19
1 Beit Qad Commercial Aquaponic system Technical Manual Philip Jones April 2013

Beit Qad Commerical Aquaponic system - … Word - Beit Qad Commerical Aquaponic system.docx Author Phil Created Date 20130421135437Z

Embed Size (px)

Citation preview

Page 1: Beit Qad Commerical Aquaponic system - … Word - Beit Qad Commerical Aquaponic system.docx Author Phil Created Date 20130421135437Z

 

  1  

         

Beit  Qad  Commercial  Aquaponic  system        

Technical  Manual    

   

Philip  Jones    April  2013  

Page 2: Beit Qad Commerical Aquaponic system - … Word - Beit Qad Commerical Aquaponic system.docx Author Phil Created Date 20130421135437Z

 

     

Page 3: Beit Qad Commerical Aquaponic system - … Word - Beit Qad Commerical Aquaponic system.docx Author Phil Created Date 20130421135437Z

 

               

Beit  Qad  Commerical  Aquaponic  System    

Technical  Manual    

By  Philip  Jones                                                          

©  Byspokes  and  Ma’an  Development  Centre,  2013  All  text,  illustrations  and  photos  by  Philip  Jones.    www.byspokes.org  [email protected]  

Page 4: Beit Qad Commerical Aquaponic system - … Word - Beit Qad Commerical Aquaponic system.docx Author Phil Created Date 20130421135437Z

 

 

Table  of  contents  

SYSTEM  OVERVIEW   1  

SYSTEM  COMPONENTS   2  

Fish  tanks   2  

Solids  filtration   3  

Biological  filtration   4  

Mineralisation   6  

Hydroponic  component   7  

Seedling  production   8  

Pumping  and  aeration   8  

MANAGEMENT   10  

Cycling   10  

Aquaculture  system   10  

Hydroponic  system   11  

Water  quality   12  

SYSTEM  OPERATION   13  

Daily  tasks   13  

Weekly  tasks   13  

Monthly  tasks   13  

TROUBLESHOOTING   14  

DIRECTORY   15                

 

Page 5: Beit Qad Commerical Aquaponic system - … Word - Beit Qad Commerical Aquaponic system.docx Author Phil Created Date 20130421135437Z

 

  1  

 System  overview    The  commercial  aquaponic  system  designed  for  the  Beit  Qad  demonstration  site  consist  of  two  interlinked  components;  a  recirculating  aquaculture  system  (RAS)  and   a   hydroponic   system.   The   two   systems   are   linked   by   a   double   sump   tank  which  has  been  designed  to  allow  for  the  RAS  and  hydroponic  components  to  be  operated   independently   (as   aquaculture   and   hydroponic   systems)   or   together  (as  an  aquaponic  system).    The  RAS  component  has  been  designed  to  be  a  “low  head”   system   –   i.e.   with   minimal   vertical   height   difference   between   the  maximum  and  minimum  water   levels  across   the  components.  This   is   to  reduce  the  energy  required  for  pumping  water.      

 Figure   1:   Overview   of   the   aquaponic   system   showing   aquaculture   component   (left)   and  hydroponic  component  (right).    When   both   components   are   operating   together,   then   dissolved   nutrients   from  the  aquaculture  wastes  are  delivered  to  the  hydroponic  component  to  be  taken  up   by   plants.   During   independent   operation,   nutrients   from   the   aquaculture  system   are   not   passed   to   the   hydroponic   system   and   so   supplementary  hydroponic   nutrients  must   be   used.   However,   enabling   the   two   systems   to   be  operated   independently   greatly   enhances   the   system’s   resilience;   a  problem   in  one  of  the  systems  may  be  isolated  without  risking  the  other  system.          

Page 6: Beit Qad Commerical Aquaponic system - … Word - Beit Qad Commerical Aquaponic system.docx Author Phil Created Date 20130421135437Z

 

  2  

System  components    

Fish  tanks    The   aquaponic   system   consists   of   four   separate   round   fish   tanks   each   of  approximately  2.1m3,  thus  the  total  fish  tank  water  volume  is  around  8.4m3.    The  fish  tanks  are  constructed  from  standard,  2.5m3  (1.46m  diameter)  water  storage  tanks   (white,   to   reduce  heat   gain   in   the   summer),  which  have  been  opened  by  cutting  off  the  top,  just  below  the  shoulder  (1cm  above  the  uppermost  moulding  line).      The   fish   tanks   are   positioned   close   to   each   other   in   order   to   be   able   to   share  common  drain  and  influent  pipe  main   lines.  The  fish  tanks  are  all   levelled  with  each  other,  and  excavated  slightly  into  the  ground  (floor  height  -­‐40cm)  in  order  to  facilitate  levelling  of  the  other,  shorter,  components.  

