

N..;t

~~

~

~

.00~

~

r-..~~

~r-..~

~~

M~

MU

"I~~

~r-..~

~~

r-..r-..~N

OO

O~

~

fJ)I

Z

Nr-..~

M~

O~

~O

O~

ON

~~

~..;t<

X)~

N<

X)O

r-..M~

r-..O

OC

lJ~

N~

~N

N~

~

N~

MN

~~

~N

..;tM~

NN

M~

N~

N

a'0"'"

QI

ClJ~

~

~'0.0

Or-..M

~<

x)~O

~O

..;t~~

U"IM

NN

MM

M<

x)<x)M

~..;t~

~<

X)

~~

~~

~

~~

~~

ON

~~

~~

~~

~~

~~

~~

~~

~~

~~

~O

O

3~I

<0

~r-..<

X)~

~~

~~

~M

~~

~~

~~

~~

r-..~~

~<

X)~

<X

)~~

tJo

t/) ~

~~tJ ~0

I 00

I~

~

~

~

~

~

N

..;t ..;t

N

ClJ

~~

<

<

<

t/) <

~

~

t/)"'"

~

U

U

0=

~

U

~

~~

'O

QI~

0 ~

Q

IQ

I Q

I C

lJ Q

lok C

lJ C

lJ C

lJ Q

I Q

lClJO

'0

~

~

~

~ok

~

~

~

~

'"" ~

~

~

~

I~

..;t~

~~

..;t~~

..;t~~

M..;t~

t")~~

~

~

~

cc~

~~

a I

I ~

I

I ~

I

I ~

I

I I

~

I I

~~

N

~

~~

'-'~

~

~

.o~

~

~C

lJNN

QI..;t..;tC

lJM..;t..;tC

lJNN

QlI

I Q

I~N

ClJI..;t<

x)QlC

lJ~

<

>

<

<

>

<

<

>

t/)

t/) t/)

>

<

:<

>: ~

~

>

: I

I >

: ~

I .~

:?

>

ok ok

~

<U

U<

UU

<O

=O

=O

=<

~~

<U

U<

~~

<~

~-~

<

ok

I

I

Page 28: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

1---~

~

~

~

~

~

~

~

23""""""'"

r-..r-.. r-..r-..

r-..r-.. r-..r-..

MM

M

~~

~~

C

'-IC'-I

C'-IC

'-I C

'-IC'-I

C'-IC

'-IM

MM

C

'-IC'-IC

'-IC'-I

~~

~

~~

~

~

~~

~

~~

~~

M

MM

M

C'-IC

'-IC'-I

~

~

~

~

~

~

~

~~

~~

~

~~

~

MM

M

ZZ

Z

Z

zz zz

Izzz

~~

~~

~

~~

~

~

~~

~

~

~~

C'-IC

'-IC'-I

zzzz ~

~~

~

~

~~

~

~

~~

.

~~

~

MM

MM

Z

ZZ

~

~

~~

~

~

~~

~

~~

~

~~

~~

M

MM

~~

~

~

~~

~

~0

~~

~

~~

~~

~

~~

r-..r-..

r-..r-.. r-..r-..

r-..r-..:r-:r-:r

~~

~~

~

~~

~

~.~

~

~~

~

~

~~

C

'-IC'-IC

'-I ~

~~

roof ~

~~

IU

roofroofroof

UU

U

U

uu uu

~

u u

.U

u u

U

U

Qj ~

~

~

~

~

~

~

~

~~

~

~~

~~

U

UU

(/)(/)

(/)(/) (/)(/)

(/)(/)(/)(/)(/)

(/)(/)(/)(/) ~

~~

~

~

~~

~

~

~~

g ~

~~

;~\;

~~

~~

~~

~

~

(/)~ ~

~~

~

~

~~

~

~~

~

~

~

~

~

~

~

\N~

~~

Z

Z

Z

Z

Z

Z

Z

z

I~

t/)t/)t/)

t/)t/)~t/)

zzz ~

~

~

~

~

~

~

~

~

~f

~~

ff

~~

'0'0'0>

, """'"

~~

~

~

~~

~

~I

~

000 00

00 00

00~

11-;11-;11-;

(/) (/)

(/) (/)

(/) (/)

(/) (/)

='

~

~

~

.d .d .d

.d .d .d.d

., ,

.,.. .,..0

CC

~C

C

(/)(/)(/)(/) (/)(/)(/)

'0'0 "C

"C

'0'0 "C

"CU

"""'"

~C

CC

C~

C

CC

C~

~

~

~~

~

~

~~

uuu ~

~~

~

~~

~

~~

~

~

~~

~

~

I'"

~M

OO

~M

roofOr-..O

r-..MM

-:rr :rO

-:r-:r-:r~~

~-:roo-:roo

~

r-..OO

C'-lC

'-lOM

~M

~-:r~

~-:r~

-:rOM

roofC'-l~

~~

~~

oo~

C'-I~

~M

~~

~-:r-:r~

~M

M~

~~

C'-IC

'-IC'-IroofroofroofroofC

'-l C

'-IM

-:r~C

'-I~O

O~

~~

C'-I~

~O

roofroof~M

O~

roofroofroof-:rC'-l

~O

OI

~

~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~

~.~

~O

roof~roofroof~

roofroofroofroofroof~roofroofroofroof~

roofroofroofroofroof roofroof

~

.~

=

C'-IO

OO

O~

~~

~C

'-I~C

'-I~r-..~

~r-..~

r-..roof-:r~C

'-I~C

'-IOO

~

~~

~

roof~

~~

~~

~~

O~

r-..Oroof~

M~

OO

C'-lO

O-:rC

'-l~~

-:rC'-l

~~

M~

C'-IC

'-IOO

C'-l-:rroofroof~

C'-IroofroofroofC

'-lMM

C'-IC

'-IC'-I~

C'-I

C'-IM

_I&

roof~

-:rC'-l~

~~

M~

~r-..~

~~

C'-Iroof~

~~

-:r~~

-:r~

r-..~«

Z

V

C'-Iroof

.(/)'0

~~

~

~

1(/)~

'"

