59
2015 Analyzing Water Quality Parameters to Assess Lake Health on Kushog Lake, Ontario. Community Based Research in Geography 4030Y Trent University in partnership with ULinks Haliburton. 20142015 Prepared for: Kushog Lake Property Owners Association Township of Algonquin Highlands Halliburton Ontario Prepared by: Caitlyn Bondy and Emily McDonald Trent University Peterborough, Ontario

CBE 4030 - Kushog Lake Report (1)

Embed Size (px)

Citation preview

Page 1: CBE 4030 - Kushog Lake Report (1)

 

   

2015  Analyzing  Water  Quality  Parameters  to  Assess  Lake  Health  on  Kushog  Lake,  Ontario.  

 Community  Based  Research  in  

Geography  4030Y  

Trent  University  in  partnership  with  U-­‐Links  Haliburton.  

2014-­‐2015  

Prepared  for:  

Kushog  Lake  Property  Owners  Association  

Township  of  Algonquin  Highlands  

Halliburton  Ontario  

Prepared  by:  

Caitlyn  Bondy  and  Emily  McDonald  

Trent  University  

Peterborough,  Ontario  

K9J  7B8  

Page 2: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   1    

   

Table  of  Contents  

Acknowledgements........................................................................................................................3  

Contact  List………………………………………………………………………………………………………………………………..4  

1.0 Introduction…………………………………………………………………………………………………………………………5  1.1 Project  Overview  and  Scope………………………………………………………………………………….5-­‐6  1.2 Research  Questions……………………………………………………………………………………………….6-­‐7  1.3 Framing  Research  and  Defining  Lake  Health  …………………………………………………………7-­‐9  

 2.0 Background………………………………………………………………………………………………………………………..10  

2.1 Location  and  Physical  Characteristics  of  Kushog  Lake……………………………………………..10  2.2 Hydrology  and  Watershed  Characteristics………………………………………………………………10  

2.2.1  Gull  River  Watershed………………………………………………………………………………..10-­‐13  2.2.2  Kushog  Lake  Watershed  ………………………………………………………………………………..14  

2.3 Climate  and  Precipitation………………………………………………………………………………….14-­‐17  2.4 Residential  and  Recreational  Uses  of  Kushog  Lake…………………………………………….17-­‐19  2.5 Fisheries…………………………………………………………………………………………………………….19-­‐20  

 3.0 Current  State  of  Knowledge  on  Lake  Ecosystems  ……………………………………………………………...21  

3.1 The  Lake  Environment…………………………………………………………………………………………….21  3.1.1 Introduction………………………………………………………………………………………….21  3.1.2 Lake  Thermal  Structure……………………………………………………………………21-­‐22  3.1.3 Lake  Habitats  and  Food  Chains…………………………………………………………23-­‐24  

3.2 Nutrient  Dynamics………………………………………………………………………………………………….24  3.2.1 Introduction………………………………………………………………………………………….24  3.2.2 Phosphorous……………………………………………………………………………………24-­‐26  3.2.3 Nitrogen……………………………………………………………………………………………….26  3.2.4 Calcium…………………………………………………………………………………………….26-­‐27  3.2.5 Dissolved  Organic  Carbon  and  Wetlands………………………………………....27-­‐28  

 4.0 Lake  Health  and  Water  Quality  Assessment……………………………………………………………………….28  

4.1 Synthesis  of  Kushog  Research………………………………………………………………………………..28  4.1.1 Reports…………………………………………………………………………………………….29-­‐31  4.1.2 Data  Collection…………………………………………………………………………………31-­‐33  4.1.3 Summary  Table………………………………………………………………………………..34-­‐35  

4.2 Regional  Comparison  of  Lake  Water  Quality  Parameters………………………………………..35  4.2.1 Gull  River  Watershed……………………………………………………………………….35-­‐42  

Page 3: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   2    

   

4.3 Water  Quality  Guidelines  Comparison……………………………………………………………………42  4.3.1 Recreational…………………………………………………………………………………….42-­‐44  4.3.2 Protection  for  Aquatic  Life  ………………………………………………………………44-­‐45  4.3.3 Drinking  Water  Standards  ……………………………………………………………….46-­‐47  

4.4 Benthic  Invertebrates  and  Biological  Indicators………………………………………………...48-­‐51    

5.0 Interpretation  and  Discussion…………………………………………………………………………………………....51  5.1 Interpretation  of  Lake  Water  Quality  Parameters……………………………………………..51-­‐53  5.2 Water  Quality  Guidelines  Interpretation……..……………………………………………………......53  

