229
22/3/30 Physics of Semiconductor Devices 1 理理理理理理理理理理理理理理 Bipolar transistor

Bipolar transistor

Embed Size (px)

DESCRIPTION

Bipolar transistor. § 3-1 Introduction. Bipolar Transistor. First bipolar transistor (BJT) was invented in 1948. The term bipolar came from the fact that both types of carriers, i.e., electron and hole play important roles in operation. - PowerPoint PPT Presentation

Citation preview

Page 1: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 1

理学院量子智能信息处理实验室

Bipolar transistor

Page 2: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 2

理学院量子智能信息处理实验室

§3-1 Introduction

Page 3: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 3

理学院量子智能信息处理实验室

Bipolar Transistor

First bipolar transistor (BJT) was invented in 1948

The term bipolar came from the fact that both types of carriers, i.e., electron and hole play important roles in operation

Field Effect Transistor (FET) is unipolar, in which only one type of carrier is important

Page 4: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 4

理学院量子智能信息处理实验室

Bipolar Transistor

In VLSI era, BJTs starts to lose their show stage due to the emergence of MOSFETs, which possess advantage of simplicity in term of process and circuit design However, BJT’s refuse to step down because of their high current drive capability and superior analog performance (also useful in power applications) Current trend is to combine the best of MOSFETs and Bipolar devices, which is known as BiCMOS process BJT devices are also the preferred device for high speed (e.g. Emitter Couple Logic .ECL) and RF applications

Page 5: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 5

理学院量子智能信息处理实验室

Bipolar Transistor

n+

p n

p+

n p

Page 6: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 6

理学院量子智能信息处理实验室Bipolar Transistor

The ”Planar Process” developed by Fairchild in the late 50s shaped the basic structure of the BJT, even up to the present day.

Page 7: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 7

理学院量子智能信息处理实验室

Modern BJT

Page 8: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 8

理学院量子智能信息处理实验室

Page 9: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 9

理学院量子智能信息处理实验室

Close enough that minority carriers interact (negligible recombination in base)

BJT basically consists of two neighbouring pn junctions back to back:

For apart enough that depletion regions don’t interact (no “punchthrough”)

Uniqueness of BJT: high current drivability per input capacitance fast excellent for analog and front-end communications applications.

Page 10: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 10

理学院量子智能信息处理实验室

Bipolar operation

Operation depends on the bias condition

IB

IC

IE

Page 11: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 11

理学院量子智能信息处理实验室

§3-2 Carrier distribution

Page 12: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 12

理学院量子智能信息处理实验室Current Flow

emitter current injected into the base

base current injected into the emitter

recombination in the base current region

reverse biased current across the BCJ

reverse biased current across the BCJ

electron current from the emitter

EBnI

BEpI

BERI

CBpI

CBnI

CnI

Page 13: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 13

理学院量子智能信息处理实验室

Bipolar TransistorModes of

operation

VCB

SaturationForward active

CutoffInverted active

VEBPNP NPN

SaturationForward active

CutoffInverted active

VBC

VBE

activeinvertedsaturationcutoff

forwardreverseforwardreverse

forward

reverse

reverse

forward

E-B C-B Mode

Page 14: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 14

理学院量子智能信息处理实验室

An idealized p-n-p transistor in thermal equilibrium, that is ,where all there leads are connected together or all are ground.

The impurity densities in the three doped regions, where the emitter is more heavily doped than the collector. However the base doping is less than the emitter doping, but greater than the collector doping.

Page 15: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 15

理学院量子智能信息处理实验室

Transistor Action

ACTIVE MODE

In active mode, the emitter-base junction is forward biased and collector base-junction is reverse biased.

Page 16: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 16

理学院量子智能信息处理实验室Current FlowForward bias Reverse bias

Electron FlowHole Flow

Page 17: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 17

理学院量子智能信息处理实验室

Transistor Action

Saturation Mode

Both junction are in forward bias

Cutoff Mode

Both junctions are in reverse bias and all currents in the transistor are zero.

Inverse-active Mode

Junction between E and B is in forward bias and junction between B and C is in reverse bias.

Page 18: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 18

理学院量子智能信息处理实验室

Current Gain

IE=IEp+IEn

IC=ICp+ICn

IB=IE-IC=IEn+(IEp-ICp)-ICn

Page 19: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 19

理学院量子智能信息处理实验室

Current GainCommon base current

gain

Emitter efficiency

Base transport fact

Ep

Cp

EnEp

Ep

EnEp

Cp

E

Cp

I

I

II

I

II

I

I

I00

EnEp

Ep

E

Ep

II

I

I

I

Ep

CpT I

I

T 0

Page 20: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 20

理学院量子智能信息处理实验室

Collector current

CB: current measured between these two terminals

O: refers to the state of the third terminal with respect to the second

CBOEC III 0

Page 21: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 21

理学院量子智能信息处理实验室

Carrier Profile in Active Mode

Page 22: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 22

理学院量子智能信息处理实验室

Carrier distribution in this region

To derive the current-voltage expression for an ideal transistor, we assume the following:

1. The device has uniform doping in each region.

2. The hole drift current in the base region as well as the collector saturation current is negligible.3. There is low-level injection.

