36

Bohr model of an atom 1913

Embed Size (px)

Citation preview

Page 1: Bohr model of an atom 1913
Page 2: Bohr model of an atom 1913

Bohr model of an atom 1913

2e

centrifugalm v

Fr

http://regentsprep.org/Regents/physics/phys06/bcentrif/centrif.htm

Page 3: Bohr model of an atom 1913

Bohr model of an atom 1913

2e

centrifugalm v

Fr

2

Coulomb 20

eF

4 r

Coulomb centrifugalF F

“Introduction to wave phenomena” by Akira Hirose and Karl Lonngren

Potential energy of the electron2

0

(J)4

eU

r

22

204

em ve

r r

Page 4: Bohr model of an atom 1913

Bohr model of an atom 1913

22

0

1 (J)

2 8e

em v

r

Kinetic energy of the electron

22

204

em ve

r r

21

2 eU m vTotal energy of the electron2

0

(J)8

eE

r

2

04e

e

m e rm vr

electron angular momentum

2 22 2 2

04e

e

m e rm v r

r

Page 5: Bohr model of an atom 1913

Bohr model of an atom 1913

electron angular momentum

Niels Bohr postulated that the momentum was quantized

( 1,2,3, )2e

hm vr n n

22 2 110

25.3 10 (m)

e

hr n n

m e

The radius is found to be

2

04e

e

m e rm vr

h is Planck’s constant6.626068 × 10-34 m2 kg / s

2

h

0

2

Page 6: Bohr model of an atom 1913

Bohr model of an atom 1913

http://csep10.phys.utk.edu/astr162/lect/light/bohr.html

The energy then becomes quantized

22 2 110

25.3 10 (m)

e

hr n n

m e

4

2 2 20

2

1

8

1= -13.6 (eV)

en

m eE

h n

n

2

0

8

eE

r

2

22 0

0 2

(J)

8e

e

hn

m e

Page 7: Bohr model of an atom 1913

Photo electric effect - Einstein

http://regentsprep.org/Regents/physics/phys05/catomodel/bohr.htmHoudon

Energy of a photon E = h

2 1E - E h

Page 8: Bohr model of an atom 1913

Einstein’s explanation

19

34

14

2.9 10 J

6.63 10 J sec4.4 10 Hz

cW

vh

Page 9: Bohr model of an atom 1913

Bohr model of an atom 1913

What is the frequency of the light that will be emitted by an electron as it moves from the n = 2 down to n = 1?

2

1 -13.6 (eV)nE n

1 = -13.6 1

4E h

Ionization implies n →

Page 10: Bohr model of an atom 1913

Experiment to understand the photo electric effect.

Page 11: Bohr model of an atom 1913

Experimental conclusions• The frequency must be greater than a “cut off

frequency” that changes with different metals.

• Kinetic energy of the emitted electrons depends upon the frequency of the incident light.

• Kinetic energy of the electrons is independent of the intensity of the incident light.

Page 12: Bohr model of an atom 1913

Sodium has a work function of W = 1.8 eV. Find the cutoff frequency.

c

W

h 144.4 10 Hz 19

34

1.8 1.6 10 J

6.63 10 J sec

cc

c

Å 6900

8

14

m3 10 sec4.4 10 Hz

76.9 10 m

Page 13: Bohr model of an atom 1913

A metal with a work function of 2.3 eV is illuminated with ultraviolet radiation = 3000 Ǻ. Calculate the energy of the

photo electrons that are emitted from the surface.

21

2 em v h W

hch

4.1 eV

34 8

7

6.63 10 3 10

3 10

196.63 10 J

214.1 2.3

2 em v 1.8 eV

Page 14: Bohr model of an atom 1913

Franck-Hertz experiment in mercury vapor. Electrons are accelerated and the current is monitored. 1914 (In 1887, Hertz noted that electrons would be emitted from a metal

that was illuminated with light.)

http://hyperphysics.phy-astr.gsu.edu/hbase/FrHz.html

2e 0

1m v qV

2

0e

e

2qVI n q A

m

eI n qvA

Page 15: Bohr model of an atom 1913

Reflected wave is strong if n = 2d sin

dd sin

Page 16: Bohr model of an atom 1913

Davisson-Germer experiment – electrons incident on nickel 1925

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/davger2.html

Page 17: Bohr model of an atom 1913

Interpretation of the Davisson-Germer experiment

Energy of a photon E = h

gv k

2 E

hk

1 E

k

2particle

particle

particle particle

1mvE 2

p (mv )

particlev

( 2 )

