Bearing Capacity Lecture 2014

Embed Size (px)

Citation preview

  • 7/23/2019 Bearing Capacity Lecture 2014

    1/38

    1/26/20

    SI 3221 2014

    References:

    1. Joseph E. Bowles, Foundation Analysis and Design, McGraw Hill, 1997

    2. Braja M. Das, Principles of Foundation Engineering, ITP, 1995.

    3. Tien HsingWu, Soil Mechanics, Allyn Bacon, 1976

    earing Capacity

    of

    Shallow Foundations

    Bearing Capacity Failures

  • 7/23/2019 Bearing Capacity Lecture 2014

    2/38

    1/26/20

  • 7/23/2019 Bearing Capacity Lecture 2014

    3/38

    1/26/20

    Lab Model Test

    Lateral Earth Pressure (Review)

    ITB Lecture

    2011

    Reference:1. Das, Braja M., Principles of Geotechnical Engineering, Brooks/Cole, USA,

    2002. CHAPTER 12

    2. The Canadian Foundation Engineering Manual, 2006

  • 7/23/2019 Bearing Capacity Lecture 2014

    4/38

    1/26/20

    h = K v

    h = Kov

    v v v

    h = Kav h = Kpv

    Note: All stresses in effective stress , NOT in total stress

    Lp >>La

  • 7/23/2019 Bearing Capacity Lecture 2014

    5/38

    1/26/20

    At Rest, Ko

    Jaky, 1944 (good for loose sand)

    Ko = 1 sin Sherif, Fang, 1984 (dense sand)

    Ko = 1 sin + 5.5 [ (d/d min) - 1 ] Massarsch, 1979 (NC clays)

    Ko = 0.44 + 0.42 [PI(%)/100]

    OC Clays: Ko, OC = Ko NCOCR

    The Pole Method

    b

    a

    ab

    POLE a

    b =a

    b

    a

    (p,p)

    (q,q)

  • 7/23/2019 Bearing Capacity Lecture 2014

    6/38

    1/26/20

    Rankine Ka The Pole Method

    h

    v

    vhhh

    ff

    ff

    A

    A

    POLE

    A

    Rankine Kp The Pole Method

    h

    v

    vh h h

    ff

    ff

    A

    A

    POLE

    A

  • 7/23/2019 Bearing Capacity Lecture 2014

    7/38

    1/26/20

    Rankine Ka

    h

    v

    vh

    ff

    ff POLE

    C

    (

    v + h)/2c/tan

    45o + /2

    (90o-)

    (90o+)/2

    sin =(v -h)/2

    c/tan (v + h)/2+

    h = v Ka 2c Ka

    Ka = tan2 (45o - /2)

    Rankine Kp

    h

    v

    v h

    ff

    ff POLE

    C

    (v + h)/2c/tan

    45o -/2

    (90o-)

    sin =(

    h-

    v)/2

    c/tan (v + h)/2+

    h = v Kp + 2c Kp

    Kp = tan2 (45o + /2)

  • 7/23/2019 Bearing Capacity Lecture 2014

    8/38

    1/26/20

    Simplified BC Equation ( - soil)

    (45 + /2) (45 -/2)

    Q

    Pp

    N

    W

    q = f(D)

    Pp = 0.5 H2 Kp + q H Kp

    Kp = tan2 (45 + /2)

    H = B tan (45 + /2)

    H

    B

    W = 0.5 B H

    PpW

    NQ

    Q = F (, , , B, D)

    Q/B = q ult= B N + .. D Nq

    N & Nq = f (, )

    Simplified BC Equation (c soil)

    Moment against A, for b length and mass less soil:

    MA = (qult Bb)(B/2) (cu Bb) B - zD Bb (B/2)

    qult = 2 cu + zD = c Nc + zD Nq

    If K 0, we will have a N term

  • 7/23/2019 Bearing Capacity Lecture 2014

    9/38

    1/26/20

    Other simplified formulations

    Pp

    (90--)

    W

    cA

    Qu

    N

  • 7/23/2019 Bearing Capacity Lecture 2014

    10/38

    1/26/20

    Equilibrium

    of adg wedge,

    example

    ignores the

    friction in gf

  • 7/23/2019 Bearing Capacity Lecture 2014

    11/38

    1/26/20

    Terzaghi (1943a) BC Equation:

    (See copy of Wu (1976), pp. 232 236)

  • 7/23/2019 Bearing Capacity Lecture 2014

    12/38

    1/26/20

    log spiral eq:

    r = a e tan

    c ds cos

    c ds

    r dFailure plane

  • 7/23/2019 Bearing Capacity Lecture 2014

    13/38

    1/26/20

  • 7/23/2019 Bearing Capacity Lecture 2014

    14/38

    1/26/20

    Other BC Equations

    See Bowles 5th Ed. (1997) , pp. 220 -231

    Kp is

    Terzaghis

    passive

    pressure

    coefficient,K KpRankine

  • 7/23/2019 Bearing Capacity Lecture 2014

    15/38

    1/26/20

    Always check other sources to eliminate typo errors!!!

  • 7/23/2019 Bearing Capacity Lecture 2014

    16/38

    1/26/20

  • 7/23/2019 Bearing Capacity Lecture 2014

    17/38

    1/26/20

    2e, see

    Bowles

    p 237

  • 7/23/2019 Bearing Capacity Lecture 2014

    18/38

    1/26/20

  • 7/23/2019 Bearing Capacity Lecture 2014

    19/38

    1/26/20

    Which formula to use?

    ps = plane starin

    tr = triaxial

    Which soil parameters to use??