   Effluent  water  is  drawn  from  the  bottom  centre  of  the  fish  tank  using  a  “solids  lift  overflow”  which  sets  the  maximum  water  depth   in  the  fish  tank  to  135cm.  The  overflow  pipes  (50mm  diameter)  from  all  the  fish  tanks  extend  outside  the  tanks  towards  a  central  point  between   the   tanks  where   they  are  united  by  a  110mm  collector  trap.  The  common  drainage  is  by  110mm  pipe  from  this  point.    Influent   water   is   delivered   to   each   fish   tank   at   a   height   just   above   the   water  surface  level,  at  a  rate  of  around  3m3/h  (to  fully  exchange  fish  tank  water  volume  1.4  times  per  hour).  The  water  is  delivered  parallel  to  the  fish  tank  wall  in  such  a  way  as  to  set  up  a  clockwise  rotational  current  within  the  tank.  This  circular  flow  facilitates  settling  of  the  solid  wastes  in  the  bottom  centre  of  the  fish  tanks.          

Figure  2:  Fish  tanks  being  put  into  place  (left)  and  detail  of  common  fish-­‐tank  drain  (right).  

Page 7: Beit Qad Commerical Aquaponic system - … Word - Beit Qad Commerical Aquaponic system.docx Author Phil Created Date 20130421135437Z

 

  3  

Solids  filtration    Coarse   solids   are   removed   from   the   system   via   a   “radial   flow   separator”.   The  radial   flow   separator  works  by   forcing   the  water   flow   to   change  direction   and  velocity,   which   encourages   solid   particles   to   settle   out.   Radial   flow   separators  are   very   space   efficient   when   compared   to   standard,   gravity   based   settling  ponds,  and  typically  operate  with  loading  rates  of  10m3/m2/hour.  Thus,  to  match  the   fish   tank   effluent   flow   rate   of   this   system   (12m3/hour),   a   radial   flow  separator  of  1.2m2  surface  area  is  needed.      The   radial   flow   separator   is   also   constructed   from   a   white,   standard   water  storage  tank  (1.5m3;  1.35m  diameter  -­‐   thus  1.4m2  water  surface  area)  with  the  top  removed.  The  top  of  the  water  tank  is  inserted  upside-­‐down  into  the  tank  to  make  a   slightly   conical,   funnel   like   false   floor   to   facilitate   collection  of   all   solid  wastes   in   the  centre.  The   tank   is  positioned  such   that   the  upper   rim   level,   and  water  surface  level  are  the  same  as  those  of  the  fish  tanks.  

 Figure  3:  Design  of  the  radial  flow  filter,  showing  major  components  and  internal  layout.  

Page 8: Beit Qad Commerical Aquaponic system - … Word - Beit Qad Commerical Aquaponic system.docx Author Phil Created Date 20130421135437Z

 

