15
Electrophilic Carbenes The reaction of so-called stabilized diazo compounds with late transition metals produces a metal carbene intermediate that is electrophilic. The most common catalysts are Cu(I) triflate and Rh(II) aceate and related complexes. Others include Pd(II) salts and Rh 6 (CO) 16 . These intermediates engage in very rich chemistry, often as part of cascade processes. N 2 R 1 EWG + L n M – N 2 ML n R 1 EWG no change in oxidation state R 2 R 2 EWG R 1 R C R O ML n R 1 EWG O R 1 EWG R R RZ H Z = C, O, N, S, Si R 1 EWG H ZR cyclopropanation carbonyl ylide formation insertion reactions O N 2 R R + L n M – N 2 O ML n R R O R ML n R a new carbene for further reactions This resonance structure shows why these carbenes are electrophilic

Carbenoids 2

Embed Size (px)

Citation preview

Page 1: Carbenoids 2

Electrophilic CarbenesThe reaction of so-called stabilized diazo compounds with late transition metals produces a metal carbene intermediate that is electrophilic. The most common catalysts are Cu(I) triflate and Rh(II) aceate and related complexes. Others include Pd(II) salts and Rh6(CO)16. These intermediates engage in very rich chemistry, often as part of cascade processes.

N2

R1 EWG + LnM

– N2 MLn

R1 EWG

no change inoxidation state

R2

R2

EWGR1

R C RO

MLn

R1 EWGO

R1 EWG

R

R

RZ HZ = C, O, N, S, Si

R1 EWG

H ZR

cyclopropanation

carbonylylide

formation

insertionreactions

O

N2

R

R

+ LnM

– N2

O

MLn

R

R

OR

MLn

R

a new carbene forfurther reactions

This resonance structureshows why these carbenesare electrophilic

Page 2: Carbenoids 2

Diazo FormationWhile diazo alkanes are normally reactive and unstable, those that are conjugated to electron-withdrawing groups (typically carbonyls) are often quite stable. Several methods available for their production.

Diazo transfer reactions

EWGEWG

EWG = ketone, nitro ester, amide

RSO2N3

Et3N

sulfonyl azide

EWGEWG

N2 N2

Me

O

OR

O

N2

OR

OK2CO3

MeOH

R1

OR2

LHMDS, THFCF3CO2CH2CF3

–78 ºC R1

O

R2

CF3

O MsN3, Et3N

H2O, CH3CN R1

OR2

N2J. Org. Chem. 1990, 55, 1959.

R Cl

O CH2N2

CaO R

ON2

R OH

Oa. EtO2CCl, Et3N

b. CH2N2

Page 3: Carbenoids 2

CyclopropanationIf formed in the presence of an olefin, the carbene can form cyclopropanes. Both inter- and intramolecular reactions are possible. Because the carbenes are electrophilic, the react much faster with electron-rich olefins.

X N2 CO2Et+catalyst

X

CO2Et

X = CH2Br, CH2Cl, OPh, Bu, OAc, OEt, OBu, i-Pr, t-Bu, CH2=CPh, CH2=CMe, CH2=Ct-Bu, CH=CHOMe, CH=CHCl, CH=CHPh, CH=CHMecatalyst = Rh2(OAc)4, CuCl–P(Oi-Pr)3, Rh6(CO)16, PdCl2(PhCN)2

Order of reactivity: electron-rich > "neutral" >> electron poor β-substitution on olefin slows reactivity & cis > trans

Alkene geometry is maintained, but little stereoselectivity for diazo-bearing carbon

Other reactive groups: dienes, alkynes, aromatic rings, and heteroaromatic rings

Asymmetric reactions are possible with chiral ligands on Rh and Cu catalysts.

Intramolecular reactions usually prefer to form 5-membered rings. With polyenes, the regioselectivity is usually good, but can depend on catalyst choice.

Page 4: Carbenoids 2

Cyclopropanation

N2

O

TBDPSO

Me

CO2Et

O

TBDPSOMe

CO2Et

1% Rh2(Oct)4

CH2Cl2, rt70%

J. Org. Chem. 1997, 62, 194.

O

Ph

OK2CO3Bu4NBr

BrCH2CH=CHR

PhCH3, 40 ºC82%

O

Ph

O

R

pNBSA, DBU

CH2Cl2, 0 ºC83%

O

N2

R

a. KHMDS, THF RCHO, LiBr –78 ºC

b. TBDPSCl DMAP, imidazole 38%

83:17 dr

thiophenolBF3•OEt2

CH2Cl2–78 ºC

90%, 10:1 dr

O

TBDPSOH

CO2Et

SPhH

Page 5: Carbenoids 2

Cyclopropanation

Me

Me MeMe

O

N2

Me

Me Me

Me

Ph

O

Me

CuSO4

cyclohexane, Δ52% (from acid)

J. Chem. Soc., Perkin Trans 1 2000, 2583

O

Me

O

N2

Rh2[5(S)-MEPY]4

CH2Cl2, 80%, 92% eeO

O

Me

H

HJ. Am. Chem. Soc. 2001, 123 ,12432.

