35
Biomass to hydrogen with CCS: can we go negative? Cristina Antonini and Marco Mazzotti 2020-06-22 1

Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

Biomass to hydrogen with CCS: can we go negative?

Cristina Antonini and Marco Mazzotti

2020-06-22

1

Page 2: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

Coal/Biomass

CO2

dehydration compression

CO2

CO2

H2

transport

H2 storage

H2 from electrolysis

H2

utilization

CO2 transport, injection and storage

CO2

WP2

Task 1.2

Task 1.3

Task 1.4

Task 1.1 ETHZ, UU

ECN

ETHZ, UU

RUB

WGSNG/Biomass H2Reforming

SyngasVPSA

WGSCO2

capturePSA

H2Reforming

BasicOxygen

FurnaceGas

WGS SEWGSH2

Industrial process

(Steel plant)

2

ELEGANCY - Overview

SyngasNG/Biomass

NG: Natural GasWGS: Water-gas shift section(V)PSA: (Vacuum) Pressure swing adsorptionSEWGS: Sorption enhanced WGS

CO2

Page 3: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

Coal/Biomass

CO2

dehydration compression

CO2

CO2

H2

transport

H2 storage

H2 from electrolysis

H2

utilization

CO2 transport, injection and storage

CO2

WP2

WGSNG/Biomass H2Reforming

SyngasVPSA

WGSCO2

capturePSA

H2Reforming

BasicOxygen

FurnaceGas

WGS SEWGSH2

Industrial process

(Steel plant)

ELEGANCY - Low-C H2 production

SyngasNG/Biomass

CO2

3

NG: Natural GasWGS: Water-gas shift section(V)PSA: (Vacuum) Pressure swing adsorptionSEWGS: Sorption enhanced WGS

Goals:

1) Study low-C hydrogen production with CO2 capture and storage

- starting from different feedstocks - using different production technologies- comparing benchmark with novel CO2/H2 separation processes

2) Investigate the possibility to deliver negative emissions

Page 4: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

VPSA

4

Low-C H2 production

WGSCO2

capturePSA

H2ReformingSyngasNG

Feedstock Feedstock conversion Technology

– Natural gas (NG) ReformingNG: Natural GasWGS: Water-gas shift section(V)PSA: (Vacuum) Pressure swing adsorption

PSA tail gas (CH4, CO, H2) CO2

Page 5: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

5

Feedstock Feedstock conversion Technology

– Natural gas (NG) Reforming • Steam methane reforming (SMR)NG: Natural GasWGS: Water-gas shift section(V)PSA: (Vacuum) Pressure swing adsorptionSMR: Steam methane reforming

VPSA

WGSCO2

capturePSASMR

H2O

Flue gas

Furnace

H2Syngas

PSA tail gas (CH4, CO, H2)

NG

CO2

Low-C H2 production

Page 6: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

VPSA

WGSCO2

capturePSA

6

SMR

H2O

Flue gas

PSA tail gas (CH4, CO, H2)

Furnace

H2Syngas

CO2

NG

Feedstock Feedstock conversion Technology

– Natural gas (NG) Reforming • Steam methane reforming (SMR)NG: Natural GasWGS: Water-gas shift section(V)PSA: (Vacuum) Pressure swing adsorptionSMR: Steam methane reforming

CO2 (60-70 %)

Low-C H2 production

Page 7: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

VPSA

CO2

WGSCO2

capturePSA

7

ATRH2Syngas

Fired heater

Flue gasASU

O2

Air

H2ONG

Feedstock Feedstock conversion Technology

– Natural gas (NG) Reforming • Steam methane reforming (SMR)• Autothermal reforming (ATR)

NG: Natural GasWGS: Water-gas shift section(V)PSA: (Vacuum) Pressure swing adsorptionSMR: Steam methane reformingATR: Autothermal reformingASU: air separation unit

PSA tail gas (CH4, CO, H2)

Low-C H2 production

Page 8: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

VPSA

WGSCO2

capturePSA

8

ATR

H2OH2Syngas

ASU

O2

Air

Flue gas

NG

CO2

Feedstock Feedstock conversion Technology

– Natural gas (NG) Reforming • Steam methane reforming (SMR)• Autothermal reforming (ATR)

NG: Natural GasWGS: Water-gas shift section(V)PSA: (Vacuum) Pressure swing adsorptionSMR: Steam methane reformingATR: Autothermal reformingASU: air separation unit

Fired heater

PSA tail gas (CH4, CO, H2) CO2 (93-98 %)

