32

Biodiversity of Cacti

Embed Size (px)

DESCRIPTION

cactus

Citation preview

  • The Cactac

    plant family

    sions and

    knowledge

    to their high

    with data o

    of the speci

    eas of all ca

    fied and ch

    diversity. O

    versity patt

    pollination

    logeny of t

    extremely

    threat and

    This volume

    analysis of o

    eae with c. 1

    y of the arid

    molecular

    of the phylog

    h value as orn

    n ecological p

    ies are availab

    actus species

    haracterized s

    Overall diversit

    erns of all tax

    syndromes a

    he Cactaceae

    small distrib

    insufficient c

    e presents the

    one of the larg

    1435 species

    regions of th

    studies res

    geny and taxo

    namental plan

    preferences an

    ble. In this vo

    are mapped

    seven geogra

    ty patterns of

    xonomic subg

    are presented

    e. More than

    bution ranges

    coverage by

    e most compr

    ger plant fam

    are the mos

    he Americas.

    ulted in an

    onomy of this

    nts, countless

    nd geographic

    lume, the dist

    . On this basi

    aphical cente

    f the family, a

    roups, growth

    and mapped

    50% of the s

    s, resulting i

    existing prote

    rehensive biog

    ilies.

    st important

    Recent revi-

    n improved

    s group. Due

    publications

    c occurrence

    tribution ar-

    s, we identi-

    rs of cactus

    s well as, di-

    h forms, and

    on the phy-

    species have

    in potential

    ected areas.

    geographical

  • Text zwei c. 205 pag

    all Cactus

    c. 60 colohabitats

    Analyses agrowth fo

    Based on BARTHLOTT,

    KOROTKOVA,

    J. (2015): B

    7. 205 page

    x 29.7 cm

    1437-2517.

    Cactaceae:Generic diversity (128 gGenera per 2500 km

    1 - 23 - 45 - 67 - 89 - 1213 - 1516 - 1819 - 22

    sprachig Engl

    ges, c. 333 co

    species

    or figures inc

    and diversity

    rms, and polli

    the most rece

    W., BURSTE

    N., MIEBACH,

    iogeography

    es, 333 maps,

    (A4), Hardco

    Bezugsadress

    gen.)

    ish und Deuts

    lored maps sh

    cl. 44 fotos o

    maps for all

    ination syndro

    ent phylogene

    EDDE, K., GE

    A., RAFIQPOOR

    and Biodiver

    , ca. 60 photo

    over Price:

    se (to order b

    1500 km' Barthlott et al. 2013

    Map 26

    sch

    howing the di

    of cacti specie

    tribes and ge

    omes

    etic studies

    EFFERT, J.L.,

    R, M.D., STEIN,

    sity of Cacti.

    os and other

    39,- + tran

    y): [email protected]

    stribution of

    es and their

    enera, major

    IBISCH, P.L.,

    A. & MUTKE,

    Schumannia

    figures. 21.0

    nsport, ISSN

    u

  • Wilhelm Barthlott, Kerstin Burstedde, Jan Laurens Geffert, Pierre L. Ibisch, Nadja Korotkova,Andrea Miebach,M.Daud Rafiqpoor,Anke Stein & Jens Mutke

    Biogeography and biodiversity of cactiBiogeographie und Biodiversitt der Kakteen

    Ein Sonderheft derDeutschen Kakteen-Gesellschaft e.V.

    und der Gesellschaft sterreichischer Kakteenfreunde

    Schumannia 72015

    herausgegeben vonDetlev Metzing

    Schumannia

  • AbstractThe Cactaceae with c. 1,435 species are the most important plant family of the arid regions of the Americas. Recent revisions and molecu-lar studies resulted in an improved knowledge of their phylogeny and taxonomy. Due to their high value as ornamental plants, countlesspublications with data on ecological preferences and geographic occurrence of the species are available. In this volume, the distribution ar-eas of all cactus species are mapped. On this basis, we identified and characterized seven geographical diversity centers. Overall diversitypatterns of the family, as well as, diversity patterns of all taxonomic subgroups, growth forms, and pollination syndromes are presented andmapped on the phylogeny of the Cactaceae. More than 50% of the species have extremely small distribution ranges, resulting in potentialthreat and insufficient coverage by existing protected areas.This volume presents the most comprehensive biogeographical analysis of oneof the larger plant families, illustrated by 333 colored maps and 55 color figures on c. 200 pages.

    KurzfassungDie Cactaceae sind mit rund 1.435 Arten die bedeutendste Pflanzenfamilie der amerikanischen Trockengebiete.Aktuelle Revisionen undmolekulare Analysen haben das Verstndnis von Taxonomie und Phylogenie erheblich verbessert.Aufgrund des weltweiten Interesses andieser Zierpflanzengruppe liegen unzhlige Publikationen zu den kologischen Ansprchen und Standorten vor. In diesem Band wurdendieVerbreitungsmuster allerArten erfasst und auf farbigenKarten dargestellt.Auf dieserGrundlage wurden siebenDiversittszentren iden-tifiziert und nher charakterisiert. Diversittsmuster der Gesamtfamilie wie auch aller taxonomischen Untergruppen sowie z. B.Wuchsfor-men und Bestubungssyndromen werden prsentiert und unter Einbeziehung phylogenetischer Analysen diskutiert. ber 50 % der Kak-teen haben sehr kleine Verbreitungsareale, womit in vielen Fllen eine potentielle Gefhrdung und unzureichendeAbdeckung durch exis-tierende Schutzgebiete einhergeht. Illustriert durch insgesamt 333 farbige Karten und 55 farbige Abbildungen auf ca. 200 Seiten wird diebisher umfangreichste biogeographischeAnalyse einer greren Pflanzenfamilie vorgelegt.

    ResumenBiogeografa y Biodiversidad de las Cactceas. Cactaceae con aprox. 1435 especies, es la familia ms importante de plantas en las zonas ri-das de Amrica. Revisiones y estudios moleculares recientes han mejorado el conocimiento de la taxonoma y filogenia de este grupo. De-bido a su importancia como plantas ornamentales, estn disponibles un sinnmero de publicaciones sobre las preferencias ecolgicas y lasdistribuciones geogrficas de las especies. En este volumen estn representadas grficamente las reas de distribucin geogrfica de todaslas especies de cactos. Con base en esta informacin hemos identificado siete centros geogrficos de diversidaden el grupo. En la filogeniade Cactaceae se representan los patrones de diversidad general de la familia, al igual que los patrones de diversidad de sus subgrupos taxo-nmicos, formas de crecimiento y sndromes de polinizacin.Ms del 50% de las especies presentan mbitos de distribucin geogrfica muyrestringidos, resultando en una amenaza potencial y presencia insuficiente en las reas protegidas en existencia. Este volumen presenta elanlisis biogeogrfico ms comprensivo de una de las familias ms grandes de plantas, ilustrado con 55 figuras y 333 mapas a color en aprox.200 pginas.

    205 Schumannia 7 2015

    Abstract / Kurzfassung / Resumen

    Corresponding Author / Korrespondenzautor:Prof. Dr.Wilhelm BarthlottNees Institute for Biodiversity of Plants, University of BonnVenusbergwerg 2253115 Bonn Germanye-Mail: [email protected]

  • Contents/Inhalt

    Foreword and acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Vorwort und Danksagungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Einleitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    2 Cactus ecology and biogeography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13kologie und Biogeographie der Kakteen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    2.1 Cacti and their habitats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Kakteen und ihre Lebensrume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    2.2 Biogeography and palaeo-history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Biogeographie und Florengeschichte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    3 Phylogeny, evolution and systematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Phylogenie, Evolution und Systematik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

    3.1 Finding the closest relatives of cacti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Die nchstenVerwandten der Kakteen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

    3.2 Age estimates for the Cactaceae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Schtzungen desAlters der Cactaceae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

    3.3 Current understanding of phylogenetic relationships within Cactaceae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Das aktuelle Verstndnis der phylogenetischen Beziehungen innerhalb der Cactaceae . . . . . . . . . . . . . . . . . . . . . . . . . 27

    3.4 Basal cactus lineages and the origin of cacti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Frhe Kakteen-Linien und der Ursprung der Kakteen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    3.5 Relationships within Cactoideae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Beziehungen innerhalb der Cactoideae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    3.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Schlussbemerkungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    4 Mapping the diversity of cacti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30Kartographische Darstellung der Kakteen-Diversitt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

    4.1 Main data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30Wichtige Datenquellen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

    4.2 Generating the distribution maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Erstellung derVerbreitungskarten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    4.3 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Datenanalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    4.4 Quality and reliability of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32Qualitt und Zuverlssigkeit der Daten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    4 Schumannia 7 2015

  • 5 Schumannia 7 2015

    5 Patterns of diversity and endemism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37Muster von Diversitt und Endemismus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    5.1 General overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37Allgemeiner berblick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    5.2 Centres of diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37Diversittszentren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    5.3 Range-sizes of Cacti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Arealgren von Kakteen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    5.4 Spatial distribution of growth forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44RumlicheVerbreitung derWuchsformen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

    5.5 Spatial distribution of pollination syndromes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47RumlicheVerteilung der Bestubungssyndrome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

    5.6 Diversity pattern of genera, tribes and subfamilies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48Diversittsmuster der Gattungen,Triben und Unterfamilien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

    5.7 Diversity gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50Diversittsgradienten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    6 Conservation and hotspots: cactus diversity in change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Kakteen-Diversitt imWandel und Naturschutz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

    6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Einleitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

    6.2 Threats to Cactaceae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69Gefhrdungen der Kakteen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

    6.3 Cacti as threats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73Kakteen als Bedrohung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

    6.4 Country profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73Lnderprofile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

    7 Distribution maps of Cactaceae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82Verbreitungskarten der Cactaceae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

    7.1 Subfamily: Pereskioideae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82Unterfamilie: Pereskioideae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

    7.2 Subfamily:Maihuenioideae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82Unterfamilie:Maihuenioideae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

