122
Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Embed Size (px)

Citation preview

Page 1: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

1

Introduction to x86 Assemblyor “What does my laptop actually do?”

Ymir Vigfusson

Some slides gracefully borrowed from 18-213@CMU

Page 2: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

2

So what is assembly really?

Page 3: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

3

Why study assembly?

triton$

Page 4: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

4

One reason: Reverse engineering

People who figure out what viruses do today

$$$ !

Page 5: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

5

Motivation: The Turing Machine! http://www.youtube.com/watch?v=cYw2ewoO6c4

Page 6: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

6

Intel x86 Processors: Overview

X86-64 / EM64t

X86-32/IA32

X86-16 8086

286

386486PentiumPentium MMX

Pentium III

Pentium 4

Pentium 4E

Pentium 4F

Core 2 DuoCore i7

IA: often redefined as latest Intel architecture

time

Architectures Processors

MMX

SSE

SSE2

SSE3

SSE4

Page 7: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

7

Intel x86 Evolution: Milestones

Name Date Transistors MHz 8086 1978 29K 5-10

First 16-bit processor. Basis for IBM PC & DOS 1MB address space

386 1985 275K 16-33 First 32 bit processor , referred to as IA32 Added “flat addressing” Capable of running Unix 32-bit Linux/gcc uses no instructions introduced in later models

Pentium 4F 2004 125M 2800-3800 First 64-bit processor, referred to as x86-64

Core i7 2008 731M 2667-3333 Our shark machines

Page 8: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

8

Intel x86 Processors Machine Evolution

386 1985 0.3M Pentium 1993 3.1M Pentium/MMX 1997 4.5M PentiumPro 1995 6.5M Pentium III 1999 8.2M Pentium 4 2001 42M Core 2 Duo 2006 291M Core i7 2008 731M

Added Features Instructions to support multimedia operations

Parallel operations on 1, 2, and 4-byte data, both integer & FP Instructions to enable more efficient conditional operations

Linux/GCC Evolution Two major steps: 1) support 32-bit 386. 2) support 64-bit x86-64

Page 9: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

9

What is this? (gdb) disass checksum Dump of assembler code for function checksum: 0x08048400 <+0>: push %ebp 0x08048401 <+1>: xor %edx,%edx 0x08048403 <+3>: mov %esp,%ebp 0x08048405 <+5>: xor %eax,%eax 0x08048407 <+7>: push %esi 0x08048408 <+8>: mov 0x8(%ebp),%esi 0x0804840b <+11>: push %ebx 0x0804840c <+12>: mov 0xc(%ebp),%ebx 0x0804840f <+15>: test %ebx,%ebx 0x08048411 <+17>: jle 0x8048425 <checksum+37> 0x08048413 <+19>: nop 0x08048414 <+20>: lea 0x0(%esi,%eiz,1),%esi 0x08048418 <+24>: movsbl (%esi,%edx,1),%ecx 0x0804841c <+28>: add $0x1,%edx 0x0804841f <+31>: xor %ecx,%eax 0x08048421 <+33>: cmp %ebx,%edx 0x08048423 <+35>: jne 0x8048418 <checksum+24> 0x08048425 <+37>: pop %ebx 0x08048426 <+38>: pop %esi 0x08048427 <+39>: pop %ebp 0x08048428 <+40>: ret End of assembler dump.

Page 10: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

10

CPU

Assembly Programmer’s View

Programmer-Visible State PC: Program counter

Address of next instruction Called “EIP” (IA32) or “RIP” (x86-64)

Register file Heavily used program data

Condition codes Store status information about most

recent arithmetic operation Used for conditional branching

PCRegisters

Memory

CodeDataStack

Addresses

Data

InstructionsConditionCodes

Memory Byte addressable array Code and user data Stack to support procedures

Page 11: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

11

text

text

binary

binary

Compiler (gcc -S)

Assembler (gcc or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries (.a)

Turning C into Object Code Code in files p1.c p2.c Compile with command: gcc –O1 p1.c p2.c -o p

Use basic optimizations (-O1) Put resulting binary in file p

Page 12: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

12

Compiling Into AssemblyC Codeint sum(int x, int y){ int t = x+y; return t;}

Generated IA32 Assemblysum: pushl %ebp movl %esp,%ebp movl 12(%ebp),%eax addl 8(%ebp),%eax popl %ebp ret

Obtain with command

/usr/local/bin/gcc –O1 –m32 -S code.c

Produces file code.s

Some compilers use instruction “leave”

Page 13: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

13

Assembly Characteristics: Data Types “Integer” data of 1, 2, or 4 bytes

Data values Addresses (untyped pointers)

Floating point data of 4, 8, or 10 bytes

No aggregate types such as arrays or structures Just contiguously allocated bytes in memory

Page 14: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

14

Assembly Characteristics: Operations Perform arithmetic function on register or memory data

Transfer data between memory and register Load data from memory into register Store register data into memory

Transfer control Unconditional jumps to/from procedures Conditional branches

Page 15: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

15

Code for sum0x401040 <sum>: 0x55 0x89 0xe5 0x8b 0x45 0x0c 0x03 0x45 0x08 0x5d 0xc3

Object Code Assembler

Translates .s into .o Binary encoding of each instruction Nearly-complete image of executable code Missing linkages between code in different

files Linker

Resolves references between files Combines with static run-time libraries

E.g., code for malloc, printf Some libraries are dynamically linked

Linking occurs when program begins execution

• Total of 11 bytes• Each instruction

1, 2, or 3 bytes• Starts at address 0x401040

Page 16: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

16

Machine Instruction Example C Code

Add two signed integers Assembly

Add 2 4-byte integers “Long” words in GCC parlance Same instruction whether signed

or unsigned Operands:

x: Register %eaxy: Memory M[%ebp+8]t: Register %eax

–Return function value in %eax Object Code

3-byte instruction Stored at address 0x80483ca

int t = x+y;

addl 8(%ebp),%eax

0x80483ca: 03 45 08

Similar to expression: x += y

More precisely:int eax;

int *ebp;

eax += ebp[2]

Page 17: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

17

Disassembled

Disassembling Object Code

Disassemblerobjdump -d p Useful tool for examining object code Analyzes bit pattern of series of instructions Produces approximate rendition of assembly code Can be run on either complete executable or .o file

080483c4 <sum>: 80483c4: 55 push %ebp 80483c5: 89 e5 mov %esp,%ebp 80483c7: 8b 45 0c mov 0xc(%ebp),%eax 80483ca: 03 45 08 add 0x8(%ebp),%eax 80483cd: 5d pop %ebp 80483ce: c3 ret

Page 18: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

18

Disassembled

Dump of assembler code for function sum:0x080483c4 <sum+0>: push %ebp0x080483c5 <sum+1>: mov %esp,%ebp0x080483c7 <sum+3>: mov 0xc(%ebp),%eax0x080483ca <sum+6>: add 0x8(%ebp),%eax0x080483cd <sum+9>: pop %ebp0x080483ce <sum+10>: ret

Alternate Disassembly

Within gdb Debuggergdb pdisassemble sum Disassemble procedurex/11xb sum Examine the 11 bytes starting at sum

Object0x401040: 0x55 0x89 0xe5 0x8b 0x45 0x0c 0x03 0x45 0x08 0x5d 0xc3

Page 19: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

19

What Can be Disassembled?

