51
Atomic Tunneling Systems in Solids real crystals glasses Christian Enss Kirchhoff-Institut of Physics Heidelberg University

Atomic Tunneling Systems in Solids

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Atomic Tunneling Systems in Solids

Atomic Tunneling Systems in Solids

real crystals

glassesChristian EnssKirchhoff-Institut of PhysicsHeidelberg University

Page 2: Atomic Tunneling Systems in Solids

Tunneling of Atoms in Solids

Page 3: Atomic Tunneling Systems in Solids
Page 4: Atomic Tunneling Systems in Solids

KCl:Li Specific Heat

specific heat roughly a

factor of 10 higher at 0.5 K

J.P. Harrison, Phys. Rev. 171, 1037 (1968)

Page 5: Atomic Tunneling Systems in Solids

K+ Cl-

Li-Tunneling Systems in KCl-Crystals

Li+ substitutes K+

ionic radius:

8 off-center positionsin <<111111>> direction

(100)-plane

Li+

Page 6: Atomic Tunneling Systems in Solids

Quantum States of <111> Systems

|111

|111

|111

|111

|111

|111

|111

|111

edge tunnelingface diagonal tunneling

room diagonal tunneling

Page 7: Atomic Tunneling Systems in Solids

Tunneling Systems with Cubic Symmetry

<111> <100> <110>

KCl:Li, KBr:CN KCl:OH, LiF:OH NaBr:F

Page 8: Atomic Tunneling Systems in Solids

K+ Cl-

Li-Tunneling Systems in KCl-Crystals

Li+ substitutes K+

ionic radius:

8 off-center positionsin <<111111>> direction

(100)-plane

Li+

tunnel splitting:

with

X. Wang, F. Bridges, Phys. Rev. B46, 5122 (1992)

Page 9: Atomic Tunneling Systems in Solids

Isotope effect

Schottky-Anomaly

number density

J.P. Harrison, Phys. Rev. 171, 1037 (1968)

Page 10: Atomic Tunneling Systems in Solids

KCl:CN

concentration dependence

P.P. Peressini, J.P. Harrison, R.O. Pohl, Phys. Rev. 182, 939 (1969)

Page 11: Atomic Tunneling Systems in Solids

Thermal Conductivity

NaF: OH- KCl:Li

T.F. McNelly, Ph.D. thesis(Cornell University 1974)

P.P. Peressini, J.P. Harrison, R.O. Pohl, Phys. Rev. 180, 926 (1969)

Page 12: Atomic Tunneling Systems in Solids

Dielectric Susceptibility

C. Enss, M. Gaukler, S. Hunklinger, M. Tornow, R. Weis, A. Wurger, Phys. Rev. B 53, 12094 (1996)

Page 13: Atomic Tunneling Systems in Solids

Dielectric Susceptibity: High Concentrations

C. Enss, M. Gaukler, S. Hunklinger, M. Tornow, R. Weis, A. Würger, Phys. Rev. B 53, 12094 (1996)

Page 14: Atomic Tunneling Systems in Solids

Interacting Tunneling Systems

Page 15: Atomic Tunneling Systems in Solids

Transition to Incoherent Tunneling

defects in crystals: at high concentrations cross over to incoherent tunneling

consequences: reduced resonant contributionnew phononless relaxation channel

incoherent tunneling in glasses at very low temperatures?

A. Würger, R. Weis, M. Gaukler, C. Enss, Europhys. Lett. 33, 533 (1996)

Page 16: Atomic Tunneling Systems in Solids

Thermally Activated Pairs

S. Ludwig, C. Enss, J. Low Temp. Phys. 137, 371 (2004)

Page 17: Atomic Tunneling Systems in Solids

Tunneling of Li Pairs

Page 18: Atomic Tunneling Systems in Solids

Coherent Properties

two-pulse polarization echoes:

microwave cavity

1 GHz

coherent regime

Rabi frequency1 GHz 50 mK

Page 19: Atomic Tunneling Systems in Solids

Echo ―Theoretical Background I

coherent regime:

two level approximation:

applied field:

Schrödinger equation:

ansatz:

Rabi frequency:

mit

Page 20: Atomic Tunneling Systems in Solids

Phase Jump Rotary Echoes

coherent regime:

applied field:

occupation number difference

periodic change of polarisation

with

Page 21: Atomic Tunneling Systems in Solids

Phase Jump Rotary Echoes

(KBr)1-x(KCN)x

many oscillations well defined WR

fit: fixed values of E, pLorentz distribution of D0 width 10%

(KBr)0.95(KCN)0.05

G. Baier, M.v. Schickfus, C. Enss, Europhys. Lett. 8, 487 (1989)

Page 22: Atomic Tunneling Systems in Solids

Coherent Pair Tunneling

only NN2 pairs contribute

Rabi-Frequency of NN2 pairs of different isotopes

R. Weis, C. Enss, A. Würger, F. Lüty, Ann. Phys. 6, 263 (1956)

Page 23: Atomic Tunneling Systems in Solids

Atomic Tunneling Systems in Amorphous Solids

glasses

Page 24: Atomic Tunneling Systems in Solids

Structure of Crystalline and Amorphous Materials

C

B

A

Crystal Glass

Page 25: Atomic Tunneling Systems in Solids

Atomic Tunneling Systems in Glasses

Page 26: Atomic Tunneling Systems in Solids

Specific Heat

broad distribution oflow-energy excitations

J.C. Lasjaunias, et al., Solid State Commun. 17, 1045 (1975)

