49
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/324598080 Crustal evolution of NW Iran: Cadomian Arcs, Archean fragments and the Cenozoic magmatic flare-up Article in Journal of Petrology · November 2017 DOI: 10.1093/petrology/egy005 CITATIONS 0 READS 377 10 authors, including: Some of the authors of this publication are also working on these related projects: Roll–back, Extension and Mantle Upwelling Triggered Eocene Shoshonitic Magmatism in NW Iran View project Behaviour of Scandium from Mantle to Supergene Contexts – Contribution to the Understanding of the Processes of Critical Metals Enrichment View project Hadi Shafaii Moghadam University of Mohaghegh Ardabili 75 PUBLICATIONS 742 CITATIONS SEE PROFILE W. L. Griffin Macquarie University 424 PUBLICATIONS 19,322 CITATIONS SEE PROFILE José Francisco Santos University of Aveiro 120 PUBLICATIONS 550 CITATIONS SEE PROFILE Orhan Karsli Recep Tayyip Erdoğan Üniversitesi 39 PUBLICATIONS 1,033 CITATIONS SEE PROFILE All content following this page was uploaded by Bob Stern on 29 May 2018. The user has requested enhancement of the downloaded file.

C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/324598080

Crustal evolution of NW Iran: Cadomian Arcs, Archean fragments and the

Cenozoic magmatic flare-up

Article  in  Journal of Petrology · November 2017

DOI: 10.1093/petrology/egy005

CITATIONS

0

READS

377

10 authors, including:

Some of the authors of this publication are also working on these related projects:

Roll–back, Extension and Mantle Upwelling Triggered Eocene Shoshonitic Magmatism in NW Iran View project

Behaviour of Scandium from Mantle to Supergene Contexts – Contribution to the Understanding of the Processes of Critical Metals

Enrichment View project

Hadi Shafaii Moghadam

University of Mohaghegh Ardabili

75 PUBLICATIONS   742 CITATIONS   

SEE PROFILE

W. L. Griffin

Macquarie University

424 PUBLICATIONS   19,322 CITATIONS   

SEE PROFILE

José Francisco Santos

University of Aveiro

120 PUBLICATIONS   550 CITATIONS   

SEE PROFILE

Orhan Karsli

Recep Tayyip Erdoğan Üniversitesi

39 PUBLICATIONS   1,033 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Bob Stern on 29 May 2018.

The user has requested enhancement of the downloaded file.

Page 2: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

Crustal Evolution of NW Iran: Cadomian Arcs,

Archean Fragments and the Cenozoic

Magmatic Flare-Up

Hadi Shafaii Moghadam1,2,3*, William L. Griffin3, Xian-Hua Li4,

Jose F. Santos5, Orhan Karsli6, Robert J. Stern7, Ghasem Ghorbani2,

Sarah Gain3, Rosanna Murphy3 and Suzanne Y. O’Reilly3

1Department of Geology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 56199-13131, Iran; 2School

of Earth Sciences, Damghan University, Damghan 36716-41167, Iran; 3ARC Centre of Excellence for Core to Crust

Fluid Systems and GEMOC ARC National Key Centre, Department of Earth and Planetary Sciences, Macquarie

University, NSW 2109, Australia; 4State Key Laboratory of Lithospheric Evolution, Institute of Geology and

Geophysics, Chinese Academy of Sciences, Beijing 100029, China; 5Geobiotec, Departamento de Geociencias,

Universidade de Aveiro, Aveiro 3810-193, Portugal; 6Department of Geological Engineering, Recep Tayyip Erdo�gan

University, Rize TR-53000, Turkey; 7Geosciences Department, University of Texas at Dallas, Richardson, TX 75083-

0688, USA

*Corresponding author. Tel: þ98, 9147033058; E-mail: [email protected]

Received February 22, 2016; Accepted January 16, 2018

ABSTRACT

The Cadomian orogen of NW Iran includes a series of metamorphic rocks with zircon U-Pb ages be-

tween ca 562 and 505 Ma (Ediacaran to middle Cambrian). The Ediacaran-Cambrian basement

is intruded by a series of Late Eocene-Late Oligocene I-type granitic rocks. U-Pb geochronology,

integrated with geochemical and isotopic data for the basement rocks in NW Iran, provides further

evidence of a Cadomian (562-505 Ma) arc-related magmatic event lasting � 60 Myr. Cadomianmagmatism in Iran was a part of a � 100 Myr long episode of subduction-related arc magmatism at

the northern margin of Gondwana. Zircon Hf-isotope compositions show that during Cadomian

magmatic arc activity, juvenile arc magmas interacted with reworked Archean crust to generate the

Ediacaran-Cambrian igneous rocks. Our results document both inheritance of old zircons and the

presence of zircons with juvenile signatures in NW Iran, suggesting that the geotectonic setting

for the Cadomian rocks was an Ediacaran continental magmatic arc and probably a neighboringback-arc basin. The occurrence of Ediacaran ophiolitic slices in NW Iran may provide evidence of

back-arc basin opening at that time. Cenozoic plutonism in NW Iran is part of an Eocene-Oligocene

magmatic ‘flare-up’ along the Urumieh-Dokhtar Magmatic Belt in central Iran, which lasted for ca

30 Myr. The melts responsible for the formation of these rocks had an essentially juvenile signature

with minor contamination by Archean to Cadomian middle-lower continental crust. Continuous

convergence between Arabia and Iran was accompanied by the transition of SW Eurasia from a

compressional to an extensional convergent plate margin in Eocene-Oligocene times, leading toorogenic collapse, core-complex formation, exhumation of Cadomian crust and a major increase in

arc magmatism.

Key words: Cadomian magmatism; Iran; U-Pb zircon geochronology; Urumieh-Dokhtar magmaticbelt; Zircon Hf isotopes

VC The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: [email protected] 2143

J O U R N A L O F

P E T R O L O G Y

Journal of Petrology, 2017, Vol. 58, No. 11, 2143–2190

doi: 10.1093/petrology/egy005

Advance Access Publication Date: 29 January 2018

Original Article

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 3: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

INTRODUCTION

Collisional orogens, the mountain belts formed when

continents collide, are among the most impressive

manifestations of plate tectonics and are an ideal nat-

ural laboratory in which to study tectonic and magmatic

processes. The eroded roots of collisional zones are

widespread in Archean (2�5 Ga old) and Proterozoic

(2�5-0�5 Ga) terranes such as in Africa (Begg et al.,

2009), but the study of active zones such as the Alpine-

Zagros-Himalayan orogen can provide actual examples

where products and processes are more easily

recognized.

The Caucasus-Bitlis-Zagros Orogen, which is the

most important collisional belt in SW Asia and makes

up part of the Tethyan orogenic belt (Fig. 1), is a key

area in the study of the youngest magmatic and tectonic

processes. This orogen represents an intermediate

stage or ‘soft’ collision, which can be compared with

ongoing studies on the Tibet- Himalaya and Alpine sec-

tors, which represent ‘mature’ or ‘hard’ collision zones

either side of the Caucasus-Bitlis-Zagros Orogen. The

central Iranian segment of the Caucasus-Bitlis-Zagros

Orogen provides opportunities for a comprehensive

understanding of the evolution of continental collision

zones and their magmatic outputs. The combination of

long-term convergence and oblique collision with

both shortening and upper-plate extensional move-

ments are fascinating features of the young continental

collision in Iran (Kargaranbafghi & Neubauer, 2015).

Understanding of the ongoing collision and magmatic

activity requires the recognition and dating of individual

magmatic pulses, which are predominant in the Iranian

crust. The central part of Iran has undergone a series of

subduction events from Ediacaran to late Cenozoic,

which have played major roles in the growth and modi-

fication of the crust.

The late Neoproterozoic-early Cambrian ‘Cadomian’

orogeny is a well-documented period of enhanced

crustal growth, involving both juvenile addition and re-

working of older crust (Pereira et al., 2011). Late

Neoproterozoic-early Cambrian crustal evolution was

influenced by Pan-African collisional events that formed

the supercontinent Gondwana (Powell et al., 1993;

Dalziel, 1997), then by subduction that formed the

Cadomian-Avalonian arc system of Western Pacific

style that generated several thousand kilometers of arc

magmatism along the northern margin of Gondwana

(Nance et al., 1991; Keppie et al., 2003; Gutierrez-Alonso

et al., 2008; Lopez-Guijarro et al., 2008; Murphy et al.,

2008; Ustaomer et al., 2009), (Linnemann et al., 2008;

Drost et al., 2011). Much of this crust rifted away from

Gondwana in early Paleozoic times (Paleotethys open-

ing) and during the late Paleozoic (Neotethys opening)

and was accreted to the southern flank of Eurasia. The

Cadomian belt of SW Eurasia now stretches from Iberia

through Central and SE Europe into Turkey and Iran

(von Raumer et al., 2002) (Fig. 1). In northern Tibet,

Cadomian vestiges are found in the Amdo gneissic

massif (517-505 Ma) (Xie et al., 2013a, 2013b). The

Laguigangri metamorphic core complex (�514 Ma) and

potassic rhyolites (�512 Ma) in southern Tibet also

show traces of Cadomian magmatism (Gu et al., 2013;

Ding et al., 2015). Moreover, zircons in detrital sedi-

ments of the Tarim block, with a major peak in U-Pb

ages at ca 560 Ma, reflect the widespread Cadomian

magmatism of northern Gondwana and may show a

Gondwanan affinity for the Tarim block (Ma et al.,

2012). Cadomian crust now mostly dominates southern

Eurasia west of Afghanistan (Garfunkel, 2015), although

this crust has been overprinted by younger deformation

and igneous activity. The basement of Iran and Turkey

includes abundant evidence of Cadomian crust about

which we have much to learn. Documented Cadomian

exposures in Turkey are found in the south (Poturge

massif), the west (Menderes and Sandikli massifs) and

the NW (Istanbul zone). Cadomian exposures are also

abundant in Iran; they are documented from regions in

western (Golpayegan), northwestern (Khoy-Salmas,

Zanjan-Takab), northeastern (Torud, Taknar), northern

(Lahijan granites), and central Iran (Saghand)

(Hassanzadeh et al., 2008) (Fig. 1).

Understanding the age, distribution and especially

derivation of late Neoproterozoic-Cambrian crustal

rocks is a key to reconstructing the tectonic evolution of

SW Asia during Neoproterozoic-early Paleozoic times.

Our understanding of the Cadomian crust is advancing

rapidly, but remains incomplete, especially in Iran.

Reliable geochronological and other isotopic data are

not yet available for the meta-igneous rocks of most

suspected Cadomian terranes in Iran. It is not yet clear if

all the igneous rocks have late Neoproterozoic-early

Cambrian ages or if older Neoproterozoic ages are also

present. It is also unclear whether these older rocks

have still older protoliths, and when real crustal growth

might have occurred. The younger tectono-magmatic

imprints that have affected these basement areas are

also matters of ongoing debate.

Nearly all of the Cadomian terranes in Iran show evi-

dence of late-stage magmatic intrusions during the

Eocene-Miocene, which may be related to crustal exten-

sion during the main phase of Tethyan subduction be-

neath Iran in the Eocene or to Arabia-Eurasia collision

in the Miocene (Karagaranbafghi et al., 2012;

Moghadam et al., 2016a). The source and mechanism

of this magmatism remains ambiguous as there are no

detailed geochemical-isotopic studies, especially in situ

Hf isotopes that can help us to understand the nature of

the melts and to recognize if crustal growth or recycling

were the main causes of the Eocene-Miocene magma-

tism in Iran. Geochronologically, there is no linkage be-

tween the Cadomian basement rocks and the younger

(Cenozoic) magmatic pulses, but as most of the

Cadomian terranes contain abundant Cenozoic mag-

matic intrusions, it is important to know if there is a

Cadomian lower-crustal source for the genesis of the

younger magmatic rocks through partial melting or

2144 Journal of Petrology, 2017, Vol. 58, No. 11

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 4: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

assimilation, or if the Cenozoic rocks have different

magmatic sources.From field observations it is difficult to distinguish

any differences between the Cadomian gneissic rocks

and Cenozoic meta-granitoids with gneissic appear-

ance. However, combined with detailed field geology,

U-Pb geochronology is a powerful tool with which to

understand any ambiguities concerning the crustal

architecture of the region in the sense of the relative

abundances of the Cadomian versus younger plutons.In this study, we aim to understand the construction

and evolution of the Iranian Late Neoproterozoic-

Cambrian crust and the subsequent tectono-magmatic

events affecting it, based on the significance of new insitu zircon U-Pb ages as well as zircon Hf-O-trace elem-

ent and bulk-rock Sr-Nd isotopic data from the Zanjan-

Takab metamorphic complex in NW Iran (Fig. 2). These

data are then used to constrain the main periods of

crustal growth in Iran. Zanjan-Takab is the best place

for this study, because it is a core complex and there-

fore all the deep crustal rocks are readily accessible.

This is also a place where the contacts between theCadomian rocks and Cenozoic intrusives have been pre-

served at the present-day erosion level.

Fig. 1. Simplified geological map of Iran-Turkey showing the distribution of Eocene magmatism, Paleozoic-Mesozoic ophiolites,Cadomian basement rocks and core complexes. The distribution of core complexes is after: (Whitney & Dilek, 1997; Okay & Satir,2000; Stockli, 2004; Ring & Collins, 2005; Verdel et al., 2007; Whitney et al., 2007; Gessner et al., 2013).

Journal of Petrology, 2017, Vol. 58, No. 11 2145

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 5: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

GEOLOGICAL SETTING

General overviewIt has long been recognized that Iran and Turkey

were part of Gondwana (Arabian sector) before the

opening of Neotethys, and became detached during

Permian time (Berberian & King, 1981; Robertson et al.,

1991; Garfunkel, 2004; Abbo et al., 2015). The similarity

in Paleozoic strata between Arabia and Iran could be re-

garded as reasonable evidence for this conclusion

(Berberian & King, 1981). But how clear is the

stratigraphic similarity of older rocks—Late

Neoproterozoic-Cambrian—in Iran and Arabia? The

Arabian-Nubian Shield is divided into Western and

Eastern basement blocks (Supplementary Data (SD)

Electronic Appendix 1; supplementary data are avail-

able for downloading at http://www.petrology.oxford

journals.org), separated by the Central Arabian

Magnetic Anomaly (Allen et al., 2004; Allen, 2007;

Bowring et al., 2007; Rieu & Allen, 2008; Stern &

Johnson, 2010; Thomas et al., 2015), which separates

Fig. 2. Simplified geological map of the Zanjan-Takab complex showing sample localities and available U-Pb age data (modifiedafter Takab 1/250000 map, Geological Survey of Iran).

2146 Journal of Petrology, 2017, Vol. 58, No. 11

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 6: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

juvenile early and late Neoproterozoic crust to the west

(including all of the ANS) from juvenile early-

Neoproterozoic crust to the east. The western segment

comprises juvenile Neoproterozoic igneous and meta-

morphic rocks (including several Cryogenian ophiolite

belts) with some smaller Archean and Paleoproterozoiccrustal fragments in SW Arabia and Yemen (Stern &

Johnson, 2010) (SD Elecronic Appendix 1). The eastern

segment, adjacent to the Zagros orogen, should be

more similar to the Iranian block, if the two were once

joined together and then rifted apart. The oldest

exposed rocks in the eastern segment are paragneisses

with depositional ages<1Ga, which were intruded by

�0�9-0�7 Ga felsic plutonic rocks, with some Cadomian

exposures on the NE margin (Bowring et al., 2007; Rieuet al., 2007; Stern et al., 2016).

The eastern crystalline basement is unconformably

overlain by a thick sequence of Cryogenian to

Ediacaran volcano-sedimentary rocks of the Huqf

Supergroup (Allen, 2007; Bowring et al., 2007).

Accordingly, both western and eastern segments are

completely different from the basement in Iran, where

the oldest exposed rocks are �600-500 Ma old. Itsseems the only correlative rocks in the Arabian Plate—

SW of Zagros—are igneous boulders within the Hormuz

salt domes, whose crystallization ages vary between ca

560-545 Ma with older inheritance (Faramarzi et al.,

2015; Thomas et al., 2015). However, most parts of the

Arabian continental crust are deeply buried under

Paleozoic and Mesozoic sediments. The continental

crust of the eastern segment could be predominantlycomposed of Cadomian igneous rocks, as suggested by

the major 0�6-0�5 Ga peaks in detrital zircon age spectra

from early Paleozoic detrital sediments in Oman and

Saudi Arabia (Linnemann et al., 2011). Lower-crustal

xenoliths, brought to the surface by Neogene basalts in

NE Jordan (North Arabia), yield ages of 563 to 554 Ma,

and suggest a fragment of Cadomian crust exists be-

neath the eastern basement (Stern et al., 2016).The Ediacaran-Cambrian basement rocks of Iran

(Fig. 1) and Turkey were exhumed from the middle -

lower crust during the Cenozoic. There are several

Eocene, Oligocene and Miocene core complexes, dis-

tributed throughout Iran and Turkey. The first phase of

extension and core-complex formation started in

Eocene time. This extension was associated with late

Cretaceous and Cenozoic igneous activity related to the

oblique subduction of Neotethyan oceanic lithospherebeneath Iran, which produced the Urumieh-Dokhtar

magmatic belt, a 50–80 km wide Andean-type belt of

intrusive and extrusive rocks in central Iran (Fig. 1;

(Agard et al., 2011)). Cadomian basement in central

Iran—the Saghand area—was exhumed during Eocene

extension, followed by early Miocene erosion

(Kargaranbafghi et al., 2015). Stockli (2004) reported an

Oligocene-Miocene core complex from the Zanjan-Takab region, NW Iran, and post-Eocene core com-

plexes have also been reported from Turkey (Fig. 1); in

Kazdag (late Oligocene; (Okay & Satir, 2000)), Simav

(Miocene; (Ring & Collins, 2005)), Menderes (Miocene-

present; (Gessner et al., 2001, 2013)), Uludag (Ustaomer

et al., 2015) and Nigde (Miocene-present; (Whitney &

Dilek, 1997; Whitney et al., 2007)).

Most late Neoproterozoic-Cambrian exposures show

evidence of Eocene-Oligocene partial melting to pro-duce anatexites-diatexites, melt invasion and, or, intru-

sion by Eocene-Miocene plutonic rocks (Ramezani &

Tucker, 2003; Moghadam et al., 2016a). The Zanjan-

Takab complex in NW Iran (Fig. 2) compri a belt of

metamorphic rocks that trends NW-SE, parallel to the

Zagros orogen. This complex is in fault contact with

Miocene and younger volcano-sedimentary rocks and

represents a core complex that formed in response tothe Arabian-Iranian continental collision (Stockli, 2004;

Gilg et al., 2006). The Zanjan-Takab complex seems to

be geochronologically similar to other Iranian basement

exposures for which Cadomian ages (560-550 Ma) have

been obtained (Fig. 1) (Hassanzadeh et al., 2008;

Balaghi Einalou et al., 2014), but detailed age and iso-

topic data are limited. This complex consists of various

types of meta-granite, ortho- and para-gneissic rocks,

metabasites, amphibolites, calc-silicates, psammitic topelitic schists, meta-ultramafic rocks and migmatites

(Fig. 2). Undated meta-ultramafic rocks, meta-gabbros

and metabasites may represent an ophiolite associated

with the Prototethys Ocean (Hajialioghli et al., 2007;

Saki, 2010). Pelitic schists occur around Poshtuk village

and south of Qozlu village (Fig. 2) and include hematite-

white mica schist and phyllite, biotite-garnet schist and

staurolite-chloritoid schist (Saki et al., 2012). The mainmetamorphic paragenesis of the metapelites (garnet,

staurolite, chloritoid, chlorite, muscovite and quartz) re-

flects peak metamorphic P-T conditions of 580�C and

�3–4 kbar, indicating formation at moderate tempera-

tures �10–15 km depth in the crust (Saki et al., 2012).

Migmatites occur among the psammitic gneisses and

amphibolites and are common NE of Takab, especially

near Qare-Naz village. U-Pb dating of zircon rimsfrom the migmatite leucosomes and melanosomes

provides evidence of partial melting during Oligocene

times, �28-25 Ma (Moghadam et al., 2016a). Unmeta-

morphosed supracrustal units, including late Neopro-

terozoic dolomites, shales, sandstones, tuffs and

rhyolites of the Qaradash, Bayandor and Soltanieh For-

mations, along with early Cambrian shales, sandstones,

dolomites and limestones of the Zaigun and Barut For-

mations, are also common NW of Takab, where theyare in fault contact with metamorphic rocks and associ-

ated granitoids (Fig. 2).

Orthogneisses occur mostly around Moghanlu vil-

lage and have 568-548 Ma ages (Fig. 3; (Hassanzadeh

et al., 2008)). Ediacaran-Cambrian (543-537 Ma) granitic

gneisses are also common NW of Takab, near Aq

Darreh and Pichaqchi villages (Badr et al., 2013) (Fig. 2).

The main exposures of orthogneissic rocks and meta-granites—the subject of this study—occur in three

areas: I- Almalu-Qazi Kandi-Alam Kandi; II- Qozlu-Zaki

Kandi and III- Qara Dash-Qare Naz villages (Fig. 2).

Journal of Petrology, 2017, Vol. 58, No. 11 2147

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 7: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

We collected representative samples from these three

sections, and hereafter we will discuss the geology of

these regions separately. These are the best well-

defined exposures.

Undated granitoid intrusions are abundant in the

Takab-Zanjan complex (Fig. 2); Babakhani &

Ghalamghash (1991) described these as the Triassic-

Jurassic intrusions, crosscutting late Neoproterozoic

amphibolites and gneisses. Adakitic, 59-52 Ma (zircon

U-Pb dating) granites crosscut the metamorphic rocks

NW of Takab (Badr et al., 2013). Oligocene granites,

dated at 25 Ma (zircon U-Pb), are also reported from

near Mahneshan (Fig. 2; (Stockli, 2004)). These plutonic

rocks reflect magmatic activity in the Urumieh-Dokhtar

belt.

Regional geology and samplingAs most parts of the Zanjan-Takab complex have either

been highly weathered (and are covered by farmland)

or have been affected by intensive tectonics, the struc-

tural architecture of this complex has been obscured.

A structural description is beyond the scope of this

study, but to show better the relationships of the

exposed units, we have drawn schematic lithological

columns to show the approximate locations of the

dated samples (Fig. 3).

Almalu-Qazi Kandi-Alam Kandi areaOrthogneisses are the predominant rocks in this area

and show pristine intrusive relationships with their host

rocks, which include amphibolites, meta-sedimentary

gneisses and pelitic schists (Fig. 3). The gneisses are

mylonitized and contain large K-feldspar porphyroclasts

(4–5 cm in size) (Fig. 4a). Petrographically, they vary

from granitic to granodioritic and even tonalitic, and

contain enclaves of amphibolite, granitic gneiss, retro-

graded granulite, biotite schist and calc-schist (Fig. 4b).

Gneissic, fine-grained (aplitic) to coarse-grained dior-

itic-granitic dikes crosscut the orthogneisses (Fig. 4c–d).

Late Ediacaran-Cambrian granitic and granodioritic

gneisses and their enclaves from these outcrops were

sampled for U-Pb geochronology and geochemistry.

Cenozoic (see U-Pb section) fine-grained granitic

orthogneisses and meta-granitoids are present near

Alam-Kandi village. They are very similar in appearance

to their older late Ediacaran-Cambrian equivalents (U-

Pb ages; see next sections). They do not have clear con-

tacts, as a screen of biotite schist, muscovite-hematite

schist, phyllite and thin marble layers is present be-

tween them. We sampled meta-tonalites from near

Alam-Kandi village for U-Pb geochronology and

geochemistry.

Qozlu-Zaki Kandi areaParagneisses, amphibolites and biotite schists are the

main rock units of this area (Fig. 3). Highly deformed

amphibolites with a stretching lineation defined by

amphibole and feldspar occur along with the para-

gneisses. Meta-sedimentary gneisses and amphibolites

show evidence of partial melting leading to the forma-

tion of anatexites and diatexites (Fig. 4e). Late-stage

granitic dikes crosscut amphibolites and paragneisses

(Fig 4f). Orthogneissic rocks including granodioritic to

dioritic (and even trondhjemitic) gneisses seem to be

intruded into metamorphic rocks, with either biotite-

dominated weak foliation (S-tectonites) or amphibole-

dominated stretching lineation (S-L tectonites).

Granodioritic gneisses, paragneisses and amphibolites

were selected from this area for further U-Pb geochron-

ology and geochemistry.

Qara Dash-Qare Naz areaMigmatites are widespread around Qare Naz village.

Amphibolites and paragneisses with minor metapelitic

schists, retrograde granulites and migmatitic gneisses

are also common. Orthogneisses are less abundant

than psammitic gneisses. Paragneisses are interlayered

with amphibolites, marbles and calc-schists. Leuco-

somes are millimeters to tens of centimeters long and

vary from weakly to highly foliated (Fig. 5a and b).

Fig. 3. Schematic lithological columns showing the relationships between rock units in the target areas and zircon U-Pb ages ob-tained during this study.

2148 Journal of Petrology, 2017, Vol. 58, No. 11

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 8: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

Melanosomes are restites composed of massive and

gneissic amphibolite, rich in amphibole, plagioclase

and epidote with minor quartz. Migmatites show schlie-

ren, nebulitic, ptygmatic, stromatic, raft- and vein-like

structures. These migmatites show evidence of Oligo-

cene (28-25 Ma) partial melting (Moghadam et al.,

2016a). Late-stage granitoid dikes crosscut gneissic am-

phibolites and paragneisses.

Coarse-grained and flaser-like gabbroic-dioritic

gneisses are common near Qara Dash village. They

have porphyroclastic textures with well-developed

ultra-mylonitic shear zones (Fig. 5c and d). Amphibole

and feldspar augen are abundant. These rocks have

intrusive contacts with slightly metamorphosed, garnet-

bearing leucogranites. Less deformed Cadomian

diorites with abundant small, late-stage (Cenozoic)

granodioritic-dioritic lenses and granitic dikes are com-

mon near Qara Dash village. We sampled orthog-

neisses, paragneisses, leucosomes, granulites, dioritic

to gabbroic gneisses and late-stage (Cenozoic) dikes for

U-Pb geochronology and geochemistry.

PETROGRAPHY AND MINERAL ASSEMBLAGES

Almalu-Qazi Kandi-Alam KandiOrthogneisses are petrographically granodioritic

(-tonalitic) to granitic gneiss. Granitic gneisses contain

large K-feldspar grains (av. 2 mm but up to>6 mm),

highly deformed and recrystallized quartz, zoned

plagioclase, biotite and allanite. Titaniteþ clinozoisiteþepidote are secondary minerals. Granodioritic (-tonalitic)

gneisses contain large zoned plagioclase crystals (av.

3–4 mm but up to>8 mm), perthitic K-feldspar, quartz rib-

bons, hornblende, biotite, allanite, zircon, titanite and

chlorite. Epidote overgrowths on allanite are common.

Enclaves in orthogneisses include a range from biotite

schists to granitic gneisses. Metamorphosed aplitic to

granitic dikes with perthitic K-feldspar, quartz ribbons

Fig. 4. Field photographs of the Zanjan-Takab metamorphic rocks. (a) K-feldspar augen granodioritic gneisses in the Almalu-QaziKandi-Alam Kandi region. (b) Gneissic amphibolite enclave within the granodioritic gneisses. (c, d) Fine-grained (aplitic) gneissicdikes within the Almalu-Qazi Kandi-Alam Kandi granodioritic gneisses. (e) Schlieren-type migmatites in the Qozlu-Zaki Kandi re-gion. (f) Late-stage granitic dikes crosscut the Qozlu-Zaki Kandi metamorphic rocks.

Journal of Petrology, 2017, Vol. 58, No. 11 2149

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 9: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

and minor biotite and plagioclase crosscut the orthog-

neisses. Granulitic enclaves contain deformed quartz,

plagioclase, orthopyroxene, clinopyroxene, garnet,

amphibole, rutile and titanite. Meta-tonalites show slight

deformation with large plagioclase, K-feldspar, quartz,

hornblende, biotite, allanite and titanite.

