61
Bringing Learning to Life in Science OCTOBER 2015 ZIPPORAH MILLER

BringingLearning to&Life&in&Science · DisciplinaryCoreIdeas Life Science Physical Science LS1: From Molecules to Organisms: Structures and Processes LS2: Ecosystems: Interactions,

  • Upload
    ngonhan

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

Bringing  Learning  to  Life  in  Science  

OCTOBER  2015

Z IPPORAH  MILLER

Outcomes

q  Understand  the  philosophy  of  InteracHve  Science  and  how  it  aligns  with  research  based  pracHces.

q  Discuss  the  development  and  structure  of  the  Next  GeneraHon  State  Standards  (NGSS).

q  Explore  the  alignments  between  the  NGSS  and  Common  Core  State  Standards  (CCSS).

q  Discuss  the  value  of  incorporaHng  21st  Century  skills  in  all  classrooms.

q  Engage  in  hands  on  and  minds  on  student  centered  experiences.

q  Explain  how  student  centered  experiences  help  develop  21st  Century  Skills.

Houston    We  have  a  Problem

q  IdenHfy  the  problem

q  What  evidence  from  the  clip  helped  you  idenHfy  the  problem?

IdenHfy  the  Problem

Houston  we  have  a  problem? q  What  content  knowledge  is  needed  to  solve  the  problem?

q  What  skills  are  needed  to  solve  this  problem?

The  Four  “C’s”

q CriHcal  Thinking  and  Problem  Solving

q CommunicaHon

q CollaboraHon q CreaHvity  and  InnovaHon

Fun  with  Roller  Coasters

CriHcal  Thinking  and  Problem  Solving  Outcome:  

Students  construct  their  own  scienHfic  understanding  and  develop  their  scienHfic  process  skills  by  asking  scienHfic  quesHons,  designing  and  conducHng  invesHgaHons,  construcHng  explanaHons  from  their  observaHons,  and  discussing  their  explanaHons  with  others.  

CollaboraHon  Outcome:  

Students  collaborate  with  peers  and  experts  during  scienHfic  discourse  and  appropriately  defend  arguments  using  scienHfic  reasoning,  logic,  and  modeling.  

CreaHvity  and  InnovaHon  Outcome:  

Students  are  able  to  describe  how  science  and  engineering  involve  creaHve  processes  that  include  generaHng  and  tesHng  ideas,  making  observaHons,  and  formulaHng  explanaHons;  and  can  apply  these  processes  in  their  own  invesHgaHons.  

CommunicaHon

 Outcome:  

Students  model  the  pracHces  of  research  science  by  informing  others  about  their  work,  developing  effecHve  explanaHons,  construcHng  and  defending  reasoned  arguments,  and  responding  appropriately  to  criHcal  comments  about  their  explanaHons.

Skills  Employers  Are  Seeking

q  Adaptability q  Complex  CommunicaHon/Social  Skills

q  Non  RouHne  Problem  Solving

q  Self  Management/Self  Development

q  Systems  Thinking

Next  GeneraHon  Science  Standards  (NGSS)

Development  

Stakeholders  

Major  Shi5  in  Framework  

Stages  

Research  and  Resources  

Dimension  1  

Dimension  2  

Dimension  3  

Developing  the  Next  GeneraHon  Science  Standards

26  Lead  States

Developing  the  Next  GeneraHon  Science  Standards

July  2011

April  2013

InstrucHon

Curricula

Assessments

Teacher  Development

States  that  have  adopted  NGSS

California  

Delaware

District  of  Columbia

Kansas  

Kentucky

Maryland

Nevada

Oregon

Rhode  Island

Vermont  

Washington

And  More….