6.0 Recommendations………………………………………………………………………………………………………..54-­‐55  

References………………………………………………………………………………………………………………………....56-­‐58  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 4: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   3    

   

Acknowledgements  

The  authors  of  this  report  would  like  to  thank  Norma  Goodger  and  Dagmar  Boettcher  for  

proposing  this  project  and  allowing  us  to  put  our  best  efforts  into  the  assignment,  as  it  has  

proven  to  be  an  excellent  experience  for  both  of  us.  We  would  also  like  to  thank  the  entire  U-­‐

Links  team  that  has  essentially  made  this  all  happen,  with  a  special  thanks  to  Emma  Horrigan  

who  has  provided  support  throughout  the  project.  Lastly,  we  would  like  to  thank  the  Trent  

University  Geography  staff,  particularly  Professor  Cheryl  McKenna-­‐Neuman  and  Catherine  

Eimers  who’s  expertise  and  encouragement  was  highly  valuable  for  the  completion  of  this  

work.    It  is  our  hope  that  this  research  will  help  the  Kushog  Lake  Properties  Owners  Association  

continue  the  excellent  stewardship  of  their  lake  environment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 5: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   4    

   

Contact  List  

 

 

Host  Organization:  

Dagmar  Boettcher  

Kushog  Lake  Property  Owners  Association.  

[email protected]  

705-­‐457-­‐5968  

 

Norma  Goodger  

Kushog  Lake  Property  Owners  Association.  

[email protected]  

705-­‐489-­‐2966  

 

U-­‐Links  Host:  

Emma  Horrigan.      

Box  655  Minden,  Ontario  

[email protected]  

1-­‐877-­‐527-­‐2411;  705-­‐286-­‐2411  

 

 

 

 

 

 

Trent  Faculty:  

Cheryl  McKenna-­‐Neuman.    

Department  of  Geography  at  Trent  University.  

[email protected]  

 

Catherine  Eimers  

Department  of  Geography  at  Trent  University  

[email protected]  

 

Benthic  Monitoring  Scientist:    

Chris  Jones  

Dorset  Environmental  Science  Centre.  

[email protected]  

705  766  1724  

 

Page 6: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   5    

   

1.0 Introduction  

In  fulfillment  of  the  requirements  for  a  course  based  project  (GEOG  4030Y)  at  Trent  University,  

Emily  McDonald  and  Caitlyn  Bondy  in  partnership  with  the  Haliburton  Center  for  Community  

Based  Research,  were  retained  by  the  Kushog  Lake  Property  Owners  Association  (KLOPA)  to  

conduct  a  review,  summarization,  consolidation  and  interpretation  of  various  water  quality  

monitoring  programs  and  the  data  produced  by  them  for  Kushog  Lake.  KLOPA  expressed  a  

desire  to  understand  what  the  monitoring  data  indicate  in  terms  of  the  health  of  their  lake.    

The  key  sources  of  Kushog  data  in  this  project  include  those  from  the  Lake  Partnership  

Program,  in  addition  to  supplementary  data  and  reports  from  the  Ministry  of  Environment,  

Glenside  Ecological  Services  and  KLOPA.    The  documents  and  data  sources  which  have  been  

produced  specifically  for  Kushog  and  which  serve  as  the  foundation  for  this  project,  are  

outlined  in  full  within  section  4.0  of  this  report.  

The  KLOPA  expressed  interest  in  this  work  as  part  of  their  mandate  to  be  responsible  stewards  

of  their  lake  environment  and  to  ensure  the  continued  sustainability  of  the  environment  for  

generations  to  come.  They  have  expressed  concerns  over  potential  impacts  related  to  shoreline  

development,  water  level  fluctuations  and  regional  water  quality  trends.      In  addition  to  

interpreting  the  current  monitoring  data  and  geographic  reports  available,  KLOPA  was  

interested  in  receiving  recommendations  for  prioritizing  future  water  quality  monitoring  

efforts.    

1.1    Project  Scope  and  Overview  

This  report  aims  to  address  the  following  key  research  questions:  

• What  do  existing  water  quality  data  for  Kushog  Lake  suggest  in  terms  of  current  lake  

health?  How  do  we  define  lake  health?  

