34
Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität zu Berlin In collaboration with Simon Badger and Peter Uwer ACAT 2011, London

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

Embed Size (px)

Citation preview

Page 1: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

Numerical Evaluation of one-loop QCD Amplitudes

Benedikt BiedermannHumboldt-Universität zu Berlin

In collaboration with Simon Badger and Peter Uwer

ACAT 2011, London

Page 2: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

2Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

Precision predictions for the LHC requiremulti-leg parton amplitudes

• Automation at tree-level solved, e.g. MadGraph, HELAC,…• Important goal: Automation of NLO QCD-amplitudes with many legs• Current attempts: FeynArts, GOLEM/Samurai HELAC-NLO, BlackHat, Rocket…

NGluon: ordered one-loop gluon amplitudes with arbitrarily many legs, publicly available at

Motivation

www.physik.hu-berlin.de/pep/tools

Computer Physics Communications 182 (2011), 1674arXiv:1011.2900

Page 3: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

3Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

Colour ManagementColour-ordered Feynmanrules (only gluonic vertices shown):

[cf. Tasi lectures from Lance Dixon 1995]

• subset of diagrams with fixed order of external particles• far less diagrams• no crossing lines• gauge invariant smaller building blocks• efficient recursive calculation

: colour-ordered amplitudes

: primitive amplitudes

[Berends, Giele 1987]

[Bern, Dixon, Kosower 1993]

Page 4: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

4Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

Full-colour Amplitude

Sum over non-cyclicpermutations

colour basis: traces ofgenerators of SU(N)with Tr[TaTb] = ab

colour decomposedordered tree amplitudes

notation:

At one-loop:

Colour decomposed one-loop amplitudes are not ordered but can be expressed as special linear combinations of ordered one-loop amplitudes (primitive amplitudes).

At tree-level (gluonic example):

Page 5: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

5Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

NGluon: Fully automated numerical evaluation of

primitive amplitudes for the pure gluonic case with arbitrarily many external legs.

Fully automated numerical evaluation of primitive amplitudes for massless QCD with arbitrarily many external legs.

Current extension:

Page 6: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

6Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

Scalar Integral Basis

Decomposition of an arbitrary one-loop amplitude:

boxes triangles bubbles tadpoles

No tadpoles in massless theories

[Passarino,Veltman1979]

Topology:

computation of one-loop amplitudes =determination of integral coefficients

Page 7: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

7Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

Amplitude Properties

Cut-constructible part: part of the amplitude which can be constructed unambiguously from analytic properties in the complex plane.

cut-constructible part: contains logarithms and divergencescomputed using 4d-cuts

rational part: incorporates information from d = 4 - 2ε dimensions

Page 8: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

8Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

Integrand Properties

[Ossola,Papadopoulos,Pittau2007][Ellis, Giele, Kunszt 2008]

Numerators: loop-momentum independent part + spurious terms

Loop-momentum independent part is the desired integral coefficient

Focus on the integrand of the amplitudes

Spurious terms: loop-momentum tensors which vanish after integration

Page 9: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

9Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

Box ExampleIntegrand :

Tensor structure of the box part well known:

Compute for two different system of equations determine

How do weget ?

Page 10: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

10Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

Projecting out the Numerators

The loop-momentum must be constructed suchthat the propagators vanish: on-shell cut condition.

Product of four tree amplitudes

• multiply with• set loop momentum on-shell:

Page 11: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

11Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

Extraction of the Coefficients

• Evaluate the integrand for different loop-momenta „product of tree amplitudes“

“system of equations”

• Disentangle integral coefficients from spurious terms using information about the tensor structure

Same technique extended to the rational part with aneffective mass to incorporate the d-dimensional information.

[Bern, Dixon, Dunbar, Kosower 1997][Badger 2009]

Page 12: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

12Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

• On-shell: loop-momentum parametrisation with van Neerven-Vermaseren basis

• Tree amplitudes: recursion techniques

• Disentanglement: Discrete Fourier Projection (DFP)

[van Neerven, Vermaseren 1984]

[Berends, Giele 1987]

• numerical C++ implementation of D-dimensional unitarity

• Loop integrals: FF, QCDLoop [van Oldenborgh 1990; Ellis, Zanderighi 2008]

• Extended precision: qd-package [Hida, Li, Bailey 2008]

Implementation

Page 13: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

13Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

Recursive Tree-level Techniques

= +

External wave functions, Polarization vectors

color ordered vertices [Berends, Giele 1987]

off shell leg

Page 14: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

14Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

1 partoncurrents

2 partoncurrents

3 partoncurrents

Bottom-up Approachcalculation

loop-momentum

external legs

1. Cache all possible off-shell currents that involve external legs2. Connect loop-currents with external currents

Page 15: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

15Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

Tree Amplitude Calculation

Very efficientcalculation:t < 0.3 secondsfor 100 gluons

Page 16: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

16Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

Checks for primitive amplitudes

• Numerical cross checks with results from[Giele, Kunszt, Melnikov arXiv:0801.2237][Giele, Zanderighi arXiv:0805.2152][van Hameren arXiv:0905.1005]