oor-..r-..r-..~~

~C

'-IC'-IO

O~

OO

OO

~M

~O

roofOO

O~

r-..OO

OO

~

~

~>

, u

roof roof roof roof roof roof

roofroofroof ~

roof cc

cc U

~=

0

r-..~~

~~

~C

'-IroofC'-l~

~~

~roofroofroof~

~r-..~

OO

O~

~

~~

~

<

~

U

V

roof roof v ~

~

00 ~

~~

r-..roof~

OO

~~

r-..O~

~~

OO

~~

~roofO

O~

C'-IC

'-IC'-IO

O

~~

0

1~

~

r-..~

~~

ooor-..r-..O~

O~

~~

C'-IO

~O

~~

C'-I~

roof~

~~

~

roof o~

~

~

~C

'-I~C

'-Iroof~C

'-IC'-IC

'-IC'-IC

'-IC'-I~

~~

roofC'-lroofroofroofroof~

C'-I

C'-IC

'-I ~

.0 ~

Po

~

~cc

(/)~

00000000000000000000000000~

~

U

~

S

><

~

cc

roofOO

roof~r-..~

roofC'-lM

~~

roof~O

C'-l~

MO

~O

roof~O

O

~~

1~

~

~

C'-Iroofroof~

C'-Iroof~

~~

~roof~

roof~O

~roofO

roofroofOO

roofroof oo~

(/)

~

v v

V

roofroof~roofroofroofroof~

roofroof

'"cS

v

v v

vv Q

I""'P

o .0

~P

o =

' ~

C'-I~

OC

'-lOO

~~

M~

~O

~r-..~

C'-I~

~~

~r-..~

~

C'-IC

'-I '0=

~

U

'~=

'.,..

~

C'-IC

'-I~C

'-I~r-..C

'-IC'-I~

C'-I~

~~

OC

'-lroofroofroofroofOO

OroofO

~

C'-I

>

C1

Po

roof

0 Q

Icc

c C

'-I-:r-:r~~

~O

O~

~~

~~

M~

~C

'-I~~

~~

~O

O~

r-..C

'-I (/)~

~

N

C'-Iroof

~C

'-IC'-I~

roofroofroofC'-lC

'-lC'-l

~~

C'-I~

C'-IC

'-IroofC'-l~

C'-I

C'-IC

'-I (/)P

oC

C

.,.. e

'0 'O

cc~

~O

OO

~~

~~

~O

OC

'-lC'-lroof~

C'-I~

~~

O~

OO

C'-lC

'-l~

~~

(/)

1~

~

~

oooo~oooo~

~~

oo~~

~oooo~

~~

ro~~

~ro~

roro ~

oC

C

~~

~~

~~

~M

~~

~~

~~

~~

~~

~~

~~

~M

M

~

~~

'-' 0='0

~~

C'-I~

~C

'-I~~

~00~

00r-..C'-Ir-..~

C'-I0~

~~

~C

'-IC'-I

~~

C

Cc

~o~

~r

:r~r-..~

~O

~O

O~

r-..roof~O

Oroof~

r-..~O

O

~O

O

0

1~

~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~

~~

~

~000000000000000000000000

00 ~

(/) '"

.,.. '"~

C

'-I~r-..~

C'-I~

~oo~

~-:rO

OO

r-..~O

OO

OC

'-lOr-..~

~~

~

roof~

(/)0~

~

C'-IC

'-IC'-I

roof roof

roofroof~~

MC

'-IMroof~

C'-IC

'-I~

~C

'-I C

CU

1C

C

~~

~O

O~

r-..~M

r-..~~

~~

r-..~O

~-:rM

~~

~O

O

~~

~

~Z

oo~

~r-..C

'-I~r-..O

roof~~

~~

OO

~or-..~

~~

oor-..~~

o~

O

Ql

roofroof ~

roof ~

C'-I

roof.o'0

S~

Q

I ~

roof ~

~I

'0.0 -:rO

OroofO

O~

~~

~~

~r-..r-..O

OO

OO

OO

M~

r-..~O

Or-..O

~

r-..~

CC

~~

~

-O~

~~

";';ro~~

co'~~

rooo~~

~r-:~

oororo~-O

~

~

~~

<0

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~

~

u~t/)

~~

~C

'-IM'O

«C'-I

~

ccoI

I I

~

-IC

I ~

U

~

I~

C'-IM

~

~~

~

~~

u~~

QI

~

~I

I I

~

>,uuu~

<

',..1 1~

r-..00 ~

~

c (/)0

~~

~

0 ~

uuuu.1' ~

.d~.-i~

I

I I

QJ~

~

II-;~

~~

~P

oPoP

oPo'"

~U

Po

~~

Uroof

<

~~

~

..I I

I I

CC

~

~

~

Q

I .,.. ~

CC

~

~

00 C

C 00 <

0

~

~

'0Q

j ~

~~

~~

C'-I~

-:r="O

'Q'O

>.d.d"'II-;II-;.-i

~~

'OI

aJ.'" (/)0

I~

uuu~

0'0'0'0'0'~~

~8

PoP

oOO

Ql

~<

~~

.,..~

~

~P

o aJ

~P

o ..cccc

0 aJaJ

~cco

C

'"S

~

~~

aJ ~

~

~

~

~~

~~

aJ~"'.d~

~~

'O'O

cucc aJaJ

(/)C

C

'" '"

~

OO

>.>

,>.>

,OO

Uuu

oooooo~

oo~

,...,.. 0

0000.-i~~

ooocc"""~

"'cc C

CO

O""'M

roof~O

O"'~

N

CC

CC

~.d

~~

~""""""~

"-~~

~"'.d.d~

CC

~"'ccu",,~

"""

~~

.~(Q

(Q~

CC

~»>

aJ~~

.00

00 Q

I"""'" ~

>.