Anything that can be interpreted as executable code Disassembler examines bytes and reconstructs assembly source

% objdump -d WINWORD.EXE

WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".Disassembly of section .text:

30001000 <.text>:30001000: 55 push %ebp30001001: 8b ec mov %esp,%ebp30001003: 6a ff push $0xffffffff30001005: 68 90 10 00 30 push $0x300010903000100a: 68 91 dc 4c 30 push $0x304cdc91

Page 20: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

20

Registers, operands, move operation

Page 21: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

21

Integer Registers (IA32)%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%ax

%cx

%dx

%bx

%si

%di

%sp

%bp

%ah

%ch

%dh

%bh

%al

%cl

%dl

%bl

16-bit virtual registers(backwards compatibility)

gene

ral p

urpo

se

accumulate

counter

data

base

source index

destinationindex

stack pointer

basepointer

Origin(mostly obsolete)

Page 22: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

22

Moving Data: IA32 Moving Data

movl Source, Dest:

Operand Types Immediate: Constant integer data

Example: $0x400, $-533 Like C constant, but prefixed with ‘$’ Encoded with 1, 2, or 4 bytes

Register: One of 8 integer registers Example: %eax, %edx But %esp and %ebp reserved for special use Others have special uses for particular instructions

Memory: 4 consecutive bytes of memory at address given by register Simplest example: (%eax) Various other “address modes”

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

Page 23: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

23

movl Operand Combinations

Cannot do memory-memory transfer with a single instruction

movl

Imm

Reg

Mem

RegMem

RegMem

Reg

Source Dest C Analog

movl $0x4,%eax temp = 0x4;

movl $-147,(%eax) *p = -147;

movl %eax,%edx temp2 = temp1;

movl %eax,(%edx) *p = temp;

movl (%eax),%edx temp = *p;

Src,Dest

Page 24: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

24

Simple Memory Addressing Modes Normal (R) Mem[Reg[R]]

Register R specifies memory address

movl (%ecx),%eax

Displacement D(R) Mem[Reg[R]+D] Register R specifies start of memory region Constant displacement D specifies offset

movl 8(%ebp),%edx

Page 25: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

25

Using Simple Addressing Modes

void swap(int *xp, int *yp) { int t0 = *xp; int t1 = *yp; *xp = t1; *yp = t0;} Body

SetUp

Finish

swap: pushl %ebp movl %esp,%ebp pushl %ebx

movl 8(%ebp), %edx movl 12(%ebp), %ecx movl (%edx), %ebx movl (%ecx), %eax movl %eax, (%edx) movl %ebx, (%ecx)

popl %ebx popl %ebp ret

Page 26: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

26

Using Simple Addressing Modes

void swap(int *xp, int *yp) { int t0 = *xp; int t1 = *yp; *xp = t1; *yp = t0;}

swap:pushl %ebpmovl %esp,%ebppushl %ebx

movl 8(%ebp), %edxmovl 12(%ebp), %ecxmovl (%edx), %ebxmovl (%ecx), %eaxmovl %eax, (%edx)movl %ebx, (%ecx)

popl %ebxpopl %ebpret

Body

SetUp

Finish

Page 27: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

27

Understanding Swap

void swap(int *xp, int *yp) { int t0 = *xp; int t1 = *yp; *xp = t1; *yp = t0;}

Stack(in memory)

Register Value%edx xp%ecx yp%ebx t0%eax t1

yp

xp

Rtn adr

Old %ebp %ebp 0

4

8

12

Offset

•••

Old %ebx-4 %esp

movl 8(%ebp), %edx # edx = xpmovl 12(%ebp), %ecx # ecx = ypmovl (%edx), %ebx # ebx = *xp (t0)movl (%ecx), %eax # eax = *yp (t1)movl %eax, (%edx) # *xp = t1movl %ebx, (%ecx) # *yp = t0

Page 28: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

28

Understanding Swap

0x120

0x124

Rtn adr

%ebp 0

4

8

12

Offset

-4

123

456

Address0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

0x100

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp 0x104movl 8(%ebp), %edx # edx = xpmovl 12(%ebp), %ecx # ecx = ypmovl (%edx), %ebx # ebx = *xp (t0)movl (%ecx), %eax # eax = *yp (t1)movl %eax, (%edx) # *xp = t1movl %ebx, (%ecx) # *yp = t0

Page 29: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

29

Understanding Swap

0x120

0x124

Rtn adr

%ebp 0

4

8

12

Offset

-4

123

456

Address0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

0x100

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

0x124

0x104

0x120

movl 8(%ebp), %edx # edx = xpmovl 12(%ebp), %ecx # ecx = ypmovl (%edx), %ebx # ebx = *xp (t0)movl (%ecx), %eax # eax = *yp (t1)movl %eax, (%edx) # *xp = t1movl %ebx, (%ecx) # *yp = t0

Page 30: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

30

Understanding Swap

0x120

0x124

Rtn adr

%ebp 0

4

8

12

Offset

-4

123

456

Address0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

0x100

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

0x120

0x104

0x124

0x124

movl 8(%ebp), %edx # edx = xpmovl 12(%ebp), %ecx # ecx = ypmovl (%edx), %ebx # ebx = *xp (t0)movl (%ecx), %eax # eax = *yp (t1)movl %eax, (%edx) # *xp = t1movl %ebx, (%ecx) # *yp = t0

Page 31: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

31

456

Understanding Swap

0x120

0x124

Rtn adr

%ebp 0

4

8

12

Offset

-4

123

456

Address0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

0x100

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

0x124

0x120

123

0x104movl 8(%ebp), %edx # edx = xpmovl 12(%ebp), %ecx # ecx = ypmovl (%edx), %ebx # ebx = *xp (t0)movl (%ecx), %eax # eax = *yp (t1)movl %eax, (%edx) # *xp = t1movl %ebx, (%ecx) # *yp = t0

Page 32: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

32

Understanding Swap

0x120

0x124

Rtn adr

%ebp 0

4

8

12

Offset

-4

123

456

Address0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

0x100

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

456

0x124

0x120

0x104

123

123

movl 8(%ebp), %edx # edx = xpmovl 12(%ebp), %ecx # ecx = ypmovl (%edx), %ebx # ebx = *xp (t0)movl (%ecx), %eax # eax = *yp (t1)movl %eax, (%edx) # *xp = t1movl %ebx, (%ecx) # *yp = t0

Page 33: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

33

456

456

Understanding Swap

0x120

0x124

Rtn adr

%ebp 0

4

8

12

Offset

-4

Address0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

0x100

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

456456

0x124

0x120

123

0x104

123

movl 8(%ebp), %edx # edx = xpmovl 12(%ebp), %ecx # ecx = ypmovl (%edx), %ebx # ebx = *xp (t0)movl (%ecx), %eax # eax = *yp (t1)movl %eax, (%edx) # *xp = t1movl %ebx, (%ecx) # *yp = t0

Page 34: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

34

Understanding Swap

0x120

0x124

Rtn adr

%ebp 0

4

8

12

Offset

-4

456

123

Address0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

0x100

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

456

0x124

0x120

0x104

123123

movl 8(%ebp), %edx # edx = xpmovl 12(%ebp), %ecx # ecx = ypmovl (%edx), %ebx # ebx = *xp (t0)movl (%ecx), %eax # eax = *yp (t1)movl %eax, (%edx) # *xp = t1movl %ebx, (%ecx) # *yp = t0

Page 35: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

35

Complete Memory Addressing Modes Most General Form

D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D] D: Constant “displacement” 1, 2, or 4 bytes Rb: Base register: Any of 8 integer registers Ri: Index register: Any, except for %esp

Unlikely you’d use %ebp, either S: Scale: 1, 2, 4, or 8 (why these numbers?)