4. There are no generation-combination currents in the depletion region.

5. There are no series resistance in the devices.

Page 23: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 23

理学院量子智能信息处理实验室

Carrier Distribution in each RegionBase

regionSteady-state continuity equation

The general solution is

002

2

p

nnnp

pp

dx

pdD

pp LxLxnn eCeCpxp 21

Where is the diffusion length of holes.

ppp DL

where and are the diffusion constant and the life time of minority carriers, respectively.

pD p

Page 24: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 24

理学院量子智能信息处理实验室

By the boundary conditions for the active mode:

the solution can expressed

When W/Lp<<1, the distribution equation can be simplified as

kTqVnn

EBepp 00

0Wpn

0Wpn

p

p

n

p

pkTqVnn

L

W

L

x

p

L

W

L

xW

epxp EB

sinh

sinh

1

sinh

sinh

1 00

W

xp

W

xepxp n

kTqVnn

EB 1010

Page 25: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 25

理学院量子智能信息处理实验室

Carrier distribution

Page 26: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 26

理学院量子智能信息处理实验室

Carrier Distribution in each RegionEmitter and collector region

The boundary condition in the neutral region and collector region are:

When nE0 and nC0 are the equilibrium electron concentrations in the emitter and collector, respectively. Substituting these boundary conditions into expressions similar to Eq.1 yields

kTqV

EEE

EBenxxn0

00

CBVq

CCCenxxn

E

E

EB L

xx

kTqV

EEEeennxn

100

C

C

L

xx

CCCennxn

00

Exx

Cxx

Page 27: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 27

理学院量子智能信息处理实验室

Common base Active mode is BEJ forward biased while

CBJ reverse biased Saturation occurs when CBJ is forward biased When IE=0, the device is cutoff, IC is the reverse leakage current of the CBJ. Note that IC≠0 for VCB=0. The current is contributed by IE if the BEJ is forward biased.

Page 28: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 28

理学院量子智能信息处理实验室

Common base configuration

Minority carrier distributions in the base region of a p-n-p transistor.

a) Active mode for VBC=0.

b) Saturation mode with both junctions forward biased.

Page 29: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 29

理学院量子智能信息处理实验室

Common emitter

Saturation occurs when both EBJ and CBJ are forward biased Active mode is the most useful for linear applications Saturation and cut-off modes are most useful for switching applications

Page 30: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 30

理学院量子智能信息处理实验室

Common emitter configuration

Common emitter current gain

00 CBCBC IIII

0

0

0

0

11

CB

BC

III

0

00 1 CB

CE

II

00 CEBC III

0

00 1

B

C

I

I

Page 31: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 31

理学院量子智能信息处理实验室

§3-3 Current-voltage characteristics of ideal BJT

Page 32: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 32

理学院量子智能信息处理实验室

Ideal BJT

Page 33: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 33

理学院量子智能信息处理实验室

Ideal BJT simplifications:

1D Uniform doping distributions. Minority carrier G&R in intrinsic base is negligible. Emitter extrinsic base and collector also assumed “short” from minority carrier point of view. Low level injection. QNR thicknesses independent of VBE and VBC. Ignore sidewall effects. No parasitic resistances. Ignore substrate.

Page 34: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 34

理学院量子智能信息处理实验室

Simplified 1D model of intrinsic device:

Page 35: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 35

理学院量子智能信息处理实验室

Regimes of operation:

Page 36: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 36

理学院量子智能信息处理实验室

Basic operation in forward regime:Two junctions back-to-back:

Page 37: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 37

理学院量子智能信息处理实验室

VBE>0Injection of electrons from E to B

Injection of holes from B to E

VBC<0

Extraction of electrons from B to C

Extraction of holes from C to B

IB -IE>>IC

Page 38: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 38

理学院量子智能信息处理实验室

Transistor effect: electrons injected from E to B, extracted by C

Page 39: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 39

理学院量子智能信息处理实验室

In forward-active regime:

VBE controls IC (“transistor effect”)

IC independent of VBC (“isolation”)

Price to pay for control: IB

Page 40: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 40

理学院量子智能信息处理实验室

Carrier profiles in TE and FAR:

Page 41: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 41

理学院量子智能信息处理实验室

Page 42: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 42

理学院量子智能信息处理实验室

Dominant current paths in forward active regime:

Page 43: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 43

理学院量子智能信息处理实验室

IC: electron injection from E to B and collection into C IB: hole injection from B to E

IE=-IC-IBKey dependencies (choose one):IC on VBE: , ,none,

other

IC on VBC: , ,

IB on VBE: , ,

IB on VBC: , ,

IC on IB: exponential, quadratic, none, other

none, other

none, other

none, other

kTqVBEe

kTqVBEe

kTqVBCe

kTqVBCe

BEV1

BEV1

BCV1

BCV1

Page 44: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 44

理学院量子智能信息处理实验室

Forward-active regime (VBE>0,VBC<0)

Page 45: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 45

理学院量子智能信息处理实验室

Boundary conditions:

Electron profile:

Electron current density:

0,exp0 0 BBBE

BB WnkT

qVnn

BBB W

xnxn 10

B

BB

BBeB W

nqD

dx

dnqDJ

0

Page 46: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 46

理学院量子智能信息处理实验室

Collector current scales with area of base-emitter junction AE:

Page 47: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 47

理学院量子智能信息处理实验室

Collector terminal current :

or

kT

qV

WN

DnqAAJI BE

BB

BiEEeBC exp

2

kT

qVII BE

SC exp

Collector saturation currentSI

Page 48: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 48

理学院量子智能信息处理实验室

Base current: focus on hole injection and recombination in emitter (assume “short” or “transparent” and S= at surface)

Page 49: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 49

理学院量子智能信息处理实验室

Boundary conditions:

Hole profile:

Hole current density:

00 ,exp EBEEEBE

EBEE pxWpkT

qVpxp

00 1 EE

BEEBEEE p

W

xxpxpxp

E

EBEEE

EEhE W

pxpqD

dx

dpqDJ 0

Page 50: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 50

理学院量子智能信息处理实验室

Base current scales with area of base-emitter junction AE:

Base terminal current:

1exp1exp

2

kT

qVI

kT

qV

W

D

N

nqAAJI BE

F

SBE

E

E

E

iEEhEB

Page 51: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 51

理学院量子智能信息处理实验室

Gummel plot:

Page 52: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 52

理学院量子智能信息处理实验室

Page 53: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 53

理学院量子智能信息处理实验室

Key conclusions

BJT is minority-carrier type device: in npn BJT in forward active regime: Emitter “injects” electrons into Base, Collector “collects” electrons from Base.