  4  

The  fish  tank  effluent  water  enters  the  radial   flow  separator  via  a  110mm  pipe  which  extends  into  the  centre  of  the  separator,  where  there  is  an  upward  facing  elbow,   directing   water  flow   vertically   upwards.  Around   this   elbow   is   a  radial   flow   column   made  from   a   200L   blue   barrel,  which   extends   slightly  above   the   water   surface  level.   This   forces   the  incoming   water   to   change  direction   from   up-­‐flowing  to  down-­‐flowing.  Once   the  water   flows   beyond   the  lower   end   of   this   radial  flow   column,   it   changes  direction   once   again   and   flows   upwards.   With   each   change   of   direction,   the  velocity  of  the  water  also  decreases,  which  gives  solid  wastes  the  chance  to  settle  to  the  bottom  of  the  separator  by  gravity.      Water  exits  the  radial  flow  separator  via  a  110mm  pipe  positioned  just  below  the  water  surface  level.  Solids  can  be  periodically  drawn  out  from  the  bottom  of  the  separator  via  a  sludge  drain,  made  from  50mm  pipe  drawing  from  just  above  the  bottom   centre   of   the   separator.   Sludge   is   discharged   to   a   mineralisation   tank  where  it  can  be  converted  back  to  liquid  plant  nutrients.    In  addition  to  this  coarse  solids  separator,  all  water  passes  through  a  60μm  in-­‐line  filter  before  reaching  the  hydroponic  component.        Biological  filtration    Biological  filtration  (the  conversion  of  toxic  ammonia   in   fish   wastes   into   nitrite   and  then  nitrate)   is  achieved  by  a   “Moving  Bed  Biofilm  Reactor”  MBBR.  MBBRs  are  relative  newcomers   to   the   aquaculture   industry.  MBBR   technology   uses   thousands   of  polyethylene   biofilm   carriers   (Error!  Reference  source  not  found.)  operating  in  mixed   motion   within   an   aerated  wastewater   treatment   basin.   Biocarriers  provide   a   very   large,   protected   surface,  which  supports  the  growth  of  heterotrophic  and  autotrophic  bacterial  communities.  The  specific   surface   area   (SSA)   of   biocarrier  media   is   typically   around   500m2/m3.  

Figure  4:  Constructed  radial  flow  filter  

Figure  5:  Kaldness  type  biomedia  

Page 9: Beit Qad Commerical Aquaponic system - … Word - Beit Qad Commerical Aquaponic system.docx Author Phil Created Date 20130421135437Z

 

  5  

However,  MBBRs  function  best  at  fill  rates  below  70%  (usually  40-­‐60%)  as  this  ensures  adequate  movement  of   filter  media  within   the  MBBR.  Effective  surface  area  within   the  MBBR  vessel   is   therefore   200-­‐300m2/m3.   TAN   (total   ammonia  nitrogen)  removal  rates  fluctuate  depending  on  a  range  of  environmental  factors  (pH,  alkalinity,  temperature,  DO,  BOD  of  influent  water)  but  for  the  purposes  of  this  project  can  be  assumed  to  be  in  the  region  of  1g/m2/day.  Another  advantage  of  the  MBBR  is  that  it  allows  for  supplemental  oxygenation  and  CO2  stripping  of  the  wastewater  –  further  enhancing  the  quality  of  effluent.    Daily   TAN   production   is   directly   related   to   the   amount   of   food   given,   and   the  protein  content  of  the  food,  and  can  be  calculated  using  the  following  equation:    TAN  =  Feed  weight  x  Protein  content  x  0.092                                                                            Time    It   is   proposed   to   use   32%   protein   feed,   delivered   at   2%   body   mass   (for   a  standing  crop  of  around  200kg)  in  this  system.  The  daily  total   feed  is  therefore  around  4kg.  This  gives  a  daily  TAN  production  of  118g.  118m2  of  surface  area  is  required   for  bacterial  nitrification  of   this  ammonia.  Given  the  biocarrier  SSA  of  500m3/m2,  then  236l  of  biocarrier  media  will  be  required,  in  a  vessel  of  787l    (at  30%  fill).    The  MBBR  in  this  system  has  been  purposefully  oversized  to  allow  for  future  expansion  of  the  aquaculture  component.  The  MBBR  is  constructed  from  two  1m3  IBC  tanks,  each  with  a  maximum  fill  volume  of  800l.  Thus,  at  maximum  operating  capacity,  and  a  biocarrier   fill   rate   increased  to  60%,   the  MBBR  could  denitrify  480g  TAN/day  –  equivalent  to  16kg  feed.    

Figure  6:  Completed  MBBR  chamber  (left  image)  showing  influent  pipe  (lower  left  of  image),  effluent  pipe  (top  of  image)  and  aeration  grid  (at  the  base  of  the  chamber).    Images  on  the  right  detail  assembly  of  the  aeration  grid.  