Resources  used  in  the  Developing  the    Next  GeneraHon  Science  Standards

  Benchmarks  for  Scien0fic  Literacy  and    Atlas  of  Science  Literacy

  Na0onal  Science  Educa0on  Standards  

  2009  NAEP  Science  Framework  (NaHonal  Assessment  of  EducaHonal  Progress)    

  College  Board  Standards  for  College  in  Science

  NSTA’s  Science  Anchors  project

NaHonal  Research  Council  Reports

  How  People  Learn

  Taking  Science  to  School

  Ready,  Set,  Science

A  Framework  for  K-­‐12  Science  EducaHon

Three-­‐Dimensions

q ScienHfic  and  Engineering  PracHces

q Crosscuing  Concepts

q Disciplinary  Core  Ideas

ScienHfic  and  Engineering  PracHces

1.  Asking  quesHons  (for  science)    and  defining  problems  (for  engineering)

2.  Developing  and  using  models

3.  Planning  and  carrying  out  invesHgaHons

4.  Analyzing  and  interpreHng  data

5.  Using  mathemaHcs  and  computaHonal  thinking

6.  ConstrucHng  explanaHons  (for  science)    and  designing  soluHons  (for  engineering)

7.  Engaging  in  argument  from  evidence

8.  Obtaining,  evaluaHng,  and  communicaHng  informaHon

Crosscuing  Concepts

1.  Panerns 2.  Cause  and  effect:  Mechanism  and  explanaHon

3.  Scale,  proporHon,  and  quanHty

4.  Systems  and  system  models

5.  Energy  and  maner:  Flows,  cycles,  and  conservaHon

6.  Structure  and  funcHon

7.  Stability  and  change

Disciplinary  Core  Ideas Life Science Physical Science LS1: From Molecules to Organisms: Structures

and Processes

LS2: Ecosystems: Interactions, Energy, and Dynamics

LS3: Heredity: Inheritance and Variation of Traits

LS4: Biological Evolution: Unity and Diversity

PS1: Matter and Its Interactions

PS2: Motion and Stability: Forces and Interactions

PS3: Energy

PS4: Waves and Their Applications in Technologies for Information Transfer

Earth & Space Science Engineering & Technology ESS1: Earth’s Place in the Universe

ESS2: Earth’s Systems

ESS3: Earth and Human Activity

ETS1: Engineering Design

ETS2: Links Among Engineering, Technology, Science, and Society

IntegraHon  of  the  Three  Dimensions

Core  Ideas PracHces

Crosscuing  Concepts The  pracHces  are  the  

processes  of  building  and  using  the  core  ideas  to  make  sense  of  the  natural  and  designed  world,  and  the  cross  cuing  concepts  hold  the  discipline  together.

Closer  Look  at  a  Performance  ExpectaHon

Performance  expectaHons  combine  pracHces,  core  ideas,  and  crosscuing  concepts  into  a  single  statement  of  what  is  to  be  assessed.  

They  are  not  instrucHonal  strategies  or  objecHves  for  a  lesson.

Construct  and  use  models  to  explain  that  atoms  combine  to  form  new  substances  of  varying  complexity  in  terms  of    the  number  of  atoms  and  repea9ng  subunits.  [Clarifica9on  Statement:  Examples  of  atoms  combining  can  include  Hydrogen  (H2)  and  Oxygen  (O2)  combining  to  form  hydrogen  peroxide  (H2O2)  or  water(H2O).  [Assessment  Boundary:  Restricted  to  macroscopic  interac4ons.]    

Performance  expectaHons  combine  pracHces,  core  ideas,  and  crosscuing  concepts  into  a  single  statement  of  what  is  to  be  assessed.  

They  are  not  instrucHonal  strategies  or  objecHves  for  a  lesson.

 

Construct and use models to explain that atoms combine to form new substances of varying complexity in terms of the number of atoms and repeating subunits. [Clarification Statement: Examples of atoms combining can include Hydrogen (H2) and Oxygen (O2) combining to form hydrogen peroxide (H2O2) or water(H2O). [Assessment Boundary: Restricted to macroscopic interactions.]

Closer  Look  at  a  Performance  ExpectaHon

Performance  expectaHons  combine  pracHces,  core  ideas,  and  crosscuing  concepts  into  a  single  statement  of  what  is  to  be  assessed.   They  are  not  instrucHonal  strategies  or  objecHves  for  a  lesson.  

Construct and use models to explain that atoms combine to form new substances of varying complexity in terms of the number of atoms and repeating subunits. [Clarification Statement: Examples of atoms combining can include Hydrogen (H2) and Oxygen (O2) combining to form hydrogen peroxide (H2O2) or water(H2O). [Assessment Boundary: Restricted to macroscopic interactions.]

Closer  Look  at  a  Performance  ExpectaHon

Performance  expectaHons  combine  pracHces,  core  ideas,  and  crosscuing  concepts  into  a  single  statement  of  what  is  to  be  assessed.    

They  are  not  instrucHonal  strategies  or  objecHves  for  a  lesson.

 

Construct and use models to explain that atoms combine to form new substances of varying complexity in terms of the number of atoms and repeating subunits. [Clarification Statement: Examples of atoms combining can include Hydrogen (H2) and Oxygen (O2) combining to form hydrogen peroxide (H2O2) or water(H2O). [Assessment Boundary: Restricted to macroscopic interactions.]