Special Cases(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D](Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]

Page 36: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

36

So far! History of Intel processors and architectures

Evolutionary design leads to many quirks and artifacts

C, assembly, machine code Compiler must transform statements, expressions, procedures into

low-level instruction sequences

Assembly Basics: Registers, operands, move The x86 move instructions cover wide range of data movement

forms

Page 37: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

37

Complete addressing mode andaddress computation (leal)

Page 38: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

38

Data Representations: IA32 + x86-64 Sizes of C Objects (in Bytes) C Data Type Generic 32-bit Intel IA32 x86-64

unsigned 4 44

int 4 44

long int 4 48

char 1 11

short 2 22

float 4 44

double 8 88

long double 8 10/1216

char * 4 48– Or any other pointer

Page 39: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

39

Complete Memory Addressing Modes Most General Form D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]

D: Constant “displacement” 1, 2, or 4 bytes Rb: Base register: Any of 8 integer registers Ri: Index register: Any, except for %esp

Unlikely you’d use %ebp, either S: Scale: 1, 2, 4, or 8 (why these numbers?)

Special Cases (Rb,Ri)Mem[Reg[Rb]+Reg[Ri]] D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D] (Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]

Page 40: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

40

Address Computation Examples

Expression Address Computation Address

0x8(%edx) 0xf000 + 0x8 0xf008

(%edx,%ecx) 0xf000 + 0x100 0xf100

(%edx,%ecx,4) 0xf000 + 4*0x100 0xf400

0x80(,%edx,2) 2*0xf000 + 0x80 0x1e080

%edx 0x7000

%ecx 0x0200

Expression Address Computation Address

0x8(%edx)

(%edx,%ecx)

(%edx,%ecx,4)

0x80(,%edx,2)

Page 41: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

41

Address Computation Instruction leal Src,Dest

Src is address mode expression Set Dest to address denoted by expression

Uses Computing addresses without a memory reference

E.g., translation of p = &x[i]; Computing arithmetic expressions of the form x + k*y

k = 1, 2, 4, or 8 Example

int mul12(int x){ return x*12;}

int mul12(int x){ return x*12;}

leal (%eax,%eax,2), %eax ;t <- x+x*2sall $2, %eax ;return t<<2

leal (%eax,%eax,2), %eax ;t <- x+x*2sall $2, %eax ;return t<<2

Converted to ASM by compiler:

Page 42: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

42

Arithmetic operations

Page 43: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

43

Some Arithmetic Operations Two Operand Instructions:FormatComputationaddl Src,Dest Dest = Dest + Srcsubl Src,Dest Dest = Dest Srcimull Src,Dest Dest = Dest * Srcsall Src,Dest Dest = Dest << Src Also called shllsarl Src,Dest Dest = Dest >> Src Arithmeticshrl Src,Dest Dest = Dest >> Src Logicalxorl Src,Dest Dest = Dest ^ Srcandl Src,Dest Dest = Dest & Srcorl Src,Dest Dest = Dest | Src

Watch out for argument order! No distinction between signed and unsigned int (why?)

Page 44: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

44

Some Arithmetic Operations One Operand Instructionsincl Dest Dest = Dest + 1decl Dest Dest = Dest 1negl Dest Dest = Destnotl Dest Dest = ~Dest

See the chapter from CSAPP for more instructions

Page 45: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

45

Arithmetic Expression Example

int arith(int x, int y, int z){ int t1 = x+y; int t2 = z+t1; int t3 = x+4; int t4 = y * 48; int t5 = t3 + t4; int rval = t2 * t5; return rval;}

int arith(int x, int y, int z){ int t1 = x+y; int t2 = z+t1; int t3 = x+4; int t4 = y * 48; int t5 = t3 + t4; int rval = t2 * t5; return rval;}

arith:pushl %ebpmovl %esp, %ebp

movl 8(%ebp), %ecxmovl 12(%ebp), %edxleal (%edx,%edx,2), %eaxsall $4, %eaxleal 4(%ecx,%eax), %eaxaddl %ecx, %edxaddl 16(%ebp), %edximull %edx, %eax

popl %ebpret

Body

SetUp

Finish

Page 46: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

46

16 z

12 y

8 x

4 Rtn Addr

0 Old %ebp

Understanding arith

movl 8(%ebp), %ecxmovl 12(%ebp), %edxleal (%edx,%edx,2), %eaxsall $4, %eaxleal 4(%ecx,%eax), %eaxaddl %ecx, %edxaddl 16(%ebp), %edximull %edx, %eax

%ebp

Offsetint arith(int x, int y, int z){ int t1 = x+y; int t2 = z+t1; int t3 = x+4; int t4 = y * 48; int t5 = t3 + t4; int rval = t2 * t5; return rval;}

int arith(int x, int y, int z){ int t1 = x+y; int t2 = z+t1; int t3 = x+4; int t4 = y * 48; int t5 = t3 + t4; int rval = t2 * t5; return rval;}

Page 47: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

47

16 z

12 y

8 x

4 Rtn Addr

0 Old %ebp

Understanding arith

%ebp

Offset

Stack

int arith(int x, int y, int z){ int t1 = x+y; int t2 = z+t1; int t3 = x+4; int t4 = y * 48; int t5 = t3 + t4; int rval = t2 * t5; return rval;}

int arith(int x, int y, int z){ int t1 = x+y; int t2 = z+t1; int t3 = x+4; int t4 = y * 48; int t5 = t3 + t4; int rval = t2 * t5; return rval;}

movl 8(%ebp), %ecx # ecx = xmovl 12(%ebp), %edx # edx = yleal (%edx,%edx,2), %eax # eax = y*3sall $4, %eax # eax *= 16 (t4)leal 4(%ecx,%eax), %eax # eax = t4 +x+4 (t5)addl %ecx, %edx # edx = x+y (t1)addl 16(%ebp), %edx # edx += z (t2)imull %edx, %eax # eax = t2 * t5 (rval)

Page 48: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

48

Observations about arith Instructions in different

order from C code Some expressions require

multiple instructions Some instructions cover

multiple expressions Get exact same code when

compile: (x+y+z)*(x+4+48*y)

movl 8(%ebp), %ecx # ecx = xmovl 12(%ebp), %edx # edx = yleal (%edx,%edx,2), %eax # eax = y*3sall $4, %eax # eax *= 16 (t4)leal 4(%ecx,%eax), %eax # eax = t4 +x+4 (t5)addl %ecx, %edx # edx = x+y (t1)addl 16(%ebp), %edx # edx += z (t2)imull %edx, %eax # eax = t2 * t5 (rval)

int arith(int x, int y, int z){ int t1 = x+y; int t2 = z+t1; int t3 = x+4; int t4 = y * 48; int t5 = t3 + t4; int rval = t2 * t5; return rval;}

int arith(int x, int y, int z){ int t1 = x+y; int t2 = z+t1; int t3 = x+4; int t4 = y * 48; int t5 = t3 + t4; int rval = t2 * t5; return rval;}