    7.3 Subfamily: Opuntioideae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82Unterfamilie: Opuntioideae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

    7.4 Subfamily: Cactoideae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83Unterfamilie: Cactoideae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 908 References/Literatur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

    Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

    Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205Kurzfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205Resumen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

  • 6 Schumannia 7 2015

    Cacti are, just like bromeliads or humming-birds, creatures of the NewWorld.About 1440species populate the Americas; some of themare globular and about two centimetres small(Blossfeldia), while others are columnar andup to 14 metres tall (Carnegiea). Their distri-bution ranges from the boreal coniferousforests in theNorth (south-west Canada) up tothe grasslands of the Pampa in the south.Cactiinhabit diverse habitats, from the coast to thehighmountains, from deserts up to the rainfor-est canopy.The often densely spined succulents (calledherbal crystals by the poet Adalbert Stifter)are characterized by magnificent flowers. Notonly scientists but also plant enthusiasts are fas-cinated by this plant family.They are covered byimportant collections, national and interna-tional cactus and succulent societies, about adozen journals and an enormous amount of lit-erature. Hence, cacti are one of the most well-studied major plant families.The first modern monographs in the new mil-lennium have been presented byEdward F.An-derson asThe cactus fanily (ANDERSON 2001,German editions as Das groe Kakteen-Lexikon, ANDERSON 2005, 2011) and DavidHUNT (2006).The amount of published data isoverwhelming, but a modern biogeographicoverview for the family is still missing. Thereare early biogeographic studies based on thedata available at that time. Karl SCHUMANN(1899a) published Die Verbreitung der Cac-taceae im Verhltnis zu ihrer systematischenGliederung [Distribution of Cactaceae in re-lation to their systematic classification] inBerlin, and Curt Backeberg published his ZurGeschichte der Kakteen [History of the cacti](BACKEBERG 1942b) and Verbreitung undVorkommen der Cactaceae [Distribution andoccurrence of Cactaceae] (BACKEBERG 1944).Today, however, these pioneering treatmentsare outdated,especially with regard to the pres-ent state of the knowledge of phylogeny, sys-tematics, and molecular analyses.This analysis of biogeography and biodiversityof the cacti combines current knowledge with anew objective in the context of modern biodi-versity research. The family is analysed basedon systematic-taxonomic knowledge incorpo-rating geographic and phylogenetic data. Ini-tially, distributionmapswere created for 1416 ofthe 1438 accepted species. From these maps, di-versity maps were generated for the relevanttaxonomic levels from genera to the entire fam-

    ily, and the different centres of diversity werecircumscribed.At the same time,macroecolog-ical relations, distribution of growth forms, pol-lination syndromes, and other aspects wererecorded, spatially visualized, and correlatedwith general biogeographical patterns and eco-regions. Issues of conservation were examinedunder consideration of land use data and exist-ing protected areas.This provides an importantfoundation for the conservation of Cactaceaeand their habitats.The plan for this publication emerged in theearly 1990s. First modern maps of phytodiver-sity had already been published byBARTHLOTT(1983) for the CactaceaeRhipsalideae. As awell-known and extensively studied group,compared to other large families, theCactaceaewill act as a role-model for the analysis of bio-diversity and biogeography of a larger an-giosperm group.The monograph presented here is thus basedon three decades of preparatory work,as well asthe collaboration of many colleagues and stu-dents, who are either involved as authors or ac-knowledged for their contributions. SimoneStrecker (1992) submitted a diploma thesis(Arealgeographie der Kakteen), which wasbased on a manual compilation of diversitymaps of all Cactaceae genera. In subsequentyears, the data were complemented and editedby Pierre Ibisch, utilizing vegetation maps andhis fieldwork in Bolivia.He also supervised pre-liminary studies and the digital processing ofdistribution data by Georg Rauer, which wassupported by a research grant from theDeutsche Kakteen-Gesellschaft (the GermanCactus Society)at that time still without truegeographic information systems (GIS).As partof a large collaborative project (BIOTA)funded by theGerman FederalMinistry for Ed-ucation and Research, a working group (BIO-MAPS) has been established in Bonn from2001 to 2010 to map the global geographic di-versity of angiosperms.Besides regional analy-ses, world maps of biodiversity of all land plantgroups were generated (e.g. BARTHLOTT & al.1996, 2005, KIER & al. 2009, KREFT & al. 2010,MUTKE & al. 2011). Therefore, the infrastruc-ture and the aforementioned geographic infor-mation systems were available for digitizationand spatial analysis of the cactus data. Thisstarted in 2007 and was carried out by two par-allel diplom theses of Anke Stein and KirstenBurstedde (nee Hahne) that were finished inspring 2009. In 2011 Andrea Miebach com-

    pleted a bachelor thesis focusing on the evolu-tion of functional traits in the Cactaceae. JensMutke coordinated this work since 2007 withgreat dedication and expertise.In preparation for publication, all of the mapswere carefully revised and uniformly laid out(among others by Laurens Geffert, AndreaMiebach and Lina Samira Meiling (geb.Mathar).BorisO.Schlumpberger provided dataon pollination ecology from his on-going re-search project. Nadja Korotkova analysed thephylogenies based on molecular data, and ge-ographer M. Daud Rafiqpoor edited the spa-tial aspects of the distribution maps.Almost allof the above collaborators were, at least tem-porarily, funded by our long-term project Bio-diversitt im Wandel of the Academy of Sci-ences and Literature in Mainz.With the financial support of theAcademy of Sci-ences and Literature in Mainz, we established asmall working group of the International Organ-ization for Succulent Plant Study (IOS) at theend of our long-term mapping work and met forthe first time in 2009 during the IOS Inter-Con-gress 2009 in Bonn. The colleagues carefullychecked and revised the distribution maps pro-vided by us, and our special thanks go to DavidHunt, Nigel Taylor, Martin Lowry, Charles Gra-ham, Paul Hoxey, and Ralf Bauer.The list of people who contributed to the pub-lication presented here is long.We are indebtedto all of them. However, this particularly ap-plies to the Academy of Sciences and Litera-ture in Mainz: Without a sustainable institu-tional framework of our long-term projectBiodiversitt im Wandel (19992014), thecomplex project ofmapping the cacti could nothave proceeded.The most important historical work on bio-geography of cacti was published in 1899 inBerlin,written by Professor Karl Moritz Schu-mann, who founded the German Cactus Soci-ety (DKG) in 1892.This society has accompa-nied and supported our project from the be-ginning, and we are very much obliged to it.We are especially grateful for the editorDetlevMetzing, who worked with great competenceand intensity at the completion of this manu-script. It is a fortunate coincidence that thiswork is published in the Schumannia, namedafter the founder of the DKG.

    Bonn, in January 2015

    Wilhelm Barthlott

    Foreword and acknowledgements

    Wilhelm Barthlott

  • Presumably, cacti (Melocactus) were alreadyamong the curiosities that Christopher Colum-bus presented as gifts to Queen Isabella ofCastile after his first voyage to the New Worldin 1492. Carl Linnaeus (17071778) already hada surprisingly clear picture of the delineation ofthis family. In his Species Plantarum, pub-lished 1753, he listed 22 cactus species. Basedon his Sexual System of classification, he as-sumed a close relationship between morpho-

    logically very different taxa, such as Melocac-tus andOpuntia, but alsoPereskia, and he com-bined all these in the genus Cactus. With thestudies ofAdrian Haworth (17681833), JosephSalm-Dyck Reifferscheidt (17731861), Au-gustin Pyrame de Candolle (17781841), andLudwig G. K. Pfeiffer (18051877), the system-atic investigation in the middle of the 19th cen-tury was already far advanced. This was be-cause these plants had stimulated the interest

    of botanists and plant enthusiasts at an earlystage, caused by their bizarre and exoticappearance, combined with modest cultivationrequirements of many species.In this era, systematic recording of species wasat the heart of research. This did not only ap-ply to cacti, but also to all other plant families.Plant geography (and ecology) started earlywith the exceptional singularEssai sur la Go-graphie des Plantes (Paris 1805) by the vi-

    9 Schumannia 7 2015

    1 Introduction

    Wilhelm Barthlott

    Fig. 1: The overlapping distribution ranges of ten of the Mexican globular cactus genera accepted by Curt BACKEBERG (1944), which he noticeably summari-zed under the name Boreoechinocacti. The lines are distribution boundaries of the genera. The Chihuahua centre of diversity (cf. Map11) is already clearlyvisible, as already in the Karte der Verdichtung der Kakteenvorkommen [map of densification of cactus occurrences ](BACKEBERG 1958: Abb. 4) (from:BACKEBERG 1944).Abb. 1: Die berlagerten Areale von zehn der von Curt Backeberg akzeptierten Gattungen mexikanischer Kugelkakteen (BACKEBERG 1944), die er bezeich-nenderweise unter dem Begriff Boreoechinocacti zusammenfasst. Die Linien sind die Arealgrenzen der Gattungen. Schon deutlich ist auf dieser Karte wieauch auf der Karte der Verdichtung der Kakteenvorkommen (BACKEBERG 1958: Abb. 4) das Chihuahua-Diversittszentrum der Familie (vgl. Karte 11)zu erkennen (aus: BACKEBERG 1944).