Normative Quartz-Alkali Feldspar-Plagioclase con-

tents of the meta-igneous rocks served as a basis for

the construction of the QAP diagram (Fig. 6)

(Streckeisen, 1979). The older gneissic rocks plot pre-

dominantly in the field of granite to granodiorite (and

even monzodiorite) whereas younger, late-stage intru-

sive rocks tend to plot in the granodiorite-tonalite fields.

Qozlu-Zaki KandiGranodioritic gneisses contain both coarse- (>4 mm)

and fine-grained (<1 mm) K-feldspars with perthitic tex-

tures, quartz ribbons and plagioclase. Green amphibole

along with biotite, titanite, clinozoisite, apatite and zir-

con are common. Dioritic (and trondhjemitic) gneisses

contain deformed plagioclase; most show triple junc-

tions at their contacts. Highly deformed amphibole and

quartz define a stretching lineation. K-feldspar and al-

lanite are present as accessory minerals. In dioritic

gneisses, large amphibole crystals contain bleb-like and

fine-grained quartz along their rims. Moreover, in some

samples, large clinopyroxene crystals show conversion

into amphibole along the rims, which are also charac-

terized by the presence of bleb-like quartz. These tex-

tures indicate the rapid exhumation of the mafic

granulites from depth and post-decompression cooling

of the rocks under retrograde conditions (Standley &

Harris, 2009; Chapman et al., 2011; Moller et al., 2015).

Kinked quartz, plagioclase, K-feldspar and biotite are

rock-forming minerals in the Qozlu-Zaki Kandi para-

gneiss. In the QAP diagram (Fig. 6) meta-igneous rocks

have granodiorite and (monzo-) diorite compositions.

Qara Dash-Qare NazHighly foliated leucosomes are characterized by quartz

ribbons, deformed K-feldspar, plagioclase and amphi-

bole with mylonitic textures, whereas weakly deformed

leucosomes contain zoned and coarse-grained plagio-

clase, quartz, K-feldspar, biotite and amphibole with a

granular texture. Granitoid dikes cross-cut the Qara

Dash-Qare Naz paragneisses and amphibolites with

sharp contacts. They include coarse-grained amphibole

(>2 mm), plagioclase, K-feldspar (6perthite), quartz, al-

lanite, apatite and euhedral titanite with a protogranular

texture. Petrographically, they vary from alkali granite

to syenite. In the QAP diagram (Fig. 6), all the Cadomian

samples have granitic compositions, except the

gabbroic-dioritic gneisses, which have gabbroic and

monzo-dioritic compositions. Late stage (Cenozoic)

granitoid lenses and granitic dikes have quartz monzo-

dioritic and granitic compositions respectively.

ANALYTICAL METHODS

Bulk-rock geochemistryForty nine samples were selected for the analysis of

major and trace elements. Their compositions were

Fig. 5. Field photographs of the Zanjan-Takab metamorphic rocks. (a, b) stromatic-type and foliated leucosomes in amphiblites andgneissic amphibolites of the Qara Dash-Qare Naz region. (c, d) Qara Dash coarse-grained and flaser-like dioritic gneisses with ultra-mylonitic shear zones.

2150 Journal of Petrology, 2017, Vol. 58, No. 11

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 10: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

determined at the commercial ACME laboratories Ltd,

Vancouver, Canada. Major elements were analyzed

using ICP-AES (0�2 g of pulp sample by LiBO2 fusion).

The detection limits are approximately 0�001–0�04%. For

trace elements, 0�2 g of sample powder and 1�5 g of

LiBO2 flux were mixed in a graphite crucible and heated

to 1050oC for 15 min in a muffle furnace. The molten

sample was then dissolved in 100 ml of 5% HNO3. The

sample solutions were shaken for 2 h, and then an ali-

quot was poured into a polypropylene test tube and

aspirated into a Perkin-Elmer Elan 600 ICP mass spec-

trometer. Calibration and verification standards to-

gether with reagent blanks were added to the sample

sequence. The elemental concentrations of the samples

were obtained using BCR-2 and BIR-2 as external

standards. The detection limits ranged from 0�01 to

0�5 ppm for most of the trace elements. Major and trace

elements are reported in Table 1.

Bulk-rock Sr-Nd isotopesSr and Nd isotopic composition were determined at the

Laboratorio de Geologia Isotopica da Universidade de

Aveiro, Portugal. The selected powdered samples were

dissolved with HF/HNO3 in Teflon Parr acid digestion

bombs at 200�C. After evaporation of the final solution,

the samples were dissolved with HCl (6 N) and dried

down. The elements for analysis were purified using a

conventional two-stage ion chromatography technique:

(i) separation of Sr and REE elements in ion exchange

columns with AG8 50 W Bio-Rad cation exchange resin;

Fig. 6. Quartz-Alkali feldspar-Plagioclase (QAP) normative classification diagram for the Zanjan-Takab metamorphic rocks. Data forIranian Cadomian rocks are from Moghadam et al. (unpublished data) excluding those for Torud-Biarjmand, which are fromBalaghi Einalou et al. (2014) and Moghadam et al. (2015a).

Journal of Petrology, 2017, Vol. 58, No. 11 2151

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 11: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

Table 1: Whole rock analyses of the Zanjan–Takab metamorphic rocks

Almalu-Qazi Kandi-Alam Kandi

Sample ZN14-1 ZN14-4 ZN14-6 ZN14-7 ZN14-11 ZN14-13 ZN14-15E ZN14-15G

SiO2 69�9 71�5 74�1 70�3 72�3 73�3 74�6 65�3Al2O3 13�5 13�8 12�2 13�8 12�7 13�3 11�5 12�1Fe2O3 4�77 3�33 4�15 4�38 4�38 3�52 3�4 9�3MgO 0�78 0�63 0�63 0�72 0�86 0�86 0�52 2�14CaO 1�68 1�69 1�64 1�81 1�62 2�16 0�73 1�64Na2O 2�76 2�88 2�62 3�2 2�56 4�11 2�23 1�84K2O 5�15 4�88 3�94 4�39 4�13 1�1 5�72 4�98TiO2 0�48 0�36 0�34 0�5 0�43 0�45 0�43 1�24P2O5 0�12 0�08 0�08 0�11 0�12 0�09 0�11 0�27MnO 0�06 0�04 0�05 0�06 0�06 0�03 0�04 0�12LOI 0�5 0�6 0�1 0�5 0�7 0�9 0�5 0�8Sum 99�7 99�79 99�83 99�78 99�8 99�82 99�75 99�68Ba 1792 1232 841 1073 947 601 885 1055Co 6�1 4�6 5�4 5�2 6�5 7�4 5 14�6Cs 3�2 2�2 2�2 2�4 3�7 0�8 2�3 6�9Ga 17�4 16�2 15�4 16�8 17�2 16�8 13�6 18�9Hf 7�7 6 6�6 10�1 6�2 7 7�5 16�6Nb 11�1 7�9 8�7 10�9 9�9 9 9�2 20�4Rb 151 129 120 134 137 36�4 158 228Sr 128 119 113 103 121 313 60�1 76�5Ta 0�8 0�5 0�6 0�6 0�5 0�5 0�5 1Th 14�9 19�9 15�1 14�7 13 17�5 35�2 14�6U 2�4 2�5 2�1 1�5 1�7 2 1�8 2�5V 45 36 42 43 52 44 36 128Zr 286 211 230 399 228 253 286 650Y 37�2 26�6 32�7 35�2 34�9 29�1 35�2 63�2La 44�2 59�6 59�2 52�7 33�2 64�7 213 71�9Ce 85�3 112 109 97�7 67�7 119 394 148Pr 10�1 12�4 11�8 11�6 7�66 12�9 40�4 17�1Nd 38�4 45 42�3 44�9 29�3 46�6 137 67Sm 7�9 7�72 7�48 8�33 6�51 7�82 18�6 14�1Eu 1�27 1�1 1�11 1�02 1�01 1�3 0�96 1�11Gd 7�6 6�35 6�71 7�93 6�08 6�9 13�2 13�8Tb 1�15 0�92 1�01 1�16 1 0�97 1�57 2�2Dy 6�7 5�03 5�68 6�61 5�8 5�41 7�27 12�3Ho 1�4 1�05 1�11 1�28 1�44 1�05 1�45 2�48Er 4�12 3�06 3�52 3�99 3�99 3�07 3�62 6�78Tm 0�6 0�45 0�55 0�58 0�59 0�46 0�52 0�97Yb 3�8 2�89 3�34 3�67 3�85 2�91 3�33 6�12Lu 0�6 0�47 0�55 0�58 0�57 0�43 0�46 0�91Pb 3�6 3 3�1 2�6 3�4 2�6 3�6 2�7Ni 9�2 4 9�8 3�9 11�2 5�8 6�3 12�9

Sample ZN14-17 ZN14-18 ZN14-20 ZN14-21 ZN14-29 ZN14-30 ZN14-31 ZN14-33

SiO2 74�5 74�0 76�3 74�8 64�3 63�6 67�4 73�5Al2O3 11�4 11�7 12�6 12�1 18�2 18�9 16�7 14�2Fe2O3 3�42 3�95 1�44 2�92 3�73 3�72 3�3 1�48MgO 0�5 0�59 0�05 0�31 0�98 0�92 0�62 0�06CaO 0�71 0�78 0�6 0�44 4�64 5�01 3�44 1�27Na2O 2�03 2�4 3�1 2�08 4�88 5�03 3�93 2�72K2O 5�83 5�39 5�47 6�35 1�95 1�43 3�35 6�25TiO2 0�38 0�5 0�04 0�21 0�45 0�43 0�32 0�05P2O5 0�13 0�12 0�02 0�04 0�15 0�15 0�09 0�01MnO 0�04 0�04 0�01 0�03 0�08 0�08 0�06 0�01LOI 0�8 0�3 0�4 0�5 0�5 0�6 0�5 0�3Sum 99�71 99�78 99�98 99�85 99�77 99�8 99�71 99�79Ba 1065 777 42 665 697 418 1489 1426Co 4�7 5�4 1�3 6�1 4�8 4�3 3�9 0�9Cs 1�8 2�9 1�1 1�5 1 0�8 0�8 1�3Ga 12�4 13�8 15�3 12�4 17�4 17�8 15�7 12�3Hf 7�2 8�5 3�9 4�5 5�1 4�8 3�5 2Nb 7�6 11�4 7�4 8�3 12�4 11�9 10 2�2Rb 148 169 168 183 47�9 38�6 63�4 117Sr 70 54�6 17�1 55�3 761 779 743 434Ta 0�3 0�7 1�4 0�9 0�8 0�7 0�6 <0�1Th 36�6 30�8 40�6 27�4 6�9 7 4�3 5U 1�9 2�8 3�6 2�4 1�1 0�9 0�6 0�5V 35 44 <8 20 40 37 30 <8Zr 285 325 73�7 145 226 219 151 74�9Y 31�7 37�8 25�4 37�2 15�7 15�6 11�2 2�8

(continued)

2152 Journal of Petrology, 2017, Vol. 58, No. 11

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 12: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

Table 1: Continued

Sample ZN14-17 ZN14-18 ZN14-20 ZN14-21 ZN14-29 ZN14-30 ZN14-31 ZN14-33

La 248 167 15�5 84�5 33�1 33�6 21�4 10�3Ce 462 300 47�4 166 56 57�9 38�1 19�2Pr 45�1 31�4 5�66 17�5 5�84 5�87 3�96 1�99Nd 150 106 23�7 62 20�5 20�9 14�7 7�2Sm 19�1 15�5 6�24 10�3 3�64 3�6 2�51 1�13Eu 0�99 0�83 0�2 0�84 1�04 1 0�73 0�35Gd 12�9 11�6 5�17 8�27 3�22 3�14 2�19 0�95Tb 1�43 1�48 0�86 1�22 0�44 0�45 0�33 0�12Dy 7�25 7�56 4�95 6�69 2�68 2�49 1�93 0�55Ho 1�13 1�46 0�95 1�34 0�51 0�52 0�4 0�11Er 3�32 3�91 3�01 4�29 1�54 1�48 1�17 0�26Tm 0�49 0�58 0�52 0�63 0�24 0�23 0�18 0�05Yb 2�92 3�78 3�72 4�34 1�55 1�46 1�22 0�37Lu 0�42 0�58 0�63 0�68 0�24 0�22 0�17 0�06Pb 4�3 3�7 3�8 4�5 1�6 1�9 1�2 1�7Ni 8 4�1 5�1 3�1 5�1 2�8 6�7 1�4

Qozlu-Zaki Kandi

Sample ZN14-34 ZN14-35 ZN14-37 AG14-3 AG14-4 AG14-8 AG14-12 AG14-13

SiO2 64�4 65�2 65�2 71�0 70�8 55�4 53�4 51�0Al2O3 17�1 17�5 17�4 15�2 15�4 20�7 18�5 15�9Fe2O3 4�82 4�17 3�94 2�47 2�27 4�97 7�61 9�28MgO 1�1 1�18 1�06 0�46 0�46 1�56 3�45 5�50CaO 4�94 4�56 4�17 2�18 2�27 5�68 6�57 7�85Na2O 4�58 4�86 4�6 4�49 4�53 4�40 4�55 3�16K2O 1�4 1�29 1�97 3�20 3�15 5�10 3�55 4�10TiO2 0�56 0�48 0�46 0�21 0�22 0�74 0�92 1�04P2O5 0�18 0�17 0�18 0�08 0�11 0�51 0�66 0�80MnO 0�1 0�09 0�08 0�05 0�05 0�07 0�11 0�16LOI 0�6 0�3 0�7 0�5 0�6 0�6 0�3 0�8Sum 99�79 99�83 99�78 99�84 99�85 99�68 99�67 99�63Ba 315 197 621 679 656 1044 734 773Co 6�5 6�2 6�2 2�6 2�3 9�7 19�2 26�4Cs 1�3 1�2 1 1�1 1�2 1�0 1�6 1�8Ga 17�6 18�6 17�2 16�7 15�6 18�3 16�9 15�6Hf 6�1 5�1 4�9 3�5 3�1 1�6 1�4 2�2Nb 20 13�8 14�3 7�0 7�4 10�0 5�9 7�0Rb 37�1 43�9 50�4 64�6 64�4 94�4 81�3 86�5Sr 759 684 690 517 522 1136 1004 892Ta 1�1 0�7 0�9 0�5 0�6 0�4 0�2 0�5Th 6�8 7�1 5�7 7�0 6�1 3�1 1�7 4�2U 0�6 0�6 0�5 0�9 0�7 1�0 0�4 1�1V 52 46 45 16 11 141 208 265Zr 251 229 215 148 124 61�4 59�1 84�1Y 20�4 13�9 15 6�7 7�2 13�0 14�9 20�5La 38�7 35�4 31�1 21�9 17�6 31�1 32�0 32�4Ce 69�5 59�4 53�2 35�5 28�0 50�8 54�9 60�1Pr 7�2 5�82 5�56 3�52 2�99 5�92 6�23 7�25Nd 26 20�9 21�2 11�9 10�7 20�2 24�3 29�5Sm 4�68 3�49 3�68 2�05 1�84 3�49 4�18 5�40Eu 1�32 0�91 1 0�61 0�57 1�37 1�35 1�52Gd 4�3 2�99 3�13 1�70 1�55 3�03 3�61 5�00Tb 0�67 0�43 0�47 0�24 0�22 0�45 0�52 0�68Dy 3�72 2�39 2�44 1�27 1�15 2�26 2�86 3�81Ho 0�74 0�49 0�49 0�25 0�26 0�51 0�59 0�72Er 2�15 1�2 1�49 0�75 0�78 1�39 1�53 2�11Tm 0�32 0�19 0�23 0�11 0�12 0�21 0�21 0�29Yb 2�22 1�28 1�38 0�89 0�76 1�40 1�39 2�08Lu 0�33 0�18 0�21 0�17 0�16 0�20 0�20 0�28Pb 1�1 1�2 1 0�9 1�2 1�2 1�6 0�8Ni 8 4�3 7�4 5�4 1�7 18�7 23�1 30�6

Qare Naz-Qara Dash

Sample AG14-16 AG14-17 AG14-18 AG14-22 AG14-28 QN14-6 QN14-12 QN14-13

SiO2 71�6 70�8 50�1 74�3 73�0 70�6 71�5 69�6Al2O3 15�6 15�9 15�9 14�4 15�1 15�5 14�7 16�7Fe2O3 2�36 2�40 12�17 1�43 1�68 2�65 2�36 1�56MgO 0�46 0�47 4�29 0�08 0�16 0�4 0�28 0�62

(continued)

Journal of Petrology, 2017, Vol. 58, No. 11 2153

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 13: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

Table 1: Continued

Qare Naz-Qara Dash

Sample AG14-16 AG14-17 AG14-18 AG14-22 AG14-28 QN14-6 QN14-12 QN14-13

CaO 1�87 2�19 8�81 0�98 1�81 2�73 1�92 5�18Na2O 5�82 5�74 4�61 4�68 5�28 3�91 3�55 4�79K2O 1�51 1�59 1�09 3�68 2�31 3�03 4�85 0�67TiO2 0�21 0�23 1�42 0�03 0�09 0�25 0�13 0�21P2O5 0�09 0�10 0�35 0�03 0�06 0�07 0�04 0�06MnO 0�06 0�05 0�18 0�03 0�03 0�05 0�03 0�04LOI 0�3 0�4 0�9 0�3 0�4 0�6 0�5 0�5Sum 99�88 99�85 99�81 99�88 99�84 99�81 99�86 99�9Ba 461 624 101 880 845 826 766 99Co 2�1 3�2 34�9 0�8 1�0 2�8 2�5 3�8Cs 0�5 0�5 0�3 0�6 0�3 1�6 0�6 0�1Ga 16�3 16�1 18�7 13�9 12�4 13�8 12�9 13�6Hf 3�4 3�6 2�2 1�8 2�0 3�8 2�1 4�1Nb 14�9 9�3 18�5 5�5 5�7 10 2�3 17�4Rb 29�5 33�0 17�8 70�8 48�2 75�3 82�6 9�9Sr 388 477 214 222 551 501 380 514Ta 2�6 0�6 1�1 0�5 0�9 0�7 <0�1 1�7Th 6�3 5�4 1�4 3�4 0�8 6�8 4�4 5�4U 1�3 0�8 0�7 0�9 0�8 0�7 0�4 0�9V 22 19 367 <8 <8 17 10 21Zr 135 143 81�4 44�9 81�4 169 86�5 168Y 8�7 7�9 23�6 7�4 4�7 7�4 1�8 18�1La 11�8 20�1 13�9 10�4 3�2 31�7 15�1 23�2Ce 30�7 30�7 28�0 18�1 4�4 49�4 23�2 37�1Pr 1�99 3�22 3�52 1�89 0�47 5�01 2�29 3�95Nd 6�9 11�1 15�1 7�1 1�8 16�2 7�2 14�6Sm 1�14 1�64 3�90 1�60 0�37 2�26 0�92 3�08Eu 0�50 0�51 1�34 0�29 0�32 0�66 0�42 0�76Gd 1�34 1�55 4�18 1�46 0�51 1�77 0�66 3�1Tb 0�20 0�22 0�69 0�22 0�09 0�24 0�07 0�51Dy 1�29 1�28 4�04 1�29 0�62 1�32 0�31 3�09Ho 0�28 0�28 0�89 0�24 0�14 0�28 0�06 0�68Er 0�97 0�78 2�65 0�67 0�52 0�76 0�17 1�92Tm 0�14 0�13 0�37 0�10 0�10 0�12 0�04 0�29Yb 1�03 0�92 2�42 0�66 0�64 0�74 0�22 1�83Lu 0�17 0�13 0�37 0�09 0�12 0�11 0�05 0�26Pb 1�3 0�8 0�8 2�2 1�6 1�1 1�8 2Ni 2�1 6�2 5�3 8�2 1�9 5�5 1�7 7

Sample QN14-14 QN14-15 QN14-17 QN14-18 QN14-19 QN14-20 QN14-21 QD14-10

SiO2 63�0 73�6 66�8 61�3 62�7 74�1 56�5 46�2Al2O3 18�6 14�0 15�7 19�3 18�7 13�7 21�3 14�22Fe2O3 4�43 2 3�74 4�34 4�29 1�69 3�44 11�04MgO 1�19 0�51 1�31 1�3 1�22 0�43 1�58 11�25CaO 4�83 4�17 5�97 5�16 5�11 4�05 7�76 10�31Na2O 4�86 3�99 4�26 4�91 4�89 3�61 6�04 2�43K2O 1�77 0�58 0�7 1�89 1�49 1�49 1�02 0�61TiO2 0�51 0�12 0�29 0�58 0�54 0�08 0�86 1�36P2O5 0�17 0�05 0�1 0�18 0�17 0�06 0�23 0�32MnO 0�07 0�03 0�09 0�08 0�08 0�03 0�09 0�17LOI 0�4 0�8 0�9 0�8 0�6 0�6 0�9 1�6Sum 99�77 99�9 99�88 99�78 99�8 99�84 99�78 99�66Ba 422 163 107 467 324 869 226 187Co 7�5 2�4 4�7 6�4 5�8 1�9 4�8 47Cs 0�9 0�3 0�1 1 1�1 0�3 <0�1 0�2Ga 18�6 12�5 15�9 18�9 18�6 12�5 21�2 15�2Hf 5�1 2�8 2�4 5�7 5�6 1�9 3�6 2�4Nb 15�2 2�2 11�8 19�7 14�9 1�7 57�1 20�6Rb 47�3 8�2 8�2 48�9 42�3 23 14�4 11Sr 689 579 515 737 731 537 763 516�2Ta 1�2 0�1 1�1 1�5 1�2 <0�1 6�5 1Th 8�2 3�6 6�4 9 8�2 1�2 9�5 2�1U 1 0�1 0�9 1�5 1�1 0�1 2�8 0�4V 45 19 44 44 45 14 52 211Zr 246 114 108 265 258 73�6 148 112Y 33�9 8�7 30�9 30�9 22�7 7�2 105 18�4La 36�3 17�6 27�9 43 43�5 6�6 45�4 20�9

(continued)

2154 Journal of Petrology, 2017, Vol. 58, No. 11

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 14: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

Table 1: Continued

Sample QN14-14 QN14-15 QN14-17 QN14-18 QN14-19 QN14-20 QN14-21 QD14-10

Ce 62 28�4 47�6 72�9 71 10�4 88�1 35�9Pr 6�72 2�74 5�24 7�82 7�61 1�09 11�6 4�45Nd 24�6 9�2 20 28�2 26�9 3�8 50 19�6Sm 4�72 1�47 4�24 5�52 4�46 0�66 13�9 4�17Eu 1�34 0�34 1�29 1�6 1�3 0�34 3�53 1�42Gd 4�96 1�43 5 5�13 4�18 0�94 16�0 4�14Tb 0�96 0�2 0�89 0�85 0�63 0�15 2�99 0�65Dy 5�71 1�45 5�8 5�16 3�55 1�16 18�7 3�68Ho 1�31 0�29 1�2 1�13 0�75 0�23 4�06 0�68Er 3�71 1�05 3�48 3�26 2�13 0�79 11�5 1�82Tm 0�54 0�13 0�52 0�5 0�37 0�12 1�72 0�26Yb 3�37 0�97 3�11 3�38 2�47 0�79 10�2 1�8Lu 0�47 0�14 0�46 0�47 0�37 0�13 1�3 0�23Pb 1�6 1�6 2�3 1�1 2�1 1�6 1�2Ni 4�5 6�9 5�2 8�7 4�6 5�5 2�3 217

Sample QD14-14 QD14-15 QD14-16 QD14-17 QD14-18 QD14-19 QD14-1 QD14-3

SiO2 50�09 49�41 69�54 50�86 67�28 65�53 48 48�99Al2O3 15�93 16�31 16�49 16�1 17�2 17�51 15�39 13�64Fe2O3 9�17 9�64 1�77 9�96 2�32 2�95 11�18 12�38MgO 7�66 7�86 0�66 7�4 1�2 1�39 7�7 5�97CaO 8�66 9�67 2�67 9�67 3�29 4�07 10�89 10�93Na2O 2�99 3�13 5�73 2�28 5�08 5�12 3�21 3�14K2O 2�06 1�1 1�62 0�8 1�38 0�91 0�23 0�71TiO2 0�88 0�96 0�27 1�01 0�35 0�41 1�99 2�51P2O5 0�14 0�14 0�08 0�14 0�15 0�19 0�04 0�08MnO 0�14 0�15 0�02 0�16 0�03 0�03 0�17 0�25LOI 2 1�3 0�9 1�4 1�4 1�7 0�9 1�1Sum 99�72 99�75 99�78 99�77 99�66 99�77 99�76 99�71Ba 572 245 960 163 1641 471 85 66Co 33 34 3�4 32�5 4�6 10�8 38�9 33�7Cs 0�4 0�5 0�5 0�4 0�2 0�3 <0�1 <0�1Ga 12�9 15�2 16�6 14�6 18�5 18�1 16�3 15�8Hf 2 2�1 3�4 2�3 3�2 4�6 1�7 5Nb 3�1 3�5 8�2 3�6 9�7 10 1�8 10�2Rb 52�1 23�7 39�6 18�1 22�4 23 0�7 8�9Sr 342�6 290�9 690 240�4 950�9 990�1 319�5 232�8Ta 0�2 0�2 0�6 0�3 0�6 0�6 0�2 0�7Th 2�6 2 8�3 4 8�5 10 <0�2 2�1U 0�5 0�6 1�4 0�7 0�9 1�6 <0�1 0�6V 208 232 23 227 30 40 307 325Zr 81�9 64 123�4 74�5 132�9 183�8 36�2 200�4Y 16�2 17�9 6�8 22�4 5�9 7�2 20 37�5La 7�3 10�3 29�9 11�1 29�5 36�9 3 15�1Ce 14�9 18�5 49�8 23�6 49 61�6 8 34Pr 2 2�46 5�32 3�23 5�32 6�62 1�6 4�78Nd 8�9 10�9 18�9 14�9 18�6 22�4 7�8 21�9Sm 2�19 2�48 2�75 3�17 2�88 2�74 2�73 5�78Eu 0�8 1�03 0�89 1�12 0�94 0�93 1�37 1�72Gd 2�66 3�04 2�04 3�84 2�09 2�34 3�81 6�82Tb 0�43 0�52 0�26 0�69 0�24 0�3 0�69 1�19Dy 2�7 3�29 1�34 4�11 1�28 1�46 4�1 6�69Ho 0�49 0�62 0�24 0�82 0�21 0�26 0�82 1�39Er 1�47 1�94 0�54 2�59 0�56 0�7 2�24 4�26Tm 0�24 0�28 0�09 0�36 0�08 0�1 0�33 0�62Yb 1�63 1�94 0�67 2�31 0�52 0�68 1�98 3�98Lu 0�25 0�28 0�1 0�36 0�08 0�11 0�3 0�52PbNi 74 69 <20 51 <20 <20 61 <20

Sample QD14-5

SiO2 52�9Al2O3 18�59Fe2O3 5�6MgO 7�63CaO 9�7Na2O 3�98

(continued)

Journal of Petrology, 2017, Vol. 58, No. 11 2155

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 15: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

(ii) separation of Nd from other lanthanide elements in

columns with Ln (ElChroM Technologies) cation ex-

change resin. All reagents used in sample preparation

were sub-boiling distilled; pure water was produced in

a Milli-Q Element (Millipore) apparatus. Sr was loaded

with H3PO4 on a single Ta filament, whereas Nd was

loaded with HCl on a Ta side filament in a triple-

filament arrangement. 87Sr/86Sr and 143Nd/144Nd iso-

topic ratios were determined using a Multi-Collector

Thermal Ionisation Mass Spectrometer VG Sector 54.

Data were obtained in dynamic mode with peak meas-

urements at 1–2 V for 88Sr and 0�5–1 V for 144Nd. Sr and

Nd isotopic ratios were corrected for mass fractionation

relative to 88Sr/86Sr¼0�1194 and 146Nd/144Nd¼ 0�7219.