Page 49: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

49

Another Example

int logical(int x, int y){ int t1 = x^y; int t2 = t1 >> 17; int mask = (1<<13) - 7; int rval = t2 & mask; return rval;}

int logical(int x, int y){ int t1 = x^y; int t2 = t1 >> 17; int mask = (1<<13) - 7; int rval = t2 & mask; return rval;}

logical:pushl %ebpmovl %esp,%ebp

movl 12(%ebp),%eaxxorl 8(%ebp),%eaxsarl $17,%eaxandl $8185,%eax

popl %ebpret

Body

SetUp

Finish

movl 12(%ebp),%eax # eax = yxorl 8(%ebp),%eax # eax = x^y (t1)sarl $17,%eax # eax = t1>>17 (t2)andl $8185,%eax # eax = t2 & mask (rval)

Page 50: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

50

Another Example

int logical(int x, int y){ int t1 = x^y; int t2 = t1 >> 17; int mask = (1<<13) - 7; int rval = t2 & mask; return rval;}

int logical(int x, int y){ int t1 = x^y; int t2 = t1 >> 17; int mask = (1<<13) - 7; int rval = t2 & mask; return rval;}

logical:pushl %ebpmovl %esp,%ebp

movl 12(%ebp),%eaxxorl 8(%ebp),%eaxsarl $17,%eaxandl $8185,%eax

popl %ebpret

Body

SetUp

Finish

movl 12(%ebp),%eax # eax = yxorl 8(%ebp),%eax # eax = x^y (t1)sarl $17,%eax # eax = t1>>17 (t2)andl $8185,%eax # eax = t2 & mask (rval)

Page 51: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

51

Another Example

int logical(int x, int y){ int t1 = x^y; int t2 = t1 >> 17; int mask = (1<<13) - 7; int rval = t2 & mask; return rval;}

int logical(int x, int y){ int t1 = x^y; int t2 = t1 >> 17; int mask = (1<<13) - 7; int rval = t2 & mask; return rval;}

logical:pushl %ebpmovl %esp,%ebp

movl 12(%ebp),%eaxxorl 8(%ebp),%eaxsarl $17,%eaxandl $8185,%eax

popl %ebpret

Body

SetUp

Finish

movl 12(%ebp),%eax # eax = yxorl 8(%ebp),%eax # eax = x^y (t1)sarl $17,%eax # eax = t1>>17 (t2)andl $8185,%eax # eax = t2 & mask (rval)

Page 52: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

52

Another Example

int logical(int x, int y){ int t1 = x^y; int t2 = t1 >> 17; int mask = (1<<13) - 7; int rval = t2 & mask; return rval;}

int logical(int x, int y){ int t1 = x^y; int t2 = t1 >> 17; int mask = (1<<13) - 7; int rval = t2 & mask; return rval;}

logical:pushl %ebpmovl %esp,%ebp

movl 12(%ebp),%eaxxorl 8(%ebp),%eaxsarl $17,%eaxandl $8185,%eax

popl %ebpret

Body

SetUp

Finish

movl 12(%ebp),%eax # eax = yxorl 8(%ebp),%eax # eax = x^y (t1)sarl $17,%eax # eax = t1>>17 (t2)andl $8185,%eax # eax = t2 & mask (rval)

213 = 8192, 213 – 7 = 8185213 = 8192, 213 – 7 = 8185

Page 53: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

53

Control: Conditon codes

Page 54: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

54

Processor State (IA32, Partial) Information

about currently executing program Temporary data

( %eax, … ) Location of runtime stack

( %ebp,%esp ) Location of current code

control point( %eip, … )

Status of recent tests( CF, ZF, SF, OF )

%eip

General purposeregisters

Current stack top

Current stack frame

Instruction pointer

CF ZF SF OF Condition codes

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

Page 55: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

55

Condition Codes (Implicit Setting)

Single bit registersCF Carry Flag (for unsigned) SF Sign Flag (for signed)ZF Zero Flag OF Overflow Flag (for signed)

Implicitly set (think of it as side effect) by arithmetic operationsExample: addl/addq Src,Dest ↔ t = a+bCF set if carry out from most significant bit (unsigned overflow)ZF set if t == 0SF set if t < 0 (as signed)OF set if two’s-complement (signed) overflow(a>0 && b>0 && t<0) || (a<0 && b<0 && t>=0)

Not set by lea instruction

Page 56: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

56

Condition Codes (Explicit Setting: Compare)

Explicit Setting by Compare Instructioncmpl Src2, Src1cmpl b,a like computing a-b without setting destination

CF set if carry out from most significant bit (used for unsigned comparisons)ZF set if a == bSF set if (a-b) < 0 (as signed)OF set if two’s-complement (signed) overflow(a>0 && b<0 && (a-b)<0) || (a<0 && b>0 && (a-b)>0)

Page 57: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

57

Condition Codes (Explicit Setting: Test)

Explicit Setting by Test instructiontestl Src2, Src1testl b,a like computing a&b without setting destination

Sets condition codes based on value of Src1 & Src2Useful to have one of the operands be a mask

ZF set when a&b == 0SF set when a&b < 0

Page 58: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

58

Reading Condition Codes SetX Instructions

Set single byte based on combinations of condition codes

SetX Condition Descriptionsete ZF Equal / Zerosetne ~ZF Not Equal / Not Zerosets SF Negativesetns ~SF Nonnegativesetg ~(SF^OF)&~ZF Greater (Signed)

setge ~(SF^OF) Greater or Equal (Signed)

setl (SF^OF) Less (Signed)setle (SF^OF)|ZF Less or Equal (Signed)seta ~CF&~ZF Above (unsigned)setb CF Below (unsigned)

Page 59: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

59

movl 12(%ebp),%eax # eax = ycmpl %eax,8(%ebp) # Compare x : ysetg %al # al = x > ymovzbl %al,%eax # Zero rest of %eax

Reading Condition Codes (Cont.)

SetX Instructions: Set single byte based on combination of condition

codes One of 8 addressable byte

registers Does not alter remaining 3 bytes Typically use movzbl to finish jobint gt (int x, int y){ return x > y;}

int gt (int x, int y){ return x > y;}

Body

%eax %ah %al

%ecx %ch %cl

%edx %dh %dl

%ebx %bh %bl

%esi

%edi

%esp

%ebp

Page 60: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

60

Conditional branches and moves

Page 61: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

61

Carnegie Mellon

Jumping jX Instructions

Jump to different part of code depending on condition codes

jX Condition Descriptionjmp 1 Unconditional

je ZF Equal / Zero

jne ~ZF Not Equal / Not Zero

js SF Negative

jns ~SF Nonnegative

jg ~(SF^OF)&~ZF Greater (Signed)

jge ~(SF^OF) Greater or Equal (Signed)

jl (SF^OF) Less (Signed)

jle (SF^OF)|ZF Less or Equal (Signed)

ja ~CF&~ZF Above (unsigned)

jb CF Below (unsigned)

