59
ASYMMETRIC SYNTHESIS OF QUATERNARY CARBON CENTERS Applied to total synthesis Ioulia Gorokhovik 02.05.2013

Asymmetric synthesis of all-carbon quaternary · PDF file13/05/2013 · ASYMMETRIC SYNTHESIS OF QUATERNARY CARBON CENTERS Applied to total synthesis Ioulia Gorokhovik – 02.05.2013

  • Upload
    lynhi

  • View
    223

  • Download
    3

Embed Size (px)

Citation preview

ASYMMETRIC SYNTHESIS OF

QUATERNARY CARBON CENTERS

Applied to total synthesis

Ioulia Gorokhovik – 02.05.2013

Introduction

• Synthesis of chiral quaternary centers : challenge in synthesis.

When the center is all-carbon, difficulty increased, steric hindrance.

• Many methods could be applied in theory, but in practice only a few are useful. Mostly developed the last 20-30 years

• Presented here :

Synthesis of quaternary centers with 4 non equivalent carbon substituents

general methods, a few examples applied to synthesis

Not presented : enzyme based reactions, use of chiral auxiliaries

2

Outline

1. Asymmetric Diels Alder reactions

2. Combination of carbon nucleophiles with carbon electrophiles

3. Transition metal-catalyzed reactions Heck reaction,

Enyne cyclization,

Pauson-Khand reaction

C-H activation

4. Chirality-transfer reactions Epoxide rearrangements

Cationic cyclizations

Oxy-Cope and Claisen rearrangements

3

ASYMMETRIC DIELS-

ALDER REACTIONS

4

Examples of chiral Lewis acids developed

For references see : Corey, E.J.; Guzman-Perez, A. Angew. Chem. Int. Ed. 1998, 37, 388-401.

5

Diels Alder with prochiral dienophile

6

Synthesis of colombiasin A

Nicolaou, K. C.; Vassilikogiannakis, G.; Mägerlein, W.; Kranich, R. Angew. Chem. Int. Ed. 2001, 40, 2482-2486.

7

Synthesis of colombiasin A

Nicolaou, K. C.; Vassilikogiannakis, G.; Mägerlein, W.; Kranich, R. Angew. Chem. Int. Ed. 2001, 40, 2482-2486.

Suarez, D.; Sordo, T. L.; Sordo, J. A. J. Org. Chem. 1995, 60, 2848-2852

8

Synthesis of (-)-longithoroneA

Layton, M.E.; Morales, C.A.; Shair, M.D. J. Am. Chem. Soc. 2002, 124, 773-775.

9

Diels-Alder with prochiral diene

10

Synthesis of norzoanthamine

Miyashita, M.; Sasaki, M.; Hattori, I.; Sakai, M.; Tanino, K. Science, 2004, 305, 495-499.

11

Synthesis of mangicol A core

Araki, K.; Saito, K.; Arimoto, H.; Uemura, D. Angew. Chem. Int. Ed. 2004, 43, 81-84.

Exo compounds observed. Endo not

possible because of the ring.

DA outcome depends on stereochemistry of

C3.

Can be explained by energy differences of

the transition states.

12

CARBON ELECTROPHILES

WITH CARBON NUCLEOPHILES

13

Carbon nucleophiles and carbon electrophiles

14

Examples of prochiral nucleophiles Examples of prochiral electrophiles

+ others

15

Michael reaction : synthesis of the manzamine family

Jakubec, P.; Hawkins, A.; Felzmann, W.; Dixon, D.J. J. Am. Chem. Soc. 2012, 134, 17482-17485

Jakubec, P.; Cockfield, D.M.; Dixon, D.J. J. Am. Chem. Soc. 2009, 131, 16632-16633..

16

Michael reaction : synthesis of (+)-gelsemine,

Fukuyama

Yokoshima, S.; Tokuyama, H.; Fukuyama, T. Angew. Chem. Int. Ed. 2000, 39, 4073-4075.