IC controlled by VBE, but independent of VBC (transistor effect):

Base injects hole into emitter IB depends only on VBE

kT

qVII BE

SC exp

1exp

kT

qVII BE

F

SB

Page 54: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 54

理学院量子智能信息处理实验室

Key questions:

How does the BJT operate in other regime?

How does a complete model for the ideal BJT look like?

Page 55: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 55

理学院量子智能信息处理实验室

Forward-active regime (VBE>0, VBC<0)

Page 56: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 56

理学院量子智能信息处理实验室

1exp

kT

qVII BE

F

SB

1expexp

kT

qVI

kT

qVIIII BE

F

SBESBCE

Page 57: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 57

理学院量子智能信息处理实验室

Current gain

BEB

EBE

E

E

E

i

B

B

B

i

B

CF WDN

WDN

W

D

N

n

W

D

N

n

I

I

2

2

Page 58: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 58

理学院量子智能信息处理实验室F

To maximize :F

NE>>NB

WE>>WB (for manufacturing reasons, WE≈WB) want npn rather than pnp, because this way DB>DE

hard to control if is high enough (>50), circuit techniques effectively compensate for this.

FF

Page 59: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 59

理学院量子智能信息处理实验室

Page 60: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 60

理学院量子智能信息处理实验室

Equivalent circuit model

Page 61: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 61

理学院量子智能信息处理实验室

Energy band diagram

Page 62: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 62

理学院量子智能信息处理实验室

Summery of minority carrier profiles (not to scale)

Page 63: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 63

理学院量子智能信息处理实验室

Reverse regime (VBE<0,VBC>0)IE: electron injection from C to B, collection into E

IB: hole injection from B to C, recombination in C

Page 64: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 64

理学院量子智能信息处理实验室

Minority carrier profiles (not to scale):

Page 65: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 65

理学院量子智能信息处理实验室

Current equations (just like FAR, but role of collector and emitter reversed):

kT

qVII BC

SE exp

1exp

kT

qVII BC

R

SB

1expexp

kT

qVI

kT

qVIIII BC

R

SBCSBEC

Page 66: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 66

理学院量子智能信息处理实验室

Equivalent-circuit model representation:

Page 67: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 67

理学院量子智能信息处理实验室

Prefactor in IE expression is IS: emitter current scales with AE.

Page 68: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 68

理学院量子智能信息处理实验室

But, IB scales roughly as AC:

downward component scales as AC

upward component scales as AC-AE ≈AC

Hence, <<

51.0 R F

Page 69: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 69

理学院量子智能信息处理实验室

Energy band diagram:

Page 70: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 70

理学院量子智能信息处理实验室

Cut-off regime (VBE<0,VBC>0)

IE: hole generation in E, extraction into B.

IC: hole generation in C, extraction into B

Page 71: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 71

理学院量子智能信息处理实验室

Minority carrier profiles (not to scale):

Page 72: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 72

理学院量子智能信息处理实验室

Current equations:

F

SE

II

R

S

F

SB

III

R

SC

II

These are tiny leakage currents (~10-

12A)

Page 73: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 73

理学院量子智能信息处理实验室

Equivalent circuit model representation:

Page 74: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 74

理学院量子智能信息处理实验室

Energy band diagram

Page 75: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 75

理学院量子智能信息处理实验室

Saturation regime (VBE>0,VBC>0)IC,IE: balance of electron injection from E/C into B

IB: hole injection into E/C, recombination in E/C, respectively

Page 76: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 76

理学院量子智能信息处理实验室

Minority carrier profiles (not to scale):

Page 77: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 77

理学院量子智能信息处理实验室

Current equations: superposition of forward active + reverse:

1expexpexp

kT

qVI

kT

qV

kT

qVII BC

R

SBCBESC

1exp1exp

kT

qVI

kT

qVII BC

R

SBE

F

SB

kT

qV

kT

qVI

kT

qVII BCBE

SBE

F

SE expexp1exp

IC and IE can have either sign, depending on relative magnitude of VBE and VBC and F R

Page 78: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 78

理学院量子智能信息处理实验室

Equivalent circuit model representation (Non-linear Hybrid- Model):

Complete model has only three parameters: IS, and .

F R

Page 79: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 79

理学院量子智能信息处理实验室

Energy band diagram:

Page 80: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 80

理学院量子智能信息处理实验室

In saturation, collector and base flooded with excess minority carriers take lots of time to get transistor out of saturation.

Page 81: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 81

理学院量子智能信息处理实验室

Key conclusions

In FAR, current gain maximized if NE>>NB.

F

hard to control precisely: if big enough (>50), circuit techniques can compensate for variations in .

F

F

BJT design optimized for operation in forward-active regime operation in inverse is poor: << .

RF

In saturation, BJT flooded with minority carrier takes time to get BJT out of saturation.