Page 62: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

62

Carnegie Mellon

Conditional Branch Example

int absdiff(int x, int y){ int result; if (x > y) { result = x-y; } else { result = y-x; } return result;}

int absdiff(int x, int y){ int result; if (x > y) { result = x-y; } else { result = y-x; } return result;}

absdiff:pushl %ebpmovl %esp, %ebpmovl 8(%ebp), %edxmovl 12(%ebp), %eaxcmpl %eax, %edxjle .L6subl %eax, %edxmovl %edx, %eaxjmp .L7

.L6:subl %edx, %eax

.L7:popl %ebpret

Body1

Setup

Finish

Body2b

Body2a

Page 63: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

63

Carnegie Mellon

Conditional Branch Example (Cont.)int goto_ad(int x, int y){ int result; if (x <= y) goto Else; result = x-y; goto Exit;Else: result = y-x;Exit: return result;}

int goto_ad(int x, int y){ int result; if (x <= y) goto Else; result = x-y; goto Exit;Else: result = y-x;Exit: return result;}

C allows “goto” as means of transferring control Closer to machine-level

programming style Generally

considered bad coding style

absdiff:pushl %ebpmovl %esp, %ebpmovl 8(%ebp), %edxmovl 12(%ebp), %eaxcmpl %eax, %edxjle .L6subl %eax, %edxmovl %edx, %eaxjmp .L7

.L6:subl %edx, %eax

.L7:popl %ebpret

Body1

Setup

Finish

Body2b

Body2a

Page 64: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

64

Carnegie Mellon

Conditional Branch Example (Cont.)int goto_ad(int x, int y){ int result; if (x <= y) goto Else; result = x-y; goto Exit;Else: result = y-x;Exit: return result;}

int goto_ad(int x, int y){ int result; if (x <= y) goto Else; result = x-y; goto Exit;Else: result = y-x;Exit: return result;}

absdiff:pushl %ebpmovl %esp, %ebpmovl 8(%ebp), %edxmovl 12(%ebp), %eaxcmpl %eax, %edxjle .L6subl %eax, %edxmovl %edx, %eaxjmp .L7

.L6:subl %edx, %eax

.L7:popl %ebpret

Body1

Setup

Finish

Body2b

Body2a

Page 65: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

65

Carnegie Mellon

Conditional Branch Example (Cont.)int goto_ad(int x, int y){ int result; if (x <= y) goto Else; result = x-y; goto Exit;Else: result = y-x;Exit: return result;}

int goto_ad(int x, int y){ int result; if (x <= y) goto Else; result = x-y; goto Exit;Else: result = y-x;Exit: return result;}

absdiff:pushl %ebpmovl %esp, %ebpmovl 8(%ebp), %edxmovl 12(%ebp), %eaxcmpl %eax, %edxjle .L6subl %eax, %edxmovl %edx, %eaxjmp .L7

.L6:subl %edx, %eax

.L7:popl %ebpret

Body1

Setup

Finish

Body2b

Body2a

Page 66: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

66

Carnegie Mellon

Conditional Branch Example (Cont.)int goto_ad(int x, int y){ int result; if (x <= y) goto Else; result = x-y; goto Exit;Else: result = y-x;Exit: return result;}

int goto_ad(int x, int y){ int result; if (x <= y) goto Else; result = x-y; goto Exit;Else: result = y-x;Exit: return result;}

absdiff:pushl %ebpmovl %esp, %ebpmovl 8(%ebp), %edxmovl 12(%ebp), %eaxcmpl %eax, %edxjle .L6subl %eax, %edxmovl %edx, %eaxjmp .L7

.L6:subl %edx, %eax

.L7:popl %ebpret

Body1

Setup

Finish

Body2b

Body2a

Page 67: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

67

Carnegie Mellon

Loops

Page 68: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

68

Carnegie Mellon

C Codeint pcount_do(unsigned x) { int result = 0; do { result += x & 0x1; x >>= 1; } while (x); return result;}

int pcount_do(unsigned x) { int result = 0; do { result += x & 0x1; x >>= 1; } while (x); return result;}

Goto Versionint pcount_do(unsigned x){ int result = 0;loop: result += x & 0x1; x >>= 1; if (x) goto loop; return result;}

int pcount_do(unsigned x){ int result = 0;loop: result += x & 0x1; x >>= 1; if (x) goto loop; return result;}

“Do-While” Loop Example

Count number of 1’s in argument x (“popcount”)

Use conditional branch to either continue looping or to exit loop

Page 69: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

69

Carnegie Mellon

Goto Version“Do-While” Loop Compilation

Registers:%edx x%ecx result

movl $0, %ecx # result = 0.L2: # loop:

movl %edx, %eaxandl $1, %eax # t = x & 1addl %eax, %ecx # result += tshrl %edx # x >>= 1jne .L2 # If !0, goto loop

int pcount_do(unsigned x) { int result = 0;loop: result += x & 0x1; x >>= 1; if (x) goto loop; return result;}

int pcount_do(unsigned x) { int result = 0;loop: result += x & 0x1; x >>= 1; if (x) goto loop; return result;}

Page 70: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

70

Carnegie Mellon

C Code

do Body while (Test);

do Body while (Test);

Goto Version

loop: Body if (Test) goto loop

loop: Body if (Test) goto loop

General “Do-While” Translation

Body:

Test returns integer = 0 interpreted as false ≠ 0 interpreted as true

{ Statement1; Statement2; … Statementn;}

Page 71: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

71

Carnegie Mellon

C Code Goto Version

“While” Loop Example

Is this code equivalent to the do-while version? Must jump out of loop if test fails

int pcount_while(unsigned x) { int result = 0; while (x) { result += x & 0x1; x >>= 1; } return result;}

int pcount_while(unsigned x) { int result = 0; while (x) { result += x & 0x1; x >>= 1; } return result;}

int pcount_do(unsigned x) { int result = 0; if (!x) goto done;loop: result += x & 0x1; x >>= 1; if (x) goto loop;done: return result;}

int pcount_do(unsigned x) { int result = 0; if (!x) goto done;loop: result += x & 0x1; x >>= 1; if (x) goto loop;done: return result;}

Page 72: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

72

Carnegie Mellon

While version

while (Test) Bodywhile (Test) Body

Do-While Version

if (!Test) goto done; do Body while(Test);done:

if (!Test) goto done; do Body while(Test);done:

General “While” Translation

Goto Version

if (!Test) goto done;loop: Body if (Test) goto loop;done:

if (!Test) goto done;loop: Body if (Test) goto loop;done:

Page 73: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

73

Carnegie Mellon

C Code

“For” Loop Example

Is this code equivalent to other versions?