aJaJ~

~~

>=

'~~

='>

ooo>""""':>

:~roof>

"""~O

'" »-IC

-ICI

~~

~<

O'O

'O'O

'<uuu<

~~

««uu<o~

« -IC

Page 29: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~24

I ~

~~

~~

~

~~

~~

M

MM

MM

M

MM

~M

M

NN

NN

N

~~

~~

M

MM

MM

N

~~

~~

~

~~

~~

~

~~

~~

~

~~

~~

~

~

~

~

~

~

~

~

~

~

~

NN

NN

~

~

~

~

~

~

~~

Izzzzz

zzzzz ~

~~

~

zzzzz z~

~~

~~

~~

0000000000

~~

~

~

~~

~~

~

OO

N~

NN

NN

N

~~

~~

~

ZZ

ZZ

~

~~

~~

~

~~

~~

~~

~

~~

~~

~

~~

~~

~

~~

~~

~

~

~c

~

~

~

~

~

~

~

~

~

~

~~

~~

~

~

~

~

~

~

zz0

MM

MM

M

~~

~~

~

~~

~~

N

NN

NN

~

o~~

N

NN

NN

N

NN

NN

~

~~

~

MM

MM

M

~N

rlI

~

~rlrl~

~

~U

U

UU

UU

U

UU

UU

tJuutJu

tJ~~

QJ

<IIQ

JQJQ

J<II

QJ<

IIQJ<

IIQJ

tJtJuu Q

J<II

QJ

<11<

11 <

1100000

tl)tI)t/)t/)t/) t/)t/)t/)t/)t/)

QJQ

JQJ<

II t/)t/)t/)t/)t/)

t/)~rl

~~

~~

~

~~

~~

~

t/)t/)t/)t/) ~

~~

~~

~

d ~

~~

~~

~

_\4_~~

_\4 ~

~

~

~

~

~~

\4~~

~~

~

~~

U

U

~

Z

Z

~

Z

~

~

~

~

~

~

~,~

, ~

- ~

~

~

~

~

~

~

~

~

~I

~

~~

~~

~

~~

~~

~

~~

~~

~

~~

~~

~

~~

~

_\4~4_\4~

~~

~

~~

\4~\4~

~~

~

~

~

~

~

~~

~\4~

~~

~~

~

~~

~4~

U

~

~

~

~

~

~

~

~

~

~

~Z~~

Z~N

~Z~~

Z~

~

~

~

~

~

~

~z

0 Z

ZZ

ZZ

0000000000

0000000000 ooZ

..J

>-

QQ

QQ

rl.-4

I~

C

CC

QQ

Q

QC

CQ

0000

QcC

Qc

~.-4>

-Q

00000

00000 t/)t/)t/)t/)

00000 ootJ

='

~~

~~

~

~~

~~

~

'...I~~

'...I ~

~~

~~

~

0 C

CQ

CQ

C

Qpcc

"0"0"0"0 C

Qccc

~U

<

II<II<

IIQJ<

II Q

J<IIQ

JQJQ

J ~

~~

~

QJ<

II <

II Q

J<II

~~

QJ

~~

~~

~

~~

~~

~

~~

~~

~

~~

~~

uuoo

...~N

~~

~~

OO

~~

M~

~O

O~

~M

OM

OO

~O

M.-4.-4~

NO

I00

~O

~~

OO

O~

NN

OO

N~

M.-4N

N~

~O

ON

~~

O~

~~

~.-4N

~~

N.-4~

.-4~rl.-4.-4.-4N

.-4rl~.-4.-4N

~N

N.-4.-4~

.-4

~~

NO

M~

O~

.-4~N

~~

M~

O~

OO

OO

NM

OO

~~

~M

I'...1

0~N

~00~

.-4.-40M.-4.-4~

~.-4~

.-4~~

~~

00~000N

~

..J ~

~~

~~

~~

~~

~~

~O

~~

~~

~~

OO

~~

~~

O~

~)~

~.-400~

O~

O~

~~

~~

~.-4~

~~

~~

~rlM

rl~~

~C

.-4~

~O

O~

~O

O~

~~

O~

~N

~~

NM

OO

OO

OO

N~

~~

OM

I~

~

~

~O

OM

OO

~~

N~

~~

OO

~~

O~

~~

N~

~~

~~

~O

O~

~

.-4 ~

N

MM

~O

~.-4

~.<

II .-4

ojC ~

-

t/)QJ"O

'...I

~~

ON

~~

~O

~~

MM

~M

~~

~N

.-4~~

.-4~~

M~

~t/)C

Z

N

.-4.-4.-4.-4.-4 N

.-4~

~

rl~

ON

rl

>-~

.-4

I.-4 ~

~

~

~U

U

.-4.-4~

.-4MN

.-4~.-4~

~~

.-4~.-4~

.-4MM

~M

MM

I I

IN~

~

~~

0

~~

NO

O~

OO

~~

~~

M~

.-4~N

.-4N~

.-4~~

~N

M.-4~

~Q

~

U

.-4 .-4

N.-4

IO

J 0

~~

~

~~

t/)~

""~

NM

~~

""OO

N~

OO

O~

OO

~""~

~~

~M

O~

NM

OO

OO

~

~

<II O

J ~

~N

OO

~N

NN

OO

O~

~N

~O

OO

~O

O~

~N

N.-4~

N~

OO

~

au

OJ

ON

~~

~M

"".-4""OO

""N~

O""O

""OO

NO

~""O

MO

M

~

X

~

, ~

..JQJ

000000000000000000000000000"0I

C

OJ

~

~oS

~

~

~~

~~

~O

N~

OO

O~

~M

M""~

ON

rlNO

O~

~~

~M

~

~~

~

~

~~

~~

~~

~N

~M

~~

~~

~M

~~

OO

M~

~N

N~

~

...~

.~

."0 ~

~~

=

' ~

OO

OO

~

~O

~~

~O

OO

O~

OO

O~

O""

OJ

uoo~

u

>~

IO

OO

NN

~M

O""M

NO

MM

""""N~

M~

MO

~M

""~""N

~

0

C

~

t/) ~

~

C

~O

ON

~O

OM

~~

""~~

~O

~O

OO

O~

~M

~.-400~

NO

O~

t/)