 

Page 7: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   6    

   

• Is  there  any  evidence  in  the  existing  water  quality  data  for  Kushog  Lake  that  would  

suggest  (1)  an  overall  pattern  or  trend  leading  to  decline  in  lake  health,  or  (2)  a  current  

issue  with  lake  health?  

 

• Using  peer-­‐reviewed  literature,  government  documents/established  guidelines,  can  we  

identify  any  upcoming  concerns  for  which  it  would  be  prudent  to  include  or  establish  

new  water  quality  parameters  to  monitor?  

 

• What  water  quality  parameters  or  indicators  should  be  prioritized  for  continued  

monitoring  on  Kushog  Lake  to  ensure  the  conservation  and  preservation  of  the  natural  

lake  environment?    

To  focus  the  analysis  of  Kushog  Lake  water  quality  data,  a  methodology  was  designed  to  explain  

and  answer  the  aforementioned  research  questions  in  the  context  of  background  information  

about  Kushog  Lake,  general  lake  ecology  and  water  quality.      

This  report  does  not  directly  address  the  issue  of  water  level  draw-­‐downs  and  fluctuations.  It  is  

likely  that  this  should  be  an  area  of  further  research,  using  if  possible  the  foundation  

established  by  this  report.    There  is  additional  information  related  to  sediment  profiles  for  the  

lake,  which  are  not  covered  in  detail  in  this  report,  but  have  been  discussed  in  other  

documents.      

 

1.2    Research  Goals  and  Deliverables    

The  research  goals  and  deliverables  for  this  project:    

• Conduct  a  review,  summarization,  consolidation  and  interpretation  of  existing  water  

quality  monitoring  data  on  Kushog  Lake  as  related  to  lake  health    

 

• Create  a  ‘Lake  Fact  Sheets’  which  aid  in  interpreting  the  water  quality  data  and  serve  as  

a  communication  tool  to  inform  KLOPA  on  the  status  of  lake  health.    

Page 8: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   7    

   

 

• Provide  recommendations  for  the  prioritization  of  future  monitoring  efforts  aimed  at  

ensuring  the  conservation  and  preservation  of  the  natural  lake  environment.    

 

1.3      Framing  Research  and  Defining  Lake  Health    

Since  there  is  no  singular  definition  of  what  ‘lake  health’  or  a  healthy  lake  is,  a  methodological  

approach  which  allowed  for  qualitative  interpretation  of  the  monitoring  data  in  terms  of  ‘lake  

health’  was  established.  A  visual  conceptualization  of  this  methodological  approach  is  

presented  in  Figure  4.  This  establishes  Kushog  within  its  geographical  context  and  serves  as  a  

basis  for  comparison  of  what  is  typical  or  ‘normal’  for  Ontario  Precambrian  lakes.  Key  elements  

include:  

• Comparing  average  values  of  chemical  and  physical  water  quality  parameters  for  Kushog  

Lake  to  other  lakes  within  the  Gull  River  Watershed  in  order  to  determine  if  differences  

exist  or  if  the  water  quality  of  Kushog  is  typical  for  the  watershed.  

 

• Comparing  average  values  of  chemical  and  physical  water  quality  parameters  for  Kushog  

Lake  with  Canadian  Environmental  Quality  Guidelines  (EQGs)  including  the  Recreational  

Water  Quality  Guidelines  and  Aesthetics,  Canadian  Water  Quality  Guidelines  for  the  

Protection  of  Aquatic  Life  and  Guidelines  for  Canadian  Drinking  Water  Quality.      

 

These  EQGs  are  nationally  endorsed,  science-­‐based  goals  for  aquatic  ecosystems  which  

are  intended  to  aid  in  the  protection,  sustainability  and  enhancement  of  the  quality  of  

the  environment.  They  are  numerical  values  for  chemical  and  physical  parameters  in  

ambient  water  (CCME,  2001).  By  comparing  the  numerical  values  of  water  quality  

parameters  of  Kushog  Lake  to  these  protective  guidelines,  we  can  establish  if  any  

exceedences  occur,  which  may  indicate  if  there  is  impairment  of  lake  health.  Conversely,  

if  no  exceedences  occur  we  can  attest  there  is  no  impairment  of  lake  health  relative  to  

the  guideline  

Page 9: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   8    

   

• Creating  a  Kushog  Lake  ‘Fact  Sheet’  which  presents  and  interprets  key  water  quality  

parameters  including;  phosphorus  concentrations  through  time  relative  to  the  trophic  

status  it  represents;  secchi  depth  and  dissolved  oxygen/temperature  profile.  It  also  

includes  key  geographic  descriptors  such  as  lake  depth,  shape,  size,  %  wetlands  and  

watershed  area.    