Page 27: Atomic Tunneling Systems in Solids

Atomic Tunneling Systems in Glasses

energy splitting

distribution function

tunnel splitting

elastic, dielectric und thermalproperities

W.A. Phillips, J. Low. Temp. Phys. 7, 351 (1972)P.W. Anderson et al., Philos. Mag. 25, 1 (1972)

Page 28: Atomic Tunneling Systems in Solids

Thermal Properties in the Tunneling Modell

Specific heat:

Thermal Conductivity:

Page 29: Atomic Tunneling Systems in Solids

Specific Heat

R. C. Zeller and R. O. Pohl. Phys. Rev. B 4, 2029 (1971)

Page 30: Atomic Tunneling Systems in Solids

Heat Release of Amorphous Solids

M. Schwark, et al., J. Low Temp. Phys. 58,171 (1985)

Page 31: Atomic Tunneling Systems in Solids

Thermal Conductivity

strong coupling to phonons

systems are localized

R. C. Zeller and R. O. Pohl. Phys. Rev. B 4, 2029 (1971)

Page 32: Atomic Tunneling Systems in Solids

Thermal Conductivity

strong coupling to phonons

systems are localized

H.-Y. Hao, et al., Rev. Sci. Instrum. 75, 2718 (2004)

Page 33: Atomic Tunneling Systems in Solids

Universality

R. B. Stephens, Phys. Rev. B 8, 2896 (1973)

Page 34: Atomic Tunneling Systems in Solids

Elastic and Dielectric Properties

resonant processes

relaxational processes

modulation of D

T << 1 K one-phonon relaxation à wide distribution even for fixed E

Page 35: Atomic Tunneling Systems in Solids

Dielectric Susceptibility in the STM

E

0

pE2 −2

0

E

0

pE2 −2

0

✓1− 2

0

E2

◆sech2

✓E

2kB

T

◆1

1 + !2⌧21

Relaxational Part

Resonant Part

Page 36: Atomic Tunneling Systems in Solids

Dielectric constant: δε

Dielectric loss: tan δ

Dielectric Constant and Dielectric Loss

Page 37: Atomic Tunneling Systems in Solids

Sound Velocity and Internal Friction

Page 38: Atomic Tunneling Systems in Solids

2 cm

torsion bending torsion

1 µm silver film

SEM picture

good thermalization

laser-cut glassneck

Elastic Measurements with Mechanical Oscillators

Page 39: Atomic Tunneling Systems in Solids

Sound Velocity

discrepancy at low temperatures

J. Classen, T. Burkert, C. Enss, S. HunklingerPhys. Rev. Lett. 84, 2176 (2000)

Page 40: Atomic Tunneling Systems in Solids

Internal Friction

T < 30 mK

additional relaxation channelJ. Classen, T. Burkert, C. Enss, S. HunklingerPhys. Rev. Lett. 84, 2176 (2000)

Page 41: Atomic Tunneling Systems in Solids

Coherent Properties

two-pulse polarization echoes:

microwave cavity

1 GHz

coherent regime

Rabi frequency1 GHz 50 mK

Page 42: Atomic Tunneling Systems in Solids

Echo ―Theoretical Background I

coherent regime:

two level approximation:

applied field:

Schrödinger equation:

ansatz:

Rabi frequency:

mit

Page 43: Atomic Tunneling Systems in Solids

Echo ―Theoretical Background II

Bloch equations:

t1 energy relaxation

t2 phase coherence time t1 processesspectral diffusionspin diffusion

T < 1 K one phonon prozess

..... ?

..... ?

polarisation vector:

Page 44: Atomic Tunneling Systems in Solids

Two Pulse Echo

polarization vector

rotating frame

Page 45: Atomic Tunneling Systems in Solids

Echo Decay

time window 1200 µs

sensitivity: five orders of magnitude

Page 46: Atomic Tunneling Systems in Solids

Temperature Dependence

Page 47: Atomic Tunneling Systems in Solids

Spectral Diffusion

short time limit (no flip limit):

Gaussian decay

long time limit (multiple flip limit):

exponential decay

Page 48: Atomic Tunneling Systems in Solids

Temperature Dependence

short time limit (no flip limit):

long time limit (multiple flip limit):

P. Hu, S.R. Hartmann, PRB 9, 1 (1974)J.L. Black, B.I. Halperin, PRB 16, 2879 (1976)P. Hu, L.R. Walker, PRB 18, 1300 (1978)R. Maynard, R. Rammal, R. Suchail, J. Phys. Paris Lett. 41, L-291 (1980)B.D. Laikhtman, PRB 31, 400 (1985)Yu.M. Galperin, V.L. Gurevich, D.A. Parshin, PRB 37, 10339 (1988)

Theoretical papers:

Page 49: Atomic Tunneling Systems in Solids

Temperature Dependence

A. L. Burin, J. M. Leveritt III, G. Ruyters, C. Schötz, M. Bazrafshan, P. Faßl, M. von Schickfus, A. Fleischmann, C. Enss, Europhys. Lett. 104, 57006 (2013)

Page 50: Atomic Tunneling Systems in Solids

Phase Jump Rotary Echoes

coherent regime:

applied field:

occupation number difference

periodic change of polarisation

with

Page 51: Atomic Tunneling Systems in Solids

Phase Jump Rotary Echoes

BK7: (SiO2, B2O3, NaO, CaO, ... )

1 GHz

few oscillations broad distribution of WR

Fit: tunneling model distributionuniform distributionfixed dipole moment

C. Enss, R. Weis, S. Ludwig, S. Hunklinger,Czech. J. Phys. 46, 3287 (1996)