"0 N

~

~

""~N

""M

N

~""M

M.-4

""""N

~

t/).-4

"0 ...

rl <

II

I~

~~

~

~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

53

u oooo~

~~

~~

oooo~~

oo~~

~~

~oooooo~

~oo~

~~

oo oc

MM

MM

MM

MM

MM

MM

MM

MM

MM

MM

MM

MM

MM

M

~

0~I

N""O

O~

O

""~~

~

N""~

NN

MM

OO

~""~

~N

~~

O

~O

M~

OO

O~

M~

~O

OO

~O

O~

~~

ooo~~

o~",,~

~~

~

0"0~

N

~N

M~

~N

M~

O""~

""N~

.-4N~

~~

NN

~M

""~~

~

~

' ,

, t/)

0

00""0""0000""00000000000000000 ~

~t/) t/)

~

<II

O""N

MN

O~

~O

ON

~~

ON

OO

~O

O""M

M~

~~

""""~",

I~

~

~~

~~

OO

~~

~O

~~

""OO

~N

~N

O~

~~

~~

""~~

~

NN

""""~""

co0 u

~

""~~

~~

O~

~~

""ON

M~

M~

NN

~O

O~

M""""~

~

"Ot/)

Z

~~

~~

N~

~~

~~

~~

~~

MN

~~

.-4~~

~""O

~ooo

OJ <

II~

""M

~

t/)I

<II

~

OJ

,c"O

~

N~

~~

~.-4~

~~

~O

O~

~~

~~

~~

~~

~~

~oooo

~

='~

~=

' uc

NtJ

~~

OO

~M

~~

~~

M~

~O

OM

~~

~~

N~

~M

M~

~~

O

QJ

<0

~oo~

oooooo~~

~~

~~

~~

~~

~~

~~

~~

oo~~

~~

~

...00

u~

I~

t/)N

.-4

~c

ojC

~

'-"'-"'-"'-"~"""'<

II""~ojC

~

~

~

NM

~O

O'-'U

~

o =

'~

~

~

~

'-"-"-"-' '"

~

t/)t/)~

~~

NM

~

~

~

<

II'"I

~

~M

IN~

OJ'-"-"-"-"-'O

JM.-4~

N<

II~~

<U

~<

II <

II. ~

<II

S

'-"-"-"-"-'~

~'-"-"-"-'~

MM

Ir,~~

~~

~~

~~

~

~.

~""N

M~

~~

~

~~

~~

~~

~

oo""s00

""NM

~~

'" I

I I

I I

"""'NM

~'"

I I

I I

I ~

~~

~...

='

I I

I I

I ~

~~

~~

~

OJ

I I

I I

<II"'","""'"

~

~

C

~

OJ

~

Q~

~~

~~

>

~~

~~

~

>~

~~

~

>uuuuu

>~

~'...I

>

ojC

ojC

~~

~~

~<

~~

~~

~<

~~

~~

<""""""~

<~

~~

<

ojC

I

Page 30: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

I 25

IU

~t.)

~

100 N

ON

~

~

,t:.

I~

- IrI

I ~

fJ)

~

C"I

N

~

N

N

~

IU

~

~

,calU

IrI

IrI ~

N

~

~

1U

<lJ

='

Ot.)

0 0

0 0

0 0

',..I~

Po

~-

IrI I

0-1UI

IUr~

0

0 0

0 0

o-~

>,

w.

"..I C

fJ) fJ)

IU~

IrI

0\ 00

0 C

"I ~

1rI fJ)',..I

SC

/) 0\

N

C"I

I--. C

"IO\I--.

C"I

~

r"I ~

C

"I ~

~

00,t:. ~

00 U

0'M

"..I

I~

C

"I 00

C"I

~

~

~,t:.

<lJ

00 0\

~

N

IrI 1rI0

~

bO~

N

N

~

IU~

~

~

~

~

fJ)~

~

<lJ

0 <

lJ'M

>

IfJ)

0 ~

IrI

IrI IrI

~IO

~

~

IU<

lJ ~

00

N

N

C"I

~

1--.00 ~

IU

~

~

0 IrI

C"I

I--. ~

I--.O

~

cue ~

0 N

~

~

~

1rI~

<

lJ~

cu~

0

fJ) ~

rz..

fJ)<

lJ ~

0

~I

S

0100 100

~

0\ loO

N

~

~z

~

~

1rI~

<lJ>

, <

lJ~

,c

0 fJ)

~

<lJ

<lJ

~

o~

~0

~

N

I--. 0\

N

I--. ~

O\

~

0-'"')

-t.) ~

v

I--. ~

<

lJ.~

~

0

~I

~

~

~C

"I o~

,t:.

C/)

~o

I--. I--.

IrI I--.

100 1

~fJ)

Ut.)

~

~

.Y-

<lJ

'M~

~

~

,t:.

~

fJ)~

~IU

IrI

0\ 00

0 ~

C"I

""'0I

<lJ

IrI 100

IrI 00

~

oo~

-

~

rz..<lJ

I--. ~

N

~

00

o. ~

~

I--.

rz.. ~

~

'M

0

100.Y

- ~

~

0

0 0

.Y-O

0\

~

~

~

~'M

~

'-"

~

~

0 IrI

C"I

~

~O

~

~I

~

N

IrI IrI

~

~1rI

<lJ

...v

C"I

~

~

~~

.~

IU

00 >

, 0

-~

0

00 I--.

NO

N

~

~~

.

<lJ

IU

~

I--.~

100 ~

~

~

S

~

N

~

N

N

N

N~

O

\IU

<lJ

I,c

S

~

~IU

=

' <

lJ '-"~

..