 

• Creating  a  ‘Kushog  Lake’  which  presents  information  about  the  use  of  benthic  

invertebrates  as  biological  indicators,  including  a  description  of  the  general  

methodology  

 

• All  water  quality  parameters  are  also  interpreted  in  the  context  of  current  peer  

reviewed  literature  and  related  to  lake  health.      

 

 

 

 

 

 

 

 

 

Page 10: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   9    

   

 

Figure  4.  Visual  conceptualization  of  project  scope  and  methodological  approach  with  regard  to  defining  and  assessing  lake  health    

Section  4.1  serves  as  summarization  and  a  consolidation  of  the  known  available  reports  and  

data  specific  to  Kushog  Lake.    These  reports  and  data  are  the  foundation  for  our  assessment  of  

the  water  quality  and  lake  health.  Additional  resources  which  were  obtained  that  are  applicable  

to,  but  not  directly  derived  from  Kushog  lake  are  also  described  in  this  section.  

 

 

 

 

Page 11: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   10    

   

2.0 Kushog  Lake  Geographical  Background    

2.1        Location  and  Physical  Characteristics  of  Kushog  Lake  

Kushog  Lake  is  situated  within  the  Precambrian  Shield  at  N  45  °5’,  W  78°  47’  at  an  elevation  of  

332.8  meters  above  sea  level.    By  car,  it  is  situated  approximately  1hr  45  min  NW  of  

Peterborough  ON,  45  min  SW  of  Algonquin  Provincial  Park,  E  of  Haliburton,  ON  and  N  of  

Minden,  ON.    Kushog  Lake  lies  on  right  on  the  border  between  Haliburton  and  Muskoka  

countries  and  the  townships  of  Minden  Hills  and  Algonquin  Highlands.  It  is  a  long  and  narrow  

water  body,  oriented  north  to  south  with  a  mean  depth  of  9.1  m  and  maximum  of  38.1  m.    The  

lake  spans  17.2  km  with  a  maximum  width  of  1.6  km.  The  water  surface  area  of  Kushog  Lake  is  

approximately  600  hectares  with  a  shoreline  perimeter  that  spans  approximately  38.2  to  40.6  

km.  For  reference,  see  Figures  1a  and  1b.  The  lake  holds  a  total  volume  of  63  200  000  m³  (MOE,  

2003;  Heaven  and  Brady,  2011).  Table  1  provides  a  summary  of  this  information.  

Table  1.  Summary  of  physical  characteristics  of  Kushog  Lake.  

Physical  Characteristics  of  Kushog  Lake  

Lake  Surface  Area   679  ha  Shoreline  Perimeter   38.3  to  40.6  km  Maximum  Depth   38.1  m  Mean  Depth   9.1  m  

North  to  South  Length  

17.2  km  

Maximum  Width   1.6  km  Elevation   332.8  mASL  

Total  Volume   63  200  000  m³    

2.2      Hydrology  and  Watershed  Characteristics  

2.2.1  Gull  River  Watershed  

The  Gull  River  Watershed  (Figure  2)  is  situated  at  the  most  northern  part  of  the  Trent  River  

basin,  lying  to  the  west  of  the  Black  River  Watershed  and  east  of  the  Burnt  River  Watershed.  

Page 12: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   11    

   

Altogether,  there  are  17  lakes  within  the  Gull  River  Watershed  that  contain  21  dams  operated  

by  the  Trent  Severn  Waterway  (TSW).  Of  the  17  lakes,  Kushog  resides  in  middle  of  the  

watershed.  Kushog  is  managed  as  a  headwater  for  the  Trent  Severn  Waterway  (TSW),  which  is  

an  important  economic,  environmental  and  recreational  resource  that  consists  of  

interconnected  series  of  lakes,  as  well  as  artificial  canal  cuts  stretching  for  386  km  (Parks  

Canada,  2014).  This  subjects  Kushog  to  water  level  fluctuations,  which  are  managed  seasonally  

to  accommodate  Lake  Trout  spawning  activity.    