NRh

O

Rh

MeO2C4

Rh2[5(S)-MEPY]4

Me

Me MeMe

OH a. CH3C(OEt)3 EtCO2H, Δ 65%

b. aq. NaOH 90%

Me

Me MeMe

OH

O

a. (COCl)2

b. CH2CHN2

Li

NH381%

Me Me

Me

Ph

O

Me

Page 6: Carbenoids 2

CyclopropanationWith appropriate substitution patterns, cascade reactions are possible

O

Me

N2

MeO2C

OTBS+ Rh2(OAc)4

CH2Cl2, Δ94%

OMe

MeO2C

OTBS

J. Org. Chem. 1991, 56, 723.

O

TBDPSO

CO2MeMe

O

N2

Rh2(OAc)4

CH2Cl250%

Me

CHOTBDPSO

CO2Me

O

Org. Lett. 2003, 5, 4113.

MeO2C

H

HMe

OTBSO

H H

N Me

Boc

OTBSCO2Me

N2

+1% Rh2(S-PTAD)4

2,2-dimethylbutane50 ºC

69%, 96% ee

NBoc

CO2Me

OTBSMe

J. Am. Chem. Soc. 2007, 129, 10312.

Page 7: Carbenoids 2

Ylide FormationThe electrophilic nature of the carbenes means they are also capable of reacting with Lewis basic groups such as carbonyls, ethers, and sulfides. This will form an ylide structure. If appropriate functionality is present, other reactions will take place (cycloadditions, rearrangements). Intramolecular formation of ylides are most common.

N2

EWG

Xcat.

X

EWG

ylide

OTBDPSO O

[2,3]-rearrangements

Cu(acac)2

THF, Δ75%

OO

OTBDPS

Me

oxonium ylide

O

O

OTBDPSHH

Me

Org. Lett. 2004, 6, 1773.N2

Me

>95:5

O

O

H

TBDPSO

Me

H δ+

δ–

Page 8: Carbenoids 2

S

Ylide Formation

Stevens-type rearrangement

N

O

SPh

CO2EtN2

Rh2(OAc)4

C6H6, Δ55%

Chem. Commun. 1986, 651.

N

O

SPh

CO2Et

N

O

PhS CO2Et

O

MeOO

CO2Me

N2SPh

Rh2(OAc)4

C6H6, Δ77%

O

MeOH

OSPh

CO2Me

J. Chem. Soc., Perkin Trans. 1 1995, 2989.

H

O

MeO2C

Ph

R

OH

racemic

Ph CO2Me

N2+

1% Rh2(S-DOSP)4

pentane, 0 ºC50–70% yield92–98% ee

Ph CO2Me

HOR

J. Am. Chem. Soc. 2010, 132, 396.

Page 9: Carbenoids 2

Ylide Formation

Rh2(OAc)4

PhCF3, 100 ºC73%

Angew. Chem. Int. Ed. 2006, 45, 6532.

O

N2 O

O

OTBDPS

OPMP

t-BuO2COTBDPS

N2 O

O

TMSO CO2t-Bu

OMOM Rh2(OAc)4

C6H6, Δ72%

O+

Angew. Chem. Int. Ed. 2003, 42, 5351.

Dipolar Cycloadditions – Addition of carbonyls will for a carbonyl ylide. These are 1,3-dipoles that can undergo cycloaddition reactions with electron deficient olefins/alkynes.

N

O

O

NMe Et

ON2

CO2Et

Rh2(OAc)4

C6H6, 50 ºC95%

N

NMe

OEt

CO2Et

O

O

H

J. Org. Chem. 1998, 63, 556.

onediastereomer

O

O

H

H

O

OPMP

OTBDPS

OO

OTMSt-BuO2C

t-BuO2C

OTBDPS

OMOMAc

Page 10: Carbenoids 2

Insertion Reactions

Rh(II) catalysts promote the insertion of diazoalkanes into C–H, O–H, N–H, S–H, and Si–H bonds. Likely involves a three-center transition state. Chiral ligands can be used for enantioselective reactions. Intramolecular reactions generally favor 5-membered ring formation. Fluorinated carboxylate ligands on the metal promote insertion into aromatic C–H bonds.

General order of reactivity for C–H bonds: 2º > 1º ≈ 3º, but is catalyst dependent

Electron-withdawing groups deactivate C–H bonds, electron-donating groups activate

C H

R

RR

MLn

C

EWG

+ C

R

RR

C

MLn

EWG

H

C

R

RR

C

H

EWG

Proposed transition state: J. Am. Chem. Soc. 1993, 115, 958.