E-I

C/)

~

~

00 ~

~

~

0 N

~

0

C"IIoO

p.<

lJ ~

C"I

~

N

N

C"I

C"IN

~

bO

='

..='~

:3

~

~

='

I<

lJ 100

0\ \0

I--. 0\

~

0 ~

~

"'" ~

S

>,

0fJ)

100 I--.

00 co

I--. .I

0fJ)

C"I

C"I

C"I

C"I

C"I

C"I

~fJ)

..<

lJ ~

'M

0~

IrI

N

00 ~

0

C"I

~~

I~

~

co

00 I--.

~

~

<lJ<

lJ <

lJ0

I--. IrI

N

~

IrI IrII

.Y-~

bO

~

~

1UfJ)

IU0000

0 ~

OO

0-

00 <

lJ<

lJ ~

~

~

fJ) 0\

C"I

C"I

~

~

~O

~

H

I>

, ~

~

N

0\

~

1--.0 'M

H

.-I ~

0100

~.

H~

~

~

~

<

lJIU

>

bO

<lJ

<

~IU

~

IU

0 0\

C"I

~

100 ~

O

>,

,c<

lJ Z

~

0

0\ 00

IrI ~

O

oo~

IUbO

N

N

~

IrII--.

~IU

E

-II

IU

~'M

~

<lJ

<lJ 0-

S<

lJ ~

~

~o-

0>

""',c

0\ 00

~

0\ 0

~

'M

~<

u=

, .I--.

~fJ)

~<

~

N

0 I--.

0 C

"I .I

~fJ)

0 0\

0\ 0\

0\ 0\

~

CU

'M

~I

~C

/) 00

<lJ

C

fJ) .Y

-o!(

IU

~~

IU

-'M

~

~u

~

0-'M

0

0 fJ)

o-~

<lJ

CIO

~

~

.~

'M

fJ)

bOI

0 C

"I C

"I 0

0 fJ)Q

) IU

~

I I

~

~

-I: fJ)~

. ~

0 0

0 C

"I C

"I <

lJ ~

o!( 'M

~

~

<

lJ<

lJ 00

00 >

0.<

lJ 00 ~

IU

>

~

N

N

0 O

J: fJ)'M

C

\j,c~

IU

~

~~

1UQ

)~

~O

IU

<lJ.

I'M

bO

<lJ

>

~

fJ)~

>~

>

""<lJ~

0<

lJ<

lJ ~

O

Q)~

IU

00>,

~IJJ

~

0 Q

aJ '"')fJ)

00>,

0 ~

0

Q)

<lJ

>=

fJ)

~

<lJ~

~

<lJ

~

~

0 bO

~lU

~

<lJ'~

S

IU00

~

~

'M

'"') ~

~

bO

~

aJ 'M

~

I<

lJ fJ)

C.Y

- ~

'S

~

<C

/)~

~~

S

00 <

lJ ~

.<

lJXO

O.,..1

<lJ

~

'M

~

>

~

~

:3 o!(

-IC~

~

~

~

C

/) <

~~

=

-IC

I

Page 31: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

26 I

.I

~

I ~

Q)

~~

I~~0

I\1..1

oj( ~

fJ)0 r-..r-..\O

C\

C\

M

Q)

Q)~

1I11

MM

\Or-..

1III I~

I~

~.-I~

~

~

e .~

'""" 00

I~

~

§

\1..1 fJ)

.-I\0

Q)

~

I ~

~

0

OO

M

I 0

~\O

\ON

.-I.-I\O

M

C\O

C\~

M

M~

\O

~I

~o..,

-.:t--::"-::"a>

\O\O

Mr-..

MM

Ma>

-::"C

\NM

C

\~

fJ)

fJ) ~~

Q)

~13

e~

~

~

0

~&

'o ~

~~

\1..1

I.~

~

~

~ooe

~-

~

0~

~~

\I..I ,0

Q)

~I

~~

~

~

Q)

oj( 0

~

0 0

\I..IN

fJ)~

1I1I 11a>

1 1I1I

\011100C

\ O

~

Q)~

I

~

.-113 ,0

Q)

~~

~

~

I.-I

0 ~

~

,0 ~

~

'"""~

0~

~

~

0 Z

H

~oo,oC

~

-::"\0

M

~,0

~~

1\011

IIr-..M

II1I ~

IMI

~~

fJ)

~

S

0~

Q)

0 \1..1

I~

~

00

fJ) 0

I ~

Q

)~

~

,00 ~

~fJ)

~~

~

N~

-::" M

MC

\.-I C

\~O

.-l \O

.-IOM

~

Q)

~~

r-..~

r ::"

r-..r-..r-..\O

r-..~~

M

M\O

\O-::"

~.-Ie

os ~

I~

~

z ~

Q)~

~

~

.-I-<

fJ)~

c

~

0 r-..

~~

M

IfJ) ~

13

.Y.>

0

~

~Q

) \1..1

p..~

~

I~

Q

)Q

) ~

e ~

~~

Q)

OO

~~

Q)

OO

~~

Q)

OO

~~

Q)

~~

~

~O

O~

~

~O

O~

~

~O

O~

~

~O

O~

~

~

Q)

~

IcQfJ)Q

)I

Q)

~

u~

0

~0

~

0 Q

) ~

~

Q)

~

~

0 ~

fJ).-I ~

~

..,

fJ)Q

) fJ)

~.Y

. 0,..1

Is

fJ) Q

) ~

.~

"'" Q

) ~

"'"

~~

~

~

p..

00 oj(

II.

Page 32: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

I 27

I

Ii.'r-!

\0 N

\0

\0 N

\0

-:t aI

\U

IX)

IX)

r-.. IX

) IX

) r-..

IX)

~I

~

v v

0\ V

V

0\

V:

,...j ,...j

aI!

V

V

,...j

~,...j

~

0 r-..

\0 N

OS

M

r-.. IX

) M

N

M

N

\U

~

N

IX)

N

\0 rn

I~

\0

,...j\U

.>

N

IX)

N

N

IX)

N

IX)

~It)

,...j v

,...j ,...j

V,...j

'OQ

l~

~,...j

.c ,0

I~

r-..

IX)

-:t r-..