  • 2.1 Cacti and their habitats

    Cacti are one of the most characteristic plantgroups of the Americas, being almost endemicto the New World. only one single epiphyticspecies,Rhipsalis baccifera, has disjunct popu-lations in the old World.Latin America stands out for a high diversityof different landscapes and vegetation zones(Fig. 4). It may seem surprising to the non-spe-cialist that habitats of cacti represent a largerange of environmental conditions, as well.They grow from coastal sand dunes up to some5000 metres elevation in the high Andes, andfrom southern Canada to southern Argentina,spanning a latitudinal range of more than 100degree. Factors limiting the distribution rangeof the family at high latitudes are extreme coldand in most cases humid conditions with shortdays during winter. In addition, more humidparts of the mediterranean type winter rainfallareas in northern California and south-centralChile are avoided by most cacti. This seemssomewhat surprising, as especially somespecies of Opuntia have been widely natural-ized in the mediterranean Basin, includinglarge parts of southern Europe and northernAfrica. one important parameter limiting cac-tus growth in winter rainfall areas might be theinfluence of frequent fires. Fire also limits theestablishment of cacti in many grass lands andsavannah ecosystems.Even though cacti are an iconic element ofNew World deserts, the family inhabits a widerange of ecosystems (Figs. 521); cacti evengrow in humid tropical rainforests. However,this is more of an exception and mainly true forepiphytic species, some shrubby or arborescentPereskia in south-east Brazil and central Amer-ica, and the specialists growing on isolated rockoutcrops (inselbergs) representing dry, azonalhabitat islands within rainforests. In general,cacti are bad competitors under humid, fertileconditions. Thus, most species are found inecosystems with limited water availability atleast during some months of the year, particu-lar edaphic conditions such as the rock out-crops, saline, gypsum, serpentine substrates, orsand fields. This includes open desert to semi-desert vegetation types, as well as thorny shruband deciduous to semi-deciduous dry forests. It

    has been demonstrated by several authors thatmany cacti species show higher rates of estab-lishment and survival in the shadow of trees orshrubs as nurse plants in semi-arid habitats(e.g., LARREA-ALCZAR & al. 2008, mANDuJANo& al. 2002).on an ecoregional basis, the mexican pine-oak forests of the Sierra madre oriental andoccidental as well as of the Trans-mexicanVolcanic belt belong to the areas with thehighest Cactus species richness, as well as themeseta Central matorral and the Chihuahuadesert in mexico, the Central Andean PunaEcoregion sensu WWF (oLSoN & al. 2001) inPeru and Bolivia, and the Bolivian montanedry forests.

    2.2 Biogeography and palaeo-history

    Apart from the early studies by SCHumANN(1899a) and BACKEBERG (1942) there are fewbiogeographic studies for the cactus family(but compare e.g. HERNNDEZ & GmEZ-HI-NoSTRoSA 2011, TAyLoR & ZAPPI 2004, THIEDE1998). unfortunately, the analysis of biogeo-graphic patterns of cacti is hampered by theabsence of a fossil record. Not even the age ofthe family is known. Recent molecular clockapproaches using fossils of related taxa indi-cate a relatively short evolutionary historycompared to other flowering plant families(compare chapter 3.2).most cactus diversity today is linked to arid orsemi-arid conditions.The species rich arid re-gions of western North America (cf. Fig. 22)and mexico are dominated by the almost ex-clusively North American cactus tribes Cac-teae and Phyllocacteae, as well as many spe-cies of opuntioideae. These northern centresof cactus diversity are separated from the dryCaribbean Coast of Colombia and Venezuelaby the rainforests of southern Central Amer-ica with some linkage through the CaribbeanIslands.The humid rainforests of the Amazon Basinand of the Choc region in western Colombiaseparate these northern hemisphere cactushabitats from suitable areas further south (cf.Fig. 4). Dry valleys of the Andes in westernSouth America are to some degree connected

    to the more southern regions of the AtacamaDesert at the Peruvian and Chilean PacificCoast. However, the geologically relativeyoung and somewhat wetter Northern Andesespecially in Colombia harbour only very fewcactus species.The Atacama Desert with manyendemic species especially of the tribe Cereeaeis separated from the species rich Bolivian An-dean dry valleys and the western Chaco by thehigh Andes reaching altitudes of more than5000 m a.s.l. This Bolivian and northern Ar-gentinian South Central Andes centre of cac-tus diversity has the highest diversity of differ-ent tribes and genera, as well as growth formsof cacti. It is separated from the cactus diver-sity centre in the Caatinga in eastern Brazil bythe grasslands of the Cerrado, which are rela-tively poor in cacti, probably due to the fre-quent occurrence of fires. The high species di-versity in the south-east Brazilian rainforest ofthe mata Atlantica is a particular case owedmainly to the presence of many epiphytic spe-cies of the tribe Rhipsalideae, as well as speciesin azonal habitats like rock outcrops or coastalsand dunes.A detailed description of the maincentres of Cactus diversity is given in chapter5.2. For an overview on the biogeography andecology of cacti of Eastern Brazil see TAyLoR &ZAPPI (2004).The lack of data on the evolutionary historyof the Cactaceae makes it difficult to relatethe current distribution patterns to palaeo-geographic conditions and events. Both BACKE-BERG (1942b) as well as LEuENBERGER (1986)conclude an origin of the Cactaceae and ofthe most basal taxon in the phylogenetic tree,the subfamily Pereskoideae with the onlygenus Pereskia, in northern South America.According to recent molecular studies thisgenus is a grade with two clades at the basisof the cactus phylogeny (compare NyFFELER &EGGLI 2010b and Fig. 23). Today, the cladisti-cally basalmost clade of Pereskia species oc-cur in northern Venezuela, the Caribbean Is-lands, and Central Americaonly P. aureifo-lia occurs in south-east Brazil. In contrast, thesecond clade of Pereskia species is almost re-stricted to south-east Brazil and the centralAndes of Bolivia and Peruwith P. aculeatahaving a disjunct distribution area in the Car-ribean, as well.

    13 Schumannia 7 2015

    2 Cactus ecology and biogeography

    Jens Mutke

  • 3.1 Finding the closest relatives of cacti

    The Cactaceae belong to the order Caryo-phyllales in which they are part of a group thatcontains most of the succulent families of theorder:Cactaceae,Anacampserotaceae,Basella-ceae, Didiereaceae, Halophytaceae, montia-ceae, Portulacaceae, and Talinaceae (CuENouD& al. 2002, SCHFERHoFF & al. 2009).The place-ment of Cactaceae within the Caryophyllales(or in the former Centrospermae) dates backto the 19th century, and molecular phylogeneticstudies have undoubtedly confirmed thatCactaceae are part of the Caryophyllales. Nev-ertheless, the closest relatives of cacti havebeen identified with confidence only recently.A first hypothesis on the putative close relativesof the cacti was suggested by THoRNE (1976),who assumed a close relationship of Cactaceaeand Didiereaceae, Basellaceae and Portula-caceae and created the suborder Portulacinaefor this alliance. Recent studies have confirmedthat Cactaceae are closely associated with thePortulacaceae, and even nested within them(APPLEQuIST & WALLACE 2001, CuENouD & al.2002, HERSHKoVITZ & ZImmER 1997). NyFFELER(2007) could finally identify the Portulacaceaetribe Anacampseroteae as the closest relativesof cacti. The Portulacaceae were found to bepolyphyletic and several nomenclatural changesbecame necessary. As one result, the Ana-campserotae are now treated as the familyAnacampserotaceae and are the sister family ofthe Cactaceae (NyFFELER & EGGLI 2010a).

    3.2 Age estimates for the Cactaceae

    Since Cactaceae are a New World family, ab-sent from Africa despite of suitable habitats(besides one Rhipsalis species and introducedopuntias), it is generally assumed that theyevolved in SouthAmerica after the break-up ofGondwana during the late Jurassic and earlyCretaceous. This suggests a limiting age of10090 million years when South America andAfrica were already separated (mAuSETH 1990).An immediate age estimate for the Cactaceaeis not possible since no fossils are known.The most comprehensive hypothesis on theevolutionary history of the Cactaceae waslinked to the geological history of South Amer-ica and was proposed by BACKEBERG (1942b).

    He assumed an origin of the family in the trop-ical zone of mesoamerica during the Creta-ceous, app. 130 million years, thus suggestingthat the Cactaceae are a rather ancient group.much later, HERSHKoVITZ & ZImmER (1997) sug-gested the Cactaceae being a young group ofonly 30 million years of age. Still, they did notprovide any plausible basis for this estimate.The most recent evidence for the age of theCactaceae comes from molecular dating of theCaryophyllales, yielding timeframes of 116104million years (ANDERSoN & al. 2005, WIKSTRom& al. 2001). No age estimates using a molecu-lar clock particularly for the Cactaceae wereavailable until recently, due to the lack of fos-sils, which are used as calibration points in suchanalyses. Age estimates for Cactaceae there-fore still have to rely on known fossils of moredistantly related taxa.Thus, the molecular clockcalibrations only allow just setting an approxi-mate timeframe when the family evolved.Twostudies using this approach yielded differentresults: the age of the cacti was inferred as19.13.1 million years (oCAmPo & CoLumBuS2010) or 35 million years (ARAKAKI & al. 2011).

    3.3 Current understanding ofphylogenetic relationshipswithin Cactaceae

    The Cactaceae as a family were never seriouslyquestioned, but hypotheses on relationshipswithin the family were always troublesome.Convergent evolution is frequent in this fam-ily (WALLACE & GIBSoN 2002), making inter-pretation of morphological features challeng-ing. Columnar cacti, small globular cacti, andepiphytes, as well as adaptations to majorpollinator groups (bats, birds) have evolvedseveral times independently and the flowermorphology is rather uniform, providing fewvaluable characters. Furthermore, due to phe-notypic plasticity as a response of the environ-mental conditions, individual taxa are mor-phologically variable, making interpretation ofmorphological characters troublesome.molecular phylogenetic methods contributedmuch to the understanding of flowering plantevolution and phylogenetics. But the relation-ships within the Cactaceae are still insuffi-ciently understood, and few molecular phylo-genetic studies have been conducted compared

    to other popular plant families such as orchi-daceae or Bromeliaceae.The first DNA sequence data for Cactaceaewere published by WALLACE (1995). A morecomprehensive phylogenetic tree derived fromthe chloroplast marker rbcL was provided byWALLACE & GIBSoN (2002). The first compre-hensive molecular phylogenetic study for theCactaceae was done by NyFFELER (2002) andwas based on datasets of the chloroplast re-gions trnK/matK and trnL-F. This study couldnot entirely clarify relationships within thefamily but identified major groups and fur-thermore revealed the para- or polyphyly of sometribes and genera, e.g. Pereskia, Notocacteae,Browningieae, Hylocereeae and Lepismium.The most comprehensive phylogenetic hy-potheses for the Cactaceae at present are basedon datasets of the plastid regions trnK/matK,the rpl16 intron and trnL-F and the nucleargene ppc (HERNNDEZ-HERNNDEZ & al. 2011)or on trnK/matK (BRCENAS & al. 2011). Todate, the study of BRCENAS & al. (2011) is theCactaceae study with the most species included(666 species).The results of these studies are animprovement compared to the previous ones,but the results are still not satisfactory and therelationships within Cactaceae remain partlyunresolved.