Page 10: Beit Qad Commerical Aquaponic system - … Word - Beit Qad Commerical Aquaponic system.docx Author Phil Created Date 20130421135437Z

 

  6  

Water  enters  and  leaves  the  MBBR  via  110mm  pipe.  Aeration   is  provided  via  5  parallel   20mm  PVC   pipes,  with   2mm  holes   drilled   each   20mm   along   opposing  sides,   located  at  the  bottom  of  each  MBBR  chamber.    Water  exits  the  MBBR  via  110mm  pipe  to  the  aquaculture  sump  tank.      Mineralisation    Mineralisation   is   an   aerobic,   bacterial   process   by   which   the   complex   organic  molecules  found  in  solid  wastes  are  broken  down  into  simple  mineral  ions.  Full  mineralisation  requires  approximately  28  days  of  aerobic  bacterial  activity,  thus  a   mineralisation   tank   must   be   large   enough   to   allow   a   minimum   28-­‐day  residence  time  of  discharged  sludge.    Sludge  from  the  radial  flow  separator  is  discharged  into  a  mineralisation  tank  –  constructed  in  the  same  was  as  one  of  the  MBBR  chambers,  from  an  IBC  tank  and  aeration   grid.   Biocarrier  media   is   added   to   the  mineralisation   tank   to   provide  additional   surface   area   for   bacterial   activity,   and   also   to   facilitate   mechanical  breakdown  of   larger  particles   through   collision  and  agitation.  The  daily   sludge  discharge  volume  is  around  20l  (around  5l  sludge  is  produced  per  1kg  feed),  thus  a  minimum  volume  of  560l  is  required  to  provide  the  requisite  28-­‐day  residence  time.  The   functional   volume  of   the  mineralisation   tank   is   actually  800l,   and   so  this  requirement  is  exceeded  in  the  current  system  design.      

   As   fresh   slurry   is   discharged   into   the   mineralisation   tank,   the   water   level  increases   slightly   and   the   supernatant   overflows   into   a   mineralised   nutrient  sump.   The   overflow   is   screened   to   prevent   the   exit   of   larger   particles,   and  effluent   passes   through   a   60μm   filter   before   reaching   the   sump.   The   sump   is  fitted   with   a   float-­‐switch   activated   pump   to   deliver   this   nutrient   laden   water  directly  to  the  hydroponic  system.  

Figure  7:  Mineralisation  tank  showing  vigorous  aeration  (left)  and  screened  pump  chamber  (right).  

Page 11: Beit Qad Commerical Aquaponic system - … Word - Beit Qad Commerical Aquaponic system.docx Author Phil Created Date 20130421135437Z

 

  7  

Hydroponic  component    This   system   uses   the   hydroponic   “Nutrient   Film   Technique”   (NFT)   for   plant  production.    In  NFT  growing  systems,  plants  are  grown  in  tubes  through  which  a  thin   film   of   nutrient   rich  water   continually   flows.   The   NFT   component   of   this  system   consists   of   80   6m   long   runs   of   75mm  diameter   pipe,   each   pipe  with   a  plant  hole  every  20cm;  i.e.  space  for  2,400  plants.  

   

NFT  pipes  are  supported  on  custom-­‐made  iron  stands,  1m  in  height  and  4m  in  length.  Four  pipe   stands  are  used   to   span   the  6m  NFT  pipe  run,  and  the  stands  are  shaped  to  accommodate   NFT   pipes   at   densities   of   5  pipes   per   meter   (40   pipes)   and   10   pipes  per  meter  (40  pipes).    Influent   water   overflows   from   the  aquaculture  sump  tank  and  passes  through  a   60μm   filter   before   going   on   to   thy  

hydroponic  component.  Water  is  delivered  in  a  25mm  pipe  mainline,  and  to  each  NFT  pipe  via  individual  8mm  flexible  tubes  with  flow-­‐control  valves.  Flow  should  remain  in  the  region  of  1-­‐2l/minute  in  each  NFT  pipe.  The  NFT  pipes  are  laid  out  to   slope   at   around   1°   -­‐   2°   along   their   length,   and   they   all   drain   to   a   common  110mm  drainpipe  which  ends  in  a  1m3  sump  tank.    From  this  sump  tank,  water  is   pumped   back   to   the   aquaculture   sump   tank;   the   pumping   rate   into   the  aquaculture   sump   is   equal   to   the   overflow   rate   from   the   double   sump   to   the  hydroponic  system.  The  desired  overall  flow  rate  is  1-­‐2l/minute  in  each  of  the  80  NFT  pipes;  i.e.  80-­‐160l/minute  (4,800  –  9,600m3/h).        