Page 82: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 82

理学院量子智能信息处理实验室

Hybrid- model: equivalent circuit description of BJT in all regimes:

Only three parameters needed to describe behavior of BJT in four regimes: IS, and .F R

Page 83: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 83

理学院量子智能信息处理实验室

Key questions

How do the output characteristics of the ideal BJT look like?

How do the charge-voltage characteristics of the ideal BJT look like?

What is the topology of the small-signal equivalent circuit model of the ideal BJT in the FAR? What are the key dependencies of its elements?

Page 84: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 84

理学院量子智能信息处理实验室

Ideal BJT current equations (superposition of forward active + reverse)

1expexpexp

kT

qVI

kT

qV

kT

qVII BC

R

SBCBESC

1exp1exp

kT

qVI

kT

qVII BC

R

SBE

F

SB

kT

qV

kT

qVI

kT

qVII BCBE

SBE

F

SE expexp1exp

Page 85: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 85

理学院量子智能信息处理实验室

Equivalent circuit model representation:

Complete model has only three parameters: IS, and .

F R

Page 86: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 86

理学院量子智能信息处理实验室

Common-emitter output I-V characteristics

Page 87: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 87

理学院量子智能信息处理实验室

Page 88: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 88

理学院量子智能信息处理实验室

Page 89: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 89

理学院量子智能信息处理实验室

Page 90: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 90

理学院量子智能信息处理实验室

I-V for Active Mode

kTqVnp

xx

nPEp

EBeW

pqAD

d

dpqDAI 0

0

kTqVnp

Wx

npCp

EBeW

pqAD

dx

dpqDAI 0

10

kTqVEE

xx

EEEn

EB

E

eW

nqAD

dx

dnqDAI

C

CC

xx

CCCn L

nqAD

dx

dnqDAI

C

0

IE=IEp+IEn

IC=ICp+ICn

W/Lp<<1

Page 91: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 91

理学院量子智能信息处理实验室

1211 1 aeaI kTqVE

EB

0

0011

E

EEnP

L

nD

W

pDqAa

W

pqADa np 012

2221 1 aeaI kTqVC

EB

W

pqADa np 021

C

CCnp

L

nD

W

pDqAa 00

22

Page 92: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 92

理学院量子智能信息处理实验室

E

B

B

E

E

B

x

x

D

D

N

NB

1

1

Emitter efficiency

(xB<<LB), (xE<<LE)

How to improve emitter efficiencyWe should decrease the ratio of NB/NE

Page 93: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 93

理学院量子智能信息处理实验室

General I-V for various modes

Base of EBERS-MOLL Model

11 1211 kTqVkTqVE

CBEB eaeaI

11 2221 kTqVkTqVC

CBEB eaeaI

Page 94: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 94

理学院量子智能信息处理实验室

I-V for active mode

1211 1 aeaI kTqVE

EB

0

0011

E

EEnP

L

nD

W

pDqAa

W

pqADa np 012

2221 1 aeaI kTqVC

EB

W

pqADa np 021

C

CCnp

L

nD

W

pDqAa 00

22

Page 95: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 95

理学院量子智能信息处理实验室

Base of EBERS-MOLL Model

RRFE III RFFC III

10 kTqVFF

EBeII

B

B

EE

EiF WN

D

NL

DqAnI 2

0

10 kTqVRR

CBeII

CC

C

B

BiR NL

D

WN

DqAnI 2

0

Page 96: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 96

理学院量子智能信息处理实验室

Base of EBERS-MOLL Model

RRFE III RFFC III

RRFFCEB IIIII 11

B

BiRRFFS WN

DqAnIII

2

00

F

FF

1

R

RR

1

Page 97: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 97

理学院量子智能信息处理实验室

§3-4 Charge-voltage characteristics of ideal BJT

Page 98: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 98

理学院量子智能信息处理实验室

In BJT, two types of stored charge:

depletion layer charge

minority carrier charge

In forward-active regime:

Page 99: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 99

理学院量子智能信息处理实验室

Depletion layer charge

In B-E and B-C SCR’s respectively

BE

BEbiEBEEjE NN

VNqNAQ

2

CB

BCbiCCBCjC NN

VNqNAQ

2

are respective built-in potentials.

biE biC

Page 100: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 100

理学院量子智能信息处理实验室

Since NE>>NB>>NC

Depletion capacitance:

BEbiEBEjE VqNAQ 2

BCbiCCCjC VqNAQ 2

biE

BE

je

BEbiE

BE

BE

jEje

V

C

V

qNA

V

QC

12

0

biC

BC

jc

BCbiC

CC

BC

jCjc

V

C

V

qNA

V

QC

12

0

Page 101: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 101

理学院量子智能信息处理实验室

Minority carrier charge

Key result from pn diode: in “short” or “transparent” QNR:

Stored charge=minority carrier transit time × injected minority carrier current

Diffusion capacitance.

Excess minority carrier in QNR’s excess majority carriers to keep quasi-neutrality

Page 102: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 102

理学院量子智能信息处理实验室

For emitter in FAR:

with hole transit time

BtEE IQ

E

EtE D

W

2

2

Page 103: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 103

理学院量子智能信息处理实验室

For base in FAR:

with electron transit time:

CtBB IQ

B

BtB D

W

2

2

Page 104: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 104

理学院量子智能信息处理实验室

Comments:

Units of QB and QE are C.

QE and QB scale with AE.

Total minority carrier in FAR:

CFCtBF

tECtBBtBBEF IIIIQQQ

Page 105: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 105

理学院量子智能信息处理实验室

F intrinsic delay [s]

tBF

tEF

is overall time constant for minority carrier storage in BJT in FAR:

F

Page 106: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 106

理学院量子智能信息处理实验室

Note: emitter contribution to is because IB is times smaller than IC.