#define WSIZE 8*sizeof(int)int pcount_for(unsigned x) { int i; int result = 0; for (i = 0; i < WSIZE; i++) { unsigned mask = 1 << i; result += (x & mask) != 0; } return result;}

#define WSIZE 8*sizeof(int)int pcount_for(unsigned x) { int i; int result = 0; for (i = 0; i < WSIZE; i++) { unsigned mask = 1 << i; result += (x & mask) != 0; } return result;}

Page 74: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

74

Carnegie Mellon

“For” Loop Form

for (Init; Test; Update )

Body

General Form

for (i = 0; i < WSIZE; i++) { unsigned mask = 1 << i; result += (x & mask) != 0; }

for (i = 0; i < WSIZE; i++) { unsigned mask = 1 << i; result += (x & mask) != 0; }

i = 0i = 0

i < WSIZEi < WSIZE

i++i++

{ unsigned mask = 1 << i; result += (x & mask) != 0;}

{ unsigned mask = 1 << i; result += (x & mask) != 0;}

Init

Test

Update

Body

Page 75: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

75

Carnegie Mellon

“For” Loop While Loop

for (Init; Test; Update )

Body

For Version

Init;

while (Test ) {

Body

Update;

}

While Version

Page 76: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

76

Carnegie Mellon

“For” Loop … Goto

for (Init; Test; Update )

Body

For Version

Init;

while (Test ) {

Body

Update;

}

While Version

Init; if (!Test) goto done; do Body Update while(Test);done:

Init; if (!Test) goto done; do Body Update while(Test);done:

Init; if (!Test) goto done;loop: Body Update if (Test) goto loop;done:

Init; if (!Test) goto done;loop: Body Update if (Test) goto loop;done:

Page 77: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

77

Carnegie Mellon

C Code

“For” Loop Conversion Example

Initial test can be optimized away

#define WSIZE 8*sizeof(int)int pcount_for(unsigned x) { int i; int result = 0; for (i = 0; i < WSIZE; i++) { unsigned mask = 1 << i; result += (x & mask) != 0; } return result;}

#define WSIZE 8*sizeof(int)int pcount_for(unsigned x) { int i; int result = 0; for (i = 0; i < WSIZE; i++) { unsigned mask = 1 << i; result += (x & mask) != 0; } return result;}

Goto Version

int pcount_for_gt(unsigned x) { int i; int result = 0; i = 0; if (!(i < WSIZE)) goto done; loop: { unsigned mask = 1 << i; result += (x & mask) != 0; } i++; if (i < WSIZE) goto loop; done: return result;}

int pcount_for_gt(unsigned x) { int i; int result = 0; i = 0; if (!(i < WSIZE)) goto done; loop: { unsigned mask = 1 << i; result += (x & mask) != 0; } i++; if (i < WSIZE) goto loop; done: return result;}

Init

!Test

Body

UpdateTest

Page 78: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

78

Carnegie Mellon

Summary So far

Complete addressing mode, address computation (leal) Arithmetic operations Control: Condition codes Conditional branches & conditional moves Loops

Coming up! Switch statements Stack Call / return Procedure call discipline

Page 79: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

79

Carnegie Mellon

Today Switch statements IA 32 Procedures

Stack Structure Calling Conventions Illustrations of Recursion & Pointers

Page 80: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

80

Carnegie Mellon

IA32 Stack Region of memory

managed with stack discipline

Grows toward lower addresses

Register %esp contains

lowest stack address address of “top” elementStack Pointer: %esp

Stack GrowsDown

IncreasingAddresses

Stack “Top”

Stack “Bottom”

Page 81: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

81

Carnegie Mellon

IA32 Stack: Push pushl Src

Fetch operand at Src Decrement %esp by 4 Write operand at address given by %esp

-4

Stack GrowsDown

IncreasingAddresses

Stack “Bottom”

Stack Pointer: %esp

Stack “Top”

Page 82: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

82

Stack Pointer: %esp

Stack GrowsDown

IncreasingAddresses

Stack “Top”

Stack “Bottom”

Carnegie Mellon

IA32 Stack: Pop

+4

Page 83: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

83

Carnegie Mellon

Procedure Control Flow Use stack to support procedure call and

return Procedure call: call label

Push return address on stack Jump to label

Return address: Address of the next instruction right after call Example from disassembly804854e: e8 3d 06 00 00 call 8048b90 <main>

8048553: 50 pushl %eax Return address = 0x8048553

Procedure return: ret Pop address from stack Jump to address

Page 84: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

84

0x8048553

0x104

Carnegie Mellon

%esp

%eip

%esp

%eip 0x8048b90

0x108

0x10c

0x110

0x104

0x804854e

123

Procedure Call Example

0x108

0x10c

0x110

123

0x108

call 8048b90

804854e: e8 3d 06 00 00 call 8048b90 <main>8048553: 50 pushl %eax

804854e: e8 3d 06 00 00 call 8048b90 <main>8048553: 50 pushl %eax

%eip: program counter

Page 85: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

85

Carnegie Mellon

%esp

%eip

0x104

%esp

%eip0x804859

1

0x104

0x108

0x10c

0x110

0x8048553

123

Procedure Return Example

0x108

0x10c

0x110

123

ret

8048591: c3 ret8048591: c3 ret

0x108

0x8048553

0x8048553

%eip: program counter

Page 86: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

86

Carnegie Mellon

Stack-Based Languages Languages that support recursion

e.g., C, Pascal, Java Code must be “Reentrant”

Multiple simultaneous instantiations of single procedure Need some place to store state of each instantiation

Arguments Local variables Return pointer

Stack discipline State for given procedure needed for limited time

From when called to when return Callee returns before caller does

Stack allocated in Frames state for single procedure instantiation

Page 87: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

87

Carnegie Mellon

Call Chain Example

yoo(…){ • • who(); • •}

yoo(…){ • • who(); • •}

who(…){ • • • amI(); • • • amI(); • • •}

who(…){ • • • amI(); • • • amI(); • • •}

amI(…){ • • amI(); • •}

amI(…){ • • amI(); • •}

yoo

who

amI

amI

amI

ExampleCall Chain

amI

Procedure amI() is recursive

Page 88: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

88

Carnegie Mellon

Frame Pointer: %ebp

Stack Frames Contents

Local variables Return information Temporary space

Management Space allocated when enter procedure

“Set-up” code Deallocated when return

“Finish” code

Stack Pointer: %esp

Stack “Top”