Low-C H2 production

Page 9: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

VPSA

CO2

9

WGSCO2

capturePSA

H2ReformingSyngasNG

Feedstock Feedstock conversion Technology

– Natural gas (NG) Reforming • Steam methane reforming (SMR)• Autothermal reforming (ATR)

NG: Natural GasWGS: Water-gas shift section(V)PSA: (Vacuum) Pressure swing adsorptionSMR: Steam methane reformingATR: Autothermal reformingASU: air separation unit

PSA tail gas (CH4, CO, H2)

Low-C H2 production

Page 10: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

VPSA

CO2

WGSCO2

capturePSA

H2

10

Reforming

BiogasUpgrading

AnaerobicDigestion

BiogasWet

biomass

SyngasNG/Biomethane

Feedstock Feedstock conversion Technology

– Natural gas (NG)– Biomethane from WB

Reforming • Steam methane reforming (SMR)• Autothermal reforming (ATR)

NG: Natural GasWGS: Water-gas shift section(V)PSA: (Vacuum) Pressure swing adsorptionSMR: Steam methane reformingATR: Autothermal reformingASU: air separation unitWB: Wet biomass

PSA tail gas (CH4, CO, H2)

Low-C H2 production

Page 11: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

VPSA

CO2

WGSCO2

capturePSA

H2

11

Reforming

BiogasUpgrading

AnaerobicDigestion

BiogasWet

biomass

SyngasNG/Biomethane

Feedstock Feedstock conversion Technology

– Natural gas (NG)– Biomethane from WB

Reforming • Steam methane reforming (SMR)• Autothermal reforming (ATR)

NG: Natural GasWGS: Water-gas shift section(V)PSA: (Vacuum) Pressure swing adsorptionSMR: Steam methane reformingATR: Autothermal reformingASU: air separation unitWB: Wet biomass

PSA tail gas (CH4, CO, H2)

Low-C H2 production

Negative emissions

Page 12: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

CO2

WGSCO2

capturePSA

H2

12

Reforming

Dry

biomass

Woodchips

BiogasUpgrading

AnaerobicDigestion

BiogasWet

biomass

SyngasNG/Biomethane

Feedstock Feedstock conversion Technology

– Natural gas (NG)– Biomethane from WB

Reforming • Steam methane reforming (SMR)• Autothermal reforming (ATR)

– Dry biomass (wood) Gasification

NG: Natural GasWGS: Water-gas shift section(V)PSA: (Vacuum) Pressure swing adsorptionSMR: Steam methane reformingATR: Autothermal reformingASU: air separation unitWB: Wet biomass

H2O

Forestry wood logging

Chipping

O2

ASUAir

PSA tail gas (CH4, CO, H2)

Low-C H2 production

Gasification

Gasification

Page 13: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

CO2

WGSCO2

capturePSA

H2

13

Reforming

BiogasUpgrading

AnaerobicDigestion

BiogasWet

biomass

SyngasNG/Biomethane

Feedstock Feedstock conversion Technology

– Natural gas (NG)– Biomethane from WB

Reforming • Steam methane reforming (SMR)• Autothermal reforming (ATR)

– Dry biomass (wood) Gasification • Steam-blown dual fluidized bed gasifier

NG: Natural GasWGS: Water-gas shift section(V)PSA: (Vacuum) Pressure swing adsorptionSMR: Steam methane reformingATR: Autothermal reformingASU: air separation unitWB: Wet biomassDFB: Dual fluidized bed

H2O

Forestry wood logging

Chipping

O2

ASUAir

PSA tail gas (CH4, CO, H2)

Low-C H2 production

Gasification

DFBgasifier

Dry

biomass

Woodchips

Page 14: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

Heat

CO2

WGSCO2

capturePSA

H2

14

Reforming

BiogasUpgrading

AnaerobicDigestion

BiogasWet

biomass

SyngasNG/Biomethane

Feedstock Feedstock conversion Technology

– Natural gas (NG)– Biomethane from WB

Reforming • Steam methane reforming (SMR)• Autothermal reforming (ATR)

– Dry biomass (wood) Gasification • Steam-blown dual fluidized bed gasifier

NG: Natural GasWGS: Water-gas shift section(V)PSA: (Vacuum) Pressure swing adsorptionSMR: Steam methane reformingATR: Autothermal reformingASU: air separation unitWB: Wet biomassDFB: Dual fluidized bed

H2O

Forestry wood logging

Chipping

O2

ASUAir

PSA tail gas (CH4, CO, H2)

