32
Biologically Inspired Optical Materials and Devices Harnessing Nature’s Light Manipulation Strategies for Dynamic Optical Materials Mathias Kolle @ Boston IEEE Photonics Society Meeting MIT Lincoln Laboratory May. 11 th , 2017

Biologically Inspired Optical Materials and Devices ... · Harnessing Nature’s Light Manipulation Strategies for Dynamic Optical Materials Mathias Kolle @ Boston IEEE Photonics

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Biologically Inspired Optical Materials and Devices Harnessing Nature’s Light Manipulation Strategies

for Dynamic Optical Materials

Mathias Kolle

@

Boston IEEE Photonics Society Meeting MIT Lincoln Laboratory

May. 11th, 2017

2

wild, vibrant species diversity

tough scrutiny

3.8 billion years

There surely are lessons to be learnt …

Youtube: “The Octopus and the Beer Bottle" Source: Nova - Kings of Camouflage

The broadclub cuttlefishAn acrobatic octopus

3

Elasticity Controlled deformation

Optics Controlled appearance

Extended Papillae Retracted Papillae

Roger Hanlon

Allen et al. J. Morph. 275: 371 (2014)

Roger Hanlon

Chromatophores

Iridophores

Leucophores

Mätgher et al. J. R. Soc. Interface (2009) 6, S149–S163

Length scales relevant for functionality in nature

4

Multifunctional materials require hierarchical morphologies

with 3D structure control from the nano- to the

macro-scaleimages courtesy of

http://www.quantum-immortal.net Tom Kleindinst (WHOI), Roger Hanlon

Shutterstock, Michel Villeneuve53 (Flickr) education.mrsec.wisc.edu

Tomahawk Beat PUPA Gilbert

Ling Li NIH

5

complexity in composition

complexity in morphology

?emulate

utilize

man-made material systemsnatu

ral m

ater

ial s

yste

ms

1. Increasing the repertoire of materials for optical engineering: Which role can soft matter play in optical technology?

Three overarching goals in the

2. Pushing the limits of functionality directly at the materials level.Organisms in nature incorporate multiple functions on the materials level. Can we copy that efficiently?

L. Li et al. Science (2015)

3. Explore new paradigms in the fabrication of optical materials.Can we grow functional materials, with better control of structure across multiple length scales?

6

Biomimickry (a.k.a. Biomimetics)

Bioinspirationvs.

7

‹#›8

Talk outline

100µm

Sara Nagelberg

0.01

0.00

0.02

0.03

0.04

-10 0 108642x [µm]

-6 -4 -2-8

rthrexpPS

F

Reconfigurable fluid compound micro-lenses

Nagelberg et al., Nature Communications 14673 (2017).

Using fluids to create bio-inspired, tunable, optical components

Using elastomers to create bio-inspired, tunable, optical components

Pressure indication in compression bandages with photonic fibers

Joseph Sandt

Sandt et al., in preparation (2017).

30

40

20

10

0Pre

ssur

e [m

mH

g]

0True Strain 0.15 0.30 0.45 0.60

450 490 530

Pre

ssur

e [k

Pa]

0

1

2

3

4

5

6

Wavelength [nm]

30

40

20

10

0Pre

ssur

e [m

mH

g]

0True Strain 0.15 0.30 0.45 0.60

450 490 530

Pre

ssur

e [k

Pa]

0

1

2

3

4

5

6

Wavelength [nm]

Nagelberg et al. Nature Communications, 8, 14673 (2017).

Reconfigurable Emulsion-Based Micro-Lenses

Sara Nagelberg

Lauren Zarzar

Tim Swager

George Barbastathis

Collaborators:

Daniel Blank-schtein

VishnuSresht

Moritz Kreysing

Inspiration - vision of nocturnal mammals

Jochen GuckBioTec, Dresden

MoritzKreysing

MPI, Dresden

10Solovei et al. Cell, 137, 356-368 (2009).