Closer  Look  at  a  Performance  ExpectaHon

IdenHfy  the  Three  Dimensions  in  the  Performance  ExpectaHon

#1  –  MS-­‐LS2-­‐1

#2  -­‐  MS-­‐LS2-­‐2

#3  -­‐  MS-­‐LS2-­‐3

#4  -­‐  MS-­‐LS2-­‐4

#5  -­‐  MS-­‐LS2-­‐5

  MS-­‐LS2-­‐1.    

  Analyze  and  interpret  data  to  provide  evidence  for  the  effects  of  resource  availability  on  organisms  and  populaHons  of  organisms  in  an  ecosystem.  [ClarificaHon  Statement:  Emphasis  is  on  cause  and  effect  relaHonships  between  resources  and  growth  of  individual  organisms  and  the  numbers  of  organisms  in  ecosystems  during  periods  of  abundant  and  scarce  resources.]  

  MS-­‐LS2-­‐2.    

  Construct  an  explanaHon  that  predicts  paPerns  of  interacHons  among  organisms  across  mulHple  ecosystems.  [ClarificaHon  Statement:  Emphasis  is  on  predicHng  consistent  paPerns  of  interacHons  in  different  ecosystems  in  terms  of  the  relaHonships  among  and  between  organisms  and  abioHc  components  of  ecosystems.  Examples  of  types  of  interacHons  could  include  compeHHve,  predatory,  and  mutually  beneficial.]  

  MS-­‐LS2-­‐3.       Develop  a  model  to  describe  the  cycling  of  maPer  and  flow  of  energy  among  living  and  nonliving  parts  of  an  ecosystem.  [ClarificaHon  Statement:  Emphasis  is  on  describing  the  conservaHon  of  maPer  and  flow  of  energy  into  and  out  of  various  ecosystems,  and  on  defining  the  boundaries  of  the  system.]  [Assessment  Boundary:  Assessment  does  not  include  the  use  of  chemical  reacHons  to  describe  the  processes.]  

  MS-­‐LS2-­‐4.       Construct  an  argument  supported  by  empirical  evidence  that  changes  to  physical  or  biological  components  of  an  ecosystem  affect  populaHons.  [ClarificaHon  Statement:  Emphasis  is  on  recognizing  paPerns  in  data  and  making  warranted  inferences  about  changes  in  populaHons,  and  on  evaluaHng  empirical  evidence  supporHng  arguments  about  changes  to  ecosystems.]  

  MS-­‐LS2-­‐5.    

  Evaluate  compeHng  design  soluHons  for  maintaining  biodiversity  and  ecosystem  services.*  [ClarificaHon  Statement:  Examples  of  ecosystem  services  could  include  water  purificaHon,  nutrient  recycling,  and  prevenHon  of  soil  erosion.  Examples  of  design  soluHon  constraints  could  include  scienHfic,  economic,  and  social  consideraHons.]  

Next  GeneraHon  Science  Standards

MS-­‐LS2  Ecosystems:  InteracHons,  Energy,  and  Dynamics  

 

hPp://www.nextgenscience.org/msls2-­‐ecosystems-­‐interacHons-­‐energy-­‐dynamics  

 

What  is  Common?

All  the  standards,  mathemaHcs,  English  language  arts  and  science  require  that  teachers  focus  more  anenHon  on  “pracHces”

ScienHfic  and  Engineering  PracHces

1.  Asking  quesHons  (for  science)    and  defining  problems  (for  engineering)

2.  Developing  and  using  models

3.  Planning  and  carrying  out  invesHgaHons

4.  Analyzing  and  interpreHng  data

5.  Using  mathemaHcs  and  computaHonal  thinking

6.  ConstrucHng  explanaHons  (for  science)    and  designing  soluHons  (for  engineering)

7.  Engaging  in  argument  from  evidence

8.  Obtaining,  evaluaHng,  and  communicaHng  informaHon

MathemaHcal  PracHces 1.  Make  sense  of  problems  and  persevere  in  solving  them.