FF

FtE

If VBE changes, QE and QB change capacitive effect:

kT

qI

dV

dQC C

FBE

FF

Page 107: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 107

理学院量子智能信息处理实验室

Location of this capacitance? Think of which terminals supply stored change (minority and majority carriers):

For QE:

minority carriers (holes) injected from base

majority carriers (electrons) come from emitter contactFor QB:

minority carriers (electrons) injected from emitter majority carriers (holes) come from base contact

Page 108: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 108

理学院量子智能信息处理实验室

Equivalent-circuit model:

Page 109: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 109

理学院量子智能信息处理实验室

Similar picture in reverse regime: charge storage in base and collector

a bit complicated because it accounts for charge storage in intrinsic and extrinsic base and collector regions.

RERR IQ

Page 110: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 110

理学院量子智能信息处理实验室

Diffusion capacitance:

Located between base and collector terminals.

kT

qI

dV

dQC E

RBC

RR

Page 111: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 111

理学院量子智能信息处理实验室

By superposition, complete equivalent circuit model valid in all four regimes:

Page 112: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 112

理学院量子智能信息处理实验室

§3-5 Small-signal behavior of ideal BJT

Page 113: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 113

理学院量子智能信息处理实验室

In analog (and digital) application, interest in behavior of BJT to small-signal applied on top biasSmall signal equivalent circuit

model.

Page 114: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 114

理学院量子智能信息处理实验室

Small-signal equivalent circuit model in FARMust linearize hybrid- model in FAR:

Page 115: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 115

理学院量子智能信息处理实验室

-Non-linear voltage-controlled current source linear voltage-controlled current source.

-Diode linearized to resistor.

-Charge storage elements linearized to capacitance.

Page 116: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 116

理学院量子智能信息处理实验室

Linearized voltage-controlled current sourceApply small signal vbe on top of bias

VBE.

Page 117: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 117

理学院量子智能信息处理实验室

kT

qvI

kT

qv

kT

qVI

kT

vVqIiI be

CbeBE

SbeBE

SCC 11expexp

Small signal collector current:

Define transconductance:

gm depends only on absolute value of IC and T (unlike MOSFET, where gm depends on device geometry)

Collector current:

beC

C vkT

qIi

kT

qIg C

m

Page 118: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 118

理学院量子智能信息处理实验室

Linearized diode

Page 119: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 119

理学院量子智能信息处理实验室

kT

qv

kT

qVI

kT

vVqIiI beBE

F

SbeBESbB 1expexp

Base current:

Small-signal base current:

beB

b vkT

qIi

Define conductance:

Then, in general,

F

m

F

CB gI

kT

q

kT

qIg

mgg

Page 120: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 120

理学院量子智能信息处理实验室

capacitors

QjE Cje

QjC Cjc

QF C

Page 121: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 121

理学院量子智能信息处理实验室

Two components in C :

Note:

mF gC

Page 122: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 122

理学院量子智能信息处理实验室

Small-signal equivalent circuit model for ideal BJR in FAR:

Page 123: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 123

理学院量子智能信息处理实验室

Key conclusions

Emitter contribution to is times smaller than because IB is times smaller than IC

F F

FtE

tBF

tEF

In BJT, two types of stored charge: depletion layer charge and minority charge.

Depletion layer charge accounted through depletion capacitances.

Minority carrier charge accounted through time constant (intrinsic delay):F

Page 124: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 124

理学院量子智能信息处理实验室

Non-linear hybrid- model for ideal BJT including charge storage elements:

Page 125: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 125

理学院量子智能信息处理实验室

Small-signal equivalent circuit model of ideal BJT in FAR:

with:

kT

qIg C

m F

mB g

kT

qIg

mF gC

Page 126: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 126

理学院量子智能信息处理实验室

§3-6 Frequency Characteristics

Page 127: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 127

理学院量子智能信息处理实验室

Common-emitter short-circuit current-gain cut-off frequency, fT

Page 128: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 128

理学院量子智能信息处理实验室

fT: high-frequency figure of merit for transistors

Short-circuit means from the small-signal point of view.

BJT is biased in FAR.

Page 129: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 129

理学院量子智能信息处理实验室

Page 130: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 130

理学院量子智能信息处理实验室

Focus on small-signal current gain:

Definition of fT: frequency at which |h21|=1.

For low frequency, h21 , for high frequency h21 rolls off due to capacitors.

F

021

cevb

c

i

ih

Page 131: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 131

理学院量子智能信息处理实验室

Small-signal equivalent circuit model:

Page 132: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 132

理学院量子智能信息处理实验室

Then:

Magnitude of h21:

bejcbemc vCjvgi

bejcjeb vCCCjgi

jcje

jcm

CCCjg

Cjgh

21

222

222

21

jcje

jcm

CCCg

Cgh

Page 133: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 133

理学院量子智能信息处理实验室

222

222

21

jcje

jcm

CCCg

Cgh

Bode plot of |h21|:

Page 134: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 134

理学院量子智能信息处理实验室

Three regimes in |h21|:

jcje

jc

CCC

Ch

21

jcje

m

CCC

gh

21

Fm

g

gh

21

intermediate frequency,

low frequency,

c

high frequency,

c

Page 135: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 135

理学院量子智能信息处理实验室

Angular frequencies that separate three regimes:

Angular frequency at which |h21|=1:

jcje CCC

g

jc

mc C

g

jcje

mT CCC

g

Page 136: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 136

理学院量子智能信息处理实验室

In terms of frequency:

Note:

jcje

mT CCC

gf

2

F

T

Page 137: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 137

理学院量子智能信息处理实验室

Physical meaning of fT

fT has units of time. Define delay time:

21

Four delay components in .

d

m

jc

m

je

F

tEtB

m

jc

m

je

mTd g

C

g

C

g

C

g

C

g

C

f

2

1

Page 138: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 138

理学院量子智能信息处理实验室

Consider response of BJT to a step-input base current:

Page 139: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 139

理学院量子智能信息处理实验室

bBB iII

beBEBE vVV

bFCcCC iIiII

At 0t

As t

Page 140: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 140

理学院量子智能信息处理实验室

How much time does it takes for ic to reach its final value?