Figure  8:  NFT  pipes  of  the  hydroponic  system.  Note  flow  control  valve  (left)  and  individual  pipe  supply  lines  fed  by  the  25mm  mainline  (right).  

Figure  9:  NFT  pipe  stands.  

Page 12: Beit Qad Commerical Aquaponic system - … Word - Beit Qad Commerical Aquaponic system.docx Author Phil Created Date 20130421135437Z

 

  8  

Seedling  production    In  addition  to  the  NFT  system  for  crop   growout,   the   hydroponic  component   has   three   tables   for  seedling   production.   The   tables’  tray-­‐tops   are   sized   to  accommodate   9   standard   seed  trays   –   between   1683   and   3960  seedlings  per  table,  depending  on  the   hole   size   in   the   selected  seedling   trays.   The   seedling  production   tables   operate   on  floating   raft   style   basis,   with   the  polystyrene  seed  trays  floating  on  top  of  a  constant  depth  of  around  5cm  water.  The  water  flows  continually  in  and  out  of  the  table’s  tray  top  in  order  to   ensure   sufficient   oxygenation   and   nutrient   supply   for   vigorous   seedling  growth.      Pumping  and  aeration    The   aquaculture   system   has   been   designed   to   be   a   low-­‐head   system.   The  maximum  head  (water  surface  level  difference)  between  the  fish  tank  water  level  and  double  sump  water  level  is  20cm.  Thus,  it  is  possible  to  use  an  airlift  system  for  water  pumping.  This  has  several  advantages  over  using  a  water  pump:  

• Lower  energy  consumption  for  the  volume  of  water  moved  • Lower  maintenance  as  no  moving  parts  are  immersed  in  water    • In  addition  to  being  pumped,  water   is  also  aerated  –  removing   the  need  

for  additional  aeration  in  the  fish  tanks.  

Figure  10:  Seedling  production  table  containing  9  260-­‐hole  polystyrene  seedling  trays.  

Figure  11:  Airlift  system.  Left  image:  water  supply  mainline  and  airlift  bases.  Centre  image:  Completed  airlift  assembly.  Top  right  image:  Air  delivery  manifold.  Lower  right  images:  Air  injector  and  diffuser  head.  

Page 13: Beit Qad Commerical Aquaponic system - … Word - Beit Qad Commerical Aquaponic system.docx Author Phil Created Date 20130421135437Z

 

  9  

Airlift   pumps   can   only   raise   water   20%   of   the   insertion   depth   (the   depth   at  which  air   is   injected),  and  need  airflow  twice  that  of   the  desired  water   flow.   In  this  system,  each  fish  tank  is  supplied  by  its  own  airlift,  however  the  four  airlifts  share  a   common  water   source,  namely   the  outflow   from  the  double  sump.  The  water  is  delivered  to  the  four  airlifts  through  110mm  pipe.  The  airlift  risers  are  75mm   in  diameter,  with  air   injection   to  a  depth  of  110cm  via  20mm  PVC  pipe  and  a  round  air  diffuser  with  2mm  pores.  The  airflow  rate  to  each  airlift  must  be  maintained  around  100l/minute  (6m3/hour).    In   addition   to   the   airlifts,   aeration   must   also   be   supplied   to   the   MBBR   and  mineralisation   tank.   All   aeration   requirements   are   met   by   one   2hp   “Showfu”  regenerative  blower,  operating  continually.      The  hydroponic   system   is  at  a   lower   level   than   the  aquaculture  system.   In   this  way,  it  may  be  gravity-­‐fed  from  the  double  sump.  However,  this  means  that  the  head  is  too  great  to  be  able  to  use  airlifts  to  return  water  to  the  double  sump.  As  the   total   flow   rate   for   the  hydroponic   system   is   comparatively   low,   then   small  submersible  water  pumps  are  used  (two  150W  Rio  5000  pumps).  These  pumps  must   also   operate   continually   when   the   hydroponic   system   is   fully   stocked.  However,   during   initial   stocking   it   is   possible   to   use   only   one   pump   and   thus  reduce  electricity  consumption.        