During this study, the SRM-987 standard gave a mean

value of 87Sr/86Sr¼ 0�710260 6 17 (N¼13; 95% c.l.) and

the JNdi-1 standard yielded 143Nd/144Nd¼ 0�5121031 6

66 (N¼ 13; 95% c.l.). Depleted mantle model ages were

calculated according to the procedure of Depaolo

(1981). The one-stage model age (TDM) was calculated

assuming Nd isotopic growth of the depleted mantle

reservoir from eNd(t)¼ 0 at 4�56 Ga to eNd(t)¼þ 10

at present, according to the equation: TDM¼1/kln{1þ[(143Nd/144Nd)s-0�51315]/[(147Sm/144Nd)s-0�2137]};

where k¼ 6�54� 10–12 a-1 and (143Nd/144Nd)s and

(147Sm/144Nd)s are the measured ratios of the samples.

Bulk-rock Sr-Nd isotopic data are presented in Table 2.

Zircon U-Pb datingLA-ICP-MS zircon U-Pb dating at CCFSZircons were separated following electrostatic disag-

gregation (selFrag) of the rock sample, using standard

gravimetric and magnetic techniques; grains were

picked under a binocular microscope and mounted in

epoxy discs for analysis. All grains were imaged using

CL and BSE to provide maps to guide the choice of ana-

lytical spots. The discs were coated with carbon for ana-

lysis. Zircon U-Pb ages were obtained using a 193 nm

ArF EXCIMER laser with an Agilent 7700 ICP-MS system

in the Geochemical Analysis Unit of the ARC Centre of

Excellence for Core to Crust Fluid Systems (CCFS/

GEMOC) Macquarie University, Australia. Detailed

method descriptions have been given by Jackson et al.

(2004). The ablation conditions included beam size

(30 mm), pulse rate (5 Hz) and energy density (7�59 J/

cm2). Analytical runs comprised 16 analyses with 12

analyses of unknowns bracketed by two analyses of a

standard zircon GJ-1 at the beginning and end of each

run, using the established TIMS values (207Pb/206Pb

age5 608�5 Ma; (Jackson et al., 2004)).

Table 1: Continued

Sample QD14-5

K2O 0�09TiO2 0�37P2O5 0�01MnO 0�08LOI 0�8Sum 99�79Ba 74Co 28�5Cs <0�1Ga 12�3Hf 0�7Nb 1�3Rb 0�7Sr 451�2Ta <0�1Th 0�3U <0�1V 103Zr 17�7Y 8�5La 4�3Ce 8Pr 1�11Nd 4�9Sm 1�1Eu 0�59Gd 1�54Tb 0�3Dy 1�69Ho 0�34Er 1Tm 0�13Yb 0�83Lu 0�15PbNi 155

2156 Journal of Petrology, 2017, Vol. 58, No. 11

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 16: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

Table 2: Sr-Nd isotopic composition of the Zanjan-Takab metamorphic rocks

NO. Sample Lithology Age ppmSr

ppmRb

87Rb/86Sr

Error(2s)

87Sr/86Sr

Error(2s)

ppmNd

ppmSm

147Sm/144Nd

Error(2s)

1 AG14-18 amphibolite �38 Ma 214�0 17�8 0�241 0�007 0�704859 0�000024 15�1 3�9 0�156 0�0082 AG14-12 tonalitic gneiss �38 Ma 1004�0 81�3 0�234 0�007 0�704592 0�000024 24�3 4�2 0�104 0�0063 AG14-8 granitic gneiss �38 Ma 1136�0 94�4 0�240 0�007 0�704736 0�000021 20�2 3�5 0�105 0�0064 AG14-4 granodioritic gneiss �38 Ma 522�0 64�4 0�357 0�010 0�705080 0�000021 10�7 1�8 0�104 0�0065 AG14-17 granodioritic gneiss �38 Ma 477�0 33�0 0�200 0�006 0�704997 0�000013 11�1 1�6 0�089 0�0056 AG14-3 granodioritic gneiss �38 Ma 517�0 64�6 0�361 0�010 0�705069 0�000018 11�9 2�1 0�104 0�0067 AG14-28 paragneiss �38 Ma 551�0 18�2 0�096 0�003 0�704780 0�000018 1�8 0�4 0�124 0�0148 AG14-22 granitic gneiss �38 Ma 222�0 70�8 0�922 0�026 0�704486 0�000021 7�1 1�6 0�136 0�0109 ZN14-30 tonalitic gneiss �25 Ma 779�3 38�6 0�143 0�004 0�705439 0�000018 20�9 3�6 0�104 0�00610 ZN14-34 tonalite �25 Ma 759�1 37�1 0�141 0�004 0�705367 0�000018 26�0 4�7 0�109 0�00611 ZN14-36 tonalite �25 Ma 684�3 43�9 0�186 0�005 0�705292 0�000024 20�9 3�5 0�101 0�00512 ZN14-31 tonalitic gneiss �25 Ma 742�8 63�4 0�247 0�007 0�705490 0�000025 14�7 2�5 0�103 0�00613 ZN14-1 granitic gneiss �520 Ma 127�5 150�9 3�432 0�097 0�731421 0�000023 38�4 7�9 0�124 0�00714 ZN14-4 granitic gneiss �520 Ma 119�4 128�6 3�123 0�088 0�729463 0�000016 45�0 7�7 0�104 0�00615 ZN14-21 gneissic dike �520 Ma 50�5 179�9 10�378 0�294 0�782158 0�000028 62�0 10�3 0�100 0�00316 ZN14-20 gneissic dike �520 Ma 14�1 144�9 30�271 0�856 0�915507 0�000037 23�7 6�2 0�159 0�00917 QN14-21 monzo-syenite �25 Ma 763�3 14�4 0�055 0�002 0�706409 0�000028 50�0 13�9 0�169 0�00518 QN14-18 paragneiss �25 Ma 737�4 48�9 0�192 0�005 0�705827 0�000020 28�2 5�5 0�118 0�00619 QN14-14 paragneiss �25 Ma 689�2 47�3 0�199 0�006 0�706035 0�000027 24�6 4�7 0�116 0�00620 QN14-17 Q-syenite �25 Ma 514�8 8�2 0�046 0�002 0�706868 0�000021 20�0 4�2 0�128 0�00721 QN14-6 orthogneiss �25 Ma 500�6 75�3 0�435 0�012 0�705572 0�000021 16�2 2�3 0�084 0�00522 QN14-12 leucosome �25 Ma 379�9 82�6 0�629 0�018 0�705810 0�000025 7�2 0�9 0�077 0�00923 QN14-15 orthogneiss �25 Ma 579�1 8�2 0�041 0�002 0�706382 0�000028 9�2 1�5 0�097 0�00724 QN14-20 leucosome �25 Ma 537�4 23�0 0�124 0�004 0�706761 0�000023 3�8 0�7 0�105 0�01225 QD14-14 dioritic gneiss �550 Ma 343�0 52�1 0�439 0�012 0�707217 0�000025 8�9 2�2 0�149 0�01126 QD14-15 dioritic gneiss �550 Ma 291�0 23�7 0�236 0�007 0�707290 0�000030 10�9 2�5 0�138 0�00727 QD14-16 granite �30 Ma 690�0 39�6 0�166 0�005 0�705826 0�000024 18�9 2�8 0�088 0�00528 QD14-18 granodiorite �30 Ma 951�0 22�4 0�068 0�002 0�705445 0�000023 18�6 2�9 0�094 0�00529 QD14-19 quartz diorite �30 Ma 990�0 23�0 0�067 0�002 0�705545 0�000020 22�4 2�7 0�074 0�00430 QD14-3 gabbro �550 Ma 233�0 8�9 0�110 0�006 0�705147 0�000023 21�9 5�8 0�160 0�00931 QD14-5 gabbro �550 Ma 451�0 0�7 0�004 0�000 0�704123 0�000018 4�9 1�1 0�136 0�010

143Nd/144Nd Error (2s) Sr/Sr(t) SrUR(t) Nd/Nd(t) NdChur(t) eNd(t) tDM (Ma)

0�512846 0�000014 0�704731 0�704456 0�512807 0�512589 4�25 6220�512976 0�000014 0�704468 0�704456 0�512950 0�512589 7�04 1790�512713 0�000021 0�704608 0�704456 0�512687 0�512589 1�91 5210�512186 0�000017 0�704890 0�704456 0�512160 0�512589 �8�36 11980�512709 0�000019 0�704891 0�704456 0�512687 0�512589 1�91 4660�512715 0�000016 0�704877 0�704456 0�512689 0�512589 1�94 5180�512731 0�000035 0�704729 0�704456 0�512700 0�512589 2�17 5980�512750 0�000011 0�703996 0�704456 0�512716 0�512589 2�48 6480�512609 0�000018 0�705389 0�704471 0�512592 0�512606 �0�27 6540�512207 0�000012 0�705317 0�704471 0�512190 0�512606 �8�12 12210�512659 0�000019 0�705227 0�704471 0�512643 0�512606 0�72 5740�512622 0�000014 0�705404 0�704471 0�512605 0�512606 �0�02 6330�512231 0�000017 0�706393 0�703897 0�511807 0�511968 �3�15 13780�512186 0�000017 0�706692 0�703897 0�511833 0�511968 �2�64 11950�512122 0�000016 0�706480 0�703897 0�511781 0�511968 �3�65 12400�512482 0�000016 0�694775 0�703897 0�511939 0�511968 �0�56 15330�512543 0�000016 0�706390 0�704471 0�512515 0�512606 �1�77 16290�512652 0�000015 0�705760 0�704471 0�512632 0�512606 0�52 6810�512611 0�000010 0�705965 0�704471 0�512592 0�512606 �0�27 7240�512498 0�000016 0�706852 0�704471 0�512477 0�512606 �2�51 10010�512694 0�000014 0�705420 0�704471 0�512681 0�512606 1�46 4660�512660 0�000016 0�705590 0�704471 0�512647 0�512606 0�80 4790�512499 0�000014 0�706368 0�704471 0�512483 0�512606 �2�39 7480�512512 0�000012 0�706717 0�704471 0�512495 0�512606 �2�17 7850�512481 0�000026 0�703771 0�703852 0�511945 0�511929 0�31 13170�512470 0�000024 0�705442 0�703852 0�511974 0�511929 0�88 11620�512480 0�000022 0�705708 0�704441 0�512451 0�512574 �2�40 7220�512483 0�000024 0�705397 0�704441 0�512452 0�512574 �2�37 7500�512508 0�000014 0�705497 0�704441 0�512484 0�512574 �1�75 6250�512819 0�000018 0�704281 0�703852 0�512243 0�511929 6�14 7230�512675 0�000014 0�704087 0�703852 0�512185 0�511929 5�00 777

Journal of Petrology, 2017, Vol. 58, No. 11 2157

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 17: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

U-Pb ages were calculated from the raw signal data

using the on-line software package GLITTER (Griffin

et al., 2008; www.mq.edu.au/GEMOC) in which the rele-

vant isotopic ratios for each mass sweep are calculated

and displayed as time-resolved data. This allows isotop-

ically homogeneous segments of the signal to be se-

lected for integration. GLITTER then corrects the

integrated ratios for ablation-related fractionation and

instrumental mass bias by calibration of each selected

time-segment against the identical time-segments of

the standard zircon analyses (standard GJ-1).

A few U-Pb age data were subjected to a common-

lead correction following the correction procedure of

Andersen (2002) except for those with common-Pb con-

centrations lower than detection limits. We used the

Andersen method for the common-lead correction of

those analyses with>5% to<10% discordance on a

concordia plot. We utilized this method because we

cannot measure the 206Pb/204Pb ratio precisely due to

the probable isobaric 204Hg interference and very low204Pb counts.

The analyses presented here have been corrected

assuming recent lead loss and a common lead compos-

ition corresponding to present-day average orogenic

lead as given by the second-stage growth curve of

Stacey & Kramers (1975) for 238 U/204Pb¼ 9�74. No cor-

rection has been applied to analyses that are concord-

ant within 2r analytical error in 206Pb/238 U and207Pb/235 U, or which have less than 0�2% common lead.

The results were processed using the ISOPLOT pro-

gram of Ludwig (2003). Zircon U-Pb data are presented

in Supplementary Data Electronic Appendix 2. The ex-

ternal standards, zircons 91500 and Mud Tank, gave

mean 206Pb/238 U ages of 1063�5 6 1�8 Ma (MSWD¼ 1�3)

and 731�1 6 1�2 Ma (MSWD¼ 0�77), respectively (Fig. 7a

and b), which are similar to the recommended206Pb/238 U ages of 1062�4 6 0�4 Ma and 731�9 6 3�4 Ma,

respectively (Woodhead & Hergt, 2005; Chang et al.,

2006; Yuan et al., 2008).

In order to test our LA-ICP-MS dating studies, we re-

dated two samples by SIMS (Supplementary Data

Electronic Appendix 2; see below). The LA-ICP-MS and

SIMS data are completely consistent (see Discussion).

SIMS zircon U-Pb dating at IGG-CASZircon concentrates were separated from crushed ca

3 kg rock samples using standard density and magnetic

separation techniques. Zircon unknowns together with

standards were mounted in epoxy mounts, which were

then polished to section the crystals in half for analysis.

Both optical photomicrographs and cathodolumines-

cence (CL) images were taken to guide analytical spot

selection. The mount was vacuum-coated with high-

purity gold prior to SIMS analyses. U-Pb analyses were

performed on a Cameca IMS-1280/HR SIMS at the

Institute of Geology and Geophysics, Chinese Academy

of Sciences (IGG-CAS) using standard operating condi-

tions (7-scan duty cycle, �8 nA primary O�2 beam,

20� 30 lm analytical spot size, mass resolution �5400).

U-Th-Pb ratios and absolute abundances were deter-

mined relative to the standard zircon Ple�sovice (337 Ma;

Slama et al., 2008) and M257 (U¼840 ppm, Th/U¼ 0�27;

Nasdala et al., 2008), respectively. Measured Pb-isotope

compositions were corrected for common Pb using

analyzed 204Pb values. An average Pb of present-day

crustal composition (Stacey & Kramers, 1975) was used

for the common-Pb correction. A long-term uncertainty

of 1�5% (1 RSD) for 206Pb/238 U measurements of the

standard zircon was propagated to the unknowns (Li

et al., 2010b). In order to monitor the external uncertain-

ties of SIMS U-Pb measurements, analyses of the in-

house zircon standard Qinghu were interspersed with

unknowns. Twenty analyses yield a weighted mean206Pb/238 U age of 160 6 1�1 Ma (MSWD¼ 0�34) (Fig. 7c),

identical within error to the reported age of 159�5 6 0�2Ma (Li et al., 2013). Uncertainties on individual analyses

are reported at the 2r level; mean ages for pooled U/Pb

and Pb/Pb analyses are quoted with a 95% confidence

interval. These data were processed using the Isoplot/

Ex v. 2�49 program (Ludwig, 2003). Zircon U-Th-Pb iso-

topic data are presented in Supplementary Data

Electronic Appendix 3.

Zircon O-Hf isotopesIn situ oxygen isotope analyses for selected samples of

the Zanjan-Takab complex were conducted on zircons

that had previously been dated, using the Cameca IMS-

1280 SIMS at IGG-CAS. After U-Pb dating, the sample

mount was reground to ensure that any oxygen im-

planted in the zircon surface from the O�2 beam used for

U-Pb analysis was removed. The Csþ primary ion beam

was accelerated to 10 kV, with an intensity of �2 nA cor-

responding to a beam size of �10 lm in diameter. A

normal-incidence electron flood gun was used to com-

pensate for sample charging during analysis. Negative

secondary ions were extracted with a �10 kV potential.

Oxygen isotopes were measured using the multi-

collection mode on two off-axis Faraday cups. One ana-

lysis consists of 16 cycles, with an internal precision

generally better than 0�4& (2SE) on the 18 O/16 O ratio.

The detailed analytical procedures are similar to those

reported by Li et al. (2010a). Oxygen isotope ratios are

expressed as d18O, representing deviation of measured18 O/16 O values from that of Vienna Standard Mean

Ocean Water ((18 O/16 O)VSMOW¼ 0�0020052) in parts per

thousand. The internal precision for each spot analysis

is typically better than 0�4& for the 18 O/16 O ratio (2SE).

The results are then corrected for the instrumental

mass fractionation factor (IMF), following the equation:

d18OCorrected¼ d18OMeasured - IMF. IMF is monitored in

terms of the difference between measured and recom-

mended oxygen isotopic compositions of the Penglai

zircon standard with a d18O value of 5�31& (Li et al.,

2010b). The O isotope values of analyzed standards

(Penglai and Qinghu) during this study are given in

2158 Journal of Petrology, 2017, Vol. 58, No. 11

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 18: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

Supplementary Data Electronic Appendix 4. The zircon

O- isotope data are presented in Table 3.

In situ zircon Lu-Hf isotopic analyses were performed

using a Nu Plasma multi-collector ICP-MS, coupled to a

Photon Machines 193 nm ArF excimer laser system at

CCFS (Macquarie University). The analyses were car-

ried out using the Nu Plasma time-resolved analysis

software. The methods, including calibration and cor-

rection for mass bias, are described by Griffin et al.

2004 and Griffin et al., 2000. The ablation spots (55 mm)

for the Hf isotope analyses were situated close to the U-

Pb analysis positions on each grain. The accuracy of the

Yb and Lu corrections during LA-MC-ICP-MS analysis of

zircon has been demonstrated by repeated analysis of

standard zircons with a range in 176Yb/177Hf and176Lu/177Hf. Four secondary standards (Mud Tank,

Temora, Qinghu and Plesovice) were analyzed between

every ten unknowns to check instrumental stability.176Hf/177Hf ratios of the Mud Tank zircon gave an aver-

age of 0�2825355 6 0�0000041 (2SD; n¼ 122); those of

Temora gave 0�2826971 6 0�0000078 (2SD; n¼ 42)

(Supplementary Data Electronic Appendix 5). These

values are identical to those recommended for Mud

Tank (0�282507 6 0�000003) and Temora (0�282693 6

0�000052) (Fisher et al., 2014). The Plesovice and

Qinghu zircons give 176Hf/177Hf average ratios of

0�2824893 6 0�0000052 (2SD; n¼ 18) and 0�2830119 6

0�0000054 (2SD; n¼29), respectively (Supplementary

Fig. 7. LA-ICP-MS data for zircons 91500 and Mud Tank (a, b), and SIMS U-Pb data for Qinghu VC plotted on conventional Concordiaand 206Pb/238 U weighted mean plots, which were analyzed as external standards during this study. (d, e) 176Hf/177Hf (initial) vs176Yb/177Hf ratios obtained for zircon standards Mud Tank, Plesovive, Qinghua and Temora (d) and analyzed Zanjan-Takab samples(e). Four zircons with 176Yb/177Hf ratio>0�22 (beyond the area of reliability in (e)) were rejected because of the potential for uncor-rected isobaric interference.

Journal of Petrology, 2017, Vol. 58, No. 11 2159

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 19: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

Table 3: Zircon Lu-Hf & O isotopes composition of the Zanjan-Takab rocks

Sample U-Pb Age 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2SE (176Hf/177)i eHf(t) 2r T CDM Delta O18 2SE

Cadomian rocksQN14-15 1 562 0�03969 0�00163 0�28240 0�000031 0�28239 �1�24 1�04 1589 7�11 0�30QN14-15 2 562 0�04556 0�00184 0�28250 0�000031 0�28248 2�16 1�04 1374 8�13 0�32QN14-15 3 562 0�04509 0�00175 0�28241 0�000035 0�28239 �1�03 1�04 1576 8�31 0�32QN14-15 4 562 0�06278 0�00241 0�28244 0�000033 0�28241 �0�36 1�04 1533 6�71 0�31QN14-15 5 562 0�03737 0�00151 0�28245 0�000036 0�28243 0�38 1�04 1487 8�33 0�18QN14-15 6 562 0�04016 0�00156 0�28253 0�000038 0�28252 3�36 1�04 1299 7�12 0�26QN14-15 7 2704 0�02905 0�00117 0�28169 0�000047 0�28163 20�5 1�36 1904 8�33 0�23QN14-15 8 679 0�03232 0�00130 0�28197 0�000040 0�28196 �13�9 1�06 2467 7�58 0�27QN14-15 9 562 0�03189 0�00128 0�28242 0�000048 0�28241 �0�46 1�04 1540 8�49 0�26QN14-15 10 562 0�04824 0�00192 0�28242 0�000039 0�28240 �0�74 1�04 1557 8�03 0�16QN14-15 11 562 0�06360 0�00248 0�28247 0�000037 0�28245 0�83 1�04 1458 7�60 0�41QN14-15 12 937 0�02840 0�00117 0�28227 0�000047 0�28225 2�34 1�08 1651 6�84 0�20QN14-15 13 2534 0�01901 0�00079 0�28242 0�000034 0�28238 43�2 1�33 358 6�93 0�30QN14-15 14 742 0�01679 0�00069 0�28106 0�000038 0�28105 �44�4 1�06 4394 6�35 0�23QN14-15 15 562 0�05765 0�00224 0�28249 0�000037 0�28247 1�63 1�04 1408 7�97 0�29QN14-15 16 742 0�02263 0�00092 0�28188 0�000038 0�28187 �15�5 1�06 2615 6�77 0�26QN14-15 17 2328 0�01024 0�00042 0�28138 0�000035 0�28136 2�35 1�27 2722 7�82 0�22QN14-15 18 562 0�03970 0�00157 0�28244 0�000038 0�28243 0�12 1�04 1503 6�59 0�15QN14-15 19 562 0�03747 0�00151 0�28241 0�000031 0�28239 �1�10 1�04 1580 7�40 0�31QN14-15 20 991 0�01439 0�00062 0�28244 0�000041 0�28243 9�73 1�09 1228 8�38 0�34ZN14-11-01 553 0�06965 0�00231 0�28250 0�000016 0�28247 1�54 1�03 1407 5�60 0�25ZN14-11-03 553 0�02348 0�00085 0�28251 0�000021 0�28251 2�75 1�03 1330 7�69 0�23ZN14-11-04 553 0�05020 0�00180 0�28254 0�000020 0�28253 3�48 1�03 1285 7�51 0�16ZN14-11-05 553 0�06369 0�00217 0�28255 0�000019 0�28252 3�36 1�03 1292 6�76 0�23ZN14-11-06 553 0�03103 0�00129 0�28268 0�000019 0�28267 8�54 1�04 965 7�86 0�34ZN14-11-07 553 0�05882 0�00205 0�28251 0�000019 0�28249 2�05 1�03 1375 6�53 0�16ZN14-11-10 553 0�06457 0�00231 0�28248 0�000018 0�28246 0�98 1�03 1442 5�35 0�18ZN14-11-12 553 0�06555 0�00240 0�28253 0�000020 0�28251 2�88 1�03 1322 10�10 0�25ZN14-11-13 553 0�04396 0�00161 0�28252 0�000020 0�28250 2�51 1�03 1346 4�46 0�26ZN14-11-14 553 0�00914 0�00044 0�28267 0�000016 0�28267 8�46 1�04 970 5�29 0�23ZN14-11-15 553 0�05053 0�00180 0�28254 0�000022 0�28252 3�38 1�03 1291 10�61 0�20ZN14-11-16 553 0�02524 0�00096 0�28235 0�000022 0�28234 �3�18 1�03 1704 7�04 0�24ZN14-11-17 553 0�02330 0�00087 0�28251 0�000023 0�28250 2�54 1�03 1344 9�69 0�23ZN14-11-18 553 0�04249 0�00156 0�28254 0�000022 0�28252 3�32 1�03 1295 5�42 0�27ZN14-12-01 553 0�04748 0�00112 0�282295 0�000007 0�28228 �5�10 1�04 1825 8�40 0�30ZN14-12-02 563 0�04373 0�00101 0�282364 0�000012 0�28235 �2�40 1�05 1663 7�74 0�20ZN14-12-03 538 0�08365 0�00186 0�282448 0�000007 0�28243 �0�28 1�04 1510 8�31 0�22ZN14-12-04 577 0�05890 0�00132 0�282398 0�000006 0�28238 �1�02 1�05 1586 7�70 0�30ZN14-12-05 574 0�05685 0�00126 0�282301 0�000007 0�28229 �4�49 1�05 1802 8�39 0�38ZN14-12-06 549 0�02923 0�00071 0�28233 0�000009 0�28232 �3�81 1�04 1740 7�86 0�29ZN14-12-07 548 0�07116 0�00167 0�282408 0�000011 0�28239 �1�41 1�04 1589 8�05 0�17ZN14-12-08 581 0�06609 0�00148 0�28241 0�000009 0�28239 �0�57 1�05 1561 7�51 0�24ZN14-12-09 548 0�05917 0�00131 0�282397 0�000010 0�28238 �1�67 1�04 1605 7�93 0�23ZN14-12-10 534 0�03459 0�00081 0�281587 0�000014 0�28158 �30�5 1�04 3389 6�44 0�27ZN14-12-11 540 0�04466 0�00105 0�282378 0�000010 0�28237 �2�42 1�04 1646 8�60 0�23ZN14-12-12 548 0�13951 0�00310 0�282344 0�000011 0�28231 �4�18 1�04 1764 7�31 0�24ZN14-12-13 551 0�05333 0�00121 0�282412 0�000010 0�28240 �1�04 1�04 1568 7�75 0�23ZN14-12-14 556 0�21249 0�00485 0�282472 0�000010 0�28242 �0�14 1�05 1515 7�67 0�19ZN14-12-15 561 0�04817 0�00110 0�282432 0�000010 0�28242 �0�07 1�05 1515 7�91 0�30ZN14-12-16 564 0�04891 0�00112 0�282398 0�000005 0�28239 �1�23 1�05 1590 6�02 0�29ZN14-12-17 553 0�07026 0�00166 0�282381 0�000010 0�28236 �2�25 1�04 1646 8�08 0�23ZN14-12-18 551 0�04135 0�00092 0�282463 0�000016 0�28245 0�87 1�04 1447 8�86 0�27ZN14-12-20 548 0�03561 0�00083 0�282406 0�000010 0�28240 �1�16 1�04 1574 8�11 0�27ZN14-12-21 550 0�07580 0�00172 0�282367 0�000010 0�28235 �2�84 1�04 1680 7�75 0�26ZN14-12-22 555 0�05781 0�00136 0�282329 0�000011 0�28231 �3�94 1�04 1753 8�69 0�23ZN14-12-23 550 0�06568 0�00146 0�282426 0�000006 0�28241 �0�65 1�04 1543 7�20 0�22ZN14-12-24 545 0�05823 0�00153 0�281785 0�000035 0�28177 �23�5 1�04 2964 8�06 0�32ZN14-12-25 554 0�06859 0�00158 0�282384 0�000009 0�28237 �2�11 1�05 1637 8�54 0�22ZN14-12-26 541 0�08456 0�00197 0�28213 0�000013 0�28211 �11�5 1�04 2217 8�07 0�28ZN14-12-27 552 0�03688 0�00091 0�282631 0�000015 0�28262 6�86 1�03 1071 7�40 0�22ZN14-12-28 552 0�06647 0�00151 0�282395 0�000009 0�28238 �1�72 1�03 1612 8�22 0�33ZN14-12-29 552 0�09116 0�00206 0�282368 0�000006 0�28235 �2�88 1�03 1684ZN14-12-30 552 0�06451 0�00149 0�28239 0�000009 0�28237 �1�89 1�03 1622ZN14-04-02c 562 0�10530 0�00196 0�282222 0�000021 0�28220 �7�81 1�03 2001ZN14-04-03 539 0�07070 0�00122 0�282304 0�000020 0�28229 �5�12 1�03 1815ZN14-04-06 526 0�15768 0�00251 0�282507 0�000019 0�28248 1�34 1�03 1399ZN14-04-07 538 0�20893 0�00501 0�282243 0�000019 0�28219 �8�65 1�03 2035ZN14-04-08 530 0�06966 0�00163 0�282569 0�000018 0�28255 3�93 1�03 1239ZN14-04-09 575 0�08945 0�00151 0�282342 0�000013 0�28233 �3�12 1�03 1717