Previous Frame

Frame for

proc

Page 89: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

89

Carnegie Mellon

Example

yoo

who

amI

amI

amI

amI

yoo%ebp

%esp

Stack

yoo

yoo(…){ • • who(); • •}

yoo(…){ • • who(); • •}

Page 90: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

90

yoo(…){ • • who(); • •}

yoo(…){ • • who(); • •}

Carnegie Mellon

Example

yoo

who

amI

amI

amI

amI

yoo

%ebp

%esp

Stack

yoo

who

who(…){ • • • amI(); • • • amI(); • • •}

who(…){ • • • amI(); • • • amI(); • • •}

Page 91: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

91

yoo(…){ • • who(); • •}

yoo(…){ • • who(); • •}

who(…){ • • • amI(); • • • amI(); • • •}

who(…){ • • • amI(); • • • amI(); • • •}

Carnegie Mellon

Example

yoo

who

amI

amI

amI

amI

yoo

%ebp

%esp

Stack

yoo

who

amI

amI(…){ • • amI(); • •}

amI(…){ • • amI(); • •}

Page 92: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

92

Carnegie Mellon

Example

yoo

who

amI

amI

amI

amI

yoo

%ebp

%esp

Stack

yoo

who

amI

amI

yoo(…){ • • who(); • •}

yoo(…){ • • who(); • •}

who(…){ • • • amI(); • • • amI(); • • •}

who(…){ • • • amI(); • • • amI(); • • •}

amI(…){ • • amI(); • •}

amI(…){ • • amI(); • •}

amI(…){ • • amI(); • •}

amI(…){ • • amI(); • •}

Page 93: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

93

Carnegie Mellon

Example

yoo

who

amI

amI

amI

amI

yoo

%ebp

%esp

Stack

yoo

who

amI

amI

amI

yoo(…){ • • who(); • •}

yoo(…){ • • who(); • •}

who(…){ • • • amI(); • • • amI(); • • •}

who(…){ • • • amI(); • • • amI(); • • •}

amI(…){ • • amI(); • •}

amI(…){ • • amI(); • •}

amI(…){ • • amI(); • •}

amI(…){ • • amI(); • •}

amI(…){ • • amI(); • •}

amI(…){ • • amI(); • •}

Page 94: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

94

Carnegie Mellon

Example

yoo

who

amI

amI

amI

amI

yoo

%ebp

%esp

Stack

yoo

who

amI

amI

yoo(…){ • • who(); • •}

yoo(…){ • • who(); • •}

who(…){ • • • amI(); • • • amI(); • • •}

who(…){ • • • amI(); • • • amI(); • • •}

amI(…){ • • amI(); • •}

amI(…){ • • amI(); • •}

amI(…){ • • amI(); • •}

amI(…){ • • amI(); • •}

Page 95: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

95

Carnegie Mellon

Example

yoo

who

amI

amI

amI

amI

yoo

%ebp

%esp

Stack

yoo

who

amI

yoo(…){ • • who(); • •}

yoo(…){ • • who(); • •}

who(…){ • • • amI(); • • • amI(); • • •}

who(…){ • • • amI(); • • • amI(); • • •}

amI(…){ • • amI(); • •}

amI(…){ • • amI(); • •}

Page 96: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

96

Carnegie Mellon

Example

yoo

who

amI

amI

amI

amI

yoo

%ebp

%esp

Stack

yoo

who

yoo(…){ • • who(); • •}

yoo(…){ • • who(); • •}

who(…){ • • • amI(); • • • amI(); • • •}

who(…){ • • • amI(); • • • amI(); • • •}

Page 97: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

97

Carnegie Mellon

Example

yoo

who

amI

amI

amI

amI

yoo

%ebp

%esp

Stack

yoo

who

amI

yoo(…){ • • who(); • •}

yoo(…){ • • who(); • •}

who(…){ • • • amI(); • • • amI(); • • •}

who(…){ • • • amI(); • • • amI(); • • •}

amI(…){ • • amI(); • •}

amI(…){ • • amI(); • •}

Page 98: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

98

Carnegie Mellon

Example

yoo

who

amI

amI

amI

amI

yoo

%ebp

%esp

Stack

yoo

who

yoo(…){ • • who(); • •}

yoo(…){ • • who(); • •}

who(…){ • • • amI(); • • • amI(); • • •}

who(…){ • • • amI(); • • • amI(); • • •}

Page 99: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

99

Carnegie Mellon

Example

yoo

who

amI

amI

amI

amI

yoo%ebp

%esp

Stack

yooyoo(…){ • • who(); • •}

yoo(…){ • • who(); • •}

Page 100: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

100

Carnegie Mellon

IA32/Linux Stack Frame Current Stack Frame (“Top”

to Bottom) “Argument build:”

Parameters for function about to call Local variables

If can’t keep in registers Saved register context Old frame pointer

Caller Stack Frame Return address

Pushed by call instruction Arguments for this call

Return Addr

SavedRegisters

+Local

Variables

ArgumentBuild

Old %ebp

Arguments

CallerFrame

Frame pointer

%ebp

Stack pointer

%esp

Page 101: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

101

Carnegie Mellon

Revisiting swap

void swap(int *xp, int *yp) { int t0 = *xp; int t1 = *yp; *xp = t1; *yp = t0;}

void swap(int *xp, int *yp) { int t0 = *xp; int t1 = *yp; *xp = t1; *yp = t0;}

int course1 = 15213;int course2 = 18243;

void call_swap() { swap(&course1, &course2);}

int course1 = 15213;int course2 = 18243;

void call_swap() { swap(&course1, &course2);}

call_swap:• • •subl $8, %espmovl $course2, 4(%esp)movl $course1, (%esp)call swap• • •

call_swap:• • •subl $8, %espmovl $course2, 4(%esp)movl $course1, (%esp)call swap• • •

&course2

&course1

Rtn adr %esp

ResultingStack•

••

Calling swap from call_swap

%esp

%espsubl

call

Page 102: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

102

Carnegie Mellon

Revisiting swap

void swap(int *xp, int *yp) { int t0 = *xp; int t1 = *yp; *xp = t1; *yp = t0;}

void swap(int *xp, int *yp) { int t0 = *xp; int t1 = *yp; *xp = t1; *yp = t0;}

swap:pushl %ebpmovl %esp, %ebppushl %ebx

movl 8(%ebp), %edxmovl 12(%ebp), %ecxmovl (%edx), %ebxmovl (%ecx), %eaxmovl %eax, (%edx)movl %ebx, (%ecx)

popl %ebxpopl %ebpret

Body

SetUp

Finish

Page 103: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

103

Carnegie Mellon

swap Setup #1

swap:

pushl %ebp

movl %esp,%ebp

pushl %ebx

Resulting Stack

&course2

&course1

Rtn adr %esp

Entering Stack

•••

%ebp

yp

xp

Rtn adr

Old %ebp

%ebp•••

%esp

Page 104: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

104

Carnegie Mellon

swap Setup #2

swap:

pushl %ebp

movl %esp,%ebp

pushl %ebx

Resulting Stack

&course2

&course1

Rtn adr %esp

Entering Stack

•••

%ebp

yp

xp

Rtn adr

Old %ebp%ebp

•••

%esp

Page 105: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

105

Carnegie Mellon

swap Setup #3

swap:

pushl %ebp

movl %esp,%ebp

pushl %ebx

Resulting Stack

&course2

&course1

Rtn adr %esp

Entering Stack

•••

%ebp

yp

xp

Rtn adr

Old %ebp %ebp

•••

%espOld %ebx

Page 106: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

106

Carnegie Mellon

swap Body

movl 8(%ebp),%edx # get xpmovl 12(%ebp),%ecx # get yp. . .