    3.4 Basal cactus lineages and theorigin of cacti

    In the following, the relationships are sum-marised as currently understood based on theaforementioned studies and further studies ofsingle tribes and genera. The first branching isthe subfamily Pereskioideae (only Pereskia,Fig. 26). As revealed by molecular data, Pere-skia is not a monophyletic group but forms agrade in the Cactaceae phylogeny (Figs. 24 &25) with mesoamerican and Caribbean Pere-skia species as the first branching group fol-lowed by the Andean Pereskia, which is sisterto the rest of the family (BuTTERWoRTH & WAL-LACE 2005, EDWARDS & al. 2005).Pereskia has traditionally been interpreted asthe most ancestral cactus since the works ofSCHumANN (1899b) and many of the Pereskiacharacters, which have been regarded as ple-siomorhic within Cactaceae. These are thewoody stem, the presence of leaves (in contrast

    24 Schumannia 7 2015

    3 Phylogeny, evolution, and systematics

    Nadja Korotkova

  • 26 Schumannia 7 2015

    Fig. 25: Phylogenetic tree of the Cactaceae showing relationships bet-ween all Cactaceae genera based on the phylogenetic studies availableso far. The topology is based on HERNANDEZ-HERNANDEZ & al. (2011), NYFFELER(2002), GRIFFITH & PORTER (2009) (Opuntioideae), BUTTERWORTH & al. (2002)(Cacteae), KOROTKOVA & al. (2010, 2011) (Lymanbensonieae and Rhipsali-deae), RITZ & al. (2012) (Tephrocacteae) and SCHLUMPBERGER & RENNER (2012)for Echinopsis and allies. The suprageneric classification and the generafollow NYFFELER & EGGLI (2012), with modifications based on KOROTKOVA & al.(2010, 2011), RITZ & al. (2012) and SCHLUMPBERGER & RENNER (2012). Statisticalsupport for the main clades on tribal level is indicated with *** for maxi-mum support and ** for low support. Support for the higher nodes isnot shown for better readability of the tree. Genera with (?) have so farnot been sampled in a phylogenetic analysis.Abb. 25: Stammbaum der Cactaceae, gezeigt sind verwandtschaftlicheBeziehungen zwischen allen Cactaceae-Gattungen, basierend auf allenbisher verfgbaren phylogenetischen Studien. Die Topologie basiert aufHERNANDEZ-HERNANDEZ & al. (2011), NYFFELER (2002), GRIFFITH & PORTER (2009)(Opuntioideae), BUTTERWORTH & al. (2002) (Cacteae), KOROTKOVA & al. (2010,2011) (Lymanbensonieae und Rhipsalideae), RITZ & al. (2012) (Tephroca-cteae) und SCHLUMPBERGER & RENNER (2012) fr Echinopsis und Verwandte.Die supragenerische Klassifizierung und die Gattungen folgen NYFFELER &EGGLI (2012), mit nderungen basierend auf KOROTKOVA & al. (2010), RITZ &al. (2012) und SCHLUMPBERGER & RENNER (2012). Die statistische Unterstt-zung fr die wichtigsten Gruppen auf Tribus-Ebene wird mit *** frmaximale Untersttzung und ** fr geringe Untersttzung angegeben.Untersttzung fr die hheren Knoten wird zur besseren Lesbarkeit desBaumes nicht gezeigt. Gattungen mit (?) wurden bisher in keiner phylo-genetischen Analyse untersucht.

  • 4.1 Main data sources

    Given the fact that cacti have always fascinateda large number of scientists, gardeners, andplant enthusiasts, the taxonomic concepts usedvary a lot. Already Karl SCHumANN in (1899a)starts his work on the Verbreitung der Cac-taceae with a discussion on the problem of ahigh degree of synonomy, nomina nuda, etc.Around 14,000 species names of cacti had al-ready been published in the 1970ies (BARTH-LoTT 1977). These included a vast amount of

    synonyms. Recent compilations of acceptedspecies for the family list between 1,431 speciesin 124 genera (HuNT 2006) and 1,896 species in127 genera (ANDERSoN 2001, 2005). For ourdatabase, we used a slightly updated version ofthe New Cactus Lexicon species list (Hunt,pers. comm.).This list includes a few additionalnames compared to the New Cactus Lexicon.Distribution maps are presented in this volumefor only 1,416 species, since some species onthe original list are now regarded as synonymsin our current database and since the natural

    range of some widely naturalized taxa is insuf-ficiently known (e.g.,Opuntia ficus-indica). In-fraspecific taxa are not considered and are allincluded in the respective species distributionmaps.Infrafamilial classification follows the tribesand subfamilies of NyFFELER & EGGLI (2010b),with minor modifications for the epiphytic Ly-manbensonieae based on the results of Ko-RoTKoVA & al. 2010 (cf. Figs. 2425).For our analyses, we used additional data re-garding pollination syndromes (Schlumpber-

    30 Schumannia 7 2015

    4 Mapping the diversity of cacti

    Jens Mutke, Kirsten Burstedde, Jan Laurens Geffert, Andrea Miebach, M. Daud Rafiqpoor,Anke Stein & Wilhelm Barthlott

    Fig. 32: Comparison of the diversity maps of Rhipsalinae from BARTHLOTT (1983) and Rhipsalideae from this work. The basic outline of the diversitypattern was already published in 1983 based on a very limited database.Abb. 32: Vergleich der Diversittskarten der Rhipsalinae aus BARTHLOTT (1983) und Rhipsalideae aus dieser Arbeit. Das Grundmuster der Diversitts-verteilung wurde schon 1983 basierend auf relativ wenigen Daten erkannt.

  • lie im Zentrum des Interesses einer ganzen An-zahl von Fachbotanikern, aber noch mehr vonPflanzenliebhabern (siehe Kap.1) steht:Es liegteine beinahe unberschaubare Flle von pu-blizierten Daten zu Fundorten in Fachpublika-tionen vor, vorbildhaft sei mapping the Cactiof mexico (HERNNDEZ & GmEZ-HINoSTRoSA2011) genannt. Zudem liegen fr beinahe allegreren Gattungen moderne Revisionen undtaxonomische Bearbeitungen bis hin zu mo-dernen Gesamtbearbeitungen der Familie(HuNT 2006) vor.Darber hinaus werden in denzahlreichen nationalen Fachzeitschriften (z. B.in der Bundesrepublik Deutschland Kakteenund andere Sukkulenten und den uSA Ca-ctus and Succulent Journal) beinahe monat-lich ergnzende Fundortdaten publiziert.Es sollaber angemerkt werden, dass die Datenlage im

    Detail doch heterogen ist. Gattungen, die kei-nen hohen Sammlerwert besitzen (z. B. Opun-tia), sind schlechter erfasst als ausgesprocheneLiebhaber-Gruppen (z. B. Mammillaria). Viel-leicht eher politisch bedingt ist die Datenlagefr unterschiedliche geographische Regionenebenfalls heterogen: Sdostbrasilien und me-xiko sind hervorragend bearbeitet, fr Kuba istdie Datenlage eher sprlich.In noch hherem mae gilt dies fr die Erstel-lung der Diversittskarten, bei denen sich klei-nere Fehler innerhalb der Arten-Arealkartender erfassten Arten aufheben. Zum Vergleichhaben wir in Abb. 32 unsere, auf einer relativengen Datenbasis beruhende Diversittskarteder Rhipsalideen von 1983 der jetzt erarbeite-ten Karte gegenbergestellt. Wenn man diedurch die unterschiedliche Projektion beding-

    ten verschiedenen umrisslinien der Kontinen-te herausrechnet, sind die Karten beinahedeckungsgleich. Insofern ist voraussehbar, dasses z. B. an der Biodiversittskarte der gesamtenFamilie (Karte 7) auch bei sich zunehmend ver-besserter Datenlage in den nchsten Jahrzehn-ten kaum eine nderung mehr ergeben wird.Zusammenfassend lsst sich feststellen, dassdie Familie der Cactaceae durch die vorlie-genden publizierten Daten ein herausragendesBeispiel fr die Analyse der Biogeographieund Biodiversitt einer greren Pflanzenfa-milie berhaupt darstellen. Es gibt wohl keinezweite Familie entsprechender Gre inner-halb des ganzen Pflanzenreiches, die eine ver-gleichbare Analyse erlauben wrde.

    36 Schumannia 7 2015

    1 - 23 - 56 - 1213 - 2223 - 73

    Barthlott et al. 2013

    Diversity centres of Cactaceae

    Species per 2500 km

    Map 8

    1500 km

    (defined as the top 5%most species rich areas)

    9444402717

    MammillariaEchinocereusCoryphanthaOpuntiaCylindropuntia

    Species rich genera:

    367 species, 43 genera

    Chihuahua centre

    2810666

    MammillariaOpuntiaFerocactusPachycereusSelenicereus

    Species rich genera:

    107 species, 27 genera

    PueblD-Oaxaca centre

    Jalisco centre

    654

    MammillariaStenocereusOpuntia

    Species rich genera:

    35 species, 17 genera654333

    MammillariaEchinocereusFerocactusCylindropuntiaOpuntiaStenocereus

    Species rich genera:

    33 species, 13 genera

    Sonora-Sinaloan centre

    1687555

    MelocactusPilosocereusRhipsalisArrojadoaMicranthocereusPereskia

    Species rich genera:

    74 species, 23 genera

    Caatinga centre

    24533

    RhipsalisSchlumbergeraLepismiumPilosocereus

    Species rich genera:

    47 species, 13 genera

    Mata Atlantica centre

    5928231914

    EchinopsisRebutiaParodiaGymnocalyciumCleistocactus

    Species rich genera:

    214 species, 37 genera

    Southern Central Andes centre

    Map 8: Diversity centres of Cactaceae.Karte 8: Diversittszentren der Cactaceae (definiert als die oberen 5 % artenreichsten Gebiete; Arten pro 2500 km; species rich genera = artenreiche Gattungen).