(continued)

2160 Journal of Petrology, 2017, Vol. 58, No. 11

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 20: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

Table 3: Continued

Sample U-Pb Age 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2SE (176Hf/177)i eHf(t) 2r T CDM Delta O18 2SE

ZN14-04-10 617 0�07427 0�00139 0�282377 0�000013 0�28236 �0�94 1�03 1612ZN14-04-11 530 0�17287 0�00337 0�282509 0�000026 0�28248 1�19 1�03 1411ZN14-04-13 567 0�08988 0�00165 0�282504 0�000014 0�28249 2�40 1�03 1364ZN14-04-15 514 0�25815 0�00448 0�282327 0�000023 0�28228 �5�95 1�03 1848ZN14-04-22 634 0�05211 0�00098 0�282121 0�000021 0�28211 �9�47 1�03 2160ZN14-04-23 519 0�15577 0�00263 0�282459 0�000013 0�28243 �0�54 1�03 1512ZN14-04-24 509 0�03740 0�00066 0�282367 0�000013 0�28236 �3�34 1�03 1681ZN14-04-25 519 0�09530 0�00163 0�282348 0�000013 0�28233 �4�13 1�03 1738ZN14-04-26 515 0�18569 0�00298 0�282464 0�000015 0�28244 �0�57 1�03 1511ZN14-04-27 529 0�36839 0�00583 0�282791 0�000030 0�28273 10�3 1�03 835ZN14-04-28 525 0�17065 0�00280 0�282587 0�000020 0�28256 4�05 1�03 1227ZN14-04-29 519 0�12137 0�00205 0�282418 0�000011 0�28240 �1�79 1�03 1591ZN14-04-30 515 0�07681 0�00145 0�282471 0�000012 0�28246 0�21 1�03 1462ZN14-04-32 511 0�11886 0�00205 0�282599 0�000011 0�28258 4�45 1�03 1191ZN14-04-32 511 0�08832 0�00155 0�28257 0�000021 0�28256 3�59 1�03 1245ZN14-04-35 629 0�06910 0�00142 0�28209 0�000025 0�28207 �10�9 1�03 2243ZN14-04-35 516 0�08299 0�00136 0�282122 0�000026 0�28211 �12�1 1�03 2235ZN14-04-38 538 0�08062 0�00137 0�282483 0�000014 0�28247 1�15 1�03 1420ZN14-04-39c 511 0�11335 0�00199 0�282511 0�000013 0�28249 1�35 1�03 1387ZN14-04-42 621 0�14053 0�00243 0�282685 0�000023 0�28266 9�63 1�03 948ZN14-04-43 546 0�09590 0�00183 0�28239 0�000019 0�28237 �2�14 1�03 1634ZN14-04-44 517 0�07812 0�00129 0�282451 0�000012 0�28244 �0�41 1�03 1502ZN14-04-45 509 0�06857 0�00122 0�28243 0�000015 0�28242 �1�30 1�03 1552ZN14-04-46 545 0�18716 0�00317 0�282594 0�000015 0�28256 4�57 1�03 1209ZN14-04-47 517 0�19124 0�00329 0�282665 0�000016 0�28263 6�48 1�03 1067ZN14-04-48 519 0�22006 0�00416 0�282718 0�000017 0�28268 8�10 1�03 966ZN14-04-54 601 0�20073 0�00372 0�282976 0�000017 0�28293 19�0 1�03 336ZN14-04-56 528 0�07093 0�00166 0�282285 0�000025 0�28227 �6�18 1�03 1874ZN14-04-59 524 0�05523 0�00141 0�282403 0�000027 0�28239 �2�00 1�03 1608ZN14-04-61 527 0�04487 0�00109 0�282418 0�000022 0�28241 �1�29 1�03 1566ZN14-04-63 569 0�05744 0�00129 0�282354 0�000024 0�28234 �2�73 1�03 1688ZN14-04-64 564 0�06541 0�00146 0�282439 0�000027 0�28242 0�11 1�03 1506ZN14-04-65 522 0�04938 0�00118 0�282408 0�000023 0�28240 �1�79 1�03 1593ZN14-04-66 527 0�06864 0�00158 0�282373 0�000027 0�28236 �3�06 1�03 1677ZN14-04-68 518 0�05032 0�00123 0�282379 0�000038 0�28237 �2�91 1�03 1661ZN14-04-69 593 0�02920 0�00093 0�282425 0�000028 0�28241 0�43 1�03 1507ZN14-04-70 633 0�07176 0�00175 0�282383 0�000019 0�28236 �0�54 1�03 1599ZN14-04-75 618 0�09911 0�00250 0�282436 0�000024 0�28241 0�72 1�03 1508ZN14-04-78 508 0�04716 0�00129 0�282331 0�000018 0�28232 �4�85 1�03 1775ZN14-04-79 511 0�06324 0�00198 0�282410 0�000024 0�28239 �2�22 1�03 1612ZN14-13-01 512 0�13877 0�00291 0�282387 0�000026 0�28236 �3�33 1�03 1682ZN14-13-02 519 0�05796 0�00131 0�282295 0�000020 0�28228 �5�89 1�03 1849ZN14-13-03 505 0�08407 0�00204 0�282336 0�000024 0�28232 �4�98 1�03 1781ZN14-13-07 536 0�06228 0�00187 0�282507 0�000040 0�28249 1�78 1�03 1379ZN14-13-12 533 0�07422 0�00169 0�282363 0�000020 0�28235 �3�32 1�03 1698ZN14-13-13 512 0�13169 0�00366 0�282412 0�000025 0�28238 �2�70 1�03 1643ZN14-13-14 566 0�10197 0�00233 0�28237 0�000020 0�28235 �2�62 1�03 1679ZN14-13-16 574 0�07289 0�00161 0�282434 0�000018 0�28242 0�08 1�03 1515ZN14-13-17 551 0�16164 0�00363 0�28232 0�000033 0�28228 �5�18 1�03 1828ZN14-13-28 530 0�06679 0�00150 0�282426 0�000026 0�28241 �1�09 1�03 1555ZN14-13-31 526 0�08868 0�00198 0�28234 0�000028 0�28232 �4�39 1�03 1759ZN14-13-34 576 0�10563 0�00232 0�28236 0�000029 0�28233 �2�77 1�03 1696ZN14-13-35 557 0�05131 0�00155 0�282396 0�000033 0�28238 �1�60 1�03 1608ZN14-13-37 516 0�06151 0�00135 0�282403 0�000026 0�28239 �2�15 1�03 1611ZN14-13-41 599 0�03823 0�00111 0�282488 0�000023 0�28248 2�72 1�03 1368ZN14-13-45 537 0�08071 0�00181 0�282328 0�000018 0�28231 �4�52 1�03 1776ZN14-13-47 550 0�08742 0�00209 0�28237 0�000021 0�28235 �2�87 1�03 1682ZN14-13-50 530 0�13465 0�00337 0�282481 0�000042 0�28245 0�20 1�03 1474ZN14-13-52 533 0�07536 0�00174 0�282389 0�000024 0�28237 �2�42 1�03 1641ZN14-13-54 532 0�04490 0�00130 0�282509 0�000021 0�28250 1�96 1�03 1364ZN14-13-56 509 0�05998 0�00142 0�282396 0�000022 0�28238 �2�57 1�03 1632ZN14-13-60 511 0�03823 0�00086 0�282366 0�000029 0�28236 �3�40 1�03 1686ZN14-13-61 516 0�07266 0�00198 0�281959 0�000030 0�28194 �18�1 1�03 2608ZN14-13-65 518 0�04032 0�00090 0�282405 0�000027 0�28240 �1�88 1�03 1596ZN14-13-68 623 0�07537 0�00173 0�282397 0�000019 0�28238 �0�24 1�03 1573ZN14-13-71 516 0�11204 0�00244 0�282403 0�000030 0�28238 �2�52 1�03 1635ZN14-13-72 533 0�11198 0�00244 0�282354 0�000029 0�28233 �3�91 1�03 1735ZN14-13-75 542 0�09400 0�00208 0�282405 0�000023 0�28238 �1�79 1�03 1608ZN14-13-77 549 0�07565 0�00173 0�282403 0�000021 0�28239 �1�58 1�03 1601ZN14-13-78 544 0�06479 0�00148 0�282325 0�000026 0�28231 �4�36 1�03 1772

(continued)

Journal of Petrology, 2017, Vol. 58, No. 11 2161

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 21: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

Table 3: Continued

Sample U-Pb Age 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2SE (176Hf/177)i eHf(t) 2r T CDM Delta O18 2SE

ZN14-13-79 537 0�05567 0�00125 0�282409 0�000017 0�28240 �1�45 1�03 1583ZN14-13-82 581 0�07851 0�00231 0�282429 0�000031 0�28240 �0�22 1�03 1539ZN14-13-86 541 0�04517 0�00109 0�282527 0�000029 0�28252 2�87 1�03 1314ZN14-13-90 529 0�09639 0�00203 0�282332 0�000027 0�28231 �4�62 1�03 1777ZN14-13-91 529 0�07998 0�00183 0�282364 0�000017 0�28235 �3�42 1�03 1701ZN14-13-92 528 0�12235 0�00262 0�282327 0�000041 0�28230 �5�03 1�03 1801ZN14-13-93 511 0�06324 0�00136 0�282365 0�000026 0�28235 �3�60 1�03 1699ZN14-13-94 539 0�08407 0�00180 0�282363 0�000024 0�28234 �3�24 1�03 1697ZN14-13-96 528 0�06868 0�00199 0�282534 0�000023 0�28251 2�52 1�03 1326ZN14-17-01 567 0�06587 0�00140 0�282395 0�000043 0�28238 �1�37 1�03 1601ZN14-17-02 548 0�04483 0�00101 0�282454 0�000022 0�28244 0�46 1�03 1471ZN14-17-04 552 0�08491 0�00253 0�282388 0�000035 0�28236 �2�35 1�03 1651ZN14-17-07 588 0�07769 0�00197 0�282452 0�000022 0�28243 0�88 1�03 1476ZN14-17-09 635 0�05082 0�00113 0�282419 0�000022 0�28241 1�04 1�03 1501ZN14-17-10 588 0�09640 0�00205 0�282369 0�000021 0�28235 �2�09 1�03 1663ZN14-17-13r 545 0�03127 0�00071 0�282371 0�000016 0�28236 �2�43 1�03 1651ZN14-17-17 586 0�10673 0�00236 0�282294 0�000025 0�28227 �4�91 1�03 1838ZN14-17-22 549 0�04110 0�00107 0�281741 0�000033 0�28173 �24�8 1�03 3048ZN14-17-25 508 0�06454 0�00143 0�282333 0�000023 0�28232 �4�83 1�03 1773ZN14-17-27 569 0�10075 0�00230 0�282299 0�000029 0�28227 �5�06 1�03 1835ZN14-17-29 571 0�05759 0�00155 0�282431 0�000028 0�28241 �0�06 1�03 1522ZN14-17-30 622 0�06547 0�00154 0�282373 0�000023 0�28236 �1�03 1�03 1622ZN14-17-31 607 0�18096 0�00419 0�282242 0�000026 0�28219 �7�06 1�03 1988ZN14-17-32 566 0�06170 0�00140 0�282356 0�000017 0�28234 �2�77 1�03 1688ZN14-17-33 551 0�06115 0�00135 0�282403 0�000022 0�28239 �1�40 1�03 1591ZN14-17-35 535 0�10117 0�00216 0�282375 0�000021 0�28235 �3�03 1�03 1681ZN14-17-37 566 0�11889 0�00256 0�282343 0�000018 0�28232 �3�67 1�03 1744ZN14-17-38 578 0�13252 0�00314 0�282304 0�000031 0�28227 �5�02 1�03 1839ZN14-17-39 513 0�13121 0�00277 0�282412 0�000032 0�28239 �2�38 1�03 1623ZN14-17-41 526 0�05496 0�00122 0�282406 0�000022 0�28239 �1�78 1�03 1596ZN14-17-42 574 0�06537 0�00143 0�282372 0�000037 0�28236 �2�04 1�03 1649ZN14-17-43 540 0�05519 0�00111 0�282363 0�000036 0�28235 �2�97 1�03 1681ZN14-17-46 611 0�06770 0�00145 0�282274 0�000032 0�28226 �4�74 1�03 1846ZN14-17-47 588 0�08479 0�00180 0�282369 0�000015 0�28235 �2�00 1�03 1657ZN14-17-48 599 0�10588 0�00249 0�282361 0�000030 0�28233 �2�32 1�03 1685ZN14-17-50 605 0�06288 0�00134 0�282309 0�000025 0�28229 �3�58 1�03 1769ZN14-17-51 592 0�08262 0�00181 0�282409 0�000023 0�28239 �0�50 1�03 1565ZN14-17-52 591 0�05749 0�00126 0�282344 0�000028 0�28233 �2�61 1�03 1697ZN14-17-53 590 0�13896 0�00287 0�282346 0�000032 0�28231 �3�19 1�03 1733ZN14-17-55 602 0�09030 0�00188 0�282447 0�000027 0�28243 1�03 1�03 1477ZN14-17-57 600 0�10466 0�00205 0�282344 0�000038 0�28232 �2�73 1�03 1711ZN14-17-60 660 0�18426 0�00382 0�282365 0�000035 0�28232 �1�52 1�03 1681ZN14-17-61 568 0�03172 0�00071 0�281805 0�000021 0�28180 �22�0 1�03 2889ZN14-17-64 537 0�07584 0�00156 0�282436 0�000026 0�28242 �0�61 1�03 1530ZN14-17-65 517 0�05956 0�00132 0�282355 0�000030 0�28234 �3�82 1�03 1717ZN14-17-66 566 0�05994 0�00134 0�282382 0�000026 0�28237 �1�82 1�03 1629ZN14-17-67 599 0�06509 0�00150 0�282494 0�000028 0�28248 2�78 1�03 1364ZN14-17-70c 598 0�09473 0�00200 0�282389 0�000028 0�28237 �1�16 1�03 1611ZN14-17-72 612 0�04474 0�00095 0�282419 0�000022 0�28241 0�62 1�03 1510ZN14-17-73 630 0�16094 0�00330 0�282542 0�000037 0�28250 4�38 1�03 1287ZN14-17-74 576 0�05142 0�00109 0�282444 0�000024 0�28243 0�68 1�03 1479ZN14-17-78 576 0�04830 0�00105 0�282431 0�000020 0�28242 0�23 1�03 1507ZN14-17-79 573 0�05322 0�00116 0�282459 0�000031 0�28245 1�12 1�03 1449ZN14-17-80 571 0�06034 0�00130 0�282446 0�000022 0�28243 0�56 1�03 1482GD14-14-02 602 0�08309 0�00144 0�282658 0�000018 0�28264 8�67 1�03 918GD14-14-03 551 0�03178 0�00077 0�282462 0�000009 0�28245 0�90 1�03 1273GD14-14-04 550 0�10214 0�00240 0�282481 0�000013 0�28246 0�95 1�04 1269GD14-14-05 521 0�04235 0�00110 0�282445 0�000011 0�28243 �0�47 1�03 1318GD14-14-07 603 0�03595 0�00090 0�282453 0�000013 0�28244 1�65 1�03 1277GD14-14-08 825 0�02346 0�00061 0�282583 0�000013 0�28257 11�23 1�04 970GD14-14-09 849 0�02698 0�00067 0�282525 0�000017 0�28251 9�66 1�05 1070GD14-14-11 524 0�03169 0�00076 0�282407 0�000018 0�28240 �1�63 1�04 1380GD14-14-12 581 0�05799 0�00133 0�282504 0�000014 0�28249 2�82 1�03 1200GD14-14-13 501 0�26233 0�00584 0�282538 0�000017 0�28248 0�82 1�03 1236GD14-14-14 559 0�08843 0�00212 0�282507 0�000017 0�28248 2�16 1�03 1215GD14-14-15 592 0�04637 0�00107 0�282476 0�000017 0�28246 2�16 1�03 1242GD14-14-16 557 0�03246 0�00074 0�282409 0�000015 0�28240 �0�84 1�03 1366GD14-14-17 550 0�04790 0�00115 0�282450 0�000014 0�28244 0�31 1�03 1302GD14-14-18 550 0�03758 0�00088 0�282462 0�000012 0�28245 0�84 1�03 1275GD14-14-19 559 0�04120 0�00098 0�282358 0�000014 0�28235 �2�69 1�03 1462

(continued)

2162 Journal of Petrology, 2017, Vol. 58, No. 11

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 22: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

Table 3: Continued

Sample U-Pb Age 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2SE (176Hf/177)i eHf(t) 2r T CDM Delta O18 2SE

GD14-14-20 558 0�04518 0�00113 0�282406 0�000015 0�28239 �1�07 1�03 1379GD14-14-21 565 0�11941 0�00271 0�282514 0�000016 0�28249 2�31 1�03 1212GD14-14-22 541 0�05203 0�00121 0�282401 0�000014 0�28239 �1�64 1�04 1394GD14-14-23 572 0�06630 0�00155 0�282422 0�000014 0�28241 �0�36 1�03 1354GD14-14-24 561 0�09115 0�00218 0�282503 0�000020 0�28248 2�04 1�03 1223GD14-14-25 568 0�05276 0�00125 0�282384 0�000016 0�28237 �1�68 1�03 1418GD14-14-26 558 0�04069 0�00099 0�282449 0�000013 0�28244 0�51 1�03 1299GD14-14-27 545 0�05775 0�00157 0�282403 0�000015 0�28239 �1�61 1�03 1396GD14-14-28 564 0�06265 0�00161 0�282446 0�000012 0�28243 0�30 1�03 1314GD14-14-29 567 0�03603 0�00085 0�282405 0�000018 0�28240 �0�81 1�03 1373GD14-14-30 565 0�03994 0�00103 0�282393 0�000015 0�28238 �1�34 1�03 1398Cenozoic rocksAG14-08-03 39 0�03768 0�00094 0�282797 0�000018 0�28280 1�71 1�03 1003AG14-08-04 36 0�08661 0�00211 0�282806 0�000018 0�28280 1�94 1�03 986AG14-08-06 37 0�01457 0�00052 0�282828 0�000018 0�28283 2�77 1�03 934AG14-08-07 38 0�10239 0�00248 0�282854 0�000021 0�28285 3�67 1�03 878AG14-08-08 37 0�03083 0�00106 0�282896 0�000013 0�28290 5�18 1�03 781AG14-08-09 38 0�05768 0�00141 0�282889 0�000015 0�28289 4�94 1�03 797AG14-08-11 37 0�08027 0�00207 0�282866 0�000015 0�28286 4�09 1�03 850AG14-08-12 39 0�03664 0�00094 0�282895 0�000016 0�28289 5�17 1�03 782AG14-08-13 37 0�14428 0�00343 0�282928 0�000016 0�28293 6�24 1�03 713AG14-08-14 37 0�05862 0�00147 0�282844 0�000020 0�28284 3�31 1�03 899AG14-08-15 39 0�03612 0�00128 0�282914 0�000012 0�28291 5�83 1�03 740AG14-08-16 37 0�05885 0�00160 0�282934 0�000017 0�28293 6�50 1�03 696AG14-08-17 39 0�06608 0�00187 0�282920 0�000012 0�28292 6�03 1�03 727AG14-08-18 37 0�09956 0�00218 0�282961 0�000023 0�28296 7�43 1�03 636AG14-08-19 37 0�02508 0�00062 0�282931 0�000009 0�28293 6�42 1�03 702AG14-08-20 37 0�04749 0�00175 0�282865 0�000015 0�28286 4�06 1�03 852AG14-08-21 36 0�04534 0�00125 0�282830 0�000016 0�28283 2�81 1�03 931AG14-08-22 38 0�02289 0�00085 0�282826 0�000012 0�28283 2�72 1�03 938AG14-08-23 37 0�03505 0�00088 0�282874 0�000017 0�28287 4�40 1�03 830AG14-08-26 39 0�07513 0�00191 0�282847 0�000013 0�28285 3�45 1�03 892AG14-08-27 37 0�03482 0�00091 0�282880 0�000013 0�28288 4�61 1�03 817AG14-08-29 38 0�02794 0�00077 0�282803 0�000015 0�28280 1�91 1�03 990AG14-08-30 37 0�05258 0�00145 0�282781 0�000014 0�28278 1�09 1�03 1041AG14-08-32 36 0�08121 0�00181 0�282897 0�000020 0�28290 5�17 1�03 780AG14-16-02 28 0�07590 0�00230 0�282926 0�000020 0�28292 6�02 1�03 720AG14-16-06 28 0�11128 0�00376 0�282994 0�000030 0�28299 8�39 1�03 568AG14-16-06 28 0�16225 0�00342 0�283015 0�000028 0�28301 9�14 1�03 520AG14-16-10 31 0�09586 0�00227 0�283000 0�000022 0�28300 8�69 1�03 551AG14-16-13 27 0�04839 0�00121 0�282952 0�000011 0�28295 6�94 1�03 661AG14-16-14 26 0�08108 0�00224 0�282915 0�000024 0�28291 5�60 1�03 746AG14-16-16 28 0�06084 0�00146 0�283001 0�000012 0�28300 8�69 1�03 550AG14-16-17 27 0�08876 0�00200 0�282822 0�000017 0�28282 2�33 1�03 955AG14-16-18 26 0�03270 0�00078 0�282950 0�000013 0�28295 6�85 1�03 665AG14-16-26 29 0�02928 0�00059 0�282910 0�000009 0�28291 5�49 1�03 754AG14-16-27 29 0�05238 0�00115 0�282838 0�000012 0�28284 2�95 1�03 917AG14-16-30 28 0�04066 0�00099 0�282879 0�000007 0�28288 4�38 1�03 825AG14-16-31 29 0�09890 0�00219 0�282882 0�000013 0�28288 4�49 1�03 819AG14-16-32 29 0�11436 0�00272 0�283028 0�000013 0�28303 9�64 1�03 489AG14-16-33 29 0�11993 0�00264 0�282895 0�000016 0�28289 4�94 1�03 790AG14-16-36 36 0�02974 0�00076 0�282859 0�000010 0�28286 3�85 1�03 865AG14-16-37r 26 0�13370 0�00329 0�282936 0�000020 0�28293 6�32 1�03 700AG14-16-40 28 0�06670 0�00234 0�282947 0�000027 0�28295 6�75 1�03 673AG14-16-41 27 0�10901 0�00249 0�283001 0�000013 0�28300 8�64 1�03 551AG14-16-42 30 0�08271 0�00197 0�282874 0�000017 0�28287 4�22 1�03 836AG14-16-43 30 0�06660 0�00206 0�282952 0�000014 0�28295 6�98 1�03 660AG14-16-44 25 0�07980 0�00199 0�283164 0�000022 0�28316 14�4 1�03 182AG14-16-46 35 0�04789 0�00106 0�282956 0�000011 0�28296 7�24 1�03 647AG14-16-47 32 0�10559 0�00226 0�282863 0�000028 0�28286 3�87 1�03 860AG14-16-48 28 0�06389 0�00169 0�282884 0�000020 0�28288 4�54 1�03 814AG14-16-52 29 0�07263 0�00162 0�282870 0�000011 0�28287 4�07 1�03 845AG14-16-53 28 0�08150 0�00274 0�282933 0�000025 0�28293 6�26 1�03 705AG14-16-55 27 0�14924 0�00302 0�282891 0�000067 0�28289 4�75 1�03 800AG14-16-56 30 0�11629 0�00332 0�283263 0�000034 0�28326 18�0 1�03 �44AG14-16-58 29 0�08278 0�00162 0�283051 0�000019 0�28305 10�5 1�03 436AG14-16-64 32 0�08457 0�00172 0�282973 0�000016 0�28297 7�77 1�03 611AG14-16-65 30 0�08236 0�00176 0�282919 0�000013 0�28292 5�82 1�03 734AG14-16-66 36 0�05143 0�00098 0�282866 0�000015 0�28287 4�09 1�03 849AG14-16-68 31 0�05226 0�00103 0�282993 0�000014 0�28299 8�48 1�03 565AG14-16-68 31 0�05226 0�00103 0�282993 0�000014 0�28299 8�48 1�03 565

(continued)

Journal of Petrology, 2017, Vol. 58, No. 11 2163

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 23: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

Table 3: Continued

Sample U-Pb Age 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2SE (176Hf/177)i eHf(t) 2r T CDM Delta O18 2SE