 

Sherborne  Lake  resides  directly  north  of  the  Kushog  Watershed  and  connects  Lake  St.  Nora  to  

Kushog  Lake.  The  most  northern  lakes  within  the  Gull  River  Watershed  are:  Sherborne,  Red  

Pine  Lake,  Kennisis  Lake,  Redstone  Lake,  and  Percy  Lake  (Map  1).  All  five  of  these  lakes  

sequentially  flow  southwards  into  the  remaining  lakes.  Moore  Lake  is  the  most  southern  lake  

within  the  watershed,  which  flows  directly  into  the  Kawartha  Lake  watershed.    

 

Of  particular  interest  to  this  report  are  the  lakes:  Big  Hawk  Lake,  Eagle  Lake,  Halls  Lake,  Twelve  

Miles  Lake,  and  Gull  Lake.  These  lakes  will  be  analyzed  in  conjunction  with  Kushog  Lake  to  

distinguish  any  differences  or  consolidate  any  similarities.    

 

 

 

 

 

 

 

 

 

 

Page 13: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   12    

   

 

Figure  1.    Aerial  Photograph  Image  of  Kushog  Lake.  Retrieved  from  Scholars  GeoPortal  

Page 14: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   13    

   

 Figure  2.  Gull  River  Watershed;  consists  of  21  large  named  lakes  connected  by  the  Gull  River.  Source:  adopted  from  www.redstonelake.com.  Retrieved  April  1st,  2015.    

 

 

 

 

Page 15: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   14    

   

2.2.2  Kushog  Lake  Watershed  

Nested  within  the  Gull  River  Watershed,  as  delineated  by  Glenside  Ecological  Services  (GES)  

G.I.S.  analysis,  is  Kushog  Lake’s  own  drainage  basin  or  watershed.  The  total  watershed  area,  

including  the  water  bodies  of  St.  Nora  and  Kushog  is  approximately  8,656  hectares  (ha).  Lake  St.  

Nora  has  an  area  of  276  ha  and  Kushog  Lake  has  an  area  of  679  ha.  Other  important  

waterbodies  within  the  watershed  include  Margaret  Lake,  Kabakwa,  and  Plastic  Lake.  The  

watershed  is  further  divided  into  terrestrial  sub-­‐watersheds  representing  land  units  draining  

separately  into  Kushog  (Map  3).  There  are  46-­‐subwatersheds  which  range  from  approximately  9  

hectares  to  475  hectares.  Collectively  these  sub  watersheds  have  an  area  of  7701  ha  excluding  

the  area  of  Kushog  and  Lake  St  Nora.  From  these  sub-­‐watersheds  there  are  approximately  34  

streams  identified  in  the  watershed,  as  well  as  12  culverts.  The  areas  of  each  sub-­‐watershed  are  

summarized  in  detail  in  the  GES  document  ‘Kushog  Lake  Watershed:  Wetland  and  Stream  

Desktop  Analysis,  Final  Report,  2011’.    

 

There  is  an  existing  body  of  research  (e.g.  Adkinson  et  al.,2008,  Eimers  et  al.,  2008,  Watmough  

and  Dillion,  2003),  which  has  been  carried  out  by  Trent  University  researchers  on  Plastic  Lake  

involving  legacy  effects  of  acidification  and  recovery  quantification,  dissolved  organic  carbon  

and  nutrient  dynamics,  calcium  weathering,  metal  release  from  wetlands  and  phosphorus  

budgets.    We  mention  this  since  Plastic  Lake  resides  within  Kushog’s  catchment.  Plastic  lake  is  a  

sustainably  smaller  lake  (32  ha)  and  its  catchment  area  represents  only  257  ha  or  3.5  %  of  the  

terrestrial  catchment  of  Kushog.      

 2.3      Climate  and  Precipitation  

Precipitation  events  and  temperature  fluctuations  contribute  to  variable  water  quality.  

Frequent  precipitation  events  can  lead  to  greater  runoff  flowing  into  the  lake,  which  may  carry  

a  multitude  of  contaminants  ranging  from  agricultural  nutrients  or  pesticides  to  road  salts.  Over  

the  past  several  decades,  road  salts  have  been  a  major  concern  as  they  have  had  an  adverse  

effect  on  freshwater  organisms  as  well  as  the  chemical  composition  of  lakes.  As  more  highways  

are  constructed  in  relatively  undeveloped  regions,  particularly  on  the  Canadian  Shield,  and  rural  