• Analytic cross checks

• Scaling test

• Known structure of IR- and UV-singularities

[Bern, Dixon, Kosower arXiv:hep-ph/9409393][Bern, Dixon, Kosower arXiv:hep-ph/0505055][Berger, Bern, Dixon, Forde, Kosower arXiv:hep-ph/0607142]

Page 17: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

17Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

Scaling Test - Validation

Scaling relation:

Page 18: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

18Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

Universal Pole Structure in QCD

[Giele, Glover 1992]

Compare analytic poles with with numerically computed poles

Page 19: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

19Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

1/ε2-pole, 1/ε-pole and finite part

Accuracy: logarithm of the relative uncertainty = number of valid digits

Page 20: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

20Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

Reliability of NGluon

Fraction of events with an accuracy above -3for MHV amplitudes:

Page 21: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

21Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

Analytic Checks: 6 gluons

Distribution independent on the helicity-configuration

Page 22: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

22Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

Analytic checks: qq+ngluon

Page 23: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

23Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

Asymptotic Time Scaling

Constructive Berends-Giele implementation:

Cache-improved partial amplitudes:

Tree-Amplitudes:

Integral Coefficients:

k = 5 for the pentagonsk = 4 for the boxesk = 3 for the trianglesk = 2 for the bubbles

NGluon:Expected scaling:

Observed scaling for

Topology:

Page 24: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

24Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

Runtime Measurements[Giele, Zanderighi][Badger, Uwer, BB]

for large n:

Page 25: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

25Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

Full NLO squared Matrix Elements

• Full cross-checks for colour-helicity summed di-jet completed

primitive amplitude full colour amplitude colour-helicity summedsquared matrix elements

[Kunszt, Soper 1992][Ellis, Sexton 1986]

• 2->3: match up with the full colour epsilon poles

• 2->4: correct 6 gluon full colour-helicity, most quark channels finished

We do have the colour summed results.We do not have the phenomenology yet.

Page 26: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

26Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

Conclusion and Outlook

• NGluon is a fully numerical program to calculate one-loop primitive amplitudes for pure gluonic case• Extension to the massless quark case completed• Various tests for numerical accuracy and speed• Reliable for up to 14 gluons in double precision

Conclusion

Outlook

• First phenomenological calculations

Page 27: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

27Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

Rational Part

Supersymmetric decomposition of gluon amplitudes:

The rational terms of the one-loop gluon amplitude are the same as those coming from contributions with a scalar loop.

[Bern, Dixon, Dunbar, Kosower 1994]

Absorb epsilon dependence in scalar mass:

[Bern, Dixon, Dunbar, Kosower 1997]

Page 28: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

28Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

Rational Part

Integrand for the rational part is a polynomial in the scalar mass.

Disentanglement of the massive polynomial coefficients

• Expand integral basis in higher integer dimension and take ε → 0 limit• Additional hidden pentagon contributions• More complicated subtraction procedure• Use the same four dimensional techniques

[Giele, Kunszt, Melnikov 2008][Badger 2009]

Page 29: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

29Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

Triangles

• multiply with• go on-shell:

Product of three tree amplitudes – box part

Page 30: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

30Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

Boxes versus TrianglesExample with four external legs:

One box witha quadruple cut:

Four boxes with triple cuts:

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

41

2 3

4

Boxsubtraction: Remove all boxes with triple cuts to get the pure triangle part.

1

2

3

4 1

2 3

4

2

1 34 4

1

2

3

Four triangles with triple cuts:

Page 31: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

31Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

Discrete Fourier Projection I

Integrand is a complex valued power series in t with finite number of power terms:

# of power terms = # of spurious terms + 1

Cut-constructible triangles:# of power terms = 2p+1 = 7 for p=3

• multiply by• sum over m

Page 32: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

32Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

Discrete Fourier Projection II

Mathematics behind the Fourier Projection:

• Complete and orthonormal function basis

• Uses Z(N) as discrete subgroup of U(1)

• Perform n independent projections for n free parameters (2 in the cut-constructible bubble case)

Page 33: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

33Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

On-shell conditions in 4 Dimensions

Box case:

4 equations:

loop momentum entirely “frozen”

Triangle case:

3 equations:

loop-momentum and integrand depend on one free parameter t:

Bubble case:

2 equations:

two free parameters t and y:

Page 34: Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität

34Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011

One-loop Methods

n-point amplitude =sum of Feynman diagrams

sum of scalarone-loop integrals

[Passarino,Veltman1979]

computation of one-loop amplitudes =determination of the coefficients

are rational functions of kinematical invariants,in general d-dimensional.