0\ 0

r-.. 001:=

'00

~

~

N

~

~

r-.. ~

'~

O,...j

,...j,...j ,...j,...j

,...j aI

0~

~It)aI

I:0

N

\0 M

0\

aI~""

0 -:t

IX)

~

0 ,...j~

I~

,...j,...j ~

,...j

N

-:t 0

,...j -:t,...j

S=

,U

M

N

~u~

rn,...j~~

-:t 0\

0 M

0

\0 IX

) ,...jU

O

" IX

) IX

) N

IX

) 0

0\ ~

~

I~

\0

\0 ,...j

r-.. IX

) ~

-:t

~~

~,...j

Ol:.c

~

~

00

.~

M

N

r-.. -:t

0\ \0

0\ I:rz..'@

Z

,...j,...j ,...j

N

O~

~Q

I ~

N

~

II:

~+

I: 0

.aI 0

~

~

0 ,...j

,...j -:t

,...j M

~

M

~

,...j

rn ~

U

v

V

N

V

0 ~

U~

aI V

,...j ,...j~

QI

S

I: =

' ~

U~

~~

0

0\ ~

\0

-:t ,...jQ

l,...jI

QI

IX)

r-.. \0

0 ,...j

~~

='

QI

rz.. Q

I ,...j

0 r-..

~

-:t ~

-:t

U~

U0

rz..,...j N

,...j

0 ,...j

0\ 0

~,...j

,.., ~

~

~~

0 I:

00 N

0

0 N

O

I:I:U,...j

.~

~

QI

~

U~

IQ

I 00

\U

~

\0 ~

r-..

r-.. M

,...j

\0 ,...j1:1:

,...j U

~

N

M

,...j \0

r-.. ,...j.N

U

O~

,0 ~

N

N

~

U~

I:

" It)

~

00 ~

I:QI

p. ~

=

' ,...j

M

M

,...j -:t

O,...j

QI'~

,...jU

V

,...j

,...j V

-:t

V

~,o

I~

~

M

,...j

~~

='

0 ~

~

QI,...j

QI

~>

Orn

U

I: N

\0

\0 N

~

~

N

I:,...jlt)

QI

><

N

,...j

,...j 0\

,...j ,...j

0 Q

lOI:

It) Q

I ,...j

urn >

- '-"

I:rnI

,...j IX

) O

.~,...j

~

S

0\ 0\

N

M

M

N

N

U~

U

,,~

~

~

0 \0

\0 0

0\ ~

<

~

~

I:~U

IX

) IX

) 00\

0\ 0

IX)

~~

M

M

V

M

M

V

M

.co~

~

IQ

I rn

r-.. \0

,...j 0\

IX)

>I:Q

I~

N

r-..

\0 0\

\0 \0

,...jO,...j

00,...j N

\o,...j,...j

M,...j

0,0~

rn~

=,

.0 0

,...j 0

0 ,...j

0 rnQ

l,...j.~

rn

0I

~~

rn -:t

0\ -:t

M

\0 ~

~

,0

,...j 0

M

\0 0

0 0\

~

rz..~

,...j

r-.. -:t

N,...j

~

,,~,...j

IX)

,...j 0

.crnM

-:t

~Q

lI:,...j 0

I1:,0

IX)

0\ N

,...j

~

0\ 0\

O=

'~

~

r-.. ~

~

0

,...j -:t

0\ ,...jQ

lZ

,...j

0\ ,...j

,...j ~

Orn

,...j Q

J rn

~It)

1:,0~

.~

I,0

" rn.

rn. rn

+

rnQ

I,...j Q

I,...j Q

I "Q

J,...j

0 .,...j

0 .,...j

rn rn,...j

,0 rn

,...j ,0

rn ,...j,o

QlQ

I,o=

' I:

0 =

' I:

0 =

' ,...j,...j=

,,...j

.~

rn ,...j

.~

rn,...j ,0

,0 ,...j

I0

C

0 I:

0 =

'='0

rn +

.~

rn

+

.~

rn ,...j

,...j rn

oj( 0

0 I:

QI

~.

~

~.

~

~

rnrn ,...j

'r-! ,...j

'r-! .~

,...j

.rot .~

~

U

0 U

U

0

U

U

~~

~S

\U

rn

~

~

rn ~

~

"..!,~

""~

U

UU

I00

I I

I I

I I

I ~

~~

r-.. r-..

r-.. IX

) IX

) O

CJ

\0 oj(

I.

Page 33: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

II

I

I

I

II

.1

IFigure 1.

I A Generalized Stratigraphic Column for Northwest Arkansas

I

IIIIIIII

I

Page 34: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

II ~ z CI)

~ 0 t-

~ j:: COLUMNAR ~~ c:I C/) ~ MEMBER SECTION ~LL. DESCRIPTION '

>- (!: ~z0 :r-C/) LA.. t-

I TRACE ---Si 1 tstone, c1aystone, gray to~ CREEK b1ack, lenses of limestone.~ () KESSLER g Reddish-brown to gray limestone.

I Z b DYE SHALE (\J Siltstone, c1aystone, gray tooCt ~ I black, shaly."::i CD WOOLSEY g Si1tstone, sandstone, and coal.

I t> BRENTWOOD A1ternating 1 imestone-sandstone.

Z PRAIRIE 0 Limestone and sandstone, bedsI ~ ~ GROVE CD and unit vary latera1ly from

CL oCt Ii 1 imestone to ca1careous 1ime-:I: CANE HILL 0 stone.

U) Si1tstone and sandstone.

.1 I g Limestone, pure, medium-toPITKIN -1ight-gray, commonly oolitic

I lIJ .~ Gray to brown sandstone, In<t:r WEDINGTON part ca1careous.

I CI)

lIJ 0 f .. 1~ U) Black, carbonaceous, ISSI eI ~ ~ sha1e with clay ironstone, ~ ~ ~ concretions.« ~ -

-wI a.. >-a.. it

I ~ BATESVILL I ~ Gray to bro~n c~lcareo~s sand--stone and bituminous limestone.U)U)I -Massive, gray, crystal1ine,~ fossiliferous limestone with

much nodular and bedded chert.

I ~0 I

I ~

I Thin-bedded, non-cherty, grayST. JOE to reddish-brown crinoida1 lime-

stone.I 1

I

I

Page 35: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

II .I .