  • 5.1 General overview

    Except for the high latitude boreal forests andTundra vegetation of North America and thetemperate rain forests of southern Chile, atleast some cactus species can be found any-where in the Americas (map 7).Rhispsalis bac-cifera is the only species naturally found also inthe old World, ranging from tropical WestAfrica via madagascar,mauritius,and Runionto Sri Lanka.Highest species richness of cacti ( 23 speciesper 2,500 km, the 5% most species rich areas;maps 8 & 9) can be found in seven distinct cen-tres in mexico, Brazil, Argentina, and Bolivia.At the genus level, additional centres are locatedin Peru and in northern Venezuela (map 10)these are covered more in detail in chapter 5.6.The four North American centres of highspecies richness in mexico and the southernuSA are located in dry ecoregions (Table 1,map 11): 1) the Chihuahua and the mesetaCentral matorral, 2) the Puebla-oaxaca centrewith a diversity of different climates and habi-tats, as well as two minor areas 3) near the Pa-cific coast of Jalisco (Jalisco centre), and 4) atthe border of the southern Sonora desert to theSinaloan dry forests (Sonora-Sinaloan centre).In South America, there are three main cen-tres of cactus species richness in 1) the south-ern central Andes in Bolivia and northern Ar-gentina, 2) the Caatinga, and 3) the coastal for-est area of south-east Brazil. The latter centreis mainly dominated by epiphytic species of theRhipsalideae (compare Table 2, map 12).Intermediate species richness can be found allover south-east Brazil,which is linked via a cor-ridor of intermediate species richness inuruguay and Paraguay to the Bolivian centreof diversity. Coastal Peru and parts of the cen-tral Andean dry valleys show intermediatespecies richness, but an especially high con-centration of species with extremely restricteddistribution ranges. Northern Venezuela andmost parts of the Caribbean also show inter-mediate levels of species richness.Low species richness ( 5 species per 2,500km) occur in large parts of the Amazon Basin,many fire-prone habitats, e.g., of the Brazilian

    Cerrado, the Llanos Savannah of Colombiaand Venezuela, mediterranean climate areas inCalifornia and Chile,and in the temperate east-ern uSA.

    5.2 Centres of diversity

    For the delineation of the centres of cactusspecies richness (map 8,Tables 1 & 2), we usedthe top 5% areas with highest species numbers( 23 species per 2,500 km). To qualify as oneof the centres listed below, at least four adja-cent grid cells of 50 x 50 km have to fulfil thiscriterion.We distinguish seven diversity centres.

    The four north/central American centresChihuahua centre: The mexican centre of di-versity with the largest area and by far the high-est species numbers is the large complex ofdeserts and xeric shrublands of the Chihuahuadesert, including the mexican meseta Centralmatorral (compareTable 1). It includes parts ofthe north-eastern Sonora desert as well. High-est species richness can be found in the south-eastern part of the centre with a diverse mosaicof matorral and, e.g., the Sierra madre orien-tal Pine-oak Forests. map 11 shows the finescale patterns of species richness within themexican centres in smaller grid cells of 10 x 10km.The centre is characterized especially by ahigh diversity of globular species of the tribeCacteae and is the main centre of species rich-ness of the opuntioideae. most other tribes areabsent or poorly represented. The growthforms of shrubby and arborescent cacti alsohave their centres of species richness in theChihuahua, whereas columnar cacti are almostabsent.Puebla-Oaxaca centre: This mexican centremainly includes the Tehuacn-Cuicatln valley.It is geographically isolated from the nearbyand much larger Chihuahua centre by the Trans-mexican volcanic mountain belt. Its topogra-phic diversity (geodiversity in a wider sense)results in a variety of vegetation types such astropical dry forests, xeric shrublands, thornshrubs, and deserts.The Puebla-oaxaca centrehas the highest concentration of columnar

    species of the tribe Cacteae in mexico. In con-trast to the Chihuahua centre, this centre ishome to a high number of cacti pollinated bybats, most of them columnar. The mean rangesize of the species occurring in this region is muchsmaller compared to the Chihuahua centre. manyof the species are restricted to this region.Sonora-Sinaloan centre:This centre comprisesa small area of high species richness at thesouthern transition of the Sonora desert to theSinaloan dry forest dominated by deciduousthorn forest. The species rich north-easternpart of the Sonora desert, in contrast, is in-cluded in our larger Chihuahua centre (seeabove). unlike the situation in those northernparts of the Sonoran desert, frost is rare in thesouthern Sonora-Sinaloan centre. The regionis characterised by a mixture of temperate andtropical species.The growth forms of cacti pres-ent in the southern Sonora include globosespecies (e.g. Mammillaria, Ferocactus) and co-lumnar species (e.g.Stenocereus) of the Cacte-ae, columnar species of the Phyllocacteae sub-tribus Echinocereinae and shrubby Opuntia.Jalisco centre: This small centre of high cactusdiversity at the pacific coast of the mexican stateJalisco has a more humid climate compared tothe other northern diversity centres resulting intropical dry forest vegetation. As a result, thiscentre is home not only to globularMammilariaspecies and abundant columnar and arborescentcacti like Stenocereus, Cephalocereus (all Cac-teae), andOpuntia, but also epiphytic species ofEpiphyllum and Selenicereus.

    The three South American centresSouthern central Andes centre: The largestSouth American centre of diversity also har-bours the highest species number in SouthAmerica and is characterized by the highestphylogenetic and morphological diversity. 10out of the 11 tribes of cacti accepted here oc-cur in the southern central Andes centre.Witheight tribes occurring per 2,500 km grid cell inlarge parts of this centre, this is twice the num-ber found in most parts of the Chihuahua cen-tre. The centre is located in the Semiarid andarid valleys of central and southern Bolivia andnorthern Argentina. In the northern part of the

    37 Schumannia 7 2015

    5 Patterns of diversity and endemism

    Jens Mutke, Kirsten Burstedde, Jan Laurens Geffert, Andrea Miebach,M. Daud Rafiqpoor, Anke Stein & Wilhelm Barthlott

  • 39 Schumannia 7 2015

    Map 10: Generic diversity centres of Cactaceae (highlighting the 5% most genus rich areas, compare map 26)Karte 10: Diversittszentren der Cactaceae, Gattungen (definiert als die oberen 5 % gattungsreichsten Gebiete; Arten pro 2500 km).

    1500 km Barthlott et al. 2013

    Diversity centres of Cactaceae: genera

    Genera per 2500 km

    1 - 23 - 56 - 89 - 1213 - 22

    Map 10

    (defined as the top 5% most JHQXV rich areas)

  • centre, original vegetation comprises decidu-ous forests with scattered naturally forest freesteep slopes with rock outcrops. In the south,in the prepuna ecoregion, Andean shrublandsand semideserts are found. This centre har-bours the highest number of globular cacti inSouth America, but is also a centre of colum-nar cacti. It is the only South American regionwith significant numbers of cushion formingcacti. In addition to mainly bee-pollinatedspecies, it has a considerable number of sphin-gophilous species. Especially the western An-dean part of the Bolivian province Tarija andneighbouring areas of Salta and Jujuy in north-ern Argentina are extremely diverse whenlooking at fine scale patterns of species richnessin 10 x 10 km grid cells (map 12).

    Caatinga centre: This Brazilian centre is lo-cated in the southern part of the Caatingaecoregion and the Campos Rupestres linked tomountain ranges of the Serra Espinhaco andChapada Diamantina.While the dominant veg-etation types of the Caatinga region are xericshrubland and thorn forest, highest species di-versity of cacti can be found in azonal habitatislands such as rock outcrops (inselbergs) ornutrient poor sandy soils.Although species di-versity is much lower compared to the Chi-huahua or the southern central Andes centre,the Caatinga centre is home to a high numberof generaespecially of the tribe Cereeae.Ac-cordingly, this centre is characterized by onlymoderate species numbers of globose cacti, buta high diversity of columnar species. The Caa-

    tinga centre has the highest numbers of cactipollinated by bats and birds and only low num-bers of bee-pollinated species.Mata Atlntica centre: This centre in south-east Brazil is ecologically quite different fromall the others, as it is characterized by humid,evergreen rain forest. Important taxa here arethe arborescent species Pereskia grandifolia,and particularly a large number of epiphyticspecies of Rhipsalis and related genera. Someother species in this centre grow in isolatedazonal habitats such as coastal sand dunes orrock outcrops (inselbergs, Figs. 5 & 6) (mostlyCereeae, same genera as in the Caatinga cen-tre). only small patches of the original vegeta-tion of the south-east Brazil Atlantic rainforestare left today.