         

Page 14: Beit Qad Commerical Aquaponic system - … Word - Beit Qad Commerical Aquaponic system.docx Author Phil Created Date 20130421135437Z

 

  10  

Management    Cycling    Prior   to   stocking   the   aquaculture  system  it   is   important   to  establish  the   bacterial   communities   in   the  biofilter.   This   can   be   achieved   by  suspending  a  mesh-­‐bag  of  manure  in   one   of   the   fish   tanks,   and  switching  on  the  pumps  to  operate  the   system.   As   the   manure  decomposes   it   releases   ammonia  (NH3/NH4+)   –   the   primary  metabolite   excreted   by   fish.   This  ammonia   provides   a   food   supply  to   naturally   occurring  Nitrosomonas   sp.   bacteria   and  encourages   their  growth.  Nitrosomonas   consume  ammonia,  and  produce  nitrite  (NO2-­‐).   The   nitrite   provides   a   food   supply   for  Nitrobacter   sp.   Bacteria,   which  consume   nitrite   and   produce   nitrate   (NO3+).     By   daily   monitoring   of   water  chemistry   it   is   possible   to   check   on   the   development   of   the   bacterial  communities;  once  ammonia  and  nitrite  levels  have  spiked  and  returned  to  zero,  and  nitrate  levels  have  started  to  rise,  the  system  is  ready  to  be  stocked  with  fish.      During   cycling,   and   indeed   until   the   aquaculture   system   is   fully   stocked,   it   is  preferable  to  run  the  aquaculture  and  hydroponic  systems  independently.  This  is  because  until  the  aquaculture  system  is  fully  stocked,  and  feed  is  being  given  at  the   recommended   rate,   there   will   not   be   sufficient   nutrient   production   to  maintain   the   hydroponic   system   at   full   planting   density.   By   operating   the  systems  independently  it   is  possible  to  supplement  nutrients  in  the  hydroponic  system  and  thus  fully  plant  it  immediately.      Aquaculture  system    The   suggested   management   plan   for   the   aquaculture   system   is   for   sequential  batch   harvests   from   each   fish   tank.   The   first   fish   tank   is   to   be   stocked   with  approximately   150   tilapia   fingerlings.   After   6   weeks   the   second   fish   tank   is  stocked  with  150  quarantined  tilapia  fingerlings.  After  another  6  weeks,  the  third  fish   tank   is   stocked  with   150   quarantined   fingerlings,   and   after   one  more   six-­‐week  period  the  first  tank  is  fully  harvested  and  re-­‐stocked.    In   this   way,   a   regular   production   of   around   75kg   fish   per-­‐harvest   may   be  achieved.   Preferable   to   a   one-­‐off   batch   harvest   of   each   tank   would   be   to  gradually   harvest   the   tank   during   its   last   month   of   growout;   in   this   way   the  

Figure  12:  A  simple  aquarium  test  for  (from  left)  ammonia,  nitrite  and  nitrate  in  the  water.  

Page 15: Beit Qad Commerical Aquaponic system - … Word - Beit Qad Commerical Aquaponic system.docx Author Phil Created Date 20130421135437Z

 

  11  

quantity   of   fish   to   be   sold   each   day   is   reduced,   and   the   remaining   fish   have  chance  to  grow  to  a  slightly  larger  size.  Fish   are   to   be   fed   at   least   three   times   per   day.   Each   tank   should   be   fed   to  satiation   (the   amount   that   the   fish   will   consume   within   5   minutes)   at   each  feeding,   taking   care   to   never   exceed   the  maximum  daily   feed   amount   of   1.5kg  food  per  tank  per  day  (or  6kg  feed  per  day  in  the  whole  system).    Periodically,  a  sample  of   fish  should  be  netted  from  each  tank  and  assessed  for  signs  of  disease  or  parasites.      Hydroponic  system    The  suggested  management  plan  for  the  hydroponic  system  is  to  aim  for  daily  (5  days   per   week)   production   of   crops.   Based   on   lettuce   production,   then   150  seedlings  (5  NFT  pipes)  should  therefore  be  harvested  each  day.    Once   5   pipes   have   been   harvested   from   the   low-­‐density   planting   section,   all  remaining  pipes  are  advanced  5  spaces.  5  pipes  are  moved  from  the  high-­‐density  stands   to   the   low-­‐density   stands,   and   all   remaining   pipes   in   the   low-­‐density  section   are   advanced   5   spaces.   The   harvested   pipes   are   cleaned,   and   returned  top   the   start   of   the   low-­‐density   section,   where   they   are   re-­‐filled   with   new  transplants.  