Lin, H.; Danishefsky, S.J. Angew. Chem. Int. Ed. 2003, 42, 36-51.

17

Mannich reaction : Studies on gelsemine, Fleming

Clarke, C.; Fleming, I.; Fortunak, J.M.D.; Gallather, P.T.; Honan, M.C.; Mann, A.; Nubling, C.O.; Raithby, P.R.; Wolff, J.J. Tetrahedron, 1988,

44, 3931. Lin, H.; Danishefsky, S.J. Angew. Chem. Int. Ed. 2003, 42, 36-51.

18

Robinson annulation for the synthesis of ketones

Aldol reaction forming quaternary centers : very difficult -> solutions needed to favor it

One possibility : enamine catalysis with amino-acids

Hajos, Z.G.; Parrish, D.R. J. Org. Chem. 1974, 39, 1615-1621. Bahmanyar, S.; Houk, K.N. J. Am. Chem. Soc. 2001, 123, 12911-12912.

19

MacMillan’s LUMO catalysis

Austin, J. F.; Kim, S.G.; Sinz, C.J.; Xiao, W-J.; MacMillan, D.W.C. Proc. Natl. Acad. Sci. USA, 2004, 101, 5482-5487.

Development of an organocatalyst

that mimics the Lewis acids commonly used

20

Syntheses of (-)-flustramine B and diazonamide A

Austin, J. F.; Kim, S.G.; Sinz, C.J.; Xiao, W-J.; MacMillan, D.W.C. Proc. Natl. Acad. Sci. USA, 2004, 101, 5482-5487.

Knowles, R.R. ; Carpenter, J. ; Blakey, S.B. ; Kayano, A.; Mangion, I.K. ; Sinz, C.J.; MacMillan, D.W.C. Chem. Sci. 2011, 2, 308-311.

21

Allylation reactions

Hong, A.Y.; Stoltz, B.M. Eur. J. Org. Chem. ASAP

22

Pd-catalyzed allylations : synthesis of (+)-allocyathin B2

Trost, B.M.; Pissot-Soldermann, C.; Chen, I.; Schroeder, GM. J. Am. Chem. Soc. 2004, 126, 4480-481. Trost, B.M.; Dong, L.; Schroeder, G.M.

J. Am. Chem. Soc. 2005, 127, 2844-2845. Trost, B.M.; Dong, L.; Schroeder, G.M. J. Am. Chem. Soc. 2005, 127, 10259-10268.

23

SN2’ catalyzed by copper : mechanism

Perrone, S. PhD dissertation, 2006. Sofia, A.; Karlström, E.; Bäckvall, J.E. Chem. Eur. J. 2001, 7, 1981-1989.

24

SN2’: synthesis of (-)-sporochnol

Luchaco, C.A.L.; Mizutani, H.; Murphy, K.E.; Hoveyda, A.H. Angew. Chem. Int. Ed. 2001, 40, 1456-1460.

25

OTHER TRANSITION METAL-

CATALYZED REACTIONS

26

Heck reaction

27

Synthesis of furaquinocin E

Trost, B.M.; Thiel, O.R.; Tsui, H-C. J. Am. Chem. Soc. 2003, 125, 13155-13164.

28

Synthesis of spirotryprostatine B

Overman, L.E.; Rosen, M.D. Angew. Chem. Int. Ed. 2000, 39, 4596-4599..

29

Other transition metalcatalyzed reactions

30

Pauson-Khand reaction : synthesis of magellanine

Ishizaki, M.; Niimi, Y.; Hoshino, O.; Hara, H.; Takahashi, T. Tetrahedron, 2001, 61, 4053-4065.

Pauson-Khand : sensitive to steric factors in the transition state

31

Pauson-Khand reaction : synthesis of magellanine

Ishizaki, M.; Niimi, Y.; Hoshino, O.; Hara, H.; Takahashi, T. Tetrahedron, 2001, 61, 4053-4065.