AG14-16-69 27 0�06780 0�00129 0�282851 0�000015 0�28285 3�37 1�03 889AG14-16-70 29 0�10644 0�00213 0�283114 0�000021 0�28311 12�7 1�03 294AG14-16-71 36 0�05253 0�00100 0�282838 0�000026 0�28284 3�09 1�03 913AG14-16-72c 92 0�05906 0�00111 0�282806 0�000015 0�28280 3�15 1�03 952AG14-16-72r 28 0�10941 0�00286 0�282699 0�000027 0�28270 �2�02 1�03 1232AG14-16-73 28 0�12643 0�00232 0�282707 0�000024 0�28271 �1�73 1�03 1214ZN14-35-04 302 0�03968 0�00086 0�282457 0�000026 0�28245 �4�68 1�03 1608ZN14-35-05 27 0�02654 0�00060 0�282593 0�000030 0�28259 �5�74 1�03 1468ZN14-35-06 335 0�09060 0�00188 0�282280 0�000035 0�28227 �10�5 1�03 1996ZN14-35-16 28 0�04628 0�00144 0�282770 0�000028 0�28277 0�51 1�03 1071ZN14-35-18 372 0�05611 0�00120 0�282914 0�000027 0�28291 12�9 1�03 546ZN14-35-29 24 0�03295 0�00078 0�282293 0�000026 0�28229 �16�4 1�02 2139ZN14-35-31 25 0�04657 0�00108 0�282815 0�000025 0�28281 2�05 1�03 971ZN14-35-33 24 0�04931 0�00125 0�282815 0�000036 0�28281 2�03 1�03 972ZN14-35-34 24 0�06554 0�00181 0�282914 0�000029 0�28291 5�52 1�03 749ZN14-35-35 26 0�04988 0�00152 0�282871 0�000020 0�28287 4�03 1�03 845ZN14-35-36 26 0�03161 0�00123 0�282905 0�000026 0�28290 5�25 1�03 768ZN14-35-37 343 0�03825 0�00107 0�282898 0�000023 0�28289 11�8 1�03 597ZN14-35-46 28 0�07752 0�00217 0�282796 0�000031 0�28279 1�42 1�03 1013ZN14-35-47 24 0�05175 0�00144 0�282911 0�000021 0�28291 5�43 1�03 755ZN14-35-48c 553 0�05631 0�00157 0�282790 0�000019 0�28277 12�26 1�03 728ZN14-35-48r 64 0�06763 0�00159 0�282871 0�000029 0�28287 4�84 1�03 823ZN14-35-51 307 0�06218 0�00145 0�282944 0�000030 0�28294 12�5 1�03 519ZN14-35-52 26 0�05187 0�00141 0�282443 0�000029 0�28244 �11�1 1�02 1804ZN14-35-54 28 0�04169 0�00101 0�282984 0�000037 0�28298 8�09 1�03 588ZN14-35-56 25 0�04134 0�00119 0�282901 0�000029 0�28290 5�08 1�03 777ZN14-35-59 553 0�09182 0�00220 0�282815 0�000029 0�28279 12�92 1�03 687ZN14-35-60 27 0�05047 0�00126 0�282874 0�000021 0�28287 4�18 1�03 837ZN14-35-61 25 0�04310 0�00128 0�283002 0�000033 0�28300 8�66 1�03 549ZN14-35-62c 796 0�05176 0�00132 0�282881 0�000017 0�28286 20�8 1�03 377ZN14-35-67 28 0�05014 0�00138 0�282863 0�000024 0�28286 3�80 1�03 862ZN14-35-69 25 0�18689 0�00498 0�282965 0�000043 0�28296 7�29 1�03 636ZN14-35-71 24 0�04566 0�00121 0�282798 0�000023 0�28280 1�43 1�03 1010ZN14-35-72 23 0�03593 0�00108 0�282892 0�000028 0�28289 4�73 1�03 799ZN14-35-73 32 0�03870 0�00111 0�282940 0�000030 0�28294 6�61 1�03 685ZN14-35-75 23 0�10485 0�00270 0�282989 0�000029 0�28299 8�14 1�03 581ZN14-35-78 23 0�06355 0�00157 0�282875 0�000025 0�28287 4�13 1�03 837ZN14-35-79 25 0�03748 0�00109 0�282981 0�000026 0�28298 7�92 1�03 596ZN14-35-80 28 0�05839 0�00145 0�282943 0�000021 0�28294 6�64 1�03 681ZN14-35-81 29 0�02849 0�00095 0�282085 0�000052 0�28208 �23�7 1�02 2597ZN14-35-82 29 0�04604 0�00152 0�282713 0�000037 0�28271 �1�49 1�03 1199ZN14-35-87 26 0�06754 0�00168 0�282898 0�000026 0�28290 5�00 1�03 784ZN14-34-01 26 0�03081 0�00086 0�282894 0�000007 0�28289 4�88 1�03 792 12�51 0�35ZN14-34-02 27 0�06986 0�00191 0�282790 0�000008 0�28279 1�19 1�03 1027 8�49 0�24ZN14-34-03 26 0�01353 0�00034 0�282942 0�000010 0�28294 6�58 1�03 683 13�69 0�27ZN14-34-04 24 0�05619 0�00142 0�282661 0�000013 0�28266 �3�41 1�03 1318 8�74 0�22ZN14-34-05 24 0�04107 0�00110 0�282924 0�000009 0�28292 5�89 1�03 725 10�11 0�21ZN14-34-06 27 0�06468 0�00192 0�282918 0�000007 0�28292 5�71 1�03 739 8�77 0�17ZN14-34-07 26 0�03526 0�00100 0�282892 0�000010 0�28289 4�80 1�03 796 8�94 0�25ZN14-34-08 27 0�05679 0�00157 0�282923 0�000012 0�28292 5�89 1�03 727 9�17 0�29ZN14-34-09 28 0�03334 0�00082 0�282886 0�000007 0�28289 4�62 1�03 809 8�77 0�22ZN14-34-10 27 0�05306 0�00158 0�282909 0�000009 0�28291 5�40 1�03 759 9�04 0�25ZN14-34-11 32 0�04674 0�00115 0�282933 0�000008 0�28293 6�36 1�03 701 12�37 0�21ZN14-34-12 26 0�06604 0�00169 0�282629 0�000034 0�28263 �4�52 1�03 1389 8�94 0�15ZN14-34-13 27 0�03786 0�00098 0�282675 0�000017 0�28267 �2�86 1�03 1285 8�46 0�27ZN14-34-14 27 0�10478 0�00263 0�282942 0�000011 0�28294 6�57 1�03 685 8�34 0�26ZN14-34-15 26 0�04042 0�00124 0�282994 0�000016 0�28299 8�41 1�03 566 8�68 0�26ZN14-34-16 27 0�08473 0�00232 0�282872 0�000009 0�28287 4�08 1�03 843 8�87 0�25ZN14-34-17 27 0�07144 0�00205 0�282906 0�000008 0�28290 5�29 1�03 766 8�96 0�26ZN14-34-18 25 0�04139 0�00126 0�282931 0�000017 0�28293 6�16 1�03 709 9�35 0�19ZN14-34-19 26 0�07065 0�00207 0�282905 0�000008 0�28290 5�24 1�03 768 9�38 0�18ZN14-34-20 27 0�05069 0�00147 0�282904 0�000009 0�28290 5�24 1�03 769 9�11 0�30ZN14-34-21 26 0�03840 0�00099 0�282912 0�000012 0�28291 5�50 1�03 752 10�06 0�21ZN14-34-22 25 0�06341 0�00176 0�282917 0�000008 0�28292 5�66 1�03 741 9�39 0�24ZN14-34-23 26 0�05159 0�00144 0�282922 0�000008 0�28292 5�85 1�03 729 9�07 0�28ZN14-34-24 27 0�05001 0�00126 0�282629 0�000027 0�28263 �4�49 1�03 1388 9�00 0�19ZN14-34-25 26 0�04255 0�00113 0�282689 0�000021 0�28269 �2�38 1�03 1254 8�84 0�16ZN14-34-26 26 0�06110 0�00177 0�282909 0�000008 0�28291 5�39 1�03 759 9�39 0�18ZN14-34-27 26 0�02945 0�00077 0�282617 0�000025 0�28262 �4�92 1�03 1415 9�47 0�15ZN14-34-28 26 0�05255 0�00138 0�282931 0�000008 0�28293 6�18 1�03 709 11�48 0�22ZN14-34-29 26 0�03960 0�00136 0�282976 0�000020 0�28298 7�77 1�03 607 8�91 0�19ZN14-34-30 26 0�08669 0�00219 0�282621 0�000016 0�28262 �4�80 1�03 1407 8�79 0�17

2164 Journal of Petrology, 2017, Vol. 58, No. 11

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 24: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

Data Electronic Appendix 5), which are similar to the

recommended values of 0�282482 60�0000033 and

0�283002 60�000004 (Slama et al., 2008; Li et al., 2013).

The isobaric interferences of 176Lu and 176Yb on 176Hf

are very limited, because of the extremely low ratios of

Lu/Hf and Yb/Hf in the measured standard zircons. The

interference of 176Yb on 176Hf was corrected by measur-

ing the interference-free 172Yb isotope and using176Yb/172Yb to calculate 176Yb/177Hf. The appropriate

value of 176Yb/172Yb was determined by successive

spiking the JMC475 Hf standard (1 ppm solution) with

Yb, and iteratively finding the value of 176Yb/172Yb

required to yield the value of 176Hf/177Hf obtained on the

pure Hf solution (Griffin et al., 2000). Analyses of stand-

ard zircons, which have a wider range of 176Yb/177Hf

and 176Lu/177Hf, show no correlation between these

ratios and 176Hf/177Hf (Fig. 7d). The analyzed Zanjan-

Takab samples show also no clear correlations between

these ratios (Fig. 7e). For calculation of initial Hf ratios,

eHf (t) and TDM, we used the measured 206Pb/238 U ages

of each analysis point. Average crustal model ages

(TCDM) were calculated by assuming that the protolith of

the host-rock of a zircon was originally derived from the

depleted mantle and then evolved as a reservoir with176Lu/177Hf of 0�015, similar to the average continental

crust (Griffin et al., 2002). Zircon Hf isotope data are pre-

sented in Table 3.

ANALYTICAL RESULTS

Bulk-rock major and trace element geochemistryAlmalu-Qazi Kandi-Alam Kandi areaNineteen samples including late-stage (Oligocene, see

below) tonalitic intrusions (meta-tonalites, 3 samples),

granitic gneisses (6 samples), granodioritic gneisses (3

samples) and gneissic enclaves (4 samples) and dikes

(3 samples) within the orthogneisses were selected for

whole-rock elemental analysis.All samples are peraluminous (molar Al2O3/

(CaOþNa2OþK2O; A/CNK> 1), except the late-stage

tonalitic intrusions (Fig. 8a). In the Rb vs NbþY diagram

(Pearce et al., 1984), the samples show Volcanic Arc

Granite (VAG) signatures (Fig. 8b), except for sample

ZN14-15G, which has higher Nb and Y due to the pres-

ence of allanite and garnet. The granitoid gneisses

(including metamorphosed enclaves and dikes) are

variably enriched in light rare earth elements (LREE)

relative to heavy rare earth elements (HREE), with La(n)/

Yb(n)� 3–60 (Fig. 9). Most rocks show depletion in Eu.

They have positive anomalies in Th, U, Rb and negative

anomalies in Nb and Ta relative to N-MORB, a feature

suggesting that their protolith was related to an arc set-

ting (Fig. 10). Late-stage tonalitic intrusions share the

same geochemical signature as the gneissic rocks; en-

richment in LREE relative to HREEs (La(n)/Yb(n)� 12–20),

depletion in Nb-Ta and enrichment in large ion litho-

phile elements (LILE).

Qozlu-Zaki Kandi areaTen samples including granodioritic gneisses (5 sam-

ples), dioritic gneisses (3 samples), amphibolite (1 sam-

ple) and paragneiss (1 sample) were selected for major

and trace element analysis. They have VAG signatures

in the Rb vs NbþY diagram (Pearce et al., 1984)

(Fig. 8d). Granodioritic gneisses have peraluminous sig-

natures whereas dioritic gneisses show metaluminous

characteristics (Fig. 8c). The granodioritic-dioritic

gneisses show enrichment in LREE relative to HREE

(La(n)/Yb(n)� 3�6–17�7), and are characterized by deple-

tion in Nb-Ta and enrichment in U, Th, Ba, Rb, Sr and K

relative to N-MORB. These geochemical signatures are

typical of SSZ (supra-subduction zone)-related rocks

(Figs 9 and 10).

Qara Dash-Qare Naz areaTwenty samples including (flaser-like) gabbroic, dioritic

and granitic gneisses (7 samples), paragneiss (3 sam-

ples), migmatite leucosomes (3 samples) and late-stage

(Cenozoic) granitic-granodioritic dikes and lenses (7

samples) were analyzed for whole-rock geochemistry.

In the Rb vs NbþY diagram (Pearce et al., 1984), all

samples have VAG geochemical signatures except sam-

ple QN14-21, which contains large crystals of Na-rich

amphibole (Fig. 8f). They show metaluminous to peralu-

minous signatures (Fig. 8e). The Qara Dash-Qare Naz

rocks also show enrichment in LREE relative to HREE

with depletion in Nb-Ta and enrichment in Rb, Ba, Th, U

and K relative to N-MORB. Late-stage granitic dikes

have similar REE and trace element patterns and might

have originated from the same source, whereas migma-

tite leucosomes have REE and trace-element patterns

similar to those of upper crustal rocks (Gao et al., 2004).

Bulk-rock Sr-Nd isotopesSr-Nd isotopic analyses of the Zanjan-Takab meta-

morphic rocks are reported in Table 2 and plotted in

Fig. 11. For comparison, data from Iranian Cadomian

ophiolites, granites and orthogneisses and Cadomian

Derik volcanics (Turkey) and Cenozoic igneous rocks

from Iran are also shown.

The initial 87Sr/86Sr (t¼520 Ma) of the Almalu-Qazi

Kandi-Alam Kandi Cadomian gneissic rocks ranges be-

tween 0�706 and 0�707. One sample with an unrealistic-

ally low value (� 0�695; Table 2) may reflect the high Rb/

Sr (10�3) of this rock, its low Sr content (14�1 ppm),

and the choice of 520 Ma for calculating the initial Sr

isotope composition. Nd isotopes are more resistant to

alteration than Sr isotopes. The eNd values vary be-

tween �0�6 and �3�7; TDM model ages for the gneissic

rocks cluster tightly around 1�5 to 1�2 Ga.

The initial 87Sr/86Sr and eNd (calculated at t¼ 25 Ma)

for the Almalu-Qazi Kandi-Alam Kandi Cenozoic meta-

tonalites range from 0�7052 to 0�7054 and �0�02 toþ0�7,

respectively, excluding one sample with eNd¼�8�1.

TDM model ages for these rocks cluster between 0�65

and 0�57 Ga. The sample with a clearly negative eNd

Journal of Petrology, 2017, Vol. 58, No. 11 2165

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 25: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

value (�8�1, sample ZN14-34; TDM¼ 1�2 Ga) may indi-

cate re-working of older crust.

The Qozlu-Zaki Kandi Cenozoic metamorphic rocks

constitute a coherent group with a small range in87Sr/86Sr (0�7040 to 0�7049), but with variable eNd

(38Ma) values (þ1�9 toþ7�04, except for one sample

with eNd¼�8�4). One sample shows a juvenile signa-

ture (AG14-12 with eNd¼þ7�04), while one has negative

eNd (-8�4, sample AG14-4), pointing to reworking of

older crust (TDM ¼1�2 Ga). The remaining samples have

TDM model ages extending between 0�65 and 0�47 Ga.

The Qare Naz-Qara Dash Cenozoic metamorphic

rocks including paragneisses, orthogneisses and mig-

matite leucosomes and even younger granitoid dikes

also constitute a coherent group with small variations

in the initial 143Nd/144Nd and 87Sr/86Sr ratios. Their87Sr/86Sr values vary between 0�7054 and 0�7068,

whereas their eNd values areþ1�5 to �2�4. Cadomian

Fig. 8. ANK (molar Al2O3/Na2OþK2O) vs A/CNK (molar Al2O3/CaOþNa2OþK2O) and Rb vs YþNb diagrams (Pearce et al., 1984)for the Zanjan-Takab metamorphic rocks. Data for Iran Cadomian rocks are from Moghadam et al. (unpublished data) excludingthose for Torud-Biarjmand, which are from Balaghi Einalou et al. (2014) and Moghadam et al., 2015a).

2166 Journal of Petrology, 2017, Vol. 58, No. 11

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 26: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

dioritic and gabbroic gneisses show variable isotopic

signatures and eNd, ranging fromþ0�3–0�9 and �þ5-

þ6�1 respectively.

On a plot of 143Nd/144Nd vs 87Sr/86Sr (Fig. 11), the

Almalu-Qazi Kandi-Alam Kandi Cadomian gneissic

rocks are quite similar to the Cadomian meta-granitoid

rocks of Iran, but have more radiogenic Nd. They are

quite different from lavas of the Cadomian (?) Posht-e-

Badam ophiolites, which have highly radiogenic Nd

isotope compositions. The Qara Dash-Qare Naz dioritic

and gabbroic gneisses have more juvenile signatures.

The eNd (t¼ 520) values of the Cadomian granites and

granitic orthogneisses of Iran range from�2�2 to� 5�5,

and are similar to those (eNd¼�1�2 to�2�9) of

Cadomian metagranites from the Bitlis massif (Turkey)

(Ustaomer et al., 2009). In contrast, the Cadomian Derik

volcanics (Turkey, (Gursu et al., 2015)) have juvenile iso-

topic signatures and are mostly similar to Qara Dash-

Fig. 9. Chondrite-normalized rare earth element patterns for the Zanjan-Takab metamorphic rocks.

Journal of Petrology, 2017, Vol. 58, No. 11 2167

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 27: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

Fig. 10. N-MORB normalized trace element patterns for the Zanjan-Takab metamorphic rocks.

2168 Journal of Petrology, 2017, Vol. 58, No. 11

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 28: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

Qare Naz dioritic and gabbroic gneisses (Fig. 11). Nearly

all Qozlu-Zaki Kandi Cenozoic meta-igneous rocks differ

from other Zanjan-Takab Cenozoic rocks, reflecting their

origin from a more juvenile source.

Zircon U-Pb geochronology and Hf-O isotopesLA-ICP-MS U-Pb geochronologyWe dated nine samples from the Zanjan-Takab meta-

morphic complex using LA-ICP-MS, including four gran-

itic gneisses (ZN14-4, ZN14-5, ZN14-13 and ZN14-14),

one gneissic enclave (ZN14-17) within orthogneisses

and one late-stage meta-tonalite (ZN14-35) from

Almalu-Qazi Kandi-Alam Kandi, two granodioritic

gneisses (AG14-8 and AG14-16) and one amphibolite

(AG14-22) from Qozlu-Zaki Kandi and one dioritic gneiss

from Qara Dash-Qare Naz. The amphibolite (AG14-22)

from the Qozlu-Zaki Kandi region contains a few in-

herited zircon crystals (10 grains) with ages of ca 0�2and 0�1 Ga and evidence of partial melting (zircon rims)

at 27 Ma.

Sample ZN14-4This granitic gneiss from the Almalu-Qazi Kandi-Alam

Kandi region has a complicated zircon population with

many inherited cores. Zircons are euhedral and large to

short prismatic and stubby in shape (av. �100–150 lm).

In CL images both new grains and thick rims around the

inherited cores show magmatic oscillatory zoning.

Inherited cores are either oscillatorily zoned or unzoned.

Zircons have moderate to high Th/U � 0�2–1�7, similar

to those of magmatic zircons (Corfu et al., 2003; Corfu,

2004). Most analyses are near-concordant within analyt-

ical errors and give ages of 600 to 500 Ma. A few grains

with younger ages (<500 Ma) may reflect Pb loss and

were rejected during data interpretation. Fifty-two ana-

lyzed points on a histogram of 206Pb/238 U ages show

major peaks at 511 and 506 Ma. The abundance of ana-

lyzed zircons around these ages, along with difference

in CL images between them, suggest that there are two

zircon populations in this sample. On the Concordia dia-

gram (Fig. 12), the two main 206Pb/238 U age populations

give weighted mean ages of 505�4 6 1�9 (n¼ 10;

MSWD¼ 0�28) and 512�9 6 2�3 Ma (n¼9; MSWD¼0�47).

The younger ages, 505 Ma, correspond to the bright zir-

cons with well-defined internal zoning, whereas older

ages of �513 Ma are related to stubby and less bright

zircons (Fig. 12). Ages>550 Ma are related to the in-

herited cores, and extend to Archean (2�5 Ga) ages.

Sample ZN14-13Zircons from this sample are quite small (av. �70–

100 lm) and are mostly short-prismatic in shape. In CL

images, they are characterized by magmatic concentric

and occasionally patchy zoning (Fig. 12). Inherited cores

are common; they are resorbed, weakly luminescent

and zoned, and variably overprinted by homogeneous

or sector-zoned domains. These cores are interpreted

as magmatic zircons that have experienced different de-

grees of solid-state recrystallization (Hoskin & Black,

2000). Occasionally, zircons rims penetrate and truncate

the zonation patterns of the inherited cores, suggesting

that the rims may be formed by interaction of melts

with older zircons (Geisler et al., 2005).

Zircons have variable Th/U, �0�1 to 3�1, in the range

of magmatic zircons. Fifty LA-ICP-MS U-Pb analyses

were made on zircon cores and rims. In the Concordia

diagram, nineteen analyses yield a weighted mean age

of 514�2 6 1�4 (MSWD¼ 1�12) (Fig. 12). The cumulative-

probability histogram confirms that the best estimate

for the age of this sample is ca 514 Ma. Some analyses

Fig. 11. Initial eNd vs 87Sr/86Sr for the Zanjan-Takab Cenozoicand Cadomian rocks. For the Cenozoic rocks, a model has beenapplied for the formation of the Cenozoic rocks of Iran(Assimilation-Fractional crystallization model). The compos-ition of average Cadomian lower and upper crust is accordingto: (Balaghi Einalou et al., 2014; Moghadam et al., 2015a).Starting melt composition is similar to juvenile Sabzevarophiolite island arc tholeiites (Moghadam et al., 2014). TheCenozoic magmatic rocks of Iran are shown for comparison.Fractionating minerals include: orthopyroxene (0�05)þ clinopyr-oxene (0�15)þamphibole (0�30)þbiotite (0�10)þplagioclase(0�30)þapatite (0�05)þ ilmenite (0�05). Data for Iran Cadomiangneisses-granites are from Moghadam et al. (2015a). Data forthe Posht-e-Badam Cadomian ophiolitic lavas are fromMoghadam et al. (unpublished data). Data for CadomianTurkish (Derik) volcanics are from Gursu et al. (2015). Data forIranian Cenozoic rocks are from: (Ahmadian et al., 2009; Jamaliet al., 2010; Aghazadeh et al., 2011; Asiabanha & Foden, 2012;Sarjoughian et al., 2012, 2015; Pang et al., 2014; Moghadamet al., 2015b).

Journal of Petrology, 2017, Vol. 58, No. 11 2169

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 29: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

Fig. 12. Concordia and weighted mean 206Pb/238 U age plots for the investigated zircons from the Late Neoproterozoic-CambrianZanjan-Takab metamorphic rocks (LA-ICP-MS zircon U-Pb data).

2170 Journal of Petrology, 2017, Vol. 58, No. 11

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 30: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

show lower 206Pb/238 U ages than other magmatic do-

mains, which might be due to partial Pb loss during

later metamorphism. Ages>514 Ma (with a peak at 567

Ma are related to the inherited cores, and extend to

Mesoproterozoic (1507 Ma) ages.

Sample ZN14-14Zircon grains from this sample (granitic gneiss) are

short to long prismatic and are euhedral to subhedral in

shape. Most crystals show magmatic zonation. Twenty-

seven analyses are characterized by relatively high

Fig. 12. Continued.

Journal of Petrology, 2017, Vol. 58, No. 11 2171

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 31: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

Th/U (�0�4–1�7) (Supplementary Data Electronic

Appendix 2). Analyses are concordant to near concord-

ant within analytical errors (Fig. 12), yielding a weighted

mean age of 549�7 6 2�9 Ma (n¼ 18; MSWD¼ 2�3). This

is interpreted as the crystallization age for sample

ZN14-14. The inherited cores have 206Pb/238 U ages from

559 to 1867 Ma.

IV- sample ZN14-17Zircons from the gneissic enclave within the orthog-

neisses are prismatic to stubby, and �70–200 lm long.

In CL images, they display intricate internal structures.

About half of the zircons have a core-rim structure. The

cores show oscillatory or patchy zoning, implying they

are magmatic in origin. Some zircon grains have dark

unzoned cores. The fifty analyses on zircons from this

sample show relatively high Th/U of 0�2–1�4, typical for

magmatic zircons (Corfu et al., 2003; Corfu, 2004).

Except for a few spots that show evidence of Pb loss,

the analyses form coherent groups that are concordant

or near-concordant. In the cumulative-probability histo-

gram, this sample shows main 206Pb/238 U age peaks at

519, 538 and 568 Ma. The less bright stubby zircons de-

fine a weighted mean 206Pb/238 U age of 518�3 6 1�9(n¼ 16; MSWD¼1�3), whereas the bright, growth-zoned

rims of prismatic zircons have an age of 537�9 6 2�3(n¼ 8; MSWD¼ 0�59) (Fig. 12). An older group with

a weighted mean age of 567�8 6 2�5 Ma (n¼ 9;

MSWD¼ 0�44) corresponds to zircon cores with irregu-

lar zoning. Paleoproterozoic inherited cores (2–2�3 Ga)

are also present.

Sample ZN14-35Zircons from meta-tonalites show two different popula-

tions: (1) large prismatic and euhedral with lengths

from 150 to>200 lm and aspect ratios of 1: 2 to>1: 4,

without inherited cores; (2) Short prismatic to equant,

subhedral to anhedral, ranging in length from 50–

150 lm, with inherited cores.

In CL images, the first type exhibits fine to coarse os-

cillatory zoning, consistent with a magmatic origin. The

zircons with inherited cores have wide magmatic rims.

The cores contain weakly oscillatory or patchily-zoned

domains, whereas rim zoning is finely to coarsely

oscillatory.

Forty nine analyses on meta-tonalite zircons show

high Th/U ratios of 0�2–2�4 for both cores and rims. In

the 206Pb/238 U histogram, zircons (excluding inherited

cores) show major peaks at ca 24 and 25 Ma. The

younger group yields a weighted mean age of

23�5 6 0�2 Ma (n¼7; MSWD¼ 1�2; Fig. 13). The inherited

cores show populations with weighted mean ages of ca

304 and 543 Ma.

Sample AG14-8This sample represents the highly deformed granodior-

itic gneisses from the Qozlu-Zaki Kandi area. Most zir-

cons are broken and anhedral with lengths from 70 to

�150 lm. Inherited cores are rare. The twenty nine ana-

lyses show relatively high Th/U of 0�3–1�5. Twelve ana-

lyzed points (out of 29) yield a weighted mean age of

38�3 6 0�3 Ma (MSWD¼ 1�3) (Fig. 13). The rest of the

analyzed points cluster around 36–37 Ma. A few zircons

have older ages and are inherited.

Sample AG14-16Most zircons from sample AG14-16 (granodioritic

gneiss) have short to long prismatic shapes with

lengths of approximately 70->150 lm CL images show

both oscillatory and irregular zoning (Fig. 13), typical of

magmatic zircons. Some grains contain inherited zircon

cores. The fifty four analyzed spots have high Th/U val-

ues (0�3 to 1�1). The analyzed zircons show two age

populations, which are near-concordant with weighted

means of 206Pb/238 U ages of 27�4 6 0�2 (n¼ 11;

MSWD¼ 0�79) and 28�2 6 0�2 (n¼9; MSWD¼0�67)

(Fig. 13). The younger ages (27 Ma) correspond to non-

zoned or irregular zoned zircons with thin oscillatorily-

zoned rims, whereas the older ones (28 Ma) represent

the ages of thick zoned rims around the inherited cores.

There are a few zircons with older ages (>28 Ma), which

may represent xenocrysts. The younger ages (�26 Ma)

are found as rims around the older (27–31 Ma) zircons

and show evidence of the latest phase of partial melting

in the Takab-Zanjan complex, which is characterized by

the occurrence of diatexites and migmatites with a par-

tial melting age of 27-25 Ma (Moghadam et al., 2016a).

Sample GD14-14Zircons from sample GD14-14 (dioritic gneiss) are large

(�100 lm) prismatic. CL images show oscillatory zoning

and some zircons also have less luminescence and unz-

oned rims. Some grains contain inherited cores (>600–

849 Ma). The twenty seven analyzed spots have high

Th/U values (0�3 to 1�7). Most of the analyzed zircons

show near-concordant ages with a weighted mean206Pb/238 U age of 559 6 3�5 (n¼ 15; MSWD¼ 2�4)

(Fig. 14). A few analyzed points (4 grains) on the un-

zoned rims have 206Pb/238 U ages of �520 Ma.

SIMS U-Pb geochronologyWe dated five samples from the Zanjan-Takab meta-

morphic complex using SIMS, including two granitic

gneisses (ZN14-12 and ZN14-11) and one meta-tonalite

(ZN14-34) from Almalu-Qazi Kandi-Alam Kandi, and one

granitic gneiss (QN14-15) and one retrograde granulite

(QN14-23) from Qara Dash-Qare Naz.

Sample ZN14-11This sample is from the Almalu-Qazi Kandi-Alam Kandi

region. Zircons from this granitic gneiss are large

(<150 lm) to short (<100 lm) prismatic with well-

developed concentric zonation and rare inherited cores.

Twenty one analyzed spots have Th/U ratios between

0�4 and 1�1 (Supplementary Data Electronic Appendix

3). Common-lead contents are low; f206 (the proportion

2172 Journal of Petrology, 2017, Vol. 58, No. 11

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 32: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

Fig. 13. Concordia and weighted mean 206Pb/238 U age plots for the investigated zircons from the Cenozoic Zanjan-Takab meta-morphic rocks (LA-ICP-MS U-Pb data).

Journal of Petrology, 2017, Vol. 58, No. 11 2173

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 33: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

of common 206Pb in total measured 206Pb) is< 0�9%.

The analyzed zircons yield a weighted mean age of

555�5 6 3�9 Ma (n¼ 21; MSWD¼ 0�96). This age is inter-

preted as the timing of granite (protolith) crystallization.

Inherited cores show 206Pb/238 U ages of 950 and ca 2�5Ga.

Sample ZN14-12Zircon grains from this sample (granitic gneiss) are

short- to long-prismatic and are euhedral to subhedral

in shape. Most crystals have magmatic zonation.

Inherited cores are common. Twenty five analyses are

characterized by relatively high Th/U (�0�3–1�2) and low

common lead (f206<0�08%; Supplementary Data

Electronic Appendix 3). The zircons have low to moder-

ate (197–1811 ppm) U and Th (71–952 ppm) contents

(Supplementary Data Appendix 3). All analyses are con-

cordant within analytical errors (Fig. 14), yielding a

weighted mean age of 550�7 6 3�8 Ma (n¼ 23;

MSWD¼ 1�2), interpreted as the crystallization age.

Sample ZN14-34Zircons from this meta-tonalite are short (100 lm) to

large (200 lm) and prismatic with concentric and oscil-

latory zoning. Some zircons show late-magmatic recrys-

tallization textures as defined by Corfu et al. (2003).