2.  Reason  abstractly  and  quanHtaHvely.

3.  Construct  viable  arguments  and  criHque  the  reasoning  of  others

4.  Model  with  mathemaHcs.

5.  Use  appropriate  tools  strategically.

6.  Anend  to  precision.

7.  Look  and  make  use  of  structure.

8.  Look  and  express  regularity  in  repeated  reasoning.

CapaciHes  of  a  Literate  Individual

1.  They  demonstrate  independence.

2.  They  build  strong  content  knowledge.

3.  They  respond  to  the  varying  demands  of  audience,  task,  purpose,  and  discipline.

4.  They  comprehend  as  well  as  criHque.

5.  They  value  evidence.

6.  They  use  technology  and  digital  media  strategically  and  capably.

7.  They  come  to  understand  other  perspecHves  and  cultures.

Common  Core  State  Standards  

NGSS  Can  be  Found  on  the  Link  Below

hPp://www.nextgenscience.org/next-­‐generaHon-­‐science-­‐standards  

 

Hands  On    Minds  On

WHAT  IS  THE  DIFFERENCE?

WHAT  DOES   IT  LOOK  LIKE?

WHY  BOTH?

How  People  Learn

“Students  come  to  the  classroom  with  preconcepHons  about  how  the  world  works.  If  their  iniHal  understanding  is  not  engaged,  they  may  fail  to  grasp  the  new  concepts  and  informaHon  that  are  taught,  or  they  may  learn  them  for  purposes  of  a  test  but  revert  to  their  preconcepHons  outside  the  classroom.”  

How  People  Learn,  Bransford,  Brown  &  Cockling.  pp  14-­‐15  

Teaching  Science

q  PracHcing  scienHsts  at  some  point  learn  by  doing  however  very  few  scienHsts  are  teaching  in  K-­‐12  classrooms.

q  Science  teachers  on  the  other  hand  rarely  have  the  opportunity  to  parHcipate  in  real  science  invesHgaHons  with  a  scienHst.

Teaching  Science

1.  Define  the  learning  Goals 2.  Communicate  these  goals  to  the  students

3.  Provide  engaging  experiences  to  teach  and  reinforce  concepts

4.  Monitor  students  progress

Teaching  Science

Students  should  be  given  opportuniHes  to:

q parHcipate  in  guided  inquiry q develop  explanaHons  with  peers q communicate  ideas

q interact  with  enthusiasHc  teachers  and  scienHsts

Key  Points  to  Remember

  Brain  Research  -­‐  students  remember  when  learning  has  personal  relevance  and  makes  an  emoHonal  connecHon.

  Build  connecHons  between  students  and  the  disciplines,  the  current  world,  and  the  future.

  Understand  the  developmental  needs  of  young  adolescents.

  Build  upon  prior  knowledge  -­‐  create  brains  of  Velcro,  not  Teflon.

InteracHve  Science  Ecology  and  the  Environment

  Energy  Flow  in  Ecosystems

q What  are  the  energy  roles  in  an  ecosystem? q How  does  energy  move  through  an  ecosystem.

 

Food:        Source:    Plant    /  Animal  /  Both    Explain  :  

Where  Did  Your  Dinner  Come  From?

Where  Did  Your  Dinner  Come  From?

Where  Did  Your  Dinner  Come  From?

Where  Did  Your  Dinner  Come  From?

Where  Did  Your  Dinner  Come  From?

Where  Did  Your  Dinner  Come  From?

Where  Did  Your  Dinner  Come  From?

Where  Did  Your  Dinner  Come  From?

Weaving  a  Food  Web

q  Select  one  of  the  cards  from  your  table  that  has  an  organism

q  The  organism  you  selected  is  the  role  you  will  play  in  the  food  web

q  Wear  your  role  so  your  organism  is  displayed  in  front  of  you

q  Hold  one  end  of  each  of  the  several  pieces  of  yarn  in  your  hand

Weaving  a  Food  Web

q  Look  around  the  room  for  all  the  organisms  that  you  could  link  with

q When  you  find  that  organism,  discuss  your  relaHonship  and  give  your  other  end  of  the  yarn  to  the  other  organism

 Energy  Flow  in  Ecosystems

             

     

   

     

       

     

     

Weaving  a  Food  Web

q  A  disaster  occurred  wiping  off  one  organism.

q  The  affected  organism  has  now  been  eliminated  from  your  food  web  and  should  drop  all  pieces  of  yarn  it  has.

q  How  many  organisms  were  affected  by  the  removal  of  just  one  organism?

q  What  does  this  acHvity  show  about  the  importance  of  each  organism  in  a  food  web?

             

     

   

     

       

     

     

Energy  Pyramid

How  would  you  assess  understanding?

q Force  and  MoHon

q Energy  Flow  in  the  Ecosystem