    40 Schumannia 7 2015

    Centre Chihuahua Puebla-Oaxaca Sonora-Sinaloan Jalisco

    area size (km) 1,020,000 47,500 12,500 12,500

    vegetation deserts and xeric tropical dry forests, transition of Sonoran tropical dry forestshrublands deserts and xeric desert and Sinaloan

    shrublands dry forests

    mainWWF Chihuahuan desert (NA1303); Tehuacn valley Sonoran-Sinaloan Jalisco dry forestsecoregions Central mexican matorral matorral (NT1316), transition subtropical (NT0217)

    (NA1302); Sierra madre Balsas dry forests dry forest (NA0201)oriental pine-oak forests (NT0205)(NA0303)

    dominating Cacteae Cacteae Phyllocacteae Phyllocacteae taxa Echinocereinae, Cacteae, Echinocereinae &

    Opuntia Hylocereinae, Cacteae,Opuntia

    most species globular globular globular globular, epiphyticrich growth form

    dominating bee pollination bee pollination bee pollination bee pollinationpollination syndrome

    Table 1: The North/Central American diversity centres

    Centre Southern Central Andes Caatinga Mata Atlntica

    area size (km) 297,500 157,500 40,000

    vegetation inter-Andean dry forests and xeric shrubland and thorn atlantic rain forests, coastalshrublands with steep rocky forest with rock outcrops sand dunes, granit rockslopes outcrops

    mainWWF ecoregions Bolivian montane dry forests Caatinga (NT1304), Campos Serra do mar coastal forests(NT0206), central Andean puna Rupestres montane savanna (NT0160); Bahia coastal(NT1002), southern Andean (NT0703), Atlantic dry forests forests (NT0103)yungas (NT0165) (NT0202)

    dominating taxa Trichocereinae Cereinae Rhipsalideae

    most species rich growth form globular columnar epiphytic

    dominating pollination syndrome bee pollination bird pollination, bat pollination bee pollination

    Table 2: The South American diversity centres

  • In addition to those seven centres presentedabove, very small areas in Rio Grande do Sul(south-east Brazil) and in south-east Paraguayreach more than 23 species per 2,500 km. Es-pecially south-east Paraguay is an importantarea with high genus diversity (map 10, seechapter 5.6 for a more detailed discussion of di-versity patterns at higher taxonomic level).Even though the Atacama Desert and thewestern slopes of the Andes in Peru harbouronly moderate species diversity, they are hometo a) a high diversity of species with extremelysmall distribution ranges (compare chapter 5.3)and b) intermediate to high numbers of genera(compare chapter 5.6).The Andes of northernPeru are one of the few regions were at least 7out of the 11 tribes of the cacti occur (map 27).Additional centres of high taxonomic diversityare the coastal mountains of northern Vene-zuela with high numbers of genera and tribes,and parts of the Greater Antilles, especiallysouth-east Cuba and the islands of Hispaniolaand Puerto Rico (maps 26 & 27).

    5.3 Range-sizes of Cacti

    most species of cacti have extremely small dis-tribution ranges. As a comparison: whereas

    Birdlife International uses a threshold of50,000 km range size for the definition of en-demic bird areas, almost half of the cactusspecies have range sizes smaller than 10,000km (map 13). more than 300 species haveranges even smaller than 2,000 km. Examplesof species with extremely small ranges, re-stricted to one or a few populations, are Dis-cocactus horstii in minas Gerais (Brazil),Aztekium ritteri and Geohintonia mexicana inthe Sierra madre oriental in Nuevo Leon(mexico), andCereus insularis on the islands ofFernando de Noronha (Brazil) (compare Figs.3537).Looking at the distribution patterns of therange-restricted species (narrow endemicswith range sizes smaller than 10,000 km, map13), only some of them occur in one of theseven diversity centres listed above. Narrowendemic species are found only in the southerncentral Andes centre (e.g. species of Cleisto-cactus, Parodia, Rebutia), the Puebla-oaxacacentre (many Mammillaria species) as well asin the (south-)eastern parts of the Chihuahuacentre (many species of Mammillaria, Thelo-cactus, Turbinicarpus, and others). Additionalcentres of range-restricted cacti are parts ofthe coastal Atacama Desert and the westernslopes of theAndes, especially in northern Peru

    (e.g. Espostoa, Haageocereus, Matucana, andmany smaller genera), and the northern partsof the Chilean matorral (mainly Copiapoa,Eriosyce). Small numbers of range-restrictedspecies occur all over south-east Brazil, north-ern and central Argentina and Chile, and largeareas of mexico and Costa Rica.At least some widespread species occur in al-most all parts of the overall distribution rangeof the Cactaceae.As a result, the median rangesizes for the species of a given place is higherthan 100,000 km in most grid cells (map 14)even though most cactus species have distri-bution ranges of less than 10,000 km! How-ever, those 50% species with small ranges arescattered over many places and only few ofthem co-occur in one place.The species with the largest range size withinthe Cactaceae is the tricontinental Rhipsalisbaccifera. Also within the Americas, Rhipsalisbaccifera has the largest distribution range ofall cacti species. many species with very largerange sizes are either epiphytic Rhipsalideaeor Hylocereinae (e.g.,Hylocereus,Lepismium)or shrubby opuntioideae. Nevertheless, evenwithin the epiphytic growth form, most speciesof the genera Weberocereus in Central Amer-ica or Schlumbergera in south-east Brazil havevery small known distribution ranges. In the

    41 Schumannia 7 2015

    250 kmSpecies per 100 km

    Diversity centres in Central America

    1 - 1011 - 2324 - 2829 - 3536 - 4041 - 5051 - 6061 - 73Diversity centres

    Map 11

    Barthlott et al. 2013

    (defined as the top 5% most species rich areas)

    Map 11: Diversity centres in Central America.Karte 11: Diversittszentren in MIttelamerika (definiert als dieoberen 5 % artenreichsten Gebiete; Arten pro 100 km).

    500 km

    Diversity centresin South America

    Species per 100 km

    1 - 1011 - 2324 - 2829 - 3536 - 4041 - 4546 - 5051 - 73Diversity centres

    Map 12

    Barthlott et al. 2013

    (defined as the top5% most speciesrich areas)

    Map 12: Diversity centres in South America.Karte 12: Diversittszentren in Sdamerika (definiert als dieoberen 5 % artenreichsten Gebiete; Arten pro 100 km).

  • 42 Schumannia 7 2015

    1500 km

    Range-restricted species('endemics')Species per 2500 kmwith ranges under 10,000 km

    Barthlott et al. 2013

    123 - 45 - 67 - 89 - 1011 - 1516 - 25

    Map 13

    Map 13: Range-restricted species (endemics).Karte 13: Arten mit kleinem Areal (Endemiten; Arten pro 2500 km mit Arealen kleiner als 10.000 km).

    Range-restricted species('endemics')Species per 2500 kmwith ranges under 10,000 km

    123 - 45 - 67 - 89 - 1011 - 1516 - 25

    M

  • genus Rhipsalis, more than one third of thespecies have distribution ranges smaller than10,000 km. Looking at the largest genera ofthe family, the range size distribution is veryuneven. In the large genusMammillaria, whichis mostly restricted to mexico and southernuSA, more than half of the species have dis-tribution ranges smaller than 2,000 km (2/3less than 10,000 km), whereas some taxa suchas M. heyderi, M. lasiacantha, or M. grahamiiare really widespread. A similar situation isfound in Parodia, where 70% of the speciesmainly in Rio Grande do Sul (Brazil) and uru-guay on the one hand and the southern centralAndes centre in Bolivia and Argentina on theother handhave range sizes smaller than10,000 km. In contrast, most species of thegenus Opuntia are widespread, and only a fewhave restricted ranges of less than 10,000 km.Echinopsis, which as a genus is restricted main-ly to the (southern) central Andes, has speciesof all range sizes, similar to Echinocereus inmexico and the southern uSA. Gymnocaly-cium, which is mainly from Argentina, is an ex-ample for a genus where most species havevery small range sizessimilar, e.g., toEriosycein Chile.

    There are other genera, which as a genus havelarge ranges, but include many restricted rangespecies. In the genus Pilosocereus, which oc-curs from south-east Brazil to northern mex-ico, almost half of the species have distributionranges smaller than 10,000 km, and only fewhave ranges of several hundred thousand km.A somewhat similar situation can be found inthe genus Melocactus, which has many re-stricted range species especially in south-eastBrazil but can be found even in mexico andthe Caribbean.

    5.4 Spatial distribution of growthforms

    There is a strong difference in the diversity pat-terns of the two most species rich growth formswithin cacti: the globular and the columnarspecies (maps 15 & 16). By far the highestspecies numbers of globular cacti occur in theChihuahua centre (almost exclusively tribeCacteae). only moderate species numbers arefound in the southern central Andes centre(mainly Cereeae subtribes Trichocereinae andNotocacteae), and in Rio Grande do Sul

    44 Schumannia 7 2015

    Fig. 33: An extraordinary life-form within theOpuntieae: liana Tacinga braunii at its typelocality in Brazil (near Itaobim, state MinasGerais). Photo: W. Barthlott.Abb. 33: Eine auergewhnliche Lebensforminnerhalb der Opuntieae: die Liane Tacingabraunii an ihrem Typfundort in Brasilien(bei Itaobim, Staat Minas Gerais).

    1500 km

    Growth form Globular:Species diversity (692 sp.)Species per 2500 km

    1 - 23 - 56 - 1011 - 1516 - 2526 - 3536 - 4546 - 56

    Map 15

    Barthlott et al. 2013

    1500 km

    Growth form Columnar:Species diversity (205 sp.)Species per 2500 km

    1 - 23 - 45 - 67 - 89 - 1011 - 1213 - 1415 - 16

    Map 16

    Barthlott et al. 2013

    Map 15: Growth form globular, species diversity (692 sp).Karte 15: Wuchsform kugelig, Artendiversitt (692 Arten;Arten pro 2500 km).

    Map 16: Growth form columnar, species diversity (205 sp).Karte 16: Wuchsform sulig, Artendiversitt (205 Arten;Arten pro 2500 km).

  • 46 Schumannia 7 2015

    Fig. 35: Discocactus horstii, extremelyrange-restricted species (near Diamantina,Minas Gerais, Brazil). Photo: W. Barthlott.Abb. 35: Discocactus horstii, eine Art mitextrem kleinem Verbreitungsgebiet(bei Diamantina, Minas Gerais, Brasilien).