Low-C H2 production

Flue gas

Char

GasificationAir

Dry

biomass

Woodchips

Page 15: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

Heat

WGSCO2

capturePSA

H2

15

Reforming

BiogasUpgrading

AnaerobicDigestion

BiogasWet

biomass

SyngasNG/Biomethane

Feedstock Feedstock conversion Technology

– Natural gas (NG)– Biomethane from WB

Reforming • Steam methane reforming (SMR)• Autothermal reforming (ATR)

– Dry biomass (wood) Gasification • Steam-blown dual fluidized bed gasifier

NG: Natural GasWGS: Water-gas shift section(V)PSA: (Vacuum) Pressure swing adsorptionSMR: Steam methane reformingATR: Autothermal reformingASU: air separation unitWB: Wet biomassDFB: Dual fluidized bed

H2O

Forestry wood logging

Chipping

O2

ASUAir

PSA tail gas (CH4, CO, H2)

Low-C H2 production

Flue gas

Char

GasificationAir

CO2

CO2 (60 %)

Dry

biomass

Woodchips

Page 16: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

Heat

WGSCO2

capturePSA

H2

16

Reforming

BiogasUpgrading

AnaerobicDigestion

BiogasWet

biomass

SyngasNG/Biomethane

Feedstock Feedstock conversion Technology

– Natural gas (NG)– Biomethane from WB

Reforming • Steam methane reforming (SMR)• Autothermal reforming (ATR)

– Dry biomass (wood) Gasification • Steam-blown dual fluidized bed gasifier

NG: Natural GasWGS: Water-gas shift section(V)PSA: (Vacuum) Pressure swing adsorptionSMR: Steam methane reformingATR: Autothermal reformingASU: air separation unitWB: Wet biomassDFB: Dual fluidized bed

H2O

Forestry wood logging

Chipping

O2

ASUAir

PSA tail gas (CH4, CO, H2)

Low-C H2 production

Flue gas

Char

GasificationAir

CO2

CO2 (60 %)

Negative emissions

Dry

biomass

Woodchips

Page 17: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

WGS PSAH2

17

Reforming

BiogasUpgrading

AnaerobicDigestion

BiogasWet

biomass

SyngasNG/Biomethane

Feedstock Feedstock conversion Technology

– Natural gas (NG)– Biomethane from WB

Reforming • Steam methane reforming (SMR)• Autothermal reforming (ATR)

– Dry biomass (wood) Gasification • Steam-blown dual fluidized bed gasifier• Oxy-fired entrained flow gasifier

NG: Natural GasWGS: Water-gas shift section(V)PSA: (Vacuum) Pressure swing adsorptionSMR: Steam methane reformingATR: Autothermal reformingASU: air separation unitWB: Wet biomassDFB: Dual fluidized bedEF: Entrained flow

H2O

Forestry wood logging

Chipping

O2

ASUAir

PSA tail gas (CO, H2) CO2

Low-C H2 production

DFBgasifier

EFgasifier

CO2

capture

Dry

biomass

Woodchips

Page 18: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

WGS PSAH2

18

Reforming

BiogasUpgrading

AnaerobicDigestion

BiogasWet

biomass

SyngasNG/Biomethane

Feedstock Feedstock conversion Technology

– Natural gas (NG)– Biomethane from WB

Reforming • Steam methane reforming (SMR)• Autothermal reforming (ATR)

– Dry biomass (wood) Gasification • Steam-blown dual fluidized bed gasifier• Oxy-fired entrained flow gasifier

NG: Natural GasWGS: Water-gas shift section(V)PSA: (Vacuum) Pressure swing adsorptionSMR: Steam methane reformingATR: Autothermal reformingASU: air separation unitWB: Wet biomassDFB: Dual fluidized bedEF: Entrained flow

H2O

Forestry wood logging

Chipping

O2

ASUAir

PSA tail gas (CO, H2)

Low-C H2 production

DFBgasifier

EFgasifier

CO2

capture

CO2 (98 %)

Dry

biomass

Woodchips

CO2

Page 19: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

WGS PSAH2

19

Reforming

BiogasUpgrading

AnaerobicDigestion

BiogasWet

biomass

SyngasNG/Biomethane

Feedstock Feedstock conversion Technology

– Natural gas (NG)– Biomethane from WB

Reforming • Steam methane reforming (SMR)• Autothermal reforming (ATR)

– Dry biomass (wood) Gasification • Steam-blown dual fluidized bed gasifier• Oxy-fired entrained flow gasifier