Page 141: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 141

理学院量子智能信息处理实验室

Charge must be delivered to four regions in BJT: Quasi-neutral emitter

Quasi-neutral base

Emitter-base depletion region

Base-collector depletion region

btEe iq

ctBb iq

cm

jebejeje i

g

CvCq

cm

jcbejcbcjcjc i

g

CvCvCq

Page 142: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 142

理学院量子智能信息处理实验室

Charge delivered at constant rate to base. Time that it takes for all charge to be delivered:

fg

C

g

C

i

qqqq

m

jc

m

jetBFtE

b

jcjebe

2

1

Page 143: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 143

理学院量子智能信息处理实验室

How much time does it take for ic to build up to IC + ib ?

: delay time before ic increase to

bFC iI

f2

1

: delay time before ic increase to bC iI T

d f

2

1

Since ,

bFc ii

Tm

jc

m

jetB

F

tE

Fd fg

C

g

C

2

1

Page 144: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 144

理学院量子智能信息处理实验室

With sinusoidal input:

fraction of that goes into capacitance

cbe ivbif

bc ii At fT:

Page 145: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 145

理学院量子智能信息处理实验室

Key dependencies of fT in ideal BJTfT dependence on IC:

Rewrite fT:

C

jcje

F

Fjcje

mT

I

CC

q

kTCCC

gf

1

1

2

1

2

Page 146: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 146

理学院量子智能信息处理实验室

Two limits:

Small IC: limited by depletion capacitances

Large IC: limited by intrinsic delay (dominated by )

tB

FTf 2

1

jcje

CT CC

I

kT

qf

2

Page 147: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 147

理学院量子智能信息处理实验室

Page 148: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 148

理学院量子智能信息处理实验室

Alternative view of IC dependence:

Tm

jc

m

jetB

F

tEd fg

C

g

C

2

1

Page 149: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 149

理学院量子智能信息处理实验室

Standard experimental technique to extract and :jcje CC

F

Page 150: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 150

理学院量子智能信息处理实验室

fT dependence on VBC:

[but only in low IC regime of fT]

(B-C junction is more reverse biased)

CBV Tjc fC

Page 151: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 151

理学院量子智能信息处理实验室

Key conclusions fT: high frequency figure of merit for

transistors: frequency at which |h21|=1.

fT of ideal BJT:

jcje

mT CCC

gf

2

Delay time, :time it takes for step increase in iB to yield an identical step increase in iC.

Td f

2

1

Page 152: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 152

理学院量子智能信息处理实验室

Key questions

How can the frequency response of a BJT be engineered?

Why are the output characteristics of a BJT in FAR not perfectly flat?

What is the maximum voltage that the collector of a BJT can sustain in FAR? What are the key design issues for the break-down voltage?

Page 153: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 153

理学院量子智能信息处理实验室

Key dependencies of fT in ideal BJT (cont.)fT dependence on device

layout: For low IC: fT dominated by Cje, Cjc

If AE or AC (keep IC constant) Tf

C

jeE

m

je

I

CA

g

C 0

C

jcC

m

jc

I

CA

g

C 0

For high IC: fT dominated by intrinsic delay ;fT independent of AE or AC

F

Page 154: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 154

理学院量子智能信息处理实验室

Device design strategies for improving fT

Four delay terms in fT:

Strategies to reduce each delay component:

building steep doping profile in emitter.

Emitter charging time, , minimized by F

tE

small contribution to , not much payoff.

F

tE

d

having a shallow emitter ( ~ ),

tE 2EW

enhancing ,

F

m

jc

m

jetB

F

tE

Td g

C

g

C

f

2

1

Page 155: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 155

理学院量子智能信息处理实验室

introducing drift field in base (through impurity gradient or SiGe composition gradient).

reducing WB

( ~ ),tB 2

BW

Base transit time, ,minimized by

tB

Page 156: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 156

理学院量子智能信息处理实验室

Example 1 [Kasper 1993]

Significant device engineering towards minimizing .

tB

Page 157: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 157

理学院量子智能信息处理实验室

Example 2 [Yamazaki, IEDM 1990, p. 309]:

Page 158: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 158

理学院量子智能信息处理实验室

Page 159: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 159

理学院量子智能信息处理实验室

Example 3 [Crabbe, IEDM 1990, p. 17]:

Collector current dependence of fT at 298K and 85K for Si and SiGe devices. In both cases, the peak fT increase at lower temperature as well as the associated collector current.