    Fig. 36: Highly endemic Pelecyphora asellifor-mis in the Mexican state San Luis Potos. Photo:W. Barthlott.Abb. 36: Pelecyphora aselliformis ist im mexi-kanischen Staat San Luis Potos endemisch.

    Fig. 37: Highly endemic Geohintonia mexicanain Nuevo Len, Mexico. Photo: W. Barthlott.Abb. 37: Geohintonia Mexicana, endemisch inNuevo Len, Mexiko.

    Fig. 39: Cereus jamacaru, an example for an arborescent growth formwith columnar branches, with Werner Rauh (right) and Diedrich J. Supthut(left) in the Brazilian state Bahia. Photo: W. BarthlottAbb. 39: Ein Beispiel fr eine baumartige Wuchsform mit suligen sten:Cereus jamacaru, mit Werner Rauh (rechts) und Diedrich J. Supthut (links)im brasilianischen Staat Bahia.

    Fig. 38: Micranthocereus polyanthus in a field of white quartz sand nearCaetit (Bahia, Brazil). Photo: W. Barthlott.Abb. 38: Micranthocereus polyanthus in weiem Quarzsand bei Caetit(Bahia, Brasilien).

  • pischen Trockenwaldvegetation. In der Folgeist dieses Zentrum nicht nur Heimat kugeligerMammillaria-Arten und hufiger suliger undbaumfrmiger Kakteen wie Stenocereus, Ce-phalocereus (alle Cacteae) und Opuntia, son-dern auch von epiphytischen Arten der Gat-tungen Epiphyllum und Selenicereus.

    Die drei sdamerikanischen ZentrenSdliches Zentralanden-Zentrum: Das grte

    sdamerikanische Diversittszentrum beher-bergt auch die hchste Artenanzahl in Sd-amerika und ist durch die hchste phylo-genetische und morphologische Diversitt ge-kennzeichnet. Zehn der hier akzeptierten elfKakteen-Triben kommen in dem sdlichenZentralanden-Zentrum vor. mit in groen Tei-len dieses Zentrums acht vorkommenden Tri-ben pro 2.500-km-Rasterfeld ist die Anzahldoppelt so gro wie in den meisten Gebieten

    des Chihuahua-Zentrums. Das Zentrum be-findet sich in den semiariden und ariden Tlerndes zentralen und sdlichen Boliviens sowiedes nrdlichen Argentiniens. Im nrdlichenTeil des Zentrums umfasst die Vegetation laub-werfende Wlder mit dispersen, natrlichwaldfreien Steilhngen und felsigen Lichtun-gen. Im Sden, der Prpuna-koregion, domi-nieren Andenbuschlnder und Halbwsten.Dieses Zentrum beherbergt die hchste An-zahl kugeliger Kakteen in Sdamerika, ist aberauch ein Zentrum der Sulenkakteen. Es istdie einzige sdamerikanische Region mit einersignifikanten Anzahl polsterbildender Kak-teen. Zustzlich zu den vorwiegend bienen-bestubten Arten hat es eine beachtliche An-zahl schwrmerbltiger Arten. Besonders derwestliche Teil der bolivianischen Provinz Ta-rija und die benachbarten Gebiete Saltas undJujuys in Nordargentinien sind extrem vielfl-tig, wenn man den Artenreichtum in einer fei-nen Skala von 10 x 10 km-Rasterzellen be-trachtet (Karte 12).Caatinga-Zentrum:Dieses brasilianische Zen-trum liegt im sdlichen Teil der Caatinga-ko-region und den Campos Rupestres, die an dieBergketten der Serra Espinhao und ChapadaDiamantina anknpfen. Whrend trockenesBuschland und Dornwald die vorherrschendenVegetationstypen der Caatinga-Region sind, istdie hchste Kakteenartendiversitt in azona-len Habitaten wie Felskuppen (sog. Inselberge)oder auf nhrstoffarmen sandigen Bden zufinden. obwohl die Artenvielfalt im Vergleichzu dem Chihuahua- oder sdlichem Zentra-landen-Zentrum viel niedriger ist, kommt hiereine hohe Anzahl von Gattungen besondersder Tribus Cereeae vor. Dementsprechend istdieses Zentrum durch eine mittlere Artenzahlkugeliger Kakteen, aber eine hohe Diversittsuliger Arten charakterisiert. Das Caatinga-Zentrum hat die hchsten Zahlen von durchFledermuse und Vgel bestubten Arten undnur geringe Zahlen bienenbestubter Arten.Mata Atlntica-Zentrum: Dieses Zentrum inSdostbrasilien ist von allen anderen Zentrenkologisch recht deutlich unterschieden, da esdurch feuchten, immergrnen Regenwald ge-kennzeichnet ist. Wichtige Taxa sind hier diebaumfrmige Art Pereskia grandifolia und be-sonders eine hohe Anzahl epiphytischer Artenvon Rhipsalis und verwandten Gattungen. Ei-nige andere Arten dieses Zentrums wachsenin isolierten azonalen Habitaten wie Ksten-dnen oder Felskuppen (Inselberge, Abb. 5 &6) (meist Cereeae, die gleichen Gattungen wieim Caatinga-Zentrum). Nur kleine Flecken derursprnglichen Vegetation des sdostbrasilia-nischen Regenwaldes sind heute noch brig.Auer den sieben, oben vorgestellten Zentrenerreichen sehr kleine Gebiete in Rio Grande

    56 Schumannia 7 2015

    Fig. 43: Growth forms of cacti plotted on the phylogenetic tree of Fig. 25 (comp. the generic names).Abb. 43: Wuchsformen der Kakteeen, in den phylogenetischen Stammbaum der Abb. 25 bertragen(vgl. dort die Gattungsnamen). [Legende von oben nach unten: kugelig, sulig, sulig-baumfrmig,strauchig, baumfrmig, epiphytisch, polsterfrmig.]

  • meter groe Verbreitungsgebiete. Eine etwashnliche Situation ist in der Gattung Meloca-ctus zu finden,die viele kleinrumig verbreiteteArten besonders in Sdostbrasilien hat, abersogar in mexiko und der Karibik vorkommt.

    5.4 Rumliche Verbreitung derWuchsformen

    Die Verbreitungsmuster der zwei artenreich-sten Wuchsformen innerhalb der Kakteen (diekugeligen und die suligen Arten) zeigen deut-liche unterschiede (Karten 15 & 16). Bei wei-tem die hchsten Artenzahlen der Kugelkak-teen kommen im Chihuahua-Zentrum vor(fast ausschlielich der Tribus Cacteae). Nurmittlere Artenzahlen findet man im sdlichenZentralanden-Zentrum (vorwiegend Cereeaeder Subtriben Trichocereinae und Notoca-cteae) und in Rio Grande do Sul (Sdost-Bra-silien). Geringe Artenzahlen findet man in derCaatinga (vorwiegendMelocactus). Im Gegen-satz dazu gibt es fast keine Sulenkakteen imzentralen Teil des Chihuahua-Zentrums; derenhchste Diversitt ist in der Caatinga zu finden(besonders Cereeae Subtribus Cereinae, Abb.39), im sdlichen Zentralanden-Zentrum (be-sonders Cereeae Subtribus Trichocereinae)und in der Atacama-Wste und den westlichenHngen der Anden in Peru (Cereeae Subtri-bus Trichocereinae). Das kleine Puebla-oa-xaca-Zentrum in mexiko hat, im Gegensatz zudem benachbarten Chihuahua-Zentrum,eben-falls eine signifikante Anzahl suliger Kakteen,hauptschlich aus der Phyllocacteae SubtribusEchinocereinae.Die strauchigen und baumfrmigen Arten vonPereskia und den opuntioideae (Karten 18 &19,Abb. 40) weisen ihre hchsten Artenzahlenim Chihuahua-Zentrum und dem Puebla-oa-xaca-Zentrum auf, und nur eine geringe Ar-tenvielfalt in Sdamerika.Epiphytische Kakteen haben, verglichen mitdem Rest der Familie, deutlich verschiedenekologische Prferenzen (Karte 20). Die epi-phytischen Rhipsalideae (Abb. 41, vorwiegendsdamerikanisch, besonders Sdost-Brasilien)und Hylocereinae (vorwiegend mittelamerika)sind am artenreichsten in den Tieflandregen-wldern der mata Atlntica und mittelameri-kas. Jedoch kommen nur wenige Arten beiderTriben (z. B. Disocactus amazonicus und Stro-phocactus witii) in dem groen Regenwaldge-biet des Amazonasbeckens vor vorwiegendim westlichen Amazonien.Polsterbildende Kakteen (Abb. 42, hauptsch-lich Phyllocacteae-Echinocereinae und -Cylin-dropuntieae, sowieMaihuenia) sind an speziel-len Standorten mit Frost oder stark trocknen-den Winden, wie in den Hochanden Sd-

    62 Schumannia 7 2015

    Fig. 45: Convergent evolution of red hummingbird flowers in South and North America in unrelatedgenera of small globular cacti: Mammillaria poselgeri from Mexico (Baja California) (left), Matucanaformosa from N-Peru (right). It is almost typical that a different flower syndrome within the predo-minantly entomophilous genus Mammillaria led to creation of a separate genus (Cochemiea posel-geri) in the past. Photos: W. Rauh.Abb. 45: Konvergente Entstehung roter Kolibriblumen in Sd- und Nordamerika bei nicht verwand-ten Gattungen kleiner Kugelkakteen: links Mammillaria poselgeri aus Mexiko (Baja California),rechts Matucana formosa aus N-Peru. Es ist beinahe typisch, dass ein abweichendes Bltensyndrominnerhalb der vorwiegend entomophilen Gattung Mammillaria frher zur Abtrennung als eigeneGattung (Cochemiea poselgeri) fhrte.