NG: Natural GasWGS: Water-gas shift section(V)PSA: (Vacuum) Pressure swing adsorptionSMR: Steam methane reformingATR: Autothermal reformingASU: air separation unitWB: Wet biomassDFB: Dual fluidized bedEF: Entrained flow

H2O

Forestry wood logging

Chipping

O2

ASUAir

PSA tail gas (CO, H2)

Low-C H2 production

DFBgasifier

EFgasifier

CO2

capture

CO2 (98 %)

Dry

biomass

Woodchips

Negative emissions

Page 20: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

WGSCO2

capturePSA

H2

20

Reforming

BiogasUpgrading

AnaerobicDigestion

BiogasWet

biomass

SyngasNG/Biomethane

Feedstock Feedstock conversion Technology

– Natural gas (NG)– Biomethane from WB

Reforming • Steam methane reforming (SMR)• Autothermal reforming (ATR)

– Dry biomass (wood) Gasification • Steam-blown dual fluidized bed gasifier• Oxy-fired entrained flow gasifier

NG: Natural GasWGS: Water-gas shift sectionPSA: Pressure swing adsorptionSMR: Steam methane reformingATR: Autothermal reformingASU: air separation unitWB: Wet biomassDFB: Dual fluidized bedEF: Entrained flow

Dry

biomass

Woodchips

H2O

Forestry wood logging

Chipping

O2

ASUAir

PSA tail gas (CH4, CO, H2) CO2

Low-C H2 production

DFBgasifier

EFgasifier

➢ These production chains are modelled in Aspen Plus

Page 21: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

WGSCO2

capturePSA

H2

21

ReformingSyngasNG/Biomethane

CO2 capture - benchmark technology

Benchmark: amine absorption Standard solvent: Methyl diethanolamine (MDEA)

Lean stream

Rich stream

Semi-lean stream

Gas recycle

Shiftedsyngas

Raw H2

CO2 to dehydration and compression

Ab

sorb

er

Stri

pp

er

CO2

HPflash

LPflash

NG: Natural GasWGS: Water-gas shift section(V)PSA: (Vacuum) Pressure swing adsorptionLP: Low pressureHP: High pressure

Page 22: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

WGSCO2

capturePSA

H2

22

ReformingSyngasNG/Biomethane

CO2 capture - benchmark technology

Benchmark: amine absorption Standard solvent: Methyl diethanolamine (MDEA)

➢ Detailed model in Aspen Plus

NG: Natural GasWGS: Water-gas shift section(V)PSA: (Vacuum) Pressure swing adsorptionLP: Low pressureHP: High pressure

Shiftedsyngas

Raw H2

CO2

Page 23: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

23

CO2 capture technology – optimization

➢ Detailed model in Aspen Plus

1) Sensitivity analysis on the process variables2) Select the decision variables, continuous (𝒙) and discrete (𝒚)3) Two objective functions to optimize

– CO2 capture rate ψ– Total specific equivalent work ω

4) The optimization problem is solved using a genetic algorithm

→ Pareto Optimum

Pro

cess

mo

del

in A

spen

Plu

s

CO2 capture rate:

ψ

Total specific equivalent work:

ω [MJ/kgCO2]

=𝑚CO2

captured

𝑚CO2in

=𝑊tot

𝑚CO2

captured

min𝑥,𝑦

𝜔,1

𝜓

subject to

𝒙min ≤ 𝒙 ≤ 𝒙max

𝒚 ∈ 𝒚𝟏, 𝒚𝟐, … 𝒚𝑵

Multi-objective optimization

Goal: optimize the CO2 capture plant for different H2 production chains

Page 24: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

VPSA

WGS PSAH2

24

ReformingSyngasNG/Biomethane

CO2 capture - novel technology

Novel CO2/H2 separation technology: Vacuum pressure Swing Adsorption

NG: Natural GasWGS: Water-gas shift section(V)PSA: (Vacuum) Pressure swing adsorption

CO2

capture

PAds

PPE1

PHP

PBD-vac

PAds

PPE1

VP

PAds

Feed (Shifted Syngas)

Hydrogen

PHP

PPE1

PPE2

PPE2

PPE3

PPE3

PHP

PPE3

PBD-vac

PPE2

PPE3

PPE1

PPE2

CO2

Tail Gas I Tail Gas II

PBD-vac

VP

PBD-vac

VP

Tail Gas III

PressPE-BD1 PE-BD2 PE-BD3 BD1 HP BD-vac LP1 LP2 PE-Pr3 PE-Pr2 PE-Pr1Ads

Page 25: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

Natural gas

Biomethane

Wood chips

VPSA

PSAH2 (200 bar)