This mechanism implies that the insertion reaction is stereospecific

MeO N

Ph

O

N2 CO2Et

MeO N

Ph

OTIPS

CO2EtRh2(NHCOC3F7)4CH2Cl2, rt

then Et3N, TIPSOTf91%

With Rh2(OAc)4a mixture was obtained

with benxylix C–H insertion.

Page 11: Carbenoids 2

Insertion Reactions

O O

N2

n

Rh2(4(S)-MACIM)4

cis:trans = 99:196–97% ee n

OO

62–75%

N

NO

AcCO2Me

4(S)-MACIM

J. Am. Chem. Soc. 1994, 116, 450.

P(O)(OMe)2

N2

Rh2(S-PTAD)4

2,2-di-Me-butane, Δ83%, 92% ee

+

P(O)(OMe)2Ph

Org. Lett. 2006, 8, 3437.

5 equiv

CO2Me

N2+Rh2(S-DOSP)4

2,2-di-Me-butane50 ºC

56%, 94% ee

MeOBr

CO2Me

MeO BrJ. Org. Chem. 2002, 67, 4165.

Page 12: Carbenoids 2

Insertion ReactionsN–H insertions

O–H insertions

Si–H insertions

CO2Me

N2

Z/E = 96:4CO2Me

PhMe2Si

Z/E = 95:5

Rh2(OAc)4PhMe2SiH

CH2Cl2, rt75%

Tetrahedron Lett. 1994, 35, 9549.

O

H

O Me

OH

1. Rh2(OAc)4 C6H6, 80 ºC 96%

2. H2CrO4 Et2O, rt

EtO2CP(O)(OEt)2

OH

H

OH Me

OHH

Tetrahedron Lett. 1995, 36, 8347.

O

H

MeH

NaH

THF, rt86%

(2 steps)

OCO2Et

NHO

CO2HO

MeHH

O

N2

NO

HOHH

O

Me

CO2

Rh2(Oct)4

EtOAc/hexaneΔ

J. Org. Chem. 1991, 56, 3183.

Page 13: Carbenoids 2

Metathesis with Alkynes

MeO

N2

Me

Rh2(OAc)4

CH2Cl2, rt95%

O

Me

MeTetrahedron Lett. 1991, 32, 4103.

Once formed, Rh carbenoids can undergo "metathesis"-type chemistry with alkynes. This generates a new Rh carbene that can undergo other processes, such as those we have already discussed.

MeO

N2

Rh2(OAc)4

CH2Cl2, rt97%

OMe

O

O

Tetrahedron Lett. 1993, 34, 7853.

RhLn

O

R

RhLn

R

O

R

O

RhLn

Page 14: Carbenoids 2

Nitrenoid IntermediatesMuch like metal-catalzyed decomposition of diazo compounds produces carbenoid intermediates, it is also possible to generate nitrenoid intermediates. This typically involves the in situ oxidation of a non-basic primary nitrogen atom (sulfonamide, amide, carbamate, urea, etc.).

CO2t-BuO

H2NO

5% Rh2(OAc)4PhI(OAc)2, MgO

CH2Cl2, 40 ºC82%

OHN

O

CO2t-Bu

MeMe

O NH2

O

5% Rh2(OAc)4PhI(OAc)2, MgO

CH2Cl2, 40 ºC

one enantiomer

MeMe

OHN

O

one enantiomerAngew. Chem. Int. Ed. 2001, 40, 598.

intermolecular are possible:J. Am. Chem. Soc. 2007, 129, 562.

HN OS

Me

O O

H2N OS

Me

O O 5% Rh2(esp)2PhI(OAc)2, MgO

CH2Cl2, 40 ºC90%

J. Am. Chem. Soc. 2004, 126, 15378.

carbonyl groups prefer 5 membered rings, sulfonyls prefer 6 membered rings.

CO2HHO2C

Me MeMe Me

esp

Page 15: Carbenoids 2

Nitrenoid Intermediates

MeO

OS

H2N

O O

OTBSTBSO

Rh2(OAc)4PhI(OAc)2

MgO

CH2Cl2quant.

MeO

OS

HN

O O

OTBSTBSO

OS

HN

O OH

OO

BF3•OEt2

CH2Cl268%

Org. Lett. 2007, 9, 5465.

Other types of reactions are possible besides C–H insertions

N NH

N

NH

NTces

H2N OTBDPS

CCl3

O

N NH

N

NH OTBDPS

CCl3

O

HN

TcesN

AcO

Rh2(esp)2PhI(OAc)2

MgO

CH2Cl2, 40 ºC61%

J. Am. Chem. Soc. 2008, 130, 12630.