k

Planckh

2

Page 18: Bohr model of an atom 1913

de Broglie wavelengthwave energy

momentumwave velocity

2

mass velocity

velocity

h

pc

h

de Broglie argued that there was a wavelength that could be written from

de Broglie h

p

Page 19: Bohr model of an atom 1913

Interpretation of the Davisson-Germer experiment

particle

particle

E 1 E

p k

particlep k

h 2

2

de Broglieparticle

h

p de Broglien 2d sin

Page 20: Bohr model of an atom 1913
Page 21: Bohr model of an atom 1913

Schrödinger equation

energy of particles2p

U2m

energy of photon h

h ( 2 )2

2

deBroglie

h

U2m

2 2kU

2m

2

deBroglie

2 h

2U

2m

Page 22: Bohr model of an atom 1913

Schrödinger equation2 2k

U2m

j( t kz )

0e

jt

jk

z

2

2 22 jk kz

2 2kU

2m

2 2

2j Ut 2m z

22j U

t 2m

Page 23: Bohr model of an atom 1913

Schrödinger equation2 2

2j Ut 2m z

22j U

t 2m

a2a1

( z,t ) * ( z,t )dzprobability

( z,t ) * ( z,t )dz

1probability of finding a state in a

Max Born

2z a

Page 24: Bohr model of an atom 1913

Schrödinger equationa2a1

( z,t ) * ( z,t )dzprobability

( z,t ) * ( z,t )dz

j( t kz )

0e

elsewhere0

1 - 1 z 1

0

a1 a0 a2a1 a0 a2a1 a0 a2 a1 a0 a2

a0

+20-2

1

Page 25: Bohr model of an atom 1913

Schrödinger equation2 2

2

( z,t ) ( z,t )j U ( z,t )

t 2m z

( z,t ) Z( z )T( t ) 2 2

2

dT( t ) d Z( z )j Z( z ) T( t ) UZ( z )T( t )

dt 2m dz

2 2

2

1 dT( t ) 1 d Z( z )j U

T( t ) dt 2m Z( z ) dz

Page 26: Bohr model of an atom 1913

Schrödinger equationelectron in free space

2 2

2

1 dT( t ) 1 d Z( z )j U

T( t ) dt 2m Z( z ) dz

Ej t

0T( t ) T e

jkz jkzZ( z ) Ae Be2 2 2p k

E U2m 2m

2 2

2

1 dT( t ) 1 d Z( z )j

T( t ) dt 2m Z( z ) dz

Page 27: Bohr model of an atom 1913

Schrödinger equation

2 2

2

1 dT( t ) 1 d Z( z )j U( z )

T( t ) dt 2m Z( z ) dz

Ej t

0T( t ) T e Z( z ) Asin( kz ) Bcos( kz )

2 2 2p kE U

2m 2m

Page 28: Bohr model of an atom 1913

Schrödinger equation

Ej t

0T( t ) T e

Z( z ) Asin( kz ) Bcos( kz )

Z(0 ) 0 B 0 n

kL

Z( L ) 0

( z,t ) Z( z )T( t ) E

j t

0n z

AT e sinL

L

0normalization ( z,t ) * ( z,t )dz 1

Page 29: Bohr model of an atom 1913

Schrödinger equation2

2j Ut 2m

2 2 22

2 2 2x y z

( x, y,z ) X ( x )Y( y )Z( z )

Page 30: Bohr model of an atom 1913

Schrödinger equation2

2j Ut 2m

( x, y,z ) X ( x )Y( y )Z( z )

Ej tyx z

3

n yn x8 n z( x, y,z ) sin sin sin e

L L LL

2 22 22yx z

nn nE U

8mL L L L

Page 31: Bohr model of an atom 1913

Schrödinger equationE

j tyx z3

n yn x8 n z( x, y,z ) sin sin sin e

L L LL

Page 32: Bohr model of an atom 1913

Schrödinger equation

22j U

t 2m

2

sin

sin sin

22

22 2 2 2

r1 1 1r

rr r r

( r , , ) R( r ) ( ) ( )

Page 33: Bohr model of an atom 1913

Schrödinger equation

Page 34: Bohr model of an atom 1913

Schrödinger equation

element n l m s

Hydrogen 1 0 0 +1/2 or -1/2

Helium 1 0 0 +1/2 & -1/2

Beryllium 2 0 0 +1/2 & -1/2

Lithium 2 0 0 +1/2 or -1/2

Page 35: Bohr model of an atom 1913

Heisenberg uncertainty principle

http://www.aip.org/history/heisenberg/

( position ) ( momentum ) h

x p h

( energy ) ( time ) h

E t h

2 2m mv v v h

2 2 mv v h

vh

m v h

x(m v ) m v h

Page 36: Bohr model of an atom 1913