Page 16: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   15    

   

ecosystems  become  incorporated  within  the  urban  region,  aquatic  ecosystems  located  near  

these  roadways  may  be  adversely  impacted.  In  particular,  species  shift  may  occur  and  some  

lakes  can  become  chemically  stratified.  These  salts  naturally  enter  surface  waters  through  

pathways  of  the  water  cycle,  which  include  precipitation,  stream  inflow,  overland  runoff,  and  

groundwater  inputs  (Evans  et  al.,  2001).  The  same  processes  apply  to  the  transportation  of  

agricultural  nutrients  or  pesticides.  Runoff  water  associated  with  storm  events  can  cause  a  flush  

or  ‘pulse’  of  contaminants  to  enter  aquatic  systems  (Richards  et  al.,  1992).    Furthermore,  

agricultural  runoff  can  carry  sources  of  phosphorus  and  contribute  to  the  eutrophication  of  

freshwaters.  Although,  most  freshwater  lakes  are  phosphorus  limited,  continued  inputs  of  

fertilizer  and  manure  in  excess  of  crop  requirements  have  led  to  soil  phosphorus  levels  that  are  

of  environmental  concern  and  can  threaten  water  quality  (Sharpley  et  al.,  1994).    

There  are  several  actions  that  have  been  suggested  within  relevant  research  to  reduce  the  

transport  of  road  salt  and  agricultural  runoff  input  into  aquatic  ecosystems.  These  actions  

include  modifying  application  rates,  improving  operation  of  road  salt  storage  depots,  using  safe  

waste-­‐snow  removal  methods,  and  incorporating  buffer  strips,  riparian  zones  and  terracing  

surrounding  the  lake  (Evans  et  al.,  2002;  Sharpley  et  al,  2001).    

Temperature  fluctuation  also  has  profound  effects  on  lake  health,  as  a  warmer  climate  can  

increase  lake  temperatures  and  exert  major  influence  on  biological  activity.  Freshwater  fish  are  

directly  affected  by  the  temperature  of  their  surrounding  environment  and  can  be  grouped  into  

three  thermal  guilds:  1)  warm-­‐water  (E.g.,  smallmouth  bass);  2)  cool-­‐water  (e.g.,  northern  pike,  

walleye,  yellow  perch);  and  3)  cold-­‐water  (e.g.  brook  trout,  lake  trout,  lake  whitefish).  Fish  

species  that  spawn  at  low  temperature  generate  larvae  that  do  best  at  low  temperatures  and  

fish  species  that  spawn  at  high  temperatures  generate  larvae  that  do  best  at  high  temperatures  

(Chetkiewicz  et  al.,  2012).  It  is  also  imperative  to  be  aware  of  the  fact  that  increasing  

concentrations  of  greenhouse  gases  are  expected  to  increase  surface  temperatures,  lower  pH,  

and  cause  changes  to  vertical  mixing,  upwelling,  precipitation,  and  evaporation  rates.  The  

potential  consequences  of  these  changes  can  lead  to  harmful  algae  blooms  (Moore  et  al,  2008).  

A  study  performed  by  Winter  et  al.  (1994)  revealed  that  most  of  the  increase  in  the  number  of  

Page 17: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   16    

   

cyanobacteria  bloom  reports  was  associated  with  lakes  on  the  Canadian  Shield.  Winter  et  al  

attributed  these  trends  to  (1)  increased  nutrient  inputs  that  promote  algae  growth,  (2)  factors  

associated  with  climate  change  that  exacerbate  bloom  conditions;  and  (3)  an  increase  in  public  

awareness  of  algal  issues.  Irrefutably,  climate  change  correlates  with  increased  temperatures  

and  algae  bloom  growth  and  is  an  important  factor  to  consider  when  discussing  a  lakes  overall  

health.    

Figure  3  displays  the  30-­‐year  climate  normal  for  the  Haliburton  region  with  both  precipitation  

and  temperature  averages.  “Climate  normal”  refers  to  the  arithmetic  calculations  based  on  

observed  climate  values  in  a  given  region  over  a  specific  time,  usually  30  years  (Government  of  

Canada,  2015).  The  climograph  displays  monthly  averages  for  precipitation  (mm)  and  daily  

temperatures,  with  maximum  and  minimum  daily  temperatures  in  Haliburton  for  the  years  

1981  to  2010.    

Kushog  Lake  is  located  within  the  Haliburton  region,  which  has  a  temperate  continental  climate.  