32

C-H insertion with Rh carbenoid species

Advantages :

- Often the conditions are very mild

- Extremely tolerant of functional groups

- Low loadings of catalyst (1 mol%)

Electronic, steric and conformational effects

Direct C-H insertion

33

Davies, H.M.L.; Manning, J.R. Nature, 2008, 451, 417-424. Davies, H.M.L.; Dick, A.R. Top. Curr. Chem. 2010, 292, 303-345.

Davies H.M.L. Angew. Chem. Int. Ed. 2006, 45, 6422-6425. Davies H:M:L:, Beckwith, R.E.J. Chem. Rev. 2003, 103, 2861-2903.

Synthesis of (+)-codeine and (+)-morphine

White, J.D.; Hrnciar, P.; Stappenbeck, F. J. Org. Chem. 1997, 62, 5250-5251.

White, J.D.; Hrnciar, P.; Stappenbeck, F. J. Org. Chem. 1999, 64, 7871-7884.

34

Enyne cyclization: synthesis of (+)-allocyathin B2

Trost, B.M.; Pissot-Soldermann, C.; Chen, I.; Schroeder, GM. J. Am. Chem. Soc. 2004, 126, 4480-481. Trost, B.M.; Dong, L.; Schroeder, G.M.

J. Am. Chem. Soc. 2005, 127, 2844-2845. Trost, B.M.; Dong, L.; Schroeder, G.M. J. Am. Chem. Soc. 2005, 127, 10259-10268.

35

Enyne cyclization: synthesis of (+)-allocyathin B2

Trost, B.M.; Pissot-Soldermann, C.; Chen, I.; Schroeder, GM. J. Am. Chem. Soc. 2004, 126, 4480-481. Trost, B.M.; Dong, L.; Schroeder, G.M.

J. Am. Chem. Soc. 2005, 127, 2844-2845. Trost, B.M.; Dong, L.; Schroeder, G.M. J. Am. Chem. Soc. 2005, 127, 10259-10268.

36

SELF-IMMOLATIVE

REACTIONS

37

Self-immolative reactions

A chiral center is sacrified to form another chiral center

First center : created by enantioselective reaction

Second center : created by intramolecular enantiospecific reaction

Often : center bearing heteroatom is sacrificed to form a less readily established

All-carbon quaternary center

38

Self-immolative reactions

39

Suzuki-Tsuchihashi epoxide rearrangement

Shimazaki, M.; Hara, H.; Suzuki, K.; Tsuchihashi, G. Tetrahedron Lett. 1987, 28, 5891-5894.

Eom, K.D.; Raman, J.V.; Kim, H.; Cha, J.K J. Am. Chem. Soc. 2003, 125, 5415-5421.

40

Synthesis of furaquinocin D

Saito, T.; Suzuki, T.; Morimoto, M.; Akiyama, C.; Ochiai, T.; Takeuchi, K.; Matsumoto, T.; Suzuki, K. J. Am. Chem. Soc. 1998, 120, 11633-11644.

Suzuki-Tsuchihashi gives compounds that can’t be obtained with aldol reactions

Model studies were made to check the migration

of different substituents.

41

Yamamoto epoxide rearrangement

Omodani, T.; Shishido, K. J. Chem. Soc. Chem. Commun. 1994, 2781-2782.

Maruoka, K.; Ooi, T.; Yamamoto, H. J. Am. Chem. Soc. 1989, 111, 6431-6432.

42

Fukumoto epoxide rearrangement

Nemoto, H.; Nagamochi, M.; Ishibashi, H.; Fukumoto, K. J. Org. Chem. 1994, 59, 74-79.

Nemoto, H.; Ishibashi, H.; Nagamochi, M.; Fukumoto, K. J. Org. Chem. 1992, 57, 1707-1712.