Resulting Stack

&course2

&course1

Rtn adr %esp

Entering Stack

•••

%ebp

yp

xp

Rtn adr

Old %ebp %ebp

•••

%espOld %ebx

Offset relative to %ebp

12

8

4

Page 107: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

107

Carnegie Mellon

swap FinishStack Before Finish

popl %ebxpopl %ebp

yp

xp

Rtn adr

Old %ebp %ebp

•••

%espOld %ebx

Resulting Stack

yp

xp

Rtn adr

•••

%ebp

%esp

Observation Saved and restored register %ebx Not so for %eax, %ecx, %edx

Page 108: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

108

Carnegie Mellon

Disassembled swap08048384 <swap>: 8048384: 55 push %ebp 8048385: 89 e5 mov %esp,%ebp 8048387: 53 push %ebx 8048388: 8b 55 08 mov 0x8(%ebp),%edx 804838b: 8b 4d 0c mov 0xc(%ebp),%ecx 804838e: 8b 1a mov (%edx),%ebx 8048390: 8b 01 mov (%ecx),%eax 8048392: 89 02 mov %eax,(%edx) 8048394: 89 19 mov %ebx,(%ecx) 8048396: 5b pop %ebx 8048397: 5d pop %ebp 8048398: c3 ret

80483b4: movl $0x8049658,0x4(%esp) # Copy &course2 80483bc: movl $0x8049654,(%esp) # Copy &course1 80483c3: call 8048384 <swap> # Call swap 80483c8: leave # Prepare to return 80483c9: ret # Return

Calling Code

Page 109: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

109

Carnegie Mellon

IA32/Linux+Windows Register Usage

%eax, %edx, %ecx Caller saves prior to call if values

are used later

%eax also used to return integer value

%ebx, %esi, %edi Callee saves if wants to use them

%esp, %ebp special form of callee save Restored to original values upon

exit from procedure

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

Caller-SaveTemporaries

Callee-SaveTemporaries

Special

Page 110: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

110

Carnegie Mellon

So far IA 32 Procedures

Stack Structure Calling Conventions Illustrations of Recursion & Pointers

Page 111: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

111

Carnegie Mellon

%esp

Creating and Initializing Local Variableint add3(int x) { int localx = x; incrk(&localx, 3); return localx;}

int add3(int x) { int localx = x; incrk(&localx, 3); return localx;}

Variable localx must be stored on stack Because: Need to create pointer to it

Compute pointer as -4(%ebp)

First part of add3

x

Rtn adrOld

%ebp%ebp 0

4

8

-4 localx = x

Unused-12

-8

-16

add3:pushl%ebpmovl %esp, %ebpsubl $24, %esp # Alloc. 24 bytesmovl 8(%ebp), %eaxmovl %eax, -4(%ebp)# Set localx to x

add3:pushl%ebpmovl %esp, %ebpsubl $24, %esp # Alloc. 24 bytesmovl 8(%ebp), %eaxmovl %eax, -4(%ebp)# Set localx to x -20

-24

Page 112: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

112

Carnegie Mellon

%esp

Creating Pointer as Argument

int add3(int x) { int localx = x; incrk(&localx, 3); return localx;}

int add3(int x) { int localx = x; incrk(&localx, 3); return localx;}

Use leal instruction to compute address of localx

Middle part of add3

x

Rtn adrOld

%ebp%ebp 0

4

8

-4 localx

Unused-12

-8

-16

movl $3, 4(%esp) # 2nd arg = 3leal -4(%ebp), %eax# &localxmovl %eax, (%esp) # 1st arg = &localxcall incrk

movl $3, 4(%esp) # 2nd arg = 3leal -4(%ebp), %eax# &localxmovl %eax, (%esp) # 1st arg = &localxcall incrk

-20

-24

3 %esp+4

Page 113: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

113

Carnegie Mellon

%esp

Retrieving local variable

int add3(int x) { int localx = x; incrk(&localx, 3); return localx;}

int add3(int x) { int localx = x; incrk(&localx, 3); return localx;}

Retrieve localx from stack as return value

Final part of add3

x

Rtn adrOld

%ebp%ebp 0

4

8

-4 localx

Unused-12

-8

-16

movl -4(%ebp), %eax # Return val= localxleaveret

movl -4(%ebp), %eax # Return val= localxleaveret

-20

-24

Page 114: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

114

Carnegie Mellon

IA32/Linux+Windows Register Usage

%eax, %edx, %ecx Caller saves prior to call if values

are used later

%eax also used to return integer value

%ebx, %esi, %edi Callee saves if wants to use them

%esp, %ebp special form of callee save Restored to original values upon

exit from procedure

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

Caller-SaveTemporaries

Callee-SaveTemporaries

Special

Page 115: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

115

Carnegie Mellon

Today Switch statements IA 32 Procedures

Stack Structure Calling Conventions Illustrations of Recursion & Pointers

Page 116: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

116

Basic Data Types Integral

Stored & operated on in general (integer) registers Signed vs. unsigned depends on instructions used

Intel ASM Bytes Cbyte b 1 [unsigned] charword w 2 [unsigned] shortdouble word l 4 [unsigned] intquad word q 8 [unsigned] long int (x86-64)

Floating Point Stored & operated on in floating point registers

Intel ASM Bytes CSingle s 4 floatDouble l 8 doubleExtended t 10/12/16 long double

Page 117: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

117

Array Allocation Basic Principle

T A[L]; Array of data type T and length L Contiguously allocated region of L * sizeof(T) bytes

char string[12];

x x + 12

int val[5];

x x + 4 x + 8 x + 12 x + 16 x + 20

double a[3];

x + 24x x + 8 x + 16

char *p[3];

x x + 8 x + 16 x + 24

x x + 4 x + 8 x + 12

IA32

x86-64

Page 118: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

118

Array Access Basic Principle

T A[L]; Array of data type T and length L Identifier A can be used as a pointer to array element 0: Type T*

Reference Type Valueval[4] int 3val int * xval+1 int * x + 4&val[2] int * x + 8val[5] int ??*(val+1)int 5val + i int * x + 4 i

int val[5]; 1 5 2 1 3

x x + 4 x + 8 x + 12 x + 16 x + 20

Page 119: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

119

Array Example

Declaration “zip_dig cmu” equivalent to “int cmu[5]” Example arrays were allocated in successive 20 byte blocks

Not guaranteed to happen in general

#define ZLEN 5typedef int zip_dig[ZLEN];

zip_dig cmu = { 1, 5, 2, 1, 3 };zip_dig mit = { 0, 2, 1, 3, 9 };zip_dig ucb = { 9, 4, 7, 2, 0 };

zip_dig cmu; 1 5 2 1 3

16 20 24 28 32 36

zip_dig mit; 0 2 1 3 9

36 40 44 48 52 56

zip_dig ucb; 9 4 7 2 0

56 60 64 68 72 76

Page 120: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

120

Array Accessing Example

Register %edx contains starting address of array

Register %eax contains array index

Desired digit at 4*%eax + %edx

Use memory reference (%edx,%eax,4)

int get_digit (zip_dig z, int dig){ return z[dig];}

# %edx = z # %eax = dig

movl (%edx,%eax,4),%eax # z[dig]

IA32

zip_dig cmu; 1 5 2 1 3

16 20 24 28 32 36

Page 121: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

121

# edx = zmovl $0, %eax # %eax = i

.L4: # loop:addl $1, (%edx,%eax,4) # z[i]++addl $1, %eax # i++cmpl $5, %eax # i:5jne .L4 # if !=, goto loop

Array Loop Example (IA32)

void zincr(zip_dig z) { int i; for (i = 0; i < ZLEN; i++) z[i]++;}

Page 122: Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from 18-213@CMU

Carnegie Mellon

122

Pointer Loop Example (IA32)void zincr_p(zip_dig z) { int *zend = z+ZLEN; do { (*z)++; z++; } while (z != zend); }

void zincr_v(zip_dig z) { void *vz = z; int i = 0; do { (*((int *) (vz+i)))++; i += ISIZE; } while (i != ISIZE*ZLEN);}

# edx = z = vzmovl $0, %eax # i = 0

.L8: # loop:addl $1, (%edx,%eax) # Increment vz+iaddl $4, %eax # i += 4cmpl $20, %eax # Compare i:20jne .L8 # if !=, goto loop