    See and review Soil Mechanics Shear Strength Theory

    VERY IMPORTANT, error due to wrong soil parameters

    often much more significant than variations in formula choice

    Examples of case studies

    a. RangsitThailand, Bangkok Clay

    b. Menara Jakarta

  • 7/23/2019 Bearing Capacity Lecture 2014

    20/38

    1/26/20

    Rangsit (Bangkok Clay Site)

  • 7/23/2019 Bearing Capacity Lecture 2014

    21/38

    1/26/20

    Field vane Su

    correction

    (Bjerrum)

    Modified Terzaghis, c = 2/3 c , tan = 2/3 tan

    Field vane Su

    correction

    (Bjerrum)

  • 7/23/2019 Bearing Capacity Lecture 2014

    22/38

    1/26/20

    Menara Jakarta

  • 7/23/2019 Bearing Capacity Lecture 2014

    23/38

    1/26/20

    Beban max per

    kolom

    Mmax = 387 MN-m

    Pmax = 150 MN

    Hmax = 8.65 MN

  • 7/23/2019 Bearing Capacity Lecture 2014

    24/38

    1/26/20

    UU Triaxial

  • 7/23/2019 Bearing Capacity Lecture 2014

    25/38

    1/26/20

    CU Triaxial

    Additional Considerations

    N factors are sensitive to , especially for 35o. Do notinterpolate over more than 2o

    Most of the times, BC equations are conservative due to

    safe choice of parameters.

    Terzaghi considered other modes of failures , e.g. local shear

    failure with c = 0.67 c and tan = 0.67 tan

    B N must be corrected by:r = 1 0.25 log (B/2) , for B > 2 m, and B is in meters.

    See next slide

  • 7/23/2019 Bearing Capacity Lecture 2014

    26/38

    1/26/20

    For c soils, c Nc is the predominant portion of BC For soils, q Nq is the predominant portion of BC For B < 3 to 4 m, N is small and often neglected No one would place a footing at the surface of cohesionless

    soil.

    In case of uncertain overburden quality, Vesic does notrecommend using di correction factors

    BC equations are generally used with SF = 2.5 to 3.5

  • 7/23/2019 Bearing Capacity Lecture 2014

    27/38

    1/26/20

    Effect of water table to BC

    Use effective unit weight for q Nq and N terms whenwater table is above foundation base.

    Ignore effect if water table is below wedge zone

    If water table is below base and within (triangle) wedge zone,

    use:

    e = (2H-dw) dwwet/H + (H-dw)2/H2

    H = 0.5 B tan (45o+/2)

    dw = depth of GWT from base

    From the term 0.5 B N Wedge

    under BArea above water Area under water

    BC in layered soils (See also other texts)

  • 7/23/2019 Bearing Capacity Lecture 2014

    28/38

    1/26/20

    See slide 17

    for H

    Then qult = c1 Nc

    2.5?

  • 7/23/2019 Bearing Capacity Lecture 2014

    29/38

    1/26/20

    Then qult = c1 Nc

    See Next Slide

    Table 4.1

  • 7/23/2019 Bearing Capacity Lecture 2014

    30/38

    1/26/20

    See previous slide

  • 7/23/2019 Bearing Capacity Lecture 2014

    31/38

    1/26/20

  • 7/23/2019 Bearing Capacity Lecture 2014

    32/38

    1/26/20

    Meyerhoff & Hannas (1974, 1978)

  • 7/23/2019 Bearing Capacity Lecture 2014

    33/38

    1/26/20

  • 7/23/2019 Bearing Capacity Lecture 2014

    34/38

    1/26/20

    = -

    Super positions

    qt qt

    H

    Hf(HfH)

    qt (1- H/Hf)2

  • 7/23/2019 Bearing Capacity Lecture 2014

    35/38

    1/26/20

    = -

    Super positions

    qb qb

    H

    Hf(HfH)

    qb -qb (1- H/Hf)2

  • 7/23/2019 Bearing Capacity Lecture 2014

    36/38

    1/26/20

  • 7/23/2019 Bearing Capacity Lecture 2014

    37/38

    1/26/20

    BC formulas from SPT

    Terzaghi & Peck (1967); Meyerhof (1956, 1974):

    qa = N Kd/F1 BOF4qa = N (B + F3)

    2 Kd / (F2 B2) B>F4

    qa = allowable at 25 mm settlement

    Kd = 1 + 0.33 D/BO1.33

    Formula above (1950-60s), therefore applicable to N55 . F1 and F2corrected these.

    B (m)

  • 7/23/2019 Bearing Capacity Lecture 2014

    38/38

    1/26/20

    BC from CPT (Schmertmann, 1978)

    0.8 Nqz 0.8 Nz qc for D/B 1.5 and qc averaged from B/2

    above to 1.1 B below base.

    Cohesionless:

    Strip : qult = 28 0.0052 (300 qc)1.5 kg/cm2

    Square : qult = 48 0.009(300 qc)1.5 kg/cm2

    Cohesive:

    Strip : qult = 2 + 0.28 qc kg/cm2

    Square : qult = 5 + 0.34 qc kg/cm2

    Example Problems

    See problems in Shallow Foundation Example Problems