Inherited cores are abundant. Twenty two analyzed

points on this sample show Th/U of 0�2–0�5. Common

lead (f206) is<2�5% (Supplementary Data Appendix 3).

The analyzed zircons give a weighted mean age of

26�4 6 0�3 Ma (n¼21; MSWD¼1�2).

Sample QN14-15Zircons in this sample are mostly short-prismatic and

many have inherited cores. Eighteen analyzed spots

have Th/U ratios of 0�1 to 2 with low common lead

(f206<0�5). Ten analyzed zircons (out of eighteen) are

concordant within analytical errors (Fig. 14) and yield a

weighted mean age of 562�5 6 8�6 Ma (MSWD¼ 2). This

is interpreted as the crystallization age for sample

QN14-15, and it is older than other gneissic granites in

the Zanjan-Takab complex. Inherited cores have ages of

0�7, 0�9–1 and 2�5–2�8 Ga.

Sample QN14-23Zircons from retrograded granulites show evidence for

partial melting and contain cores surrounded by thick to

thin rims. The rims exhibit weak oscillatory zoning or in

most cases are unzoned, and the cores are interpreted

as originally detrital zircons. Core-rim boundaries are ir-

regular and commonly are diffuse, suggesting that the

rims formed during partial melting. Twenty four SIMS

analyses were obtained from this sample. The cores

show ages between ca 45 Ma and 1�9 Ga (Fig. 13).

Zircon rims show ages of 32-30 Ma (although those

with 30 Ma ages have high common-lead contents),

which can be interpreted as the approximate time of

anatexis.

Zircon Hf isotopesTwo hundred and nineteen Lu-Hf analyses were ob-

tained from the Ediacaran-Cambrian (600-500 Ma) zir-

cons (Table 3). The initial Hf-isotope ratios were

calculated using the measured 206Pb/238 U ages of each

analysis point. The 600-500 Ma zircons show wide

ranges in 176Hf/177Hf and hence eHf (t). 176Hf/177Hf varies

between 0�28273 and 0�28158, corresponding to eHf (t)

� �25 toþ10�3 (Figs 15 and 16), excluding one point

(ZN14-12-10, t¼ 534 Ma) with eHf¼�30�5. These176Hf/177Hf values for Ediacaran-Cambrian zircons cor-

respond to TCDM ages of �>1 to 3�4 Ga

(176Lu/177Hf¼ 0�015; Figs 15 and 16). The inherited cores

show higher values of eHf and TCDM. These TC

DM values

imply a significant contribution of Archean to

Paleoproterozoic continental crust to the Ediacaran-

Cambrian magmatic basement rocks of Iran; this is con-

sistent with the presence of ca 2�5 Ga inherited zircon

cores.One hundred and thirty one Lu-Hf analyses were ob-

tained from the Cenozoic (40-23 Ma) zircons (Table 3).

Their 176Hf/177Hf values range between 0�28326 and

0�28208 corresponding to eHf (t) of ��24 toþ18 (Figs 15

and 16). These values for Cenozoic zircons (except ju-

venile ones and inherited cores) correspond to TCDM

ages of � 2�6 to 0�5 Ga (Figs 15 and 16), and reflect the

development of a Cenozoic continental arc on

Cadomian crust, which itself contains a significant

Archean component.

O isotopes were measured for zircons from three

samples of Cadomian rocks; QN14-15, ZN14-11 and

Zn14-12 (granitic gneisses). The d18O values for

Cadomian zircons show large variations, fromþ5�3toþ10�6 & (except one point withþ4�5&) (Table 3). The

zircons from the Cenozoic meta-tonalite (sample ZN14-

34) have d18O values of 8�3 to 13�7 &.

DISCUSSION

Six issues on which our results provide new insights

are discussed below: (1) assessment and interpretation

of zircon U-Pb and Hf data; (2) the timing of Cadomian

magmatism in NE Iran; (3) the importance of Cenozoic

magmatism in NW Iran; (4) what do Nd bulk-rock and

zircon Hf-isotope data reveal about crustal evolution in

this region? (5) does the Cenozoic magmatism in NW

Iran reflect a magmatic ‘flare-up’? (6) what are the tec-

tonic implications of these data?

Assessment and interpretation of zircon U-Pb-HfdataThe new zircon U-Pb ages show that the granitoids

which were described as Triassic-Jurassic intrusions by

Babakhani & Ghalamghash (1991) have �26-23 Ma

ages (late Oligocene-Miocene). Distinguishing between

metamorphosed Cenozoic granitoids (Cenozoic orthog-

neisses) and Late Neoproterozoic orthogneisses in the

field is in most cases very difficult, as both are

2174 Journal of Petrology, 2017, Vol. 58, No. 11

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 34: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

Fig. 14. SIMS U-Pb Concordia and weighted mean 206Pb/238 U age plots for the Zanjan-Takab gneisses, meta-tonalites and retro-grade granulites.

Journal of Petrology, 2017, Vol. 58, No. 11 2175

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 35: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

metamorphosed and show gneissic structures.

Cenozoic orthogneisses are occasionally finer-grained

than the coarse-grained Cadomian gneisses, but this is

not a prevailing feature. The other issue is tracing par-

tial melting, which is dominant in this region and is re-

corded as zircon rims around older zircons, both in

migmatites (Moghadam et al., 2016a) and, or, within the

felsic segregations of amphibolites and granulites (this

study). Therefore, these new U-Pb ages are important

to unravelling the magmatic history of NW Iran. Some

granitic gneisses show two or more zircon populations

(or age clusters), e.g. samples ZN14-5 (at �505 and 513

Ma), ZN14-17 (at �518, 538 and 568 Ma) and AG14-16

(at 27 and 28 Ma), especially those dated by LA-ICP-MS

(Figs 2 and 13).

All age populations discussed here have been distin-

guished according to the probability density diagrams,

and are well supported by CL images and weighted-

mean age plots. One explanation for these age clusters

is that the younger ages indicate Pb loss, whereas older

ages are inherited. Hence, some of the data can be se-

lected from these and plotted as weighted-mean206Pb/238 U ages. In this case, some younger or older

ages are regarded as outliers. The alternative would be

calibration problems during the LA-ICP-MS analysis.

However, the U-Pb results for standards 91500 and Mud

Tank analyzed during our runs do not support this sug-

gestion. The weighted means of 206Pb/238 U ages are

1063�5 6 1�8 Ma (n¼ 58; MSWD¼ 1�3) and 731�1 6 1�2Ma (n¼61; MSWD¼ 0�77), respectively (Fig. 7a and b),

which are identical to the recommended values

(Woodhead & Hergt, 2005). To further check the accur-

acy of our LA-ICP-MS analyses, we re-analyzed two

samples, of ZN14-12 and ZN14-34, which have been

dated by SIMS. Our results show that the LA-ICP-MS

mean ages of samples ZN14-12 and ZN14-34 are

549�8 6 2�6 Ma (n¼ 21; MSWD¼ 2�1) and 26�6 6 0�3 Ma

(n¼ 24; MSWD¼ 2�4), respectively (Fig. 17), which are

identical to the ages obtained by SIMS (550�7 6 3�8 and

26�4 6 0�3 Ma, respectively).Slight age variations are quite common in all granitic

plutons, which show cooling, or represent mixing with

new pulses of the same magmas entering the magma

chamber during the cooling of the pluton. The variabil-

ity in U/Pb ages will increase when the granitic plutons

show different records of assimilation, such as the pres-

ence of various types of xenoliths and abundant

inherited zircons, which are discernible in the Zanjan-

Takab complex. Therefore, our U-Pb results and their

subdivision into two or three age clusters suggest that

magmatism was dominant for a longer time in the deep

crust, with traces of host-rock assimilation during

Fig. 15. U-Pb age vs 176Hf/177Hf ratios for zircons from the Zanjan-Takab Late Neoproterozoic-Cambrian and Cenozoic rocks. Datafor Iranian Cadomian and Cenozoic rocks are from Moghadam et al. (unpublished data) excluding those for Torud-BiarjmandCadomian and Taknar Cenozoic granites, which that are from: (Balaghi Einalou et al., 2014; Moghadam et al., 2015a, 2015b).

2176 Journal of Petrology, 2017, Vol. 58, No. 11

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 36: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

emplacement at crustal levels, in contrast to the cooling

of shallow plutons.

The other issue concerning the data presented here

is the diversity in Hf isotope values (Fig. 15): eHf (t) ��25 toþ10�3 for Cadomian and eHf (t) � �24 toþ18 for

Cenozoic zircons. These heterogeneities might have

two causes; an analytical artifact or a real heterogen-

eity. Artifacts might have two sources; one source re-

lates to the accuracy and precision of the Hf analysis.

This is most likely due to difficulty in assessing the ac-

curacy of the interference corrections for 176Yb and176Lu on176Hf if low-Lu 1 Yb reference zircons have

used to derive the parameters of the correction. This is

not the issue in the case of our analyses as is explained

in the ‘analytical procedures’ and by Griffin et al. (2004)

and Griffin et al. (2000). Moreover, the accuracy of the

Yb and Lu corrections during LA-MC-ICP-MS analysis of

zircon has been demonstrated by repeated analyses of

standard zircons with a range in 176Yb/177Hf and176Lu/177Hf, which show no correlation between176Yb/177Hf and 176Lu/177Hf (Fig. 7d).

Another analytical source of Hf-isotope heterogen-

eity might result from the incorporation of domains

with different Hf-isotope compositions during the

analysis as suggested by Fisher et al. (2014). We have

analyzed zircons for Hf isotopes adjacent to the spots

used for U-Pb but within the same cathodoluminesence-

defined zone, or on the same point analyzed for U-Pb

but with a bigger beam size (55 mm for Hf vs 30 for U-

Pb). This can result in situations where an old (core)

age is combined with a younger (rim) Hf-isotope

composition, as can be seen by several points that

lie well above the depleted mantle reference line in

Fig. 15a.

Real Hf heterogeneities can be produced by several

mechanisms, including mixing of zircon-saturated

melts with different isotopic compositions, partial as-

similation of crustal xenoliths, and inefficient homogen-

ization of magmas in which entrained zircons dissolved

(Shaw & Flood, 2009). In the case of our studied sam-

ples, this is supported by the presence of different types

of crustal enclaves in the studied granitic gneisses and

the abundance of inherited xenocrysts. Variable zircon

d18O values of 10�6-4�5& also confirm the partial assimi-

lation of crustal materials. In addition, there are two

processes competing in a heterogeneous magma

including growth of zircon and Hf isotopic homogeniza-

tion by diffusion through intrusion of different melt

Fig. 16. Histograms of zircon eHf and T(DM)C for the Zanjan-Takab metamorphic rocks. Data for Iran Cadomian and Cenozoic rocksare from Moghadam et al. (unpublished data) excluding those for Torud-Biarjmand Cadomian and Taknar Cenozoic granites, whichare from: (Balaghi Einalou et al., 2014; Moghadam et al., 2015a, 2015b).

Journal of Petrology, 2017, Vol. 58, No. 11 2177

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 37: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

batches into a magma chamber. If the former is faster

than the later, heterogeneous zircon populations of the

type observed here will result. We therefore regard the

variability in Hf-isotope ratios within one time period as

a natural feature, which carries important information

on magmatic processes and the age of the deeper crust.

Timing of Cadomian magmatism in IranThe Cadomian Orogeny comprised a series of complex

sedimentary, magmatic, and tectono-metamorphic

events that spanned the period from mid-

Neoproterozoic (�750 Ma, Cryogenian-Ediacaran) to

the earliest Cambrian (�540-530 Ma) along the periph-

ery of the supercontinent Gondwana (peri-Gondwana)

(Linnemann et al., 2008). However, the Cadomian or-

ogeny spanned a shorter period on the eastern side of

the Gondwana supercontinent (Turkey and Iran), lasting

from Ediacaran (�600 Ma) to early-middle Cambrian

(�510 Ma) (Ustaomer et al., 2009; Badr et al., 2013;

Balaghi Einalou et al., 2014; Moghadam et al., 2015a;

Rossettiet al., 2015). New zircon U-Pb data (this study)

show that the minimum ages for the Cadomian oro-

genic processes in NW Iran are given by the crystalliza-

tion ages of the Zanjan-Takab granitic gneisses at ca

513 and 505 Ma (middle Cambrian). Other Cadomian

exposures in NW Iran, including Salmas-Khoy, are as

old as 568 and �600 Ma (Table 4). The compiled data on

the magmatic zircons show that the Cadomian magma-

tism in Iran and Turkey lasted from<600 to 505 Ma

(Table 4).

Detrital zircon age populations from the Late

Neoproterozoic and Early Paleozoic sedimentary rocks

of Iran and Turkey also track the development of both

Cadomian and Cryogenian magmatism (Horton et al.,

2008; Abbo et al., 2015; Moghadam et al., 2017a)

(Fig. 18a). The source of Cryogenian detrital zircons is

likely to have been the ANS, as Cryogenian crust is rare

in Iran and Turkey. The juvenile Hf isotope signature of

the Cryogenian zircons confirms this suggestion

(Moghadam et al., 2017a). New studies on detrital zir-

cons from the Early Paleozoic (Ordovician-Devonian)

detrital successions of NE Iran show also peaks at

�600-500 Ma (Fig. 18a), reflecting extensive Cadomian

magmatism in northern Gondwana. These detrital zir-

cons are best explained as being derived from the

Cadomian rocks of Iran (Moghadam et al., 2017a). On

the other hand, detrital zircons from the Ediacaran sedi-

mentary successions of Iran show a major Cryogenian-

Ediacaran peak (�0�6 Ga) (our unpublished data) and

this is similar to the detrital zircon populations of the

Arabian-Nubian Shield (Morag et al., 2012) (Fig. 18a).

Studies of detrital and magmatic zircons in the Arabian-

Nubian Shield have confirmed extensive Cadomian and

Cryogenian magmatism with contributions from both

reworked crust and juvenile melts (Ali et al., 2010;

Morag et al., 2011; Avigad et al., 2015; Stern et al.,

2016). The predominant dates at ca 750 and 570 Ma

(Linnemann et al., 2004; 2014) suggest marginal spread-

ing and subduction over a time span of �180 Ma along

the northern edge of Gondwana. The Cadomian sub-

duction regime spanned a shorter time in Iran and

Turkey, lasting from to �<600 to �500 Ma (Moghadam

et al., 2017b). The variable ages obtained from the

Zanjan-Takab complex rocks in this study show quite

prolonged magmatic activity in NW Iran from 500–600

Ma with two major peaks at ca 556 and 597 Ma

(Fig. 18b). This prolonged felsic-dominated magmatism

is characteristic of active continental margins. The de-

trital zircon studies also confirm prolonged magmatism

for �100 Myr from �600 to 500 Ma (Fig. 18c)

(Moghadam et al., 2017a). The presence of the inherited

Cryogenian zircons (with a peak at 639 Ma, Fig. 18b)

Fig. 17. LA-ICPMS analyses of zircons from samples ZN14-12 and ZN14-34, previously analyzed by SIMS.

2178 Journal of Petrology, 2017, Vol. 58, No. 11

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 38: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

Tab

le4:

Su

mm

ary

of

ge

och

em

ica

la

nd

ge

och

ron

olo

gic

alch

ara

cte

rist

ics

of

the

Ca

do

mia

nb

ase

me

nts

inIr

an

an

dT

urk

ey

Nu

mb

er

Lo

cati

on

Lit

ho

log

yP

roto

lith

ag

eE

xh

um

ati

on

(or

coo

lin

g)

ag

eG

eo

che

mic

al

sig

na

ture

Mo

de

la

ge

Ho

stro

cks

Re

fere

nce

s

1T

akn

ar

com

-p

lex

,N

Wo

fT

akn

ar

Gra

nit

oid

s,g

ab

bro

–d

iori

terh

yo

lite

,tu

ff&

ph

yllit

e

53

0–5

56

Ma

?V

AG

,eN

–4to

þ8�4

;eH

f¼–3�4

toþ

8�5

1�1

–1�7

Ga

(Nd

);0�9

–1�6

Ga

(Hf)

Gra

nit

oid

sin

ject

ed

wit

hin

tuff

s/p

hy

llit

es

an

do

lde

rg

ab

bro

s/d

iori

tes

(Ba

gh

erz

ad

eh

et

al.,

20

15

),(M

og

ha

da

me

ta

l.,2

01

7b

)

2K

uh

Sa

rha

ng

i,S

Eo

fT

akn

ar

Gra

nit

icg

ne

iss

&m

eta

gra

nit

e5

36

–57

6M

a?

VA

G,h

igh

–Kca

lc–

alk

alin

e–

Ph

yllit

es,

sta

uro

lite

–m

ica

sch

ists

,g

arn

et

mic

asc

his

ts&

am

-p

hib

olite

s;co

ve

red

by

late

Ed

iaca

ran

–lo

we

rC

am

bri

an

Riz

uF

orm

ati

on

(Ro

sse

ttie

ta

l.,2

01

4)

3T

oru

dG

ran

ito

idg

ne

iss,

me

tag

ran

ite

,m

eta

dio

rite

,g

ab

bro

52

0–5

60

Ma

(de

-tr

ita

lzi

rco

ncl

us-

ter�

54

9–5

51

)

?V

AG

,eN

–2�2

to–5�5

(ort

ho

gn

eis

ses)

&–3�5

to–3�6

(me

ta-

dio

rite

s);eH

f¼–4

3toþ

18

(gra

nit

icg

ne

iss)

,–2�6

to–1

7�7

(pa

rag

ne

iss)

,0�2

to3

0�8

(le

uco

gra

nit

es)

1�0

–1�8

Ga

(Nd

)&

1�0

–3�6

(zir

con

Hf)

Am

ph

ibo

lite

s,p

ara

gn

eis

s,p

eliti

c–p

sam

mit

icsc

his

ts

(Ba

lag

hiE

ina

lou

et

al.,

20

14

;H

oss

ein

ie

ta

l.,

20

15

;M

og

ha

da

me

ta

l.,2

01

5a

)

4S

ag

ha

nd

,ce

n-

tra

lIr

an

Gra

nit

oid

s,o

rth

o–

&p

ara

–gn

eis

s,a

m-

ph

ibo

lite

s,p

eliti

csc

his

ts,m

igm

ati

te

54

7to

52

5M

a(z

ir-

con

U–P

b);

intr

ud

ed

by

47

–49

Ma

old

gra

nit

es

49

to3

0;4

9–4

1&

23

–15

Ma

(ap

a-

tite

an

dzi

rco

n(U

–Th

)/H

e);

19

6–1

20

Ma

(bio

-ti

te)

&3

55

–22

0M

a(h

orn

ble

nd

e)

to2

95

–14

6M

a(b

ioti

te)

(40A

r/3

9A

r)

VA

G;eH

f¼–3�1

toþ

10�9

to–2

2�1

?A

mp

hib

olite

s–p

ara

gn

eis

ses,

pe

liti

csc

his

ts,

me

tase

dim

en

ts

(Ra

me

zan

ia

nd

Tu

cke

r,2

00

3;V

erd

el

et

al.,2

00

7;

Ka

rag

ara

nb

afg

hi

et

al.,2

01

2;

Ka

rga

ran

ba

fgh

ie

ta

l.,2

01

2),

un

pu

blish

ed

da

ta

5Z

ara

nd

&S

irja

nR

hy

olite

,g

ree

ntu

ff,

ort

ho

gn

eis

s&

pa

ra-

gn

eis

s,b

ioti

te–g

ar-

ne

tsc

his

ts

53

0–5

60

Ma

–V

AG

,eH

–6toþ

6�4

–C

ov

ere

d(u

nco

nfo

rm-

ab

ly)

by

late

Ed

iaca

ran

–lo

we

rC

am

bri

an

Riz

u–

De

zoF

orm

ati

on

(sa

nd

sto

ne

s–d

olo

-m

ite

)in

Za

ran

d

un

pu

blish

ed

da

ta

6G

olp

ay

eg

an

Gra

nit

oid

icg

ne

isse

s,m

eta

gra

nit

es

57

8–5

96

Ma

Eo

cen

e(A

r–A

ro

ng

ne

issi

cb

ioti

te)

VA

G?

Pe

liti

csc

his

ts,

am

ph

ibo

lite

s(M

ori

tze

ta

l.,2

00

6;

Ha

ssa

nza

de

he

ta

l.,

20

08

)7

Ch

ad

eg

an

,S

Eo

fG

olp

ay

eg

an

Ort

ho

gn

eis

s,m

eta

gra

nit

e5

68

–58

6M

a?

VA

G,m

elt

mix

ing

be

-tw

ee

nJ

uv

en

ile

�6

00

Ma

old

me

lts

an

dA

rch

ea

ncr

ust

(va

ria

ble

eHf�þ

5to

–5)

1�5

–2�9

Ga

(Hf

mo

de

la

ge

s)P

ara

gn

eis

s,a

mp

hib

o-

lite

s,e

clo

git

e(N

utm

an

et

al.,2

01

3)

8L

ah

ija

nG

ran

ite

,a

lka

lig

ran

ite

55

2–5

72

Ma

??

??

(Ha

ssa

nza

de

he

ta

l.,

20

08

)

(co

nti

nu

ed

)

Journal of Petrology, 2017, Vol. 58, No. 11 2179

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 39: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

Tab

le4:

Co

nti

nu

ed

Nu

mb

er

Lo

cati

on

Lit

ho

log

yP

roto

lith

ag

eE

xh

um

ati

on

(or

coo

lin

g)

ag

eG

eo

che

mic

al

sig

na

ture

Mo

de

la

ge

Ho

stro

cks

Re

fere

nce

s

9Z

an

jan

Gra

nit

icto

ton

aliti

cg

ne

iss,

gra

nit

oid

,m

igm

ati

te,g

ran

ulite

alo

ng

wit

hC

ad

om

ian

rhy

olite

s

50

0–6

00

Ma

wit

ho

lde

r>

60

0M

ag

rain

s,n

oa

ge

on

rhy

olite

Olig

oce

ne

–M

ioce

ne

Ap

ati

te(U

–Th

/He

)&

Ar–

Ar

on

mu

sco

vit

esc

his

ts,

Olig

oce

ne

pa

rtia

lm

elt

ing

inm

igm

ati

tes

VA

G;eN

–0�7

to–3�9

;eH

f¼þ

10�3

to–3

0�5

1–3�4

Ga

(Hf)

Am

ph

ibo

lite

s,p

eliti

csc

his

tsa

nd

Ka

ha

rsi

-lici

cla

stic

sed

ime

nts

(Sto

ckli

et

al.,2

00

4;

Gilg

et

al.,2

00

6;

Ha

ssa

nza

de

he

ta

l.,

20

08

),u

np

ub

lish

ed

da

ta

10

Ta

kab

Gra

nit

oid

s,o

rth

og

ne

iss

53

7–5

43

Ma

?V

AG

?M

eta

pe

liti

csc

his

ts,

am

ph

ibo

lite

s(B

ad

re

ta

l.,2

01

3)

11

Sa

lma

sC

oa

rse

–gra

ine

dA

ug

en

gn

eis

ses,

tro

nd

hje

mit

ic–d

ior-

itic

gn

eis

ses

53

0–5

80

Ma

wit

hin

he

rite

dco

rea

t2�5

Ga

?V

AG

,eH

f¼þ

6�2

to–1

21�2

–2�3

(Hf)

Sch

ists

,a

mp

hib

olite

s,p

ara

gn

eis

ses

(Mo

gh

ad

am

et

al.,

20

15

),u

np

ub

lish

ed

da

ta

12

Kh

oy

Me

tag

ran

ite

s,o

rth

og

-n

eis

ses

&fe

lsic

dik

es

56

6–5

99

Ma

14

6M

a(R

b–S

ris

o-

chro

no

nm

eta

ba

site

s)

VA

G,eN

–2�3

to3�6

,eH

f¼þ

4�6

to–2

7

1�2

–3�2

Ga

(Hf)

Pe

liti

csc

his

ts,a

m-

ph

ibo

lite

s,p

ara

gn

eis

ses

(Azi

zie

ta

l.,2

01

1),

un

-p

ub

lish

ed

da

ta

13

Bit

lis–

Po

turg

em

ass

ifM

eta

gra

nit

e,m

eta

to-

na

lite

,o

rth

og

ne

iss

57

2–5

29

(99

2–6

27

fro

md

etr

ita

lzi

r-co

ns

of

pa

rag

ne

isse

s)

?V

AG

,eN

–41

.T

o–5�1

1�1

–2�1

Ga

(Nd

)S

chis

ts,a

mp

hib

olite

s,e

clo

git

e(U

sta

om

er

et

al.,2

00

9;

Ust

ao

me

re

ta

l.,

20

12

)

14

De

rik

An

de

site

s,rh

yo

lite

sa

nd

ba

salt

s,w

ith

vo

lca

no

cla

stic

55

9–5

81

Ma

–V

AG

,eN

d¼þ

0�1

5to

þ4�2

01�3

–1�4

Ga

(Nd

)U

nco

nfo

rma

bly

ov

er-

lain

by

Ea

rly

Ca

mb

ria

np

lay

ase

dim

en

ts

(Gu

rsu

et

al.,2

01

5)

15

Ista

nb

ulte

r-ra

ne

sin

clu

din

gS

aka

rya

,Is

tan

bu

l&

Istr

an

cazo

ne

s

Me

tag

ran

ite

s5

34

–54

6M

a?

VA

G?

La

teN

eo

pro

tero

zoic

me

tam

orp

hic

rock

s(Y

ilm

az

Sa

hin

et

al.,

20

14

)

16

Sa

nd

ikli

Qu

art

zrh

yo

lite

s,m

eta

gra

nit

es

54

1–5

43

Ma

?V

AG

??

(Kro

ne

ra

nd

Se

ng

or,

19

90

;G

urs

ue

ta

l.,

20

04

)1

7M

en

de

res

Gra

nit

oid

icg

ne

iss,

au

ge

ng

ne

iss,

me

tag

ran

ite

53

7–5

56

Ma

?V

AG

?S

chis

ts,a

mp

hib

olite

s,p

ara

gn

eis

ses

(He

tze

le

ta

l.,1

99

8;

Lo

os

an

dR

eis

chm

an

n,1

99

9)

2180 Journal of Petrology, 2017, Vol. 58, No. 11

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 40: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

within the Zanjan-Takab Cadomian magmatic rocks

studied here may show that magmatism in the NW part

of Iran had already started in Cryogenian time.

Implications for Cenozoic magmatism in NW IranAn important question concerning the genesis and evo-

lution of the Late Eocene-Late Oligocene (38-23 Ma)

Zanjan-Takab magmatic rocks is how these are related

to igneous rocks of similar age in the Urumieh-Dokhtar

Magmatic Belt (UDMB). The Eocene-Oligocene period

in Iran was a time of regional extension, manifested by

formation of core complexes (Fig. 2) (Verdel et al., 2007;

Kargaranbafghi et al., 2012). This was accompanied by

widespread igneous activity, best known from the

UDMB of central Iran (Fig. 2). (U-Th)/He geochronology

(Stockli, 2004) as well as Ar-Ar dating (20�1 6 0�60–

20�3 6 0�05 Ma) of muscovite schists (Gilg et al., 2006)

from footwall rocks reveal rapid Middle Miocene ex-

humation of the Zanjan-Takab core complex, in re-

sponse to crustal thickening and orogenic collapse

related to the initial Arabia-Iran continental collision

(Stockli, 2004; Gilg et al., 2006).

Core-complex formation is further recorded by the

partial melting of middle-crust migmatites at ca 25 Ma

(Moghadam et al., 2016a). The widespread Eocene-

Oligocene igneous rocks from Zanjan-Takab are part of

the Cenozoic UDMB magmatic activity. The eHf (t) val-

ues of the Zanjan-Takab Cenozoic rocks range from �24

toþ18 with TCDM of �2�6-0�5 Ga, showing that interaction

of juvenile magmas with older continental crust has

been a major factor in the generation of these magmatic

rocks. The continental-crust contribution to the Zanjan-

Takab Cenozoic rocks is also confirmed by high zircon

d18O values of 8�3 to 13�7 & (Fig. 19). Furthermore, as

seen in Fig. 11, most of the Cenozoic UDMB magmatic

rocks plot between juvenile melts of arc tholeiite-like

mantle and Cadomian crust, suggesting that deep crus-

tal AFC processes, at various degrees, played a key role

in the formation of the Cenozoic magmatic rocks.