Page 160: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 160

理学院量子智能信息处理实验室

E-B SCR charging time, Cje/gm:

Minimized by:

tailoring doping profiles at E-B junction

NB

C

je

C

jeE

m

je

J

C

I

CA

g

C 00

Page 161: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 161

理学院量子智能信息处理实验室

B-C SCR charging time, Cjc/gm:

Minimized by:

C

jc

E

C

C

jcC

m

jc

J

C

A

A

I

CA

g

C 00

NC

tailoring doping profiles at B-C junction. tightening layout of transistor: 1

E

C

A

A

Page 162: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 162

理学院量子智能信息处理实验室

2/1])(8

[eTbc

Tm LfrC

ff

)(8 22

eTbc

Tpm LfrC

ffG

Page 163: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 163

理学院量子智能信息处理实验室

§3-7 Non-ideal effects in BJT

Page 164: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 164

理学院量子智能信息处理实验室

Early effect: impact of VBC on WB

Reverse early effect: impact of VBE on WB

IB unchanged

, CBBCBC IWxV

smaller IC than ideal , BBEBE WxV

IB unchanged

F

Page 165: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 165

理学院量子智能信息处理实验室

Early effect: impact of VBC on WB

BCC VfI

Note: 0BC

B

dV

dW

VBC more negative BCCBCB VIVW

Page 166: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 166

理学院量子智能信息处理实验室

To capture first-order impact, linearize WB (VBC):

VA is Early voltage:

A

BCBCBBCB V

VVWVW 10

0

0

jc

BBA C

WqNV

Page 167: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 167

理学院量子智能信息处理实验室

Impact on IC:

kT

qV

VW

D

N

nqAVI BE

BCB

B

B

iEBCC exp

2

kT

qV

V

VVW

D

N

nqA BE

A

BCBCB

B

B

iE exp

10

2

A

BC

BCC

V

VVI

1

0

A

BCBCC V

VVI 10

since typically .BCA VV

Notice: .Then

0BCV CBC IV

Page 168: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 168

理学院量子智能信息处理实验室

Also, since IB unchanged:

A

BCBCF

A

BC

BCFBCF V

VV

V

VV

V 101

0

Page 169: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 169

理学院量子智能信息处理实验室

Manifestation of Early effect in output characteristics:

Page 170: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 170

理学院量子智能信息处理实验室

Main consequence of Early effect: finite slope in output characteristics in FAR: out put conductance.

With go given by:

A

C

V

Ig 0

Page 171: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 171

理学院量子智能信息处理实验室

Base-width modulationVBE and VBC affect xBC , respectively ).,( BCBEB VVfW

Page 172: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 172

理学院量子智能信息处理实验室

Kirk effect

Page 173: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 173

理学院量子智能信息处理实验室

s

CqN

dx

d

)( BCbi VVEdx

Page 174: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 174

理学院量子智能信息处理实验室

基区纵向扩展时的势垒区

Page 175: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 175

理学院量子智能信息处理实验室

基区有横向扩展时少子的运动情况

Page 176: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 176

理学院量子智能信息处理实验室

High Injection Effect(Webster Effect)

Page 177: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 177

理学院量子智能信息处理实验室

High Injection Effect

As VBE increases, the injected minority carrier concentration may approach, or even become large than, the majority carrier concentration.

Page 178: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 178

理学院量子智能信息处理实验室

High Injection Effect

Reduction in emitter injection efficiency, since JPE increases

Collector current will become an exponential function of VBE in terms of qVBE/2kT

Page 179: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 179

理学院量子智能信息处理实验室

dx

dnqDnEqJ nnn

dx

dPqDPEqJ ppp

dx

dPDPE pp

dx

dP

Pq

kTE

1

)()()( xnxNxP bB

)11

()(1

dx

dn

nNdx

dN

NnN

N

q

kTnN

dx

d

nNq

kTE b

bB

B

BbB

BbB

bB

Page 180: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 180

理学院量子智能信息处理实验室

Page 181: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 181

理学院量子智能信息处理实验室

High Collector Current Effect

Page 182: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 182

理学院量子智能信息处理实验室

High collector current effects

Then, as IC approaches:

satCECK NqAI

As IC↑, electron velocity in collector↑.

satBut,there is a limit:

Page 183: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 183

理学院量子智能信息处理实验室

The electrostatics of the collector are profoundly modifiedtransistor performance degrades:

To first order:

CKCpkC III 2

Page 184: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 184

理学院量子智能信息处理实验室

Key design issue: NC

F

Main origin: formation of current-induced base inside collector SCR effective quasi-neutral base width new delay

component

F Tpkf

TpkCKC fIN

Page 185: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 185

理学院量子智能信息处理实验室

Current Crowding Effect

Page 186: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 186

理学院量子智能信息处理实验室

Current Crowding

Page 187: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 187

理学院量子智能信息处理实验室

Current Crowding

Page 188: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 188

理学院量子智能信息处理实验室

Breakdown Effect

Page 189: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 189

理学院量子智能信息处理实验室

Avalanche breakdownSudden rise in IC for large reverse VCB.Key issue: breakdown voltage depends on terminal configuration:

Page 190: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 190

理学院量子智能信息处理实验室

Experimental observation:

BVCB0 < BVCB0

Page 191: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 191

理学院量子智能信息处理实验室

Common-base configuration: breakdown as in isolated p-n junction

Breakdown when M

Page 192: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 192

理学院量子智能信息处理实验室

Common-emitter configuration: BE and BC junctions interact in a positive feedback loop

Breakdown occurs at finite M and enhanced by high .

F

With IB=0 (or fixed), holes generated in B-C junction must be injected into E B-E goes into forward bias . CI

Page 193: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 193

理学院量子智能信息处理实验室

Key dependencise: CBOCEOC BVBVN ,

Page 194: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 194

理学院量子智能信息处理实验室

more than necessary!