25

ReformingSyngasNG/Biomethane

Low-C H2 production - performance

WGS

SMR: Steam methane reforming ATR: Autothermal reforming CCS: benchmark CO2 capture with MDEADFB: Dual fluidized bed EF: Entrained flow

Wood chips

H2O

O2

ASUAir

PSA tail gas (CH4, CO, H2) CO2

CO2

capture

DFBgasifier

EFgasifier

η =𝐸H2[MW]

𝐸feedstock [MW]

Antonini, C., Treyer, K., Streb, A., van der Spek, M., Bauer, C., & Mazzotti, M. (2020). Hydrogen productionfrom natural gas and biomethane with carbon capture and storage–A techno-environmental analysis. Sustainable Energy & Fuels.

1) The performance of the benchmark and of the novel VPSA process is similar→ CCS: Benchmark CO2 capture with MDEA

2) For all technologies presented we developed a detailed model simulation in Aspen Plus

3) The performance of the SMR and ATR processes does not change significantly while using biomethane instead of natural gas

4) When the feedstock is biomass the captured CO2 can deliver negative emissions

Page 26: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

Natural gas

Biomethane

Wood chips

VPSA

PSA

26

ReformingSyngasNG/Biomethane

Low-C H2 production - performance

WGS

SMR: Steam methane reforming ATR: Autothermal reforming CCS: benchmark CO2 capture with MDEADFB: Dual fluidized bed EF: Entrained flow

Wood chips

H2O

O2

ASUAir

PSA tail gas (CH4, CO, H2) CO2

CO2

capture

DFBgasifier

EFgasifier

η =𝐸H2[MW]

𝐸feedstock [MW]

Antonini, C., Treyer, K., Streb, A., van der Spek, M., Bauer, C., & Mazzotti, M. (2020). Hydrogen productionfrom natural gas and biomethane with carbon capture and storage–A techno-environmental analysis. Sustainable Energy & Fuels.

H2 (200 bar)

Page 27: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

27

Wood chips

H2O

O2

ASUAir

PSA tail gas (CH4, CO, H2)

Low-C H2 production - performance

DFBgasifier

EFgasifier

η =𝐸H2[MW]

𝐸feedstock [MW]

VPSA

WGS PSAH2

SMRSyngasNG/Biomethane CO2

capture

CO2

Re-do this plot

SMR: Steam methane reforming ATR: Autothermal reforming CCS: benchmark CO2 capture with MDEADFB: Dual fluidized bed EF: Entrained flow

Antonini, C., Treyer, K., Streb, A., van der Spek, M., Bauer, C., & Mazzotti, M. (2020). Hydrogen productionfrom natural gas and biomethane with carbon capture and storage–A techno-environmental analysis. Sustainable Energy & Fuels.

Natural gasBiomethaneWood chips

Page 28: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

VPSA

PSAH2

28

ATRSyngasNG/Biomethane CO2

capture

PSA tail gas (CH4, CO, H2) CO2

Low-C H2 production - performance

Wood chips

H2O

O2

ASUAir

DFBgasifier

EFgasifier

η =𝐸H2[MW]

𝐸feedstock [MW]

WGS

SMR: Steam methane reforming ATR: Autothermal reforming CCS: benchmark CO2 capture with MDEADFB: Dual fluidized bed EF: Entrained flow

Antonini, C., Treyer, K., Streb, A., van der Spek, M., Bauer, C., & Mazzotti, M. (2020). Hydrogen productionfrom natural gas and biomethane with carbon capture and storage–A techno-environmental analysis. Sustainable Energy & Fuels.

Natural gas

Biomethane

Wood chips

Natural gasBiomethaneWood chips

Page 29: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

Wood chips

H2O

O2

ASUAir

29

PSAH2Reforming

SyngasNG/BiomethaneWGS

CO2

capture

DFBgasifier

EFgasifier

PSA tail gas (CH4, CO, H2) CO2

Low-C H2 production - performance

η =𝐸H2[MW]

𝐸feedstock [MW]

Natural gasBiomethaneWood chips

SMR: Steam methane reforming ATR: Autothermal reforming CCS: benchmark CO2 capture with MDEADFB: Dual fluidized bed EF: Entrained flow

Antonini, C., Treyer, K., Streb, A., van der Spek, M., Bauer, C., & Mazzotti, M. (2020). Hydrogen productionfrom natural gas and biomethane with carbon capture and storage–A techno-environmental analysis. Sustainable Energy & Fuels.