Among the Cenozoic rocks analyzed here, the Qozlu-

Zaki Kandi rocks have more juvenile signatures in terms

of both the bulk-rock Nd and zircon Hf isotopes. Our Hf

isotope data (Fig. 16a) for the Cenozoic (53-23 Ma) igne-

ous rocks of the Zanjan-Takab complex indicate

Fig. 18. (a) Cumulative-probability plots for U-Pb ages of detrital zircons from Iran and the Arabian-Nubian Shield. Data taken from:(Horton et al., 2008; Moghadam et al., 2017a) for Iran and (Morag et al., 2012) for the Arabian-Nubian Shield. (b) Cumulative-prob-ability histogram showing the age distribution of the Zanjan-Takab Cadomain rocks. (c) A schematic geological time-scale showingthe different magmatic and sedimentary events during the Cadomian evolution of Iran.

Journal of Petrology, 2017, Vol. 58, No. 11 2181

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 41: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

that these rocks have a strong mantle signature

(eHf (t)>þ5) with less input of Cadomian or Archean

crust.

The compiled Hf isotope data (Fig. 16b) confirm con-

tributions of Cadomian and Archean lower-middle con-

tinental crust and mantle melts to form the UDMB

melts. However, two factors should be considered; (a)

in some cases juvenile melts, without significant contri-

bution from the crust, are responsible for crustal growth

and magmatism during the Cenozoic; (b) the age of the

lower-middle continental crust probably varies across

Iran, and seems to be much older in some parts (Shafaii

Moghadam et al., unpublished data); more Hf-isotope

data on the Cenozoic plutons are needed to map this in

detail.

Crustal growth historyGeochemical evidence (Figs 8–10) indicates that the

Cadomian rocks we have studied formed in an arc set-

ting. This is indicated by the low YþNb content of these

rocks (Fig. 8), enrichment in LREE (compared to HREE,

Fig. 9), negative anomalies in Nb-Ta-Ti and enrichment

in large ion lithophile elements such as Th and U

(Fig. 10). Variable zircon U-Pb ages and abundant in-

herited cores reflect different pulses of magma injected

during the formation of a long-lasting arc. This is con-

firmed also by the presence of various types of xeno-

liths and variable bulk-rock eNd values. Moreover, the

U-Pb ages and Hf-isotope compositions indicate a

period of crustal growth and recycling of older contin-

ental crust during Cadomian times (ca 620-505 Ma)

along the whole of northern Gondwana. Cryogenian-

Tonian (630< t<1000 Ma) to Archean inherited cores

and zircon xenocrysts are common in the Cadomian

rocks of Iran, as emphasized by this study. It seems that

middle-lower crust older than>0�6 Ga and even as old

as 2�5 Ga is present in Iran and Turkey.

The data obtained from this study show that the

Cadomian basement rocks (ca 620-505 Ma) of Iran have

eHf (t) values ranging from depleted-mantle values to

very low values, indicating interaction of juvenile mag-

mas with Archean continental crust (Fig. 15). Such a

data set suggests a geotectonic setting starting with an

Andean-type marginal continental arc that evolved to

an orogenic system of Western Pacific style, with a con-

tinental arc and a back-arc basin developed on a

thinned and stretched continental crust, as proposed by

(Linnemann et al., 2014). The variability of Hf-isotope

data in the Cadomian rocks (and even eNd, Fig. 11)

along northern Gondwana suggests that the Cadomian

magmatism involved juvenile magmas that were conta-

minated with varying amounts of Eburnian to Archean

crust (Linnemann et al., 2014). Zircon Hf-isotope com-

positions of most of the Cadomian rocks (Figs 15 and

16) show that Archean crust (3�5-2�5 Ga in age) is a likely

candidate. Another alternative for the generation of the

Cadomian granitoid rocks with strongly negative eHf (t)

values is the remelting of Archean crust due to the heat

supplied by basaltic melts pooling beneath the lower

crust.

Although the Neoproterozoic is considered as a crit-

ical episode in a series of tectono-magmatic events in

northern Gondwana (Stern, 2008), the Cenozoic clearly

is also another main episode of magmatism and crustal

growth in Iran and Turkey. Zircon Hf-isotope data pre-

sented here demonstrate that some Eocene magmas

represent juvenile additions to the crust, but that during

this time, in most cases, a Cadomian to Archean base-

ment was being reworked. Although zircon Hf-isotope

and bulk-rock Nd-isotope model ages (plus the inherit-

ance of Cadomian zircons) suggest that mixing of ju-

venile melts with Cadomian crust is involved in the

genesis of Eocene granites in Iran (Moghadam et al.,

2015b), this study (especially the zircon Hf model ages)

shows that reworking of crust as old as 2�6 Ga is an al-

ternative (Fig. 16b).

Subduction-related Cenozoic magmatism: aflare-up modelAlthough 59-56 Ma old adakitic rocks have been re-

ported from west Takab (Badr et al., 2013), most Late

Eocene-Late Oligocene Zanjan-Takab rocks have calc-

alkaline characteristics, marked by depletion in Nb-

Ta-Ti and enrichment in LREE and LILE. The Cenozoic

rocks are related to Tethyan subduction and hence crus-

tal extension in the Iranian plateau, which caused the

formation of core complexes in central-NW Iran. The

timing of oceanic closure and the initiation of collision

between Iran and Arabia has been suggested as Late

Eocene-Oligocene (30 6 5 Ma; (McQuarrie & van

Hinsbergen, 2013; Agard et al., 2005)), which is consist-

ent with extension, core-complex formation and rapid

Fig. 19. d18O vs eHf(t) for the Zanjan-Takab magmatic rocks(modified after Kemp et al., 2007), showing curves correspond-ing to magma evolution by crustal assimilation-fractional crys-tallization (AFC). Hfpm/Hfc¼ ratio of Hf concentration in theparental magma (pm) to Hf concentration in crustal VC rocks.For comparison data from Cadomian rocks of Torud, Salmas,Taknar and Zarand are also shown (data from Moghadamet al., 2016b).

2182 Journal of Petrology, 2017, Vol. 58, No. 11

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 42: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

exhumation of the Iranian plateau at this time (Francois

et al., 2014). A major exhumation stage also is reported

from �25-17 Ma in central Iran, based on apatite (U-Th/

He) and fission track dating (Francois et al., 2014). In

this scenario, the Late Oligocene-Early Miocene mag-

matic rocks are related to syn-collisional magmatism

that seems to be more juvenile than the Eocene mag-

matic rocks, although our limited dataset does not per-

mit a detailed discussion. The arc-like features of the

Zanjan-Takab granitoids (such as Nb-Ta depletion rela-

tive to LREE), their I-type signatures and their isotopic

characteristics are consistent with their generation in a

subduction-related setting.During Late Cretaceous-Early Oligocene times, con-

tinuous convergence between Arabia and Iran helped

close the southern Neotethyan basin, emplacing the

Late Cretaceous Zagros Iranian ophiolites during the

transition of SW Eurasia from a compressional to an ex-

tensional convergent plate margin (Agard et al., 2011;

Rossetti et al., 2014). In Iran this extension, including

closure of the southern Neotethyan basin, was followed

by orogenic collapse during the Late Eocene-Early

Oligocene. Late Eocene-Early Oligocene extension and

lithospheric thinning may have been accompanied by

decompression melting of upwelling hydrous astheno-

sphere (Verdel et al., 2007; 2011). Late Eocene-Early

Oligocene extension may also have been accompanied

by lithospheric delamination, further stimulating exten-

sion and rapid exhumation of the central Iranian core

complexes.

The Eocene - Oligocene magmatic peak represents a

magmatic ‘flare-up’ (Verdel et al., 2011) during this �30

Myr time period (Chiu et al., 2013). Magmatic flare-ups

are common in extensional settings above subduction

zones and, or, in post-collisional settings and are a

major feature of the Eocene-Oligocene magmatic his-

tory of Iran. Break-off of the subducted continent-ocean

transitional lithosphere beneath the Zagros Mountains

(e.g. (Molinaro et al., 2005) and, or, lithospheric thicken-

ing with partial delamination to the northeast of the

Zagros (e.g. (Hatzfeld & Molnar, 2010) are suggested

to have caused the Cenozoic-Quaternary magmatic

flare-up throughout Iran. The magmatic flare-up shows

a noticeable climax in Eocene time and had been dimin-

ishing since the late Oligocene–early Miocene (25-20

Ma) and a magmatic ‘lull’ re–established. The collision

generated more juvenile magmas with asthenospheric

signatures and, or, adakitic magmas, which have been

linked to the break–off of the Tethyan subducted slab

(Omrani et al., 2008). The younger pulses of magma-

tism in UDMB have been linked to the porphyry

Cu 6 Mo 6 Au mineralization (Aghazadeh et al., 2015).

Tectono-magmatic implications: Cadomian arcvs back-arc modelsFollowing the progressive assembly of the Gondwana

supercontinent from the late early Neoproterozoic

(Collins & Pisarevsky, 2005), Cadomian arc-type

magmatism and crustal evolution during the Late

Neoproterozoic-Early Cambrian tectono-magmatic

event led to the development of a continental (Andean-

type) convergent margin and arc. The Cadomian

convergent margin stretched for several thousand kilo-

meters along the north-northeast periphery of

Gondwana including Iran, Turkey and the Bohemian,

Armorican, and Iberian Massifs (Linnemann et al., 2008;

2014; Ustaomer et al., 2009; Pereira et al., 2011; Yilmaz

Sahin et al., 2014; Moghadam et al., 2015a; Orejana

et al., 2015). The Cadomian Orogen was a marginal oro-

genic system of Western Pacific style, formed during

the late stage of, and immediately after, the Pan -

African orogeny (e.g. Drost et al., 2004; 2011;

Linnemann et al., 2008). The latter resulted from colli-

sions among cratonic blocks during the amalgamation

of Gondwana (Nance et al., 1991; Black et al., 2004).

Linnemann et al. (2014) considered an arc-backarc-

basin model for the evolution of northern Gondwana

during Ediacaran-Cadomian times. In this scenario, the

back-arc basin was floored by thinned continental crust

and flanked by a magmatic arc to the ‘north’ and by a

cratonic sediment source to the ‘south’, toward the

West African Craton. According to this model, the back-

arc spreading started at ca 570 Ma and was associated

with E-MORB-like pillow lavas, andesites, calc-alkaline

meta-basalts and black cherts (Buschmann et al., 2001).

Nance & Murphy (1994) proposed a model in which

oblique subduction beneath the arc led to strike-slip

shearing and opening of a series of small back-arc

basins. These basins continued to open, producing the

Rheic Ocean beginning at �550 Ma, and allowing the

arc fragments to migrate northward, where they

accreted to the southern margin of Eurasia. Younger

(<�550 Ma) Cadomian ophiolites may be remnants of

these marginal basins (Savov et al., 2001; Kounov et al.,

2012; von Raumer et al., 2015), but older Cadomian

(>�550 Ma) ones are likely to be related to initiation of

a Cadomian subduction zone along the margins of

Greater Gondwana. ‘Suspect’ Cadomian ophiolites in

Iran can be traced in two regions, Posht-e-Badam

(Saghand) and Zanjan-Takab region. There are no U-Pb

data on these ophiolites, but their association with

Cadomian metamorphic rocks would be evidence for a

Late Neoproterozoic age. In Posht-e-Badam, the

Cadomian ophiolite includes metamorphosed perido-

tites, meta-lavas, marble and rodingites. The compos-

itions of the lavas are similar to those found in back-arc

basins (Figs 9 and 10). In Zanjan-Takab, the ophiolite in-

cludes metamorphosed peridotites and metamor-

phosed magmatic rocks (tremolite-actinolite schists).

Some of the geochemical signatures, including deple-

tion in bulk-rock HFSE and enrichment in LREE and

LILE, variable zircon Hf as well as bulk-rock Nd isotopes,

inheritance of old zircons and the I-type nature of re-

worked Late Neoproterozoic-Cambrian granites, require

consideration of an arc model for the generation of the

Cadomian magmatism in NW Iran.

Journal of Petrology, 2017, Vol. 58, No. 11 2183

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 43: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

In contrast, the presence of ophiolitic rocks and igne-

ous rocks with juvenile zircons can provide evidence of

an incipient arc or back-arc basin for the generation of

these rocks. This study suggests that the most probable

geotectonic setting for the Cadomian terranes of NE

Iran is a prolonged continental magmatic arc and neigh-

boring back-arc basin, during late Neoproterozoic times

(Fig. 20). This continental magmatic arc was built

through several magmatic pulses at ca 570-550 and

520-500 Ma. The mantle contribution to the arc magmas

seems to be variable through time, which may show

thinning of a previous thickened crust, where the influ-

ence of mantle materials is higher. This is consistent

with an arc and incipient back-arc basin setting, de-

veloped on an old (Archean) and thickened continental

basement (Casas et al., 2015). Pooling of juvenile

mantle melts beneath the older (Archean) crust led to

remelting of that old crust and then interaction of crus-

tal melts and juvenile melts through MASH (melting, as-

similation, storage and homogenization) processes,

generating several magmatic pulses with different iso-

topic signatures.

CONCLUSIONS

Zircon U-Pb geochronology reveals that the Zanjan-

Takab metamorphic rocks in NW Iran have different

ages; metamorphosed gneisses have Late

Neoproterozoic-middle Cambrian ages, whereas meta-

granitoids have Cenozoic ages. The U-Pb ages show

that these rocks represent Cadomian igneous activity in

the peri-Gondwana region and the Cenozoic magmatic

Fig. 20. Summary of the tectonic evolution of Cadomian terranes within Iran (and North Gondwana) (see text for explanations).

2184 Journal of Petrology, 2017, Vol. 58, No. 11

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 44: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

flare-up in the UDMB, respectively. Zircon Hf model ages

for nearly all Cadomian rocks indicate different inter-

actions of juvenile magmas with a Paleoproterozoic-

Archean continental crust. The Cenozoic rocks also show

involvement of Cadomian to Archean middle-lower

crust. An arc-backarc tectono-magmatic scenario can be

suggested for the generation and evolution of the

Cadomian rocks from NW Iran, whereas Cenozoic exten-

sion and associated magmatic ‘flare-up’ are considered

responsible for the Late Eocene-Late Oligocene granites

of NW Iran.

FUNDING

This is contribution 993 from the ARC Centre of

Excellence for Core to Crust Fluid Systems (http://www.

ccfs.mq.edu.au), 1168 from the GEMOC Key Centre

(http://www.gemoc.mq.edu.au), and 1303 from UTD

Geosciences. The LA-ICP-MS and zircon Hf-isotope data

were obtained using instrumentation funded by DEST

Systemic Infrastructure Grants, ARC LIEF, NCRIS/

AuScope, industry partners and Macquarie University.

SIMS U-Pb zircon dating was funded by the Chinese

Academy of Sciences (grants XDB18000000 and

2015VEC063). Sr and Nd isotopic analyses were done in

the scope of project Geobiotec (UID/GEO/04035/2013),

funded by FCT (Portugal).

ACKNOWLEDGMENTS

T. Andersen, F. Rossetti and two anonymous reviewers

are thanked for constructive discussions. Editorial han-

dling by A. Skelton is appreciated. All logistical support

for field studies in NW Iran came from Damghan

University.

SUPPLEMENTARY DATA

Supplementary data are available at Journal of

Petrology online.

REFERENCES

Abbo, A., Avigad, D., Gerdes, A. & Gungor, T. (2015). Cadomian

basement and Paleozoic to Triassic siliciclastics of the

Taurides (Karacahisar dome, south-central Turkey): paleo-

geographic constraints from U-Pb-Hf in zircons. Lithos 227,

122–139.Agard, P., Omrani, J., Jolivet, L. & Mouthereau, F. (2005).

Convergence history across Zagros (Iran): constraints from

collisional and earlier deformation. International Journal of

Earth Sciences 94, 401–419.Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B.,

Spakman, W., Monie, P., Meyer, B. & Wortel, R. (2011).

Zagros orogeny: a subduction-dominated process.

Geological Magazine 148, 692–725.Aghazadeh, M., Castro, A., Badrzadeh, Z. & Vogt, K. (2011).

Post-collisional polycyclic plutonism from the Zagros hinter-

land: the Shaivar Dagh plutonic complex, Alborz belt, Iran.

Geological Magazine 148, 980–1008.

Aghazadeh, M., Hou, Z., Badrzadeh, Z. & Zhou, L. (2015).

Temporal–spatial distribution and tectonic setting of por-phyry copper deposits in Iran: constraints from zircon U–Pband molybdenite Re–Os geochronology. Ore GeologyReviews 70, 385–406.

Ahmadian, J., Haschke, M., McDonald, I., Regelous, M.,RezaGhorbani, M., Emami, M. H. & Murata, M. (2009). Highmagmatic flux during Alpine-Himalayan collision: con-straints from the Kal-e-Kafi complex, central Iran. GeologicalSociety of America Bulletin 121, 857–868.

Ali, K. A., Stern, R. J., Manton, W. I., Kimura, J. I., Whitehouse,M. J., Mukherjee, S. K., Johnson, P. R. & Griffin, W. R. (2010).Geochemical, U-Pb zircon, and Nd isotope investigations ofthe Neoproterozoic Ghawjah Metavolcanic rocks,Northwestern Saudi Arabia. Lithos 120, 379–392.

Allen, P. A. (2007). The huqf supergroup of Oman: basin devel-opment and context for neoproterozoic glaciation.Earth-Science Reviews 84(3–4), 139–185.

Allen, P. A., Leather, J. & Brasier, M. D. (2004). The

Neoproterozoic Fiq glaciation and its aftermath, Huqf super-group of Oman. Basin Research 16, 507–534.

Andersen, T. (2002). Correction of common lead in U-Pb ana-lyses that do not report Pb-204. Chemical Geology 192(1–2),

59–79.Asiabanha, A. & Foden, J. (2012). Post-collisional transition

from an extensional volcano-sedimentary basin to a contin-ental arc in the Alborz Ranges, N-Iran. Lithos 148, 98–111.

Avigad, D., Weissbrod, T., Gerdes, A., Zlatkin, O., Ireland, T. R.& Morag, N. (2015). The detrital zircon U–Pb–Hf fingerprintof the northern Arabian–Nubian Shield as reflected by a LateEdiacaran arkosic wedge (Zenifim Formation; subsurfaceIsrael). Precambrian Research 266, 1–11.

Babakhani, A. R. & Ghalamghash, J. (1991). 1/100000Geological Map of Takht-e-Soleyman. In Ghomashi, A. (ed.)1/100000 Series, Sheet 5463. Tehran, Iran: GeologicalSurvey of Iran.

Badr, M. J., Collins, A. S., Masoudi, F., Cox, G. & Mohajjel, M.(2013). The U-Pb age, geochemistry and tectonic signifi-cance of granitoids in the Soursat Complex, Northwest Iran.Turkish Journal of Earth Sciences 22, 1–31.

Bagherzadeh, R. M., Karimpour, M. H., Farmer, G. L., Stern, C.R., Santos, J. F., Rahimi, B. & Shahri, M. H. (2015). U–Pb zir-con geochronology, petrochemical and Sr–Nd isotopic char-acteristic of Late Neoproterozoic granitoid of the BornawardComplex (Bardaskan-NE Iran). Journal of Asian EarthSciences 111, 54–71.

Balaghi Einalou, M., Sadeghian, M., Zhai, M., Ghasemi, H. &Mohajjel, M. (2014). Zircon U–Pb ages, Hf isotopes and geo-chemistry of the schists, gneisses and granites in DelbarMetamorphic-Igneous Complex, SE of Shahrood (Iran): im-

plications for Neoproterozoic geodynamic evolutions ofCentral Iran. Journal of Asian Earth Sciences 92, 92–124.

Begg, G. C., Griffin, W. L., Natapov, L. M., O’Reilly, S. Y., Grand,S. P., O’Neill, C. J., Hronsky, J. M. A., Djomani, Y. P., Swain,C. J., Deen, T. & Bowden, P. (2009). The lithospheric archi-

tecture of Africa: seismic tomography, mantle petrology,and tectonic evolution. Geosphere 5, 23–50.

Berberian, M. & King, G. C. P. (1981). Towards a paleogeog-raphy and tectonic evolution of Iran. Canadian Journal of

Earth Sciences 18, 210–265.Black, L. P., Calver, C. R., Seymour, D. B. & Reed, A. (2004).

SHRIMP U-Pb detrital zircon ages from Proterozoic and earlyPalaeozoic sandstones and their bearing on the early geolo-gical evolution of Tasmania. Australian Journal of Earth

Sciences 51, 885–900.Bowring, S. A., Grotzinger, J. P., Condon, D. J., Ramezani, J.,

Newall, M. J. & Allen, P. A. (2007). Geochronologic

Journal of Petrology, 2017, Vol. 58, No. 11 2185

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 45: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

constraints on the chronostratigraphic framework of the

neoproterozoic Huqf Supergroup, Sultanate of Oman.

American Journal of Science 307, 1097–1145.Buschmann, B., Nasdala, L., Jonas, P., Linnemann, U. &

Gehmlich, M. (2001). SHRIMP U-Pb dating of tuff-derived

and detrital zircons from Cadomian marginal basin frag-

ments (Neoproterozoic) in the northeastern Saxothuringian

Zone (Germany). Neues Jahrbuch Fur Geologie Und

Palaontologie-Monatshefte (6), 321–342.Casas, J. M., Navidad, M., Castineiras, P., Liesa, M., Aguilar, C.,

Carreras, J., Hofmann, M., Gartner, A. & Linnemann, U.

(2015). The Late Neoproterozoic magmatism in the

Ediacaran series of the Eastern Pyrenees: new ages and iso-

tope geochemistry. International Journal of Earth Sciences

104, 909–925.Chang, Z. S., Vervoort, J. D., McClelland, W. C. & Knaack, C.

(2006). U-Pb dating of zircon by LA-ICP-MS. Geochemistry,

Geophysics, Geosystems Geophysics 7(5).Chapman, A. D., Luffi, P. I., Saleeby, J. B. & Petersen, S. (2011).

Metamorphic evolution, partial melting and rapid exhum-

ation above an ancient flat slab: insights from the San

Emigdio Schist, southern California. Journal of

Metamorphic Geology 29, 601–626.Chiu, H.-Y., Chung, S.-L., Zarrinkoub, M. H., Mohammadi, S. S.,

Khatib, M. M. & Iizuka, Y. (2013). Zircon U–Pb age con-

straints from Iran on the magmatic evolution related to

Neotethyan subduction and Zagros orogeny. Lithos

162–163, 70–87.Collins, A. S. & Pisarevsky, S. A. (2005). Amalgamating eastern

Gondwana: the evolution of the Circum-Indian Orogens.

Earth-Science Reviews 71, 229–270.Corfu, F. (2004). U-Pb age, setting and tectonic significance of

the anorthosite-mangerite-charnockite-granite suite,

Lofoten-Vesteralen, Norway. Journal of Petrology 45(9),

1799–1819.Corfu, F., Hanchar, J. M., Hoskin, P. W. O. & Kinny, P. (2003).

Atlas of zircon textures. Zircon 53, 469–500.Dalziel, I. W. D. (1997). Neoproterozoic-Paleozoic geography

and tectonics: review, hypothesis, environmental specula-

tion. Geological Society of America Bulletin 109(1), 16–42.Depaolo, D. J. (1981). Trace-element and isotopic effects of

combined wallrock assimilation and fractional crystalliza-

tion. Earth and Planetary Science Letters 53(2), 189–202.Ding, H., Zhang, Z., Dong, X., Yan, R., Lin, Y. & Jiang, H. (2015).

Cambrian ultrapotassic rhyolites from the Lhasa terrane,

south Tibet: evidence for Andean-type magmatism along

the northern active margin of Gondwana. Gondwana

Research 27(4), 1616–1629.Drost, K., Gerdes, A., Jeffries, T., Linnemann, U. & Storey, C.

(2011). Provenance of Neoproterozoic and early Paleozoic si-

liciclastic rocks of the Tepla-Barrandian unit (Bohemian

Massif): evidence from U-Pb detrital zircon ages. Gondwana

Research 19(1), 213–231.Drost, K., Linnemann, U., McNaughton, N., Fatka, O., Kraft, P.,

Gehmlich, M., Tonk, C. & Marek, J. (2004). New data on the

Neoproterozoic—Cambrian geotectonic setting of the

Tepla-Barrandian volcano-sedimentary successions: geo-

chemistry, U-Pb zircon ages, and provenance (Bohemian

Massif, Czech Republic). International Journal of Earth

Sciences 93, 742–757.Faramarzi, N. S., Amini, S., Schmitt, A. K., Hassanzadeh, J.,

Borg, G., McKeegan, K., Razavi, S. M. H. & Mortazavi, S. M.

(2015). Geochronology and geochemistry of rhyolites from

Hormuz Island, southern Iran: a new record of Cadomian arc

magmatism in the Hormuz Formation. Lithos 236–237,

203–211.

Fisher, C. M., Vervoort, J. D. & DuFrane, S. A. (2014). Accurate

Hf isotope determinations of complex zircons using the

“laser ablation split stream” method. Geochemistry

Geophysics Geosystems 15, 121–139.Francois, T., Burov, E., Agard, P. & Meyer, B. (2014). Buildup of

a dynamically supported orogenic plateau: numerical mod-

eling of the Zagros/Central Iran case study. Geochemistry

Geophysics Geosystems 15, 2632–2654.Gao, S., Rudnick, R. L., Yuan, H. L., Liu, X. M., Liu, Y. S., Xu, W.

L., Ling, W. L., Ayers, J., Wang, X. C. & Wang, Q. H. (2004).

Recycling lower continental crust in the North China craton.

Nature 432(7019), 892–897.Garfunkel, Z. (2004). Origin of the Eastern Mediterranean basin:

a reevaluation. Tectonophysics 391(1–4), 11–34.Garfunkel, Z. (2015). The relations between Gondwana and the

adjacent peripheral Cadomian domain—constrains on the

origin, history, and paleogeography of the peripheral do-

main. Gondwana Research 28, 1257–1281.Geisler, T., Vinx, R., Martin-Gombojav, N. & Pidgeon, R. T.

(2005). Ion microprobe (SHRIMP) dating of detrital zircon

grains from quartzites of the Eckergneiss Complex, Harz

Mountains (Germany): implications for the provenance and

the geological history. International Journal of Earth

Sciences 94, 369–384.Gessner, K., Gallardo, L. A., Markwitz, V., Ring, U. & Thomson,

S. N. (2013). What caused the denudation of the Menderes

Massif: review of crustal evolution, lithosphere structure,

and dynamic topography in southwest Turkey. Gondwana

Research 24(1), 243–274.Gessner, K., Ring, U., Johnson, C., Hetzel, R., Passchier, C. W. &

Gungor, T. (2001). An active bivergent rolling-hinge detach-

ment system: central Menderes metamorphic core complex

in western Turkey. Geology 29(7), 611–614.Gilg, H. A., Boni, M., Balassone, G., Allen, C. R., Banks, D. &

Moore, F. (2006). Marble-hosted sulfide ores in the

Angouran Zn-(Pb-Ag) deposit, NW Iran: interaction of sedi-

mentary brines with a metamorphic core complex.

Mineralium Deposita 41(1), 1–16.Griffin, W., Powell, W., Pearson, N. & O’reilly, S. (2008).

GLITTER: data reduction software for laser ablation ICP-MS.

In: Laser Ablation-ICP-MS in the Earth Sciences.

Mineralogical Association of Canada Short Course Series.

Vol. 40. Canada: Mineralogical Association of Canada, pp.