A  temperate  continental  climate  is  usually  characteristic  of  short  and  warm  summers  and  

winters  that  are  long  and  cold,  which  is  exhibited  in  Figure  3.  This  figure  displays  that  the  

highest  daily  average  temperature  is  in  the  month  of  July  with  18  °C.  The  lowest  average  

temperature  occurs  in  January  at  approximately  –  11  °C.  For  this  climate  period,  precipitation  is  

at  its  highest  level  in  the  month  of  November  with  approximately  116  mm.  Throughout  

November,  the  most  common  form  of  precipitation  is  light  to  moderate  snow  and  rain.  The  

precipitation  amount  is  lowest  in  February  with  73  mm  and  is  predominately  in  the  form  of  

snow.      

 

 

Page 18: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   17    

   

 

 

Figure  3.    Monthly  averages  for  precipitation  (mm)  and  daily  temperatures  (°C),  with  daily  maximum  and  minimum  temperatures  in  Haliburton  for  the  years  1981  to  2010.  Source:  Government  of  Canada:  Canadian  Climate  Normal  for  1971-­‐2000  Station  data.    

 

2.4        Residential  and  Recreational  Uses  of  Kushog  Lake  

Kushog’s  property  and  shoreline  development  primarily  consists  of  seasonal  and  permanent  

residences.    A  total  of  576  residential,  commercial  and  government  properties  are  established  

on  the  lake,  in  addition  to  crown  land.  The  Kushog  Lake  Spring  Newsletter  of  2011  summarizes  

the  approximate  percentage  that  each  development  occupies  on  the  shoreline.  Residential  

properties  total  543,  where  73  or  13%  are  permanent  and  438  or  78%  are  seasonal;  however,  in  

terms  of  frontage  65%  or  26.6  km  belong  to  the  permanent  residential  properties  and  only  3.8  

km  or  10%  of  total  frontage  belongs  to  the  438  seasonal  residences,  with  another  5%  or  1.9  km  

of  vacant  lots.  Additionally  another  17%  or  7.2  km  is  considered  Crown  Land.    

This  has  important  management  implications;  the  7.2  km  of  Crown  Land,  1.9  km  of  vacant  lots  

and  26.6km  of  permanent  residents  make  up  35.7  km  of  40.6  km  or  88%  of  the  total  frontage  

 

Page 19: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   18    

   

on  Kushog.  Crown  Land  is  generally  undeveloped  and  may  remain  in  relative  pristine  condition  

compared  to  residential  properties,  and  thus,  can  be  considered  to  have  a  nominal  or  positive  

contribution  to  the  lake  environment.  Vacant  lots  currently  not  occupied  by  humans  do  not  

have  active  anthropogenic  contributions,  but  depending  on  the  legacy  of  individual  sites,  may  

have  an  historical  influence.  They  can  be  considered  as  neutral  sites,  undergoing  possible  

succession  or  natural  restoration.    Since  65%  of  the  shoreline  is  occupied  by  permanent  

residences,  focusing  on  best  management  practices  (e.g.  proper  septic  and  lawn  maintence)  

and  stewardship  efforts  (restoration,  naturalization,  monitoring)  within  these  properties  could  

have  a  highly  effective  outcome.    

Other  impacts,  such  as  recreational  uses  including  boating  and  overfishing,  combined  with  

sewage  disposal  and  alteration  of  natural  landscape,  can  effectually  harm  the  lake  (Kushog  Lake  

Newsletter,  2011).  Research  on  the  effects  from  recreational  activities  have  acknowledged  that  

activities  such  as  boating  can  result  in  a  decrease  in  water  quality  through  fuel  spills,  and  

thereby  damage  lake  ecology,  as  well  as  introduce  invasive  or  non-­‐native  species.    Additionally,  

boat-­‐generated  waves  act  to  simplify  aquatic  communities  through  a  reduction  in  the  diversity  

of  habitat  types,  ultimately  reducing  species  diversity  (Hall  et  al,  2014).  

The  duration  over  which  people  occupy  the  shoreline  (seasonal  vs.  permanent)  directly  

increases  the  amount  of  sewage  being  disposed  of  annually.  As  residential  occupancy  increases,  

the  potential  amount  of  phosphorus  that  leaches  into  the  lake  will  also  increase  (Kushog  Lake  

Newsletter,  2011).  There  is  a  relationship  between  unmaintained  septic  systems  and  

phosphorus  accumulation;  it  has  been  demonstrated  that  phosphorus  accumulation  occurs  

within  sediment  zones  that  are  very  close  to  infiltration  pipes  and  this  is  observed  to  be  a  

common  occurrence  around  septic  systems  (Zanini  et  al,  1998).    These  relationships,  however,  

are  highly  dependant  on  the  types  of  soils  present  and  the  pH  of  the  surrounding  environment.  