20µm

Emulsion morphologies can be controllably adjusted using surfactants

The emulsion drops can act as lenses

Lauren Zarzar

Sara Nagelberg

Micro-emulsions for micro-optics

11

100 μm

Modeling of emulsion droplet properties

Sara Nagelberg

100µm

Vishnu Shresht

Incidentlight

12

Visualization of lens-light interactionSara

Nagelberg

13Nagelberg et al., in preparation

14

Quantifying variation of focal length

Sara Nagelberg

x1

x2

Input Image

Droplets

OutputImage

100µm

15cycles [1/µm]0.1 0.2 0.3 0.40

0.2

0.0

0.4

0.6

0.8

1.0

MTF

10%

fexp10%

fth10%

0.01

0.00

0.02

0.03

0.04

-10 0 108642x [µm]

-6 -4 -2-8

rthrexpPSF

-15-10-5

5101520

-1 2 3

0

0 Ri / Rd

f eff /

Rd

0.05

0.1

0.15

1 2 3

NA

Ri / Rd

Quantifying the lenses’ dynamic optical properties

Potential for applications

Toward 3D displays & integral imaging

Sara Nagelberg

Lauren Zarzar

16

500µm

1

2

500µm

1 2121

2

Toward on-chip optical micro-tomography

Sara Nagelberg

Lauren Zarzar

17

Potential for applications

18

Summary

- useful inspiration for light manipulation can be gained from nature (sometimes it’s right in front of our eyes - or like in this case in our eyes)

- fluids can be assembled to have morphologies that emulate the key features of compound lenses and other optical components

- easily achieved morphological changes in fluid compound lenses allow us to tune the lenses’ optical properties using a variety of stimuli

- applications for display technology, imaging devices, wavefront sensing and shaping, and light management in solar energy conversion

Joseph Sandt

Biologically Inspired, Mechano-Sensitive, Color-Tunable Photonic Fibers

Andrew Milne

Jennifer Lewis

James Hardin

Collaborators:

Marcus Urann

Pete Vukusic

Chris Argenti

Marie Moudio

Optical and electron microscopy images acquired by Alfie Lethbridge und Prof. Peter Vukusic, University of Exeter, UK

50µm

Mimetic fruits of the “Bastard hogberry” (Margeritaria nobilis)

A cheeky little fruit … “full of inspiration”

20µm10µm 500 nm

Pete Vukusic

AlfredLethbridge

20

Bio-inspired mechano-responsive color-tunable photonic fibers

Key components in the fruit’s photonic structure:

Periodicity on the nanoscale: => color by constructive interference of light in selected wavelength ranges

Curvature on the microscale: => reflection of light into an increased angular range

21

The fiber morphology

1µm

20 µm 5 µm

2 µm 2 µm

core fiber multilayer cladding

22

increasing layer thickness

Reflection

Transmission

20µm

The reflection color of the fibers can be controlled by adjusting the film thicknesses in the initial double layer.

20µm 20µm

20µm 20µm 20µm

The fiber color

23

Microscopic appearance and spectral data

Corresponding spectroscopic signature

-

50µm

1000900800700600500400

peak

[nm

] 1.20.80.40.0

ν = 0.46 ± 0.02λpeak = λ0

• (1+ ε) −νpeak

Kolle et al., Adv. Mater. 25, 2239 (2013)

Peak wavelength λPeak vs strain ε

Reversible and controlled color-tuning in elastically deformable photonic fibers

Microscopic appearance

J. KenjiClark

24

25

Clustering of data points in CIE color space visualizes the homogeneity along fibers and the consistency in optical performance across fibers.

0.8

0.6

0.4

0.2

00 0.2 0.4 0.6

y

x

Increasing strain

Joseph Sandt

26

How can we tell the pressure inside the

bandage?

No effect

Optimal healing Adverse effects

Compression therapy

27

Implications for the patient

pain time cost

28

How could the fibers be useful for this problem?

100µmincreasing strain

1 mm

40

30

20

10

0Pre

ssur

e [m

mH

g]

0.600.450.300.150True Strain

“A bit of pressure is healthy.”

1000900800700600500400

peak

[nm

]

1.20.80.40.0strain

?

Pressure vs. bandage strainWavelength vs. fiber strain

29

Colorimetric pressure sensors in compression bandages

Pres

sure

Color

color pressure

Fiber endurance

Cycle 1 10 102 103 104

30

Joseph

31

JosephSandt

ChrisArgenti

Matthew Carty, MD

MarieMoudio

The team

The goal

Moritz Kreysing

Acknowledgements

Joanna Aizenberg

Pete Vukusic

AlfredLethbridge

JamesHardin

Students

Andrew Milne

PostDocs

Financial support

Tim Swager

George Barbastathis

Daniel Blank-schtein

Sara Nagelberg

JenniferLewis

Lauren Zarzar

VishnuSresht

KaushikaramSubramanian

Chris Argenti

Joseph Sandt

MarieMoudio

Facu

lty

Institutes