CEOF BV but BVCBO unchanged don’t wantF

[Yamaguchi 1993]

Collector-to-emitter breakdown voltage dependent on current gain

Page 195: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 195

理学院量子智能信息处理实验室Breakdown VoltageIn the extreme, the entire neutral region may be

totally depletedBand diagram illustrating punch-through

EB barrier lowered by VCE

When punch-through happens, there is no flat-band region in base( no quasi-neutral)

potential barrier seen by hole before punch-through

C

BCB

S

Bpt N

NNNqWV

)(

2

2

Page 196: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 196

理学院量子智能信息处理实验室

Avalanche Breakdown

Page 197: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 197

理学院量子智能信息处理实验室

§3-8 Switching Transistor

Page 198: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 198

理学院量子智能信息处理实验室

Page 199: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 199

理学院量子智能信息处理实验室

Page 200: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 200

理学院量子智能信息处理实验室

Page 201: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 201

理学院量子智能信息处理实验室

§3-9 Design of BJT

Page 202: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 202

理学院量子智能信息处理实验室

Page 203: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 203

理学院量子智能信息处理实验室

Page 204: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 204

理学院量子智能信息处理实验室

Page 205: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 205

理学院量子智能信息处理实验室

Page 206: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 206

理学院量子智能信息处理实验室

Page 207: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 207

理学院量子智能信息处理实验室

Page 208: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 208

理学院量子智能信息处理实验室

Junction-isolated BJT

First integrated BJT

Page 209: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 209

理学院量子智能信息处理实验室

Poly-Si emitter BJT

Page 210: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 210

理学院量子智能信息处理实验室

Problem of metal-contacted emitter: emitter thickness scales badly.

FBE IW

Poly-Si extension effectively increases emitter thickness:

Fpreserved when WE scales down.

Page 211: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 211

理学院量子智能信息处理实验室

Single-poly self-aligned BJT

Unique feature:- extrinsic base self-aligned to intrinsic device Bext

E

C RA

A,

Page 212: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 212

理学院量子智能信息处理实验室

Double-poly self-aligned BJT

Unique feature:- base contacts made on poly Si over isolation , smaller footprint

E

C

A

A

Page 213: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 213

理学院量子智能信息处理实验室

Selectively-implanted collector (SIC) BJT

Unique feature:- intrinsic collector doping level raised through self-aligned implant TC fJ ,max

Page 214: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 214

理学院量子智能信息处理实验室

Trench-isolated BJT

Unique feature:- deep-trench isolation SA

Page 215: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 215

理学院量子智能信息处理实验室

SOI-BJT

Unique feature:- silicon-on-insulator substrate , smaller footprint

SC

Page 216: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 216

理学院量子智能信息处理实验室

Epitaxial SiGe HBT

Unique features:- epitaxial base: enhanced thickness and doping control BTBB RfNW ,- Ge in base: heterojunction effect, drift field in base (if gradient in Ge composition) ABTS VRfI ,,,

Page 217: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 217

理学院量子智能信息处理实验室

Bipolar issues in CMOS

Page 218: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 218

理学院量子智能信息处理实验室

Latch up: interaction of two hidden BJT’s inside a CMOS pair.

Page 219: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 219

理学院量子智能信息处理实验室

In principle, no problem because in both BJTs, VBE=0.

Page 220: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 220

理学院量子智能信息处理实验室

But there are also two parasitic resistors:

Page 221: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 221

理学院量子智能信息处理实验室

More complete equivalent circuit model:

POSITIVE FEEDBACK LOOP can cause device destruction.

Suppose for some reason, current flows through RX pnp goes into FAR IC (pnp) ohmic drop in RW npn goes into FAR IC (npn) more ohmic drop in RX

Page 222: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 222

理学院量子智能信息处理实验室

Latch-up started by: Minority carrier injection into substrate by transient forward bias on pn junctions (typically in input or output circuits)

photogeneration by ionizing radiation impact ionization by hot carriers

Page 223: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 223

理学院量子智能信息处理实验室

Elimination of latch up:

Then do: use heavily doped substrate (need lower doping epi layer on top for devices) sufficient transistor spacing guard rings at sensitive locations

reduce RX and RW

reduce andnpn pnp

Page 224: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 224

理学院量子智能信息处理实验室

An advanced twin-well process for VLSI CMOS applications.The high-conductivity substrate reduces susceptibilty to

latch-up;the separately doped well regions provide precise control of MOSFET

characteristics.Adapted from R. S. Muller and T. L. Kamins.Device Electronics for integrated Circuits, 2nd ed, Wiley. 1986. p.

463.

Page 225: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 225

理学院量子智能信息处理实验室

Page 226: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 226

理学院量子智能信息处理实验室

the higher the trigger current, the higher the immunity to latch-up

larger n+ -p+ spacing better immunity

thinner epi on top of n+ -substrate better immunity

Page 227: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 227

理学院量子智能信息处理实验室

Guard ring: reverse-biased pn junction that collects injected holes.

Page 228: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 228

理学院量子智能信息处理实验室

Other bipolar effects in MOSFETs: Can’t implement floating pn diodes in CMOS process Breakdown and snap-back (bipolar-induced breakdown) Floating-body effects in SOI MOSFETs

Page 229: Bipolar transistor

23/4/19 Physics of Semiconductor Devices 229

理学院量子智能信息处理实验室

Key conclusions

Bipolar effects pervasive in any device with multiple n and p regions.

CMOS latch-up interaction of parasitic npn and pnp BJTs; can lead to device destruction.

Maximum current: satCECpk NqAI

At high collector current, velocity saturation of electrons in collector performance degrades:

F Tf,

Megatrends of BJT development:footprint , vertical dimensions , JC , , ,BV

. f