Page 30: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

Natural gasBiomethaneWood chips

30

PSAH2Reforming

SyngasNG/Biomethane CO2

capture

Wood chips

H2O

O2

ASUAir

DFBgasifier

EFgasifier

PSA tail gas (CH4, CO, H2) CO2

Low-C H2 production - performance

η =𝐸H2[MW]

𝐸feedstock [MW]

WGS

SMR: Steam methane reforming ATR: Autothermal reforming CCS: benchmark CO2 capture with MDEADFB: Dual fluidized bed EF: Entrained flow

Antonini, C., Treyer, K., Streb, A., van der Spek, M., Bauer, C., & Mazzotti, M. (2020). Hydrogen productionfrom natural gas and biomethane with carbon capture and storage–A techno-environmental analysis. Sustainable Energy & Fuels.

Page 31: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

31

PSAH2Reforming

SyngasNG/Biomethane CO2

capture

Wood chips

H2O

O2

ASUAir

DFBgasifier

EFgasifier

CO2

Low-C H2 production - performance

η =𝐸H2[MW]

𝐸feedstock [MW]

WGS

SMR: Steam methane reforming ATR: Autothermal reforming CCS: benchmark CO2 capture with MDEADFB: Dual fluidized bed EF: Entrained flow

Antonini, C., Treyer, K., Streb, A., van der Spek, M., Bauer, C., & Mazzotti, M. (2020). Hydrogen productionfrom natural gas and biomethane with carbon capture and storage–A techno-environmental analysis. Sustainable Energy & Fuels.

PSA tail gas (CH4, CO, H2)

BiomethaneWood chips

Page 32: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

32

PSAH2Reforming

SyngasNG/Biomethane CO2

capture

Wood chips

H2O

O2

ASUAir

DFBgasifier

EFgasifier

CO2

Low-C H2 production - performance

η =𝐸H2[MW]

𝐸feedstock [MW]

WGS

SMR: Steam methane reforming ATR: Autothermal reforming CCS: benchmark CO2 capture with MDEADFB: Dual fluidized bed EF: Entrained flow

Antonini, C., Treyer, K., Streb, A., van der Spek, M., Bauer, C., & Mazzotti, M. (2020). Hydrogen productionfrom natural gas and biomethane with carbon capture and storage–A techno-environmental analysis. Sustainable Energy & Fuels.

PSA tail gas (CH4, CO, H2)

CO2 emitted to the atmosphere CO2 captured and stored (negative emissions)

Page 33: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

33

Conclusions

• Producing low carbon hydrogen is possible ➢ Combining production from natural gas with CCS

➢ Using biomass either wet or dry

➢ Negative emissions can be obtained when combining hydrogen production from biomass with CCS

• The availability of biomass will be a critical factor and will vary from region to region

• The overall environmental performance that depends on the type of feedstock and production chain selected has to be evaluated via LCA➢Karin will present the overall environmental performance of low-C hydrogen

production

Page 34: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

Acknowledgement

ACT ELEGANCY, Project No 271498, has received funding from DETEC (CH), BMWi (DE), RVO (NL), Gassnova (NO),BEIS (UK), Gassco, Equinor and Total, and is cofunded by the European Commission under the Horizon 2020programme, ACT Grant Agreement No 691712. This project is supported by the pilot and demonstrationprogramme of the Swiss Federal Office of Energy (SFOE).

34

Page 35: Biomass to hydrogen with CCS: can we go negative? · 2020-06-26 · Coal/Biomass CO 2 dehydration compression CO 2 CO 2 H 2 transport H 2 storage H 2 from electrolysis H 2 utilization

35

PSAH2Reforming

SyngasNG/Biomethane CO2

capture

Wood chips

H2O

O2

ASUAir

DFBgasifier

EFgasifier

PSA tail gas (CH4, CO, H2) CO2

Low-C H2 production - performance

η =𝐸H2[MW]

𝐸feedstock [MW]

WGS

SMR: Steam methane reforming ATR: Autothermal reforming CCS: benchmark CO2 capture with MDEADFB: Dual fluidized bed EF: Entrained flow

Antonini, C., Treyer, K., Streb, A., van der Spek, M., Bauer, C., & Mazzotti, M. (2020). Hydrogen productionfrom natural gas and biomethane with carbon capture and storage–A techno-environmental analysis. Sustainable Energy & Fuels.

Natural gasBiomethaneWood chips