 This   system   of   management  may   be   used   either   with   purchased   seedlings,   or  with  seedlings  produced  on-­‐site.   If  seedlings  are  to  be  produced  on  site,  then  it  will   be   necessary   to   sow   around   160   per   day   (to   allow   for   lower   than   100%  germination   rate)   into   the   seedling   production   table.   After   three  weeks,   these  seedlings  will  be  ready  to  transplant  to  the  growout  system.    When  running  individually,  fertiliser  should  be  added  to  the  hydroponic  system  on   a   daily   basis,   to   closely  match   the  nitrogen   loading   that  would  be   expected  

Figure  13:  Transplanting  lettuce  seedlings  in  the  NFT  pipes  (left),  and  one  week  after  transplanting  (right).  

Page 16: Beit Qad Commerical Aquaponic system - … Word - Beit Qad Commerical Aquaponic system.docx Author Phil Created Date 20130421135437Z

 

  12  

when  operating   the   two  systems   in  synchrony;   i.e.  equivalent   to   the  amount  of  ammonia  produced   from  regular   feeding   in   the  aquaculture   system   (maximum  176g  TAN/day).  When  transplanting  seedlings  to  the  NFT  pipes  it  is  important  to  rinse  off  all  soil  from   around   the   roots   –   this   reduces   the   chance   of   waterlogging   and   the  formation  of  anaerobic  zones,  reducing  the  opportunities  for  fungal  attack  of  the  plants.  When   using   the   seedling   tables   to   produce   seedlings,   th   planting   holes  should  be  filled  with  vermiculite  only  –  no  soil.  This  facilitates  root  rinsing  (the  vermiculite   may   be   subsequently   re-­‐used),   and   reduces   the   opportunities   for  introduction   of   fine   particulate   matter   into   the   system.   Particulate   matter  provides  a   surface  on  which  pathogenic   fungi  and  bacteria  may  grow,  and  also  necessitates  more  regular  cleaning  of  the  filter.      Water  quality    During   normal   operation   –   the   aquaculture   and  hydroponic   systems   operating  together,  the  following  water  quality  should  be  maintained:    Ammonia:  0-­‐0.25mg/l  Nitrite:  0  mg/l  Nitrate:  40-­‐160mg/l  pH:  6.8  KH:  >50mg/l  CaCO3  Temperature:  25-­‐29°C    When   the   systems   are   operating   independently   then   the   aquaculture   system  should   be   maintained   as   above.   The   hydroponic   system   will   be   relying   on  inorganic  fertilisers,  and  so  electrical  conductivity  (EC)  of  the  water  may  be  used  to   provide   an   indication   of   nutrient   availability.   Therefore,   the   hydroponic  system  should  be  maintained  at  pH  5.5-­‐6.8  and  EC  1200-­‐1500μS.            

Page 17: Beit Qad Commerical Aquaponic system - … Word - Beit Qad Commerical Aquaponic system.docx Author Phil Created Date 20130421135437Z

 

  13  

System  operation    Daily  tasks  

• Check  all  equipment  (water  and  air  pumps)  is  functioning,  and  flow-­‐rates  are  correct.  

• Check  fish  tanks  –  ensure  fish  are  behaving  normally  • Check  water  pH  –  adjust  if  necessary  • Feed  fish  • Drain  sludge  from  radial  flow  separator  • Harvest  plants  • Advance  all  NFT  pipes  • Transplant  seedlings  to  cleared  NFT  pipes  • Sow  seeds  to  replace  transplants  • Clean  hydroponic  filter  

 Weekly  tasks  

• Full  water  analysis  –  test  and  record  all  parameters  • Apply  foliar  feed  to  plants  if  necessary  • Add  chelated  iron  and  other  supplementary  plant  nutrients  as  necessary  • Ensure  seedling  trays  are  fully  planted  • Net  some  fish  for  a  visual  health  check  

 Monthly  tasks  

• Harvest  and  re-­‐stock  fish  as  necessary  • Clean  entire  system,  including  pipework,  air  filter  and  air  diffuser  heads  

in  the  airlifts.            