43

Jung epoxide rearrangement

Jung, M.E.; D’Amico, D.C. J. Am. Chem. Soc. 1995, 117, 7379-7388. Tonder, J.E.; Tanner, D. Tetrahedron, 2003, 59, 6937-6945.

44

Jung epoxide rearrangement : synthesis of lyngbyatoxine A

Jung, M.E.; D’Amico, D.C. J. Am. Chem. Soc. 1995, 117, 7379-7388. Tonder, J.E.; Tanner, D. Tetrahedron, 2003, 59, 6937-6945.

Solution :

45

Self-immolative reactions

46

Cationic cyclization reactions : synthesis of aegiceradienol

Corey, E.J.; Lee, J. J. Am. Chem. Soc. 1993, 115, 8873-8874.

Formation of 3 quaternary carbon centers (and all the other asymmetric centers) in 1 step

47

Self-immolative reactions

48

Cope and Claisen rearrangements

Transfer of chirality from secondary alcohol to all-carbon quaternary center

Allylic alcohol center easily prepared

49

Oxy-Cope : synthesis of (+)-dihydromayurone

Lee, E.; Shin, I-J.; Kim, T-S. J. Am. Chem. Soc. 1990, 112, 260-264.

Chirality transfer very efficient because alkoxide favored in equatorial position during TS

(better overlapping of orbitals and steric reasons)

50

Ireland-Claisen : synthesis of pinnatoxin

Stivala, C.E.; Zakarian, A. J. Am. Chem. Soc. 2008, 130, 3774-3776..

51

Synthesis of gelsemine, Danishefsky

Ng, F.W.; Lin, H.; Danishefsky, S.J. J. Am. Chem. Soc. 2002, 124, 9812-9824.

Lin, H.; Danishefsky, S.J. Angew. Chem. Int. Ed. 2003, 42, 36-51.

Construction of the first quaternary center : Johnson-Claisen rearrangement

52

Ng, F.W.; Lin, H.; Danishefsky, S.J. J. Am. Chem. Soc. 2002, 124, 9812-9824.

Lin, H.; Danishefsky, S.J. Angew. Chem. Int. Ed. 2003, 42, 36-51.

Construction of the second quaternary center : Eschenmoser-Claisen rearrangement

(after many other attempts)

This step : one of the most difficult of the synthesis (6 pages/13)

Synthesis of gelsemine, Danishefsky

53

Other rearrangements : synthesis of (+)-gelsemine,

Fukuyama

Yokoshima, S.; Tokuyama, H.; Fukuyama, T. Angew. Chem. Int. Ed. 2000, 39, 4073-4075.

Lin, H.; Danishefsky, S.J. Angew. Chem. Int. Ed. 2003, 42, 36-51.

54

OTHER POSSIBILITIES

55

Not discussed today

56

Conclusion

57

Good methods were developed – good yields and ees

Problem : find the precursor compatible with the synthesis and the structure of the target

Reviews and books on the topic

• Review : The catalytic enantioselective construction of molecules with quaternary carbon centers

Corey, E.J.; Guzman-Perez, A. Angew. Chem. Int. Ed. 1998, 37, 388-401.

• Review : Asymmetric creation of quaternary carbon centers, Fuji, K. Chem. Rev. 1993, 93, 2037-

2066.

• Review : Enantioselective construction of quaternary centers, Christoffers, J.; Mann, A. Angwe.

Chem. Int. Ed. 2001, 40, 4591-4597.

• Perspective : Catalytic asymmetric synthesis of all-carbon quaternary stereocenters, Douglas, C.J.;

Overman, L.E. Proc. Natl. Acad. Sci. USA 2004, 101, 5363-5367.

• Book : Quaternary stereocenters : challenges and solutions for organic synthesis Edited by

Christoffers, J.; Baro, A. 2005 WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim.

• Review : Enantioselective synthesis of all-carbon quaternary stereogenic centers in acyclic systems

Das, J.P.; Marek, I. Chem. Commun. 2011, 47, 4593-4623.

58

Thanks for your attention

59