I

II

I

.1

IFigure 2

I Sampling Locations

I

II

I

II

I

I

I

Page 36: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

~,~

IIc

I0

() It:

0Z

~

~LLJ

lLJ-J

1-0 Z

cnz-, -

I(.!)

cnw

~lLJ

W

Ix: I-"

t:-J

~

CD

cn

a..

[J >

c 0 .

II ~

I

I

I 0)

0-~

~

I2

~

~

~.0..-

W-C

D

3: ~

(\J W

0

I z

9: g

f()

I :

C\J

I ~w

I C

\J

I ~

[J

0)

I; ~

~-

0

I ;;;(\J~

I f()It)

-

I N

C\J ---

II

Page 37: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

II

I'I

I

I

I

.1

I Figure 3

I E-W and N-S Variation of Fe Content of Limestones

II

II

III

II

Page 38: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

II .t 0 KESSLER

.BRENTWOODI 6 PITKIN

4. .ST. JOEI I

I ';3~EI ~ .0I "iC,.) 2

I I ..1 6~::=:::::~-.:~:::=:~=======:::~:::: --6~--

I 0 30 40 50 60 70 80

E-W DISTANCE (MILES FROM 950 LONGITUDE)

1 tI 4 A

1 3-I ~

0-1 ~o2

,C,.)1 ~

I I .6 ~ ~ 6

I0 30 40 70 80 90

1 N- S DISTANCE (MILES FROM 370 LATITUDE)

18\

Page 39: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

II

II

I ~

I

I

.1

IFigure 4

I E-W and N-S Variation of Mg Content of Limestones

II

I

I

-I

I

I

I

I

Page 40: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

: 0 KESSLER .I.BRENTWOOD I

Ii 6 PITKIN6, ST. JOE

1

1 60

1 5

1 --; 40'E0 3-

.1 202,U

1 ~ I

1 0 30 40 50 60 70 80 90

E-W DISTANCE (MILES FROM 950 LONGITUDE)

11 6

5

1 ~0 4

E

1 .; 3-0

1 ;;;U 2~

1 I -6

1 .0 30 40 50 60 70 80 90

N-S DISTANCE (MILES FROM 370 LATITUDE)

1

1.

Page 41: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

II

I

II

I

I

.1

IFigure 5

I E-W and N-S Variation of Mn Content of Limestones

I

II

I

II

II

I

Page 42: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

I 1.0 0 KESSLERI 6, .BRENTWOOD

0.9 6 PITKIN

6, ST. JOE

I 0.8

I 0.7

I 0.6

""0 0.5I ~

~ 0.40-

I ~0.3~ "0 ~-~~~~ -I 0 .2 --; ~'~~'~--- .

I 0 .I ~ ,,:=====~:::::::::;-.-;A. ~

61 0 30 40 50 60 70 80 90

E-W DISTANCE (MILES FROM 950 LONGITUDE)1.0

I0.9

I o.

I o.-("'\ p1 0 ~ /~ 0.5 I " /E I "

/0 I ,-I " /I 2 0.4 " /

0 I~ I

c: 0.3 II ~ 6, 60.2

1 0 .1 6 [ 6

1 030 40 50 60 70 80 90N-S DISTANCE (MILES FROM 370 LATITUDE)

I

I

Page 43: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

I I

I .

I

I

II

I c,c .

.1

IF o . 6Igure

I E-W and N-S Variation of Sr Content of limestones

I

I

I

I

I

I

I

I

I

Page 44: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

I .

0 KESSLER

I. 0.09 8 BRENTWOOD..ST. JOE

1 0.08 6 PITKIN

0.07 0

10.061 -

0 .0

~ 0.051 0

2. 0.04 if c -,U 6

1 ~ 0.03

.1 0 .0 2 "' ~.:.- A

0.01

10

30 40 50 60 70 80 901 E-W DISTANCE (MILES FROM 950 LONGITUDE)0.09 8t

II1 II0.08 II

I I8 I 1

1 0.07 I I,8; , I II I I

-/ 18 I1 ~ 0.06 /, I I IE I- I ( t ..0 I 6 /C 0.05 II r I

1 -II ~T'""",8 0.04 I' ~I~ /11 8I (/) 6""'".

0.03

1 0 .0 2 ~ /'~

1 0.01

.0I 30 40 50 60 70 80 90N-S DISTANCE (MILES FROM 370 LATITUDE)

1

I

Page 45: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

II

II

I

I

I

.1

IFigure 7

I Na/Ca Ratio versus Mg/Ca Ratio' of Limestones

I

II

II

I

I

II

I

Page 46: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

I 0 KESSLER.BRENTWOOD

I ~ PITKIN

..ST. JOE

I0.22

I0.20

I 0.18 .I -0.16

~01 g 0.14-

c-.1 c 0.12

~c1 Z 0.10 ..

0.08

.10.06

I 0.040 I 2 3 4 5 6 7 8 9 10

1 M9/Ca (atom %)

10.10

6

1 0.08-01 ~E 0.060-1 c-..c 0.04,u ..c

I Z 0.02

I 00 I 2 3 4 5 6 7 8 9 10

M9/ca (atom %)

1

Page 47: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

1I

111 ~

11

.1

1Figure 8

1 Sr/Ca Ratio versus Mg/Ca Ratio of Limestones

I

111-I -,

I

1I

1

Page 48: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

I 0 KESSLER

.BRENTWOOD6 PITKINI 0.12. .ST. JOE .

I 0.11

I 0.10

I 0.09-I ~ 0.08E 00 0.07 .

I ~00.06

I ,U 0.c/5 0.05

I 0.04 0

I 0.03 o.