204–207.Griffin, W. L., Belousova, E. A., Shee, S. R., Pearson, N. J. &

O’Reilly, S. Y. (2004). Archean crustal evolution in the north-

ern Yilgam Craton: U-Pb and Hf-isotope evidence from de-

trital zircons. Precambrian Research 131, 231–282.Griffin, W. L., Pearson, N. J., Belousova, E., Jackson, S. E., van

Achterbergh, E., O’Reilly, S. Y. & Shee, S. R. (2000). The Hf

isotope composition of cratonic mantle: LAM-MC-ICPMS

analysis of zircon megacrysts in kimberlites. Geochimica et

Cosmochimica Acta 64, 133–147.Griffin, W. L., Wang, X., Jackson, S. E., Pearson, N. J., O’Reilly,

S. Y., Xu, X. & Zhou, X. (2002). Zircon chemistry and magma

mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and

Pingtan igneous complexes. Lithos 61(3–4), 237–269.Gu, P. Y., He, S. P., Li, R. S., Shi, C., Dong, Z. C., Zha, X. F., Wu, J.

L. & Wang, Y. (2013). Geochemical features and tectonic sig-

nificance of granitic gneiss of Laguigangri metamorphic

core complexes in southern Tibet. Acta Petrologica Sinica

29, 756–768.Gursu, S., Goncuoglu, M. C. & Bayhan, H. (2004). Geology and

geochemistry of the pre-Early Cambrian rocks in the

Sandikli area: implications for the Pan-African evolution of

NW Gondwanaland. Gondwana Research 7, 923–935.

2186 Journal of Petrology, 2017, Vol. 58, No. 11

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 46: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

Gursu, S., Moller, A., Goncuoglu, M. C., Koksal, S., Demircan,

H., Koksal, F. T., Kozlu, H. & Sunal, G. (2015). Neoproterozoiccontinental arc volcanism at the northern edge of theArabian Plate, SE Turkey. Precambrian Research 258,208–233.

Gutierrez-Alonso, G., Murphy, J. B., Fernandez-Suarez, J. &Hamilton, M. A. (2008). Rifting along the northern

Gondwana margin and the evolution of the Rheic Ocean: aDevonian age for the El Castillo volcanic rocks (Salamanca,Central Iberian Zone). Tectonophysics 461(1–4), 157–165.

Hajialioghli, R., Moazzen, M., Droop, G. T. R., Oberhansli, R.,Bousquet, R., Jahangiri, A. & Ziemann, M. (2007).Serpentine polymorphs and P-T evolution of metaperido-

tites and serpentinites in the Takab area, NW Iran.Mineralogical Magazine 71, 203–222.

Hassanzadeh, J., Stockli, D. F., Horton, B. K., Axen, G. J.,Stockli, L. D., Grove, M., Schmitt, A. K. & Walker, J. D. (2008).U-Pb zircon geochronology of late Neoproterozoic-EarlyCambrian granitoids in Iran: implications for paleogeog-

raphy, magmatism, and exhumation history of Iranian base-ment. Tectonophysics 451, 71–96.

Hatzfeld, D. & Molnar, P. (2010). Comparisons of the kinematicsand deep structures of the Zagros and Himalaya and of theIranian and Tibetan Plateaus and Geodynamic Implications.Reviews of Geophysics 48(2).

Hetzel, R., Romer, R. L., Candan, O. & Passchier, C. W. (1998).Geology of the Bozdag area, central Menderes massif, SWTurkey: Pan-African basement and Alpine deformation.Geologische Rundschau 87, 394–406.

Horton, B. K., Hassanzadeh, J., Stockli, D. F., Axen, G. J., Gillis,R. J., Guest, B., Amini, A., Fakhari, M. D., Zamanzadeh, S. M.& Grove, M. (2008). Detrital zircon provenance ofNeoproterozoic to Cenozoic deposits in Iran: implicationsfor chronostratigraphy and collisional tectonics.Tectonophysics 451(1–4), 97–122.

Hosseini, S. H., Sadeghian, M., Zhai, M. & Ghasemi, H. (2015).Petrology, geochemistry and zircon U–Pb dating ofBand-e-Hezarchah metabasites (NE Iran): An evidence forback-arc magmatism along the northern active margin ofGondwana. Chemie Der Erde-Geochemistry 75, 207–218.

Hoskin, P. W. O. & Black, L. P. (2000). Metamorphic zircon for-

mation by solid-state recrystallization of protolith igneouszircon. Journal of Metamorphic Geology 18, 423–439.

Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A.(2004). The application of laser ablation-inductively coupledplasma-mass spectrometry to in situ U-Pb zircon geochron-ology. Chemical Geology 211, 47–69.

Jamali, H., Dilek, Y., Daliran, F., Yaghubpur, A. & Mehrabi, B.(2010). Metallogeny and tectonic evolution of the CenozoicAhar-Arasbaran volcanic belt, northern Iran. InternationalGeology Review 52, 608–630.

Karagaranbafghi, F., Foeken, J. P. T., Guest, B. & Stuart, F. M.(2012). Cooling history of the Chapedony metamorphic corecomplex, Central Iran: implications for the Eurasia–Arabiacollision. Tectonophysics 524–525, 100–107.

Kargaranbafghi, F. & Neubauer, F. (2015). Lithospheric thinningassociated with formation of a metamorphic core complex

and subsequent formation of the Iranian plateau. GSAToday 25, 4–8.

Kargaranbafghi, F., Neubauer, F. & Genser, J. (2015). RapidEocene extension in the Chapedony metamorphic core com-plex, Central Iran: constraints from Ar-40/Ar-39 dating.Journal of Asian Earth Sciences 106, 156–168.

Kargaranbafghi, F., Neubauer, F., Genser, J., Faghih, A. &Kusky, T. (2012). Mesozoic to Eocene ductile deformation ofwestern Central Iran: from Cimmerian collisional orogeny toEocene exhumation. Tectonophysics 564–565, 83–100.

Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., Paterson, B. A.,

Woodhead, J. D., Hergt, J. M., Gray, C. M. & Whitehouse, M.

J. (2007). Magmatic and crustal differentiation history of

granitic rocks from Hf-O isotopes in zircon. Science 315,

980–983.Keppie, J. D., Nance, R. D., Murphy, J. B. & Dostal, J. (2003).

Tethyan, Mediterranean, and Pacific analogues for the

Neoproterozoic-Paleozoic birth and development of

peri-Gondwanan terranes and their transfer to Laurentia

and Laurussia. Tectonophysics 365(1–4), 195–219.Kounov, A., Graf, J., von Quadt, A., Bernoulli, D., Burg, J. P.,

Seward, D., Ivanov, Z. & Fanning, M. (2012). Evidence for a

“Cadomian” ophiolite and magmatic-arc complex in SW

Bulgaria. Precambrian Research 212, 275–295.Kroner, A. & Sengor, A. M. C. (1990). Archean and Proterozoic

ancestry in late Precambrian to early Paleozoic crustal ele-

ments of southern Turkey as revealed by single-zircon dat-

ing. Geology 18, 1186–1190.Li, X. H., Li, W. X., Li, Q. L., Wang, X. C., Liu, Y. & Yang, Y. H.

(2010a). Petrogenesis and tectonic significance of the similar

to 850 Ma Gangbian alkaline complex in South China:

Evidence from in situ zircon U-Pb dating, Hf-O isotopes and

whole-rock geochemistry. Lithos 114, 1–15.Li, X. H., Long, W. G., Li, Q. L., Liu, Y., Zheng, Y. F., Yang, Y. H.,

Chamberlain, K. R., Wan, D. F., Guo, C. H., Wang, X. C. &

Tao, H. (2010b). Penglai Zircon Megacrysts: a potential new

working reference material for microbeam determination of

Hf-O isotopes and U-Pb age. Geostandards and

Geoanalytical Research 34, 117–134.Li, X. H., Tang, G. Q., Gong, B., Yang, Y. H., Hou, K. J., Hu, Z. C.,

Li, Q. L., Liu, Y. & Li, W. X. (2013). Qinghu zircon: a working

reference for microbeam analysis of U-Pb age and Hf and O

isotopes. Chinese Science Bulletin 58, 4647–4654.Linnemann, U., Gerdes, A., Hofmann, M. & Marko, L. (2014).

The Cadomian Orogen: Neoproterozoic to Early Cambrian

crustal growth and orogenic zoning along the periphery of

the West African Craton-Constraints from U-Pb zircon ages

and Hf isotopes (Schwarzburg Antiform, Germany).

Precambrian Research 244, 236–278.Linnemann, U., McNaughton, N. J., Romer, R. L., Gehmlich, M.,

Drost, K. & Tonk, C. (2004). West African provenance for

Saxo-Thuringia (Bohemian Massif): did Armorica ever leave

pre-Pangean Gondwana? U/Pb-SHRIMP zircon evidence

and the Nd-isotopic record. International Journal of Earth

Sciences 93, 683–705.Linnemann, U., Ouzegane, K., Drareni, A., Hofmann, M., Becker,

S., Gartner, A. & Sagawe, A. (2011). Sands of West

Gondwana: an archive of secular magmatism and plate

interactions—a case study from the Cambro-Ordovician sec-

tion of the Tassili Ouan Ahaggar (Algerian Sahara) using

U-Pb-LA-ICP-MS detrital zircon ages. Lithos 123(1–4),

188–203.Linnemann, U., Pereira, F., Jeffries, T., Drost, K. & Gerdes, A.

(2008). The Cadomian Orogeny and the opening of the Rheic

Ocean: the diacrony of geotectonic processes constrained

by LA-ICP-MS U-Pb zircon dating (Ossa-Morena and

Saxo-Thuringian Zones, Iberian and Bohemian Massifs).

Tectonophysics 461, 21–43.Loos, S. & Reischmann, T. (1999). The evolution of the southern

Menderes Massif in SW Turkey as revealed by zircon dating.

Journal of the Geological Society 156, 1021–1030.Lopez-Guijarro, R., Armendariz, M., Quesada, C., Fernandez-

Suarez, J., Murphy, J. B., Pin, C. & Bellido, F. (2008).

Ediacaran-Palaeozoic tectonic evolution of the Ossa Morena

and Central Iberian zones (SW Iberia) as revealed by Sm-Nd

isotope systematics. Tectonophysics 461(1–4), 202–214.

Journal of Petrology, 2017, Vol. 58, No. 11 2187

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 47: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

Ludwig, K. R. (2003). User’s Manual for Isoplot 3�00: A

Geochronological Toolkit for Microsoft Excel. 74.Ma, X. X., Shu, L. S., Santosh, M. & Li, J. Y. (2012). Detrital zir-

con U-Pb geochronology and Hf isotope data from CentralTianshan suggesting a link with the Tarim Block: implica-

tions on Proterozoic supercontinent history. PrecambrianResearch 206–207, 1–16.

McQuarrie, N. & van Hinsbergen, D. J. J. (2013).Retrodeforming the Arabia-Eurasia collision zone: age ofcollision versus magnitude of continental subduction.

Geology 41(3), 315–318.Moghadam, H. S., Corfu, F., Chiaradia, M., Stern, R. J. &

Ghorbani, G. (2014). Sabzevar Ophiolite, NE Iran: progressfrom embryonic oceanic lithosphere into magmatic arc con-

strained by new isotopic and geochemical data. Lithos210–211, 224–241.

Moghadam, H. S., Khademi, M., Hu, Z. C., Stern, R. J., Santos, J.F. & Wu, Y. B. (2015a). Cadomian (Ediacaran-Cambrian) arcmagmatism in the ChahJam-Biarjmand metamorphic com-

plex (Iran): magmatism along the northern active margin ofGondwana. Gondwana Research 27, 439–452.

Moghadam, H. S., Li, X.-H., Griffin, W. L., Stern, R. J., Thomsen,T. B., Meinhold, G., Aharipour, R. & O’Reilly, S. Y. (2017a).

Early Paleozoic tectonic reconstruction of Iran: tales from de-trital zircon geochronology. Lithos 268, 87–101.

Moghadam, H. S., Li, X. H., Ling, X. X., Santos, J. F., Stern, R. J.,Li, Q. L. & Ghorbani, G. (2015b). Eocene Kashmar granitoids(NE Iran): petrogenetic constraints from U-Pb zircon geo-

chronology and isotope geochemistry. Lithos 216, 118–135.Moghadam, H. S., Li, X.-H., Santos, J. F., Stern, R. J., Griffin, W.

L., Ghorbani, G. & Sarebani, N. (2017b). Neoproterozoicmagmatic flare-up along the N. margin of Gondwana: the

Taknar complex, NE Iran. Earth and Planetary ScienceLetters 474, 83–96.

Moghadam, H. S., Li, X.-H., Stern, R. J., Ghorbani, G. &Bakhshizad, F. (2016a). Zircon U–Pb ages and Hf–O isotopiccomposition of migmatites from the Zanjan–Takab complex,

NW Iran: constraints on partial melting of metasediments.Lithos 240–243, 34–48.

Moghadam, H. S., Li, X. H., Stern, R. J., Santos, J. F., Ghorbani,G. & Pourmohsen, M. (2016b). Age and nature of 560–520

Ma calc-alkaline granitoids of Biarjmand, northeast Iran: in-sights into Cadomian arc magmatism in northernGondwana. International Geology Review 58, 1492–1509.

Molinaro, M., Zeyen, H. & Laurencin, X. (2005). Lithosphericstructure beneath the south-eastern Zagros Mountains, Iran:

recent slab break-off? Terra Nova 17(1), 1–6.Moller, C., Andersson, J., Dyck, B. & Lundin, I. A. (2015).

Exhumation of an eclogite terrane as a hot migmatiticnappe, Sveconorwegian orogen. Lithos 226, 147–168.

Morag, N., Avigad, D., Gerdes, A., Belousova, E. & Harlavan, Y.(2011). Crustal evolution and recycling in the northernArabian-Nubian Shield: new perspectives from zircon Lu-Hfand U-Pb systematics. Precambrian Research 186(1–4),101–116.

Morag, N., Avigad, D., Gerdes, A. & Harlavan, Y. (2012).1000-580 Ma crustal evolution in the northernArabian-Nubian Shield revealed by U-Pb-Hf of detrital zir-cons from late Neoproterozoic sediments (Elat area, Israel).

Precambrian Research 208, 197–212.Moritz, R., Ghazban, F. & Singer, B. S. (2006). Eocene gold ore

formation at Muteh, Sanandaj-Sirjan tectonic zone, WesternIran: a result of late-stage extension and exhumation ofmetamorphic basement rocks within the Zagros Orogen.

Economic Geology 101, 1497–1524.Murphy, J. B., Dostal, J. & Keppie, J. D. (2008).

Neoproterozoic-Early Devonian magmatism in the

Antigonish Highlands, Avalon terrane, Nova Scotia: tracking

the evolution of the mantle and crustal sources during theevolution of the Rheic Ocean. Tectonophysics 461(1–4),181–201.

Nance, R. D. & Murphy, J. B. (1994). Contrasting basement iso-topic signatures and the palinspastic restoration of periph-eral orogens—example from the Neoproterozoic

Avalonian-Cadomian Belt. Geology 22, 617–620.Nance, R. D., Murphy, J. B., Strachan, R. A., Dlemos, R. S. &

Taylor, G. K. (1991). Late Proterozoic Tectonostratigraphicevolution of the Avalonian and Cadomian Terranes.Precambrian Research 53, 41–78.

Nasdala, L., Hofmeister, W. G., Norberg, N., Mattinson, J. M.,Corfu, F., Dorr, W., Kamo, S. L., Kennedy, A. K., Kronz, A.,Reiners, P. W., Frei, D., Kosler, J., Wan, Y. S., Gotze, J.,Hager, T., Kroner, A. & Valley, J. W. (2008). Zircon M257—ahomogeneous natural reference material for the ion micro-probe U-Pb analysis of zircon. Geostandards andGeoanalytical Research 32, 247–265.

Nutman, A. P., Mohajjel, M., Bennett, V. C. & Fergusson, C. L.(2013). Gondwanan Eoarchean–Neoproterozoic ancientcrustal material in Iran and Turkey: zircon U–Pb–Hf isotopicevidence. Canadian Journal of Earth Sciences 51, 272–285.

Okay, A. I. & Satir, M. (2000). Coeval plutonism and meta-morphism in a latest Oligocene metamorphic core complexin northwest Turkey. Geological Magazine 137, 495–516.

Omrani, J., Agard, P., Whitechurch, H., Benoit, M., Prouteau, G.& Jolivet, L. (2008). Arc-magmatism and subduction historybeneath the Zagros Mountains, Iran: a new report of ada-

kites and geodynamic consequences. Lithos 106(3–4),380–398.

Orejana, D., Martinez, E. M., Villaseca, C. & Andersen, T. (2015).Ediacaran-Cambrian paleogeography and geodynamic set-ting of the Central Iberian Zone: constraints from coupledU-Pb-Hf isotopes of detrital zircons. Precambrian Research

261, 234–251.Pang, K. N., Chung, S. L., Zarrinkoub, M. H., Chiu, H. Y. & Li, X.

H. (2014). On the magmatic record of the Makran arc, south-eastern Iran: insights from zircon U-Pb geochronology andbulk-rock geochemistry. Geochemistry GeophysicsGeosystems 15, 2151–2169.

Pearce, J. A., Harris, N. B. W. & Tindle, A. G. (1984).Trace-element discrimination diagrams for the tectonic in-terpretation of granitic-rocks. Journal of Petrology 25,956–983.

Pereira, M. F., Chichorro, M., Sola, A. R., Silva, J. B., Sanchez-Garcıa, T. & Bellido, F. (2011). Tracing the Cadomian mag-matism with detrital/inherited zircon ages by in-situ U-PbSHRIMP geochronology (Ossa-Morena Zone, SW IberianMassif). Lithos 123(1–4), 204–217.

Powell, C. M., Li, Z. X., Mcelhinny, M. W., Meert, J. G. & Park, J.

K. (1993). Paleomagnetic constraints on timing of theNeoproterozoic breakup of Rodinia and the CambrianFormation of Gondwana. Geology 21, 889–892.

Ramezani, J. & Tucker, R. D. (2003). The Saghand Region,Central Iran: U-Pb geochronology, petrogenesis and impli-cations for Gondwana Tectonics. American Journal of

Science 303, 622–665.Rieu, R. & Allen, P. A. (2008). Siliciclastic sedimentation in the

interlude between two Neoproterozoic glaciations, Mirbatarea, southern Oman: a missing link in the HuqfSupergroup? Geoarabia 13, 45–72.

Rieu, R., Allen, P. A., Plotze, M. & Pettke, T. (2007).Compositional and mineralogical variations in aNeoproterozoic glacially influenced succession, Mirbat area,south Oman: implications for paleoweathering conditions.Precambrian Research 154(3–4), 248–265.

2188 Journal of Petrology, 2017, Vol. 58, No. 11

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 48: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

Ring, U. & Collins, A. S. (2005). U-PbSIMS dating of synkine-

matic granites: timing of core-complex formation in thenorthern Anatolide belt of western Turkey. Journal of theGeological Society 162, 289–298.

Robertson, A. H. F., Clift, P. D., Degnan, P. J. & Jones, G. (1991).Paleogeographic and paleotectonic evolution of the EasternMediterranean Neotethys. Palaeogeography

Palaeoclimatology Palaeoecology 87, 289–343.Rossetti, F., Nasrabady, M., Theye, T., Gerdes, A., Monie, P.,

Lucci, F. & Vignaroli, G. (2014). Adakite differentiation andemplacement in a subduction channel: the late PaleoceneSabzevar magmatism (NE Iran). Geological Society ofAmerica Bulletin 126, 317–343.

Rossetti, F., Nozaem, R., Lucci, F., Vignaroli, G., Gerdes, A.,Nasrabadi, M. & Theye, T. (2015). Tectonic setting and geo-chronology of the Cadomian (Ediacaran-Cambrian) magma-tism in Central Iran, Kuh-e-Sarhangi region (NW Lut Block).Journal of Asian Earth Sciences 102, 24–44.

Saki, A. (2010). Proto-Tethyan remnants in northwest Iran: geo-chemistry of the gneisses and metapelitic rocks. GondwanaResearch 17(4), 704–714.

Saki, A., Moazzen, M. & OberhANsli, R. (2012). Mineral chemis-try and thermobarometry of the staurolite-chloritoid schists

from Poshtuk, NW Iran. Geological Magazine 149,1077–1088.

Sarjoughian, F., Kananian, A., Haschke, M. & Ahmadian, J.(2012). Geochemical signature of Eocene Kuh-e Dom shosh-onitic dikes in NE Ardestan, Central Iran: implications formelt evolution and tectonic setting. Journal of Geosciences

57, 241–264.Sarjoughian, F., Kananian, A., Lentz, D. R. & Ahmadian, J.

(2015). Nature and physicochemical conditions of crystal-lization in the South Dehgolan intrusion, NW Iran:mineral-chemical evidence. Turkish Journal of EarthSciences 24, 249–275.

Savov, I., Ryan, J., Haydoutov, I. & Schijf, J. (2001). LatePrecambrian Balkan-Carpathian ophiolite—a slice of thePan-African ocean crust?: Geochemical and tectonic insightsfrom the Tcherni Vrah and Deli Jovan massifs, Bulgaria andSerbia. Journal of Volcanology and Geothermal Research110, 299–318.

Shaw, S. E. & Flood, R. H. (2009). Zircon Hf isotopic evidence formixing of crustal and silicic mantle-derived magmas in azoned granite pluton, eastern Australia. Journal of Petrology50, 147–168.

Slama, J., Kosler, J., Condon, D. J., Crowley, J. L., Gerdes, A.,Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala,L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N.& Whitehouse, M. J. (2008). Plesovice zircon—a new naturalreference material for U-Pb and Hf isotopic microanalysis.Chemical Geology 249, 1–35.

Stacey, J. S. & Kramers, J. D. (1975). Approximation of terres-trial lead isotope evolution by a 2-stage model. Earth andPlanetary Science Letters 26, 207–221.

Standley, C. E. & Harris, R. (2009). Tectonic evolution of forearcnappes of the active Banda arc-continent collision: origin,age, metamorphic history and structure of the Lolotoi

Complex, East Timor. Tectonophysics 479(1–2), 66–94.Stern, R. J. (2008). Neoproterozoic crustal growth: the solid

Earth system during a critical episode of Earth history.Gondwana Research 14(1–2), 33–50.

Stern, R. J., Ali, K. A., Ren, M., Jarrar, G. H., Romer, R. L.,Leybourne, M. I., Whitehouse, M. J. & Ibrahim, K. M. (2016).Cadomian (� 560 Ma) crust buried beneath the northernArabian Peninsula: mineral, chemical, geochronological,and isotopic constraints from NE Jordan xenoliths. Earthand Planetary Science Letters 436, 31–42.

Stern, R. J. & Johnson, P. (2010). Continental lithosphere of the

Arabian Plate: a geologic, petrologic, and geophysical syn-

thesis. Earth-Science Reviews 101, 29–67.Stockli, D. (2004). Structural and geochronological evidence for

Oligo–Miocene intra–arc low angle detachment faulting in

the Takab–Zanjan area, NW Iran. Abstract with programs.

Geological Society of America, 319.Stockli, D. F., Hassanzadeh, J., Stockli, L. D., Axen, G., Walker, J.

D. & Dewane, T. J. (2004). Structural and geochronological

evidence for Oligo-Miocene intra-arc low-angle detachment

faulting in the Takab-Zanjan area, NW Iran. In Abstract,

Programs Geological Society of America (Vol. 36).Streckeisen, A. (1979). Classification and nomenclature of

volcanic-rocks, lamprophyres, carbonatites, and melilitic

rocks—recommendations and suggestions of the Iugs

sub-commission on the systematics of igneous rocks.

Geology 7(7), 331–335.Thomas, R. J., Ellison, R. A., Goodenough, K. M., Roberts, N. M.

W. & Allen, P. A. (2015). Salt domes of the UAE and Oman:

probing eastern Arabia. Precambrian Research 256, 1–16.Ustaomer, P. A., Ustaomer, T., Collins, A. S. & Robertson, A. H.

F. (2009). Cadomian (Ediacaran-Cambrian) arc magmatism

in the Bitlis Massif, SE Turkey: magmatism along the de-

veloping northern margin of Gondwana. Tectonophysics

473(1–2), 99–112.Ustaomer, P. A., Ustaomer, T., Gerdes, A., Robertson, A. H. &

Collins, A. S. (2012). Evidence of Precambrian sedimenta-

tion/magmatism and Cambrian metamorphism in the Bitlis

Massif, SE Turkey utilising whole-rock geochemistry and

U–Pb LA–ICP-MS zircon dating. Gondwana Research 21,

1001–1018.Ustaomer, T., Ustaomer, P. A., Robertson, A. H. & Gerdes, A.

(2016). Implications of U–Pb and Lu–Hf isotopic analysis of

detrital zircons for the depositional age, provenance and tec-

tonic setting of the Permian–Triassic Palaeotethyan

Karakaya Complex, NW Turkey. International Journal of

Earth Sciences 105, 7–38.Verdel, C., Wernicke, B. P., Hassanzadeh, J. & Guest, B. (2011).

A Paleogene extensional arc flare-up in Iran. Tectonics 30(3).Verdel, C., Wernicke, B. P., Ramezani, J., Hassanzadeh, J.,

Renne, P. R. & Spell, T. L. (2007). Geology and thermochro-

nology of Tertiary Cordilleran-style metamorphic core com-

plexes in the Saghand region of central Iran. Geological

Society of America Bulletin 119, 961–977.von Raumer, J. F., Stampfli, G. M., Arenas, R. & Martinez, S. S.

(2015). Ediacaran to Cambrian oceanic rocks of the

Gondwana margin and their tectonic interpretation.

International Journal of Earth Sciences 104, 1107–1121.von Raumer, J. F., Stampfli, G. M., Borel, G. & Bussy, F. (2002).

Organization of pre-Variscan basement areas at the

north-Gondwanan margin. International Journal of Earth

Sciences 91, 35–52.Whitney, D. L. & Dilek, Y. (1997). Core complex development in

central Anatolia, Turkey. Geology 25, 1023–1026.Whitney, D. L., Teyssier, C. & Heizler, M. T. (2007). Gneiss

domes, metamorphic core complexes, and wrench zones:

thermal and structural evolution of the Nigde Massif, central

Anatolia. Tectonics 26.Woodhead, J. D. & Hergt, J. M. (2005). A preliminary appraisal

of seven natural zircon reference materials for in situ Hf iso-

tope determination. Geostandards and Geoanalytical

Research 29, 183–195.Xie, C. M., Li, C., Su, L., Dong, Y. S., Wu, Y. W. & Xie, Y. W.

(2013a). Geochronology of high-pressure granulite in the

Amdo, Qinghai-Tibet Plateau. Acta Petrologica Sinica 29,

912–922.

Journal of Petrology, 2017, Vol. 58, No. 11 2189

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018

Page 49: C ru st al ev ol u t i on of N W I ran : C ad omi an A rc s, A rc h ean …rjstern/pdfs/ShafaiiMogh... · 2018-07-27 · S e e d i s c u s s i o n s , s t a t s , a n d a u t h o

Xie, C. M., Li, C., Su, L., Wu, Y. W. & Xie, Y. W. (2013b).Pan-African and early Paleozoic tectonothermal events inthe Nyainrong microcontinent: constraints from geochron-ology and geochemistry. Science China-Earth Sciences 56,2066–2079.

Yilmaz Sahin, S., Aysal, N., Gungor, Y., Peytcheva, I. &Neubauer, F. (2014). Geochemistry and U–Pb zircon geo-chronology of metagranites in Istranca (Strandja) Zone, NW

Pontides, Turkey: implications for the geodynamic evolutionof Cadomian orogeny. Gondwana Research 26, 755–771.

Yuan, H. L., Gao, S., Dai, M. N., Zong, C. L., Gunther, D.,Fontaine, G. H., Liu, X. M. & Diwu, C. (2008). Simultaneousdeterminations of U-Pb age, Hf isotopes and trace elementcompositions of zircon by excimer laser-ablation quadru-pole and multiple-collector ICP-MS. Chemical Geology247(1–2), 100–118.

2190 Journal of Petrology, 2017, Vol. 58, No. 11

Downloaded from https://academic.oup.com/petrology/article-abstract/58/11/2143/4828038by OUP site access useron 17 April 2018View publication statsView publication stats