Page 18: Beit Qad Commerical Aquaponic system - … Word - Beit Qad Commerical Aquaponic system.docx Author Phil Created Date 20130421135437Z

 

  14  

Troubleshooting    Problem:  Pumps  not  running.  Check:  That  it  is  plugged  in,  and  that  the  electricity  cable  is  also  connected  to  the  mains.  Check  that  there  is  not  a  power  cut.  If  the  pump  is  broken,  buy  a  new  one  immediately.      Problem:  Plants  not  growing  well,  looking  unhealthy;  parasite  infestation.    Check:  Apply  foliar  feed  or  aquaponics-­‐safe  pesticide  if  infestation  is  suspected.  Test  pH,  ammonia,  nitrite  and  nitrate  levels.   If  nitrates  are  low,  stock  more  fish  or  increase  feeding.  If  pH  is  wrong,  correct  it.    Problem:  Fish  looking  unhealthy  or  dying.  Solution:   Test   pH,   ammonia,   nitrite   and   nitrate   –   treat   any   water   quality  problems   accordingly   (see   below).   Visually   inspect   fish   for   parasites   and   treat  accordingly.    Problem:  pH  too  high  or  too  low.  Check:  Test  KH,  GH  and  pH.  If  pH  is  too  high,  add  phosphoric  acid  each  day  until  pH  reaches  6.8-­‐7.5,  being  careful  not  to  change  the  pH  by  more  than  0.2  points  per   day.  If   pH   is   too   low,   top   up   system  with   stored   groundwater   or   add   base  such  as  CaO  (lime).    Problem:  Ammonia  or  nitrites  too  high.  Check:  Check  air  pump  and  water  pumps  are  working;  check  that  the  biofilter  is  not   clogged   or   fouled,   and   that   water   is   flowing   normally.   Stop   feeding   and  remove   uneaten   food;   test   ammonia   and   nitrite   every   day   till   back   to   normal,  resume   feeding   and   continue   testing   the   water   for   a   couple   of   days   more.  Additionally  you  can  exchange  up  to  50%  of  the  water  or  harvest  some  fish.    Problem:  Nitrates  too  high.  Check:  Have  plants  been  harvested/removed  and  not  replaced?  Transplant  more  seedlings  to  NFT  pipes  immediately;  plant  more  seeds  in  seedling  tray.    Problem:  Algae  bloom  –  water  turns  green.  Check:   Ensure   that   the   system   is   shaded   from   excess   light.   During   an   algae  bloom   it   is   common   to   get   very   low   ammonia,   nitrite   and   nitrate   readings  because   the   plankton   takes   up   all   available   nutrients.   By   removing   the   light  source,   the  plankton  will  die.  Be  vigilant   for  water  quality  problems,  as  a  mass  plankton  die-­‐off  will   liberate   these  nutrients  and  can  cause  very  high  ammonia  levels.  Plant  more  plants  to  take  up  available  nutrients.    Problem:  Plants  suffering  from  fungus.  Solution:   Increase  flow  rate  in  NFT  pipes;  increase  slope  in  NFT  pipes;  increase  aeration   to   sump   tanks.   If   the   hydroponic   and   aquaculture   systems   are   being  operated  separately,  discharge  and  replace  water  in  hydroponic  system.    

Page 19: Beit Qad Commerical Aquaponic system - … Word - Beit Qad Commerical Aquaponic system.docx Author Phil Created Date 20130421135437Z

 

  15  

Directory    Specialist  aquaculture  and  aquaponic  supplies    LivinGreen,  Hadera,  Israel  Manager:  Moti  Cohen  Telephone:  0502999209  Email:  [email protected]    Aquaculture  feed    Raanan  Feeds,  Kfar  Masaryk,  Israel  Contact:  Omri  Lev  Telephone:  0508273018  Email:  omri@raanan-­‐fishfeed.com    Plumbing  and  plastics    Royalplas,  Hebron,  Palestine  Contact:  Monzer  Zghier  Telephone:  0599365041  Email:  [email protected]    Issa  Habeeb  store,  Bethlehem  Contact:  Issa  Habeeb  Telephone:  0598046144