    Fig. 46: Convergent evolution of night-blooming, white, hawkmoth pollinated flowers with extremelylong flower tubes in not related species: the dwarf columnar cactus Echinopsis mirabilis from Argen-tina (left), Epiphyllum phyllanthus (right), a widespread (Mexico to N-Argentina) rainforest epiphyte.E. phyllanthus is one of the extremely spingophilous species with a flower tube of up to about 20 cmlength and can probably be pollinated only by the moth Cocytius cruentus. Photos: W. Barthlott.Abb. 46: Konvergente Entstehung nachtblhender weier Schwrmerblumen mit extrem langen Blten-rhren bei nicht verwandten Arten: links der zwergige Sulenkaktus Echinopsis mirabilis aus Argenti-nien, rechts Epiphyllum phyllanthus, ein weitverbreiteter (Mexiko bis Nordargentinien) Regenwald-Epiphyt. E. phyllanthus ist einer der extrem spingophilen Arten mit einer Bltenrhre von bis ber20 cm Lnge und kann mglicherweise nur von dem Schwrmer Cocytius cruentus bestubt werden.

  • 6.1 Introduction

    As cacti represent popular plants of great or-namental value, for a long time they have beenthe subject of conservationist concerns (e.g.,BENSON 1982, OLDFIELD 1984a, b). Due to a rel-atively better knowledge of many species, butalso as a consequence of early overexploita-tion for horticulutural uses, cacti, since the1970s, were among the first plants to becomeprotected under international law. The wholefamily Cactaceae is included in theAppendicesI and II of the Convention on internationaltrade in endangered species of wild fauna andflora (CITES).This protection was especiallyrelated to the international trade in endan-gered species and to high demands in the or-namental plant market, but it did not takethreats from other sources into account.Withincreasing global conservation efforts aimingat the establishment of a more effective pro-tected area network,numerous species of Cac-taceae have also benefitted from in-situ con-servation measures. Still, the distributionranges of 19% of the species ranges do notoverlap with any protected area and 40% ofthe species ranges are not covered by protectedareas of the IUCN categories I to IV. Most ofthese have distribution ranges smaller than50,000 km. Clearly, the representation withina protected area does not automatically guar-antee effective conservation, and the existenceof a species outside protected areas is not in-dicating imminent threat.The geographical assessment of cacti pre-sented here can be a starting point for a moreinformed evaluation of their threat and con-servation status. Clearly, many threats to bio-diversity in general, and to cacti in particular,have been dynamically unfolding and chang-ing over the last decades. Still relevant treat-ments of cacti conservation have been pro-vided by TAYLOR & al. (1997) and TAYLOR &ZAPPI (2004), which, however can be comple-mented by integral and systematic assess-ments. The systematic discussion of threats tocacti according tomodern threat classificationapproaches (SALAFSKY& al. 2008) is a first step,

    which has also been adopted in the course ofthe elaboration of the IUCN Red List (IUCN2012).Additionally, spatial analyses allow fora certain differentiation of conservation prob-lems in the different regions of the Cactaceaerange. In the future, these spatial analyses canbe refined further, e.g. including detailed gapanalyses.This is urgently required as the IUCNRed List is far from being complete and up todate.The IUCN Red List still shows a strong biastowards a few well investigated countries suchas Brazil and Mexico. About 48% of all cactispecies,which have been assigned to one of theRed List categories Vulnerable, Endangered,Critically endangered, Extinct in the wild orExtinct, areMexican taxa, and 49% are Brazil-ian. The analysis also might underestimate thethreat status of species living outside arid re-gions. According to the current Red List(IUCN 2012), about 60% of the most endan-gered species (categories as above) would livein deserts or rocky areas, and only about 12%are forest taxa. However, in the case of manyepiphyte species from forest habitats (e.g., in

    the very highly fragmented and deforestedMata Atlantica region, Brazil) it seems likelythat the conservation status of many cactusspecies is poor. IBISCH & al. (2000) indicatedthat a few Bolivian epiphytic cacti would be atleast vulnerable to extinction,and the situationis likely to have worsened.According to IUCN(2012) however, the only epiphyte species thatare classified as vulnerable or more critical areRhipsalis cereoides, R. crispata, R. pilocarpa,R. russellii, and Schlumbergera kautskyi (allfromBrazil). Intensemonitoring efforts are re-quired to detect significant population declines.These are often affordable only for rich coun-tries, where even single populations and vari-eties are carefully observed (e.g., compare iso-lated populations in the Sonoran desert ofsouth-central Arizona of Nichols turks headcactus Echinocactus horizonthalonius var.nicholii with a dramatic decline from 1995 to2008 (MCINTOSH & al. 2011).In the followingwe discuss the principal threatsto cacti adopting the standard classification bySALAFSKY & al. (2007), which is also applied byIUCN (2012).

    68 Schumannia 7 2015

    6 Conservation and hotspots:cactus diversity in change

    Pierre L. Ibisch & Jens Mutke

    Fig. 51: Shield inselberg in Bahia, Brazil, with Melocactus ferreophilus; agricultural not usable relicthabitat in a destroyed landscape. Photo: W. Barthlott.Fig. 51: Schildinselberg in Bahia, Brasilien, mit Melocactus ferreophilus; ein landwirtschaftlich nichtnutzbarer Relikt-Standort inmitten einer zerstrten Landschaft.

  • 6.2 Threats to Cactaceae

    Residential and commercial development, hu-man settlements or other nonagricultural landuses with a substantial footprintMany fast growing cities exist in (sub)tropicalarid areas, where agriculture-related land usechange tends to be less important. With in-creasing human population growth, develop-ment, and urbanization, area consumption forresidential and commercial infrastructure be-comes ever more relevant also for cacti. Anexample is Cleistocactus acanthurus, which isthreatened by the development of Lima,Chosica and satellite cities (MOTTRAM 1998). InLatin America, a significant number of largecities are located in more or less narrow aridvalleys with relevant occurrences of cacti. Forexample, in Bolivia, the rapid growth of the cityof Cochabamba and satellite settlements drivesthe conversion of habitats both of the bottomand the slopes of the valley system affectingcacti populations of Cleistocactus parviflorus,Echinopsis obrepanda, Parodia schwebsianaamong others (previously even benefitted bydeforestation, IBISCH 2004b) (Fig. 55). In an as-sessment of the Cactaceae of the Quertanosemi-desert it was concluded that fewer specieswere threatened by residential developmentthan other land-use changes; however, the cor-responding impact was consideredmore severe(CHVEZ & al. 2007). While agricultural land-use impacts mainly zonal ecosystems withmore or less fertile soils, residential develop-ment also affects azonal sites such as rock out-crops or steep slopes, especially in the case ofmegacities suffering from decreasing space forexpansion (Figs. 5152). Non-agricultural landconsumption must not be neglected as a prob-lem especially for specialist plants in azonalhabitats. Currently, 14% of the cacti recordedby IUCN (2012), which have been assigned toone of the Red List categoriesVulnerable,En-dangered, Critically endangered,Extinct in thewild or Extinct suffer from threats belonging tothis category.

    Agriculture and aquaculture threats fromfarming and ranching as a result of agriculturalexpansion and intensification, including silvi-culture, mariculture, and aquacultureAbout 14% of all cacti species, which havebeen assigned to one of theRedList categoriesVulnerable, Endangered, Critically endan-gered, Extinct in thewild or Extinct, are threat-ened by agriculture driven land-use change(IBISCH & al. 2000, IUCN 2012,MLLER 2007).For a long time, many cacti, in many regionsbenefited from extensive land-use. Deforesta-tion and the subsequent grazing in (semi-)aridshrub-lands often led to the expansion of suit-

    able habitat for species that were stress-toler-ant and resistant to herbivory, but poor com-petitors, includingmany terrestrial cacti (IBISCH2004a). Indeed,grazing can benefit cactus pop-ulations (e.g., in the case of someMammillariaspecies in Tehuacn Valley, MARTORELL & PE-TERS 2009). However, with increasing intensityof grazing the degradation of ground vegeta-tion and soils leads to severe hydric erosiontriggering loss of habitat, and the intensifica-tion of agricultural land-use e.g. applying mas-sive mechanical clearing, burning and irriga-tion the elimination of cactus habitat is pro-moted. With rapidly growing demand foragricultural commodities and arable land, ad-vancement of industrial agriculture even un-der rather marginal conditions, as well as pro-gressing desertification, land conversion is be-coming an ever more important threat tospecies of Cactaceae. This is also increasinglyreflected in reports about principal threats: ex-cessive pasturing and exploitation of thedesert, habitat fragmentation and land-use

    changes, and anthropogenic fire are increas-ingly named as relevant conservation problems(e.g.,BRAILOVSKY SIGNORET &HERNNDEZ 2010,CHVEZ& al. 2007,CLARK-TAPIA& al. 2005,EM-MING 2005, GOLUBOV & al. 2009, LEON DE LALUZ 2005). In some cases, the compositionalchange of plant communities is causing threats;e.g., Opuntia humifusa, originally inhabitingopenQuercus savanna vegetationwas reportedto suffer from shading by an encroachingcanopy ofQuercus and Pinus, and smotheringby leaf litter (ABELLA & JAEGER 2004). Af-forestation activities can threaten habitats ofCactaceae, such as in the case of Neoporteriaaspillagae being affected byPinus radiata plan-tations in Chile (NOVOA 2002).

    Energy production and mining threats fromproduction of nonbiological resourcesMining and extraction of rocks can very specif-ically threaten species of Cactaceae at azonalsites otherwise not affected by land-use changes.For instance, this has been reported for Turbi-

    69 Schumannia 7 2015

    Fig. 52: The highly mimetic Ariocarpus kotschoubeyanus (red circle) next to a flowering Proboscideain the Mexican state San Luis Potos. Photo: W. Barthlott.Abb. 52: Der hoch mimetische Ariocarpus kotschoubeyanus (roter Kreis) neben einer blhendenProboscidea im mexikanischen Staat San Luis Potos.

  • 71 Schumannia 7 2015

    1000 kmCanada: species diversity and protected areasSpecies per 100 km

    M

    Barthlott et al. 2013

    Protected areas

    123

    Map 47

    Map 47: Canada. Species diversity and protected are