I 0.020 I 2 3 4 5 6 7 8 9 10

I Mg/ca (atom %)

I 0.06

I 0.05-I ~ 0.04

0-,I 0 -0.03

0U

I ~" 0.02

0.01I .0 I 2 3 4 5 6 7 8 9 10

Mg/Ca (atom %)

I

Page 49: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

II

IIIII

-I

IFigure 9

II Sr/Ca Ratio versus Na/Ca Ratio of Limestones

II

II

III

II

II

II

I

I

Page 50: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

I 0 KESSLER

.BRENTWOODI 6 PITKIN

A ST. JOE

I 0.07

I 0.06 6

I -6~ 0.05E

I ] 0.04 6 6

cuI ~ 0.03 --""

(/) 6 6 6 ~A"""""

I 0.02 ~ A.A/A A

I 0.01

0I 0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 .8 0.20 0.22 0.24No /Co (atom %)

./I .t /' .0.07 ./"

./'

I 0.06 /./'

../"I _/'~ 0.05 /'..,/" E /'I ~ 0.04 /4-/" .

cI (..) 0.03'-'

(/)

I 0.02

I 0.01

0I 0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24

No/Co (atom %)

I

Page 51: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

I I

I ,I I

I

I

I

I

-I

IFigure 10

I Zn/Ca Ratio versus Mg/Ca Ratio of Limestones

I

II

I

I

I

I

I

I.

Page 52: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

I 0 KESSLER

.BRENTWOODI 6 PITKIN

.ST. JOEI

I ...:..

"'.'... ..., ,I 0.013 ...: .:. : .: :. .

' .':'... ::.::.: : : '.:I 0012 : .:: ..::...: .:.. .:: .:: .::.

0 0 11I ...::..::..: :..:::..::::..:..

:: :.. :.. :: :0010 , ..

I .:.. :..: : :..: :..: : :::::

9 0.00 :.:. :.I ~ 0008 ...: : ..: :: : ..

0 : :: ..: :: ,'.. :..:: ..

I E. ...: .: " 0 : .: : .: .: -0 .: :.:

c 0.0 : ...: oCt : .

I c : : .: .: U 0006 .:. ... '.&_.. 'eo. c .: .: : ~ ..: .:I u. ...

N 0.005 ~.:.:..~.:9.:.:::.:::.:::.:::.:.: 0

..'. ..."...I 0 004 :,6 ...:.. ..: ..: : :..:.:.. :.. ~. :.. ..: ..:::..

..A. ~ I 0.003. ::::~:::::::::::::::::::::::. ::::.~:::.

a.I 0.002 :.:.: : :..:.:

: :... :::...:...:...0 00I '. ...'I ' ...: ""...:

5 6 ~ 4 0 .2 0 I

I Mg/Ca (atom %)

I

I.

Page 53: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

II .

IIII

I.1

IFigure 11

I Mn/Ca Ratio versus Fe/Ca Ratio of Limestones

IIIII

\1

II

I

I

I

Page 54: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

I0 KESSLER

I .e BRENTWOOD6 PITKIN

I 0.9 .ST. JOE

I0.8

II 0.7 .

eA . .....I ..:.:::::::

I 0.6 ,

,,I .0 ,

,"0 ' '0' E 05 ..:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:..0I tJ tJ ~I " c

04 ...e ~I . 0'I 03I e

..:.:.:.:.:.:.:.:.:.:6.:.:.:.:.. e

02I ::::::::::::::::::::::::..~. .a ':I ...A: ..

0 I :.: :.~:..', 00I :.::::::::..

.....,'..~.......I .. 0 ..

0 I 2 3 4 5 6

Fe /Ca (atom %)

I.~-

Page 55: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

II

I

I

I

I

I

.1

I Figure 12

Co, Cr and Ni Content versus Mn Content forI Kessler, Brentwood, Pitkin and S.t. Joe Limestones

I

II

I

I

I

I

I

I

Page 56: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

1 0 KESSLER I.BRENTWOOD

1 6 PITKIN

.ST. JOE II

11

30

1 25 .

1 20-1 ~ 0~ 15 ...-..1 z 10 .0 0

&6 :0. .1 5.. 66.. .1 0

1 20 .15 0-

1 ~ 6 .0 0Q. 10 .l Eg 6.~ .

5 ...1 O' 6

1 1561 ~ 10 ..

a.. ..0 O'Q. ..01 -5 B. 6 .~~ ..66 6

0 61 0 1,000 2,000 3,000 4,000 5.000 6,000

Mn(PPM)

1

I

Page 57: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

I I

I ~

I

I

I

I

I

.1

I Figure 13Co, Cr and Ni Content versus Fe Content for

I Kessler, Brentwood, Pitkin and St. Joe Limestones

II

I

II

I

I

I

I

I

Page 58: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

,

I 0 KESSLER.BRENTWOOD

I 6 PITKIN ..ST. JOE

I .I 25

20

I ~ 0a. 15. .a. ..I ~IO 6 00 ...0I 5 ~ .6 6 .

6 ..1 0

I 25

20

I ~ 0 .a. 15a.I -6 ~ 0 0U 10 6 ../(\66 .I 6 6 0 ..

5 .....I o'

I ~20a.-15

I 8 .10 6 .

6 .I 6 0 0 0

.6 05 6. ...I 0 ~ 6

0 0.2 0.4 0.6 08 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

I Fe (Wt.%)

I

Page 59: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

.

II

I

II

I

I

-I

I Figure 14

Co, Cr and Ni Content versus (Fe/Ca + Mn/Ca) forI Kessler, Brentwood, Pitkin and St. Joe Limestones

I

II.I

I

I

I

II

I

Page 60: Arkansas Water Resources Center · 2. I CO2 + H2O = H2CO3 (1) I H2CO3 = H+ + HCO3 (2) CaCO3(ls) + H+ = Ca++ + HCO3 (3) I The air contain~ only.c3% CO2 and in.sPite of gO~d equilibration

I 0 KESSLER

.BRENTWOOD

I 6 PITKIN

6 ST. JOE

II 30 6

25

I_20 0

I ~ 0~ 15. .

I z 6 .10 6

.0I 6 0 ...5 Cf6 .6 6. .I 0 .I 20

O'I ~ 15Q. 6 0 0a.. 10 ..

I -f!;'- 6 0 I I .<..> 5 ..I 6 .

0

I 15

I -6~ 10. .~ 6. ..00 0

I 0 6~ 0 .<..> 5 l5. ..6c;t.I 0 ..

0 I 2 3 4 5 6

I (Fe/ca + Mn/ca) Mol %

I