In  watersheds  where  the  pH  is:  1)  lowered  by  historical  acidification  through  acid  rain,  and/or  2)  

naturally  low  because  of  soil  or  vegetation  type,  the  phosphorus  will  more  readily  combine  with  

aluminum,  iron  or  manganese  forming  insoluble  salts  contained  within  the  soils.  In  these  

catchments,  phosphorus  in  runoff  is  reduced  (Jansson  et  al.,  1986).  This  is  likely  the  situation  

Page 20: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   19    

   

present  on  Kushog  Lake  owing  to  its  location  within  the  shallow  acidic  soils  of  the  Precambrain  

Shield  which  are  calcium  limited  (Jeziorski  et  al.,  2008;  Wetzel,  2001).  Conversely,  phosphorus  is  

most  bioavailable  and  readily  leeched  from  soils  at  pH  values  between  6  to  7.  It  is  always  

advisable  to  follow  best  management  practices,  including  the  proper  and  continual  monitoring  

of  aging  septic  tanks.  This  is  an  important  practice  to  implement  on  Kushog  Lake  cottages  in  

order  to  prevent  the  potential  release  of  phosphorus  into  the  lake.    Another  consideration  is  to  

manage  and  mitigate  the  possible  erosion  of  soils  laden  with  phosphorus  salts  into  the  

waterbody,  preventing  loading  in  this  manner.    

The  destruction  of  fish  habitats  from  environmental  abuses  mentioned  above  is  further  

augmented  by  inappropriate  fishing  practices.  It  is  imperative  that  lake  managers  enforce  time  

periods  on  when  it  is  appropriate  to  fish  certain  species;  otherwise,  overfishing  can  result  in  

declining  populations.  Research  has  suggested  that  lake  trout  can  tolerate  substantial  losses  in  

spawning  habitat,  but  natural  populations,  especially  in  small  lakes,  must  be  protected  from  

excessive  exploitation.  (Gunn  et  al,  2000)  

2.5      Fisheries  

Kushog  supports  recreational  fishing,  where  a  majority  of  the  fish  are  caught  and  consumed  

locally.  The  Glenside  Ecological  Services  Desktop  Analysis  Report  recognizes  16  fish  species  in  

the  Kushog  Lake  Watershed  that  were  identified  in  1975.  These  consist  of:  bluntnose  minnow  

(Pimephales),  brook  stickleback  (Culaea  inconstans),  brook  trout  (Salvelinus  fontinalis  

fontinalis),  brown  bullhead  (Ameiurus  Nebulosus),  burbot  (Lota  lota),  creek  chub  (semotilus  

atromaculatus),  golden  shiner  (notemigonus  crysoleucas),  lake  trout  (salvelinus  namaycush),  

largemouth  bass  (micropterus  salmoides),  northern  pike  (esox  lucius),  pumpkinseed  (lepomis  

gibbosus),  rainbow  smelt  (osmerus  mordax),  rock  bass  (ambloplites  rupestris),  smallmouthbass  

(micropterus  dolomieu),  white  sucker  (catostomuc  commersoni),  and  yellow  perch  (perca  

flavescens)  Heaven  and  Brady,2011)    

In  contrast  a  current  document  developed  by  the  Ministry  of  the  Environment  in  2003,  

identified  12  out  of  the  16  fish  species  in  both  the  north  and  south  end  of  Kushog  that  are  

classified  in  the  Desktop  Analysis  Report.  Therefore,  4  species  are  either  missing  from  the  most  

Page 21: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   20    

   

current  fish  species  data  or  they  are  no  longer  present  in  Kushog  Lake.  These  fish  include:  the  

bluntnose  minnow  (pimephales  notatus),  brook  strickleback  (culaea  inconstans),  creek  chub  

(semotilus  atromaculatus)  and  golden  shiner  (notemigonus  crysoleucas).  Furthermore,  the  

Ministry  of  Environment  2003  document  identifies  three  additional  fish  that  were  not  listed  in  

the  Desktop  Analysis  Report.  These  fish  include:  cisco  (coregonus  artedi),  muskellunge  (esox  

masquinongy)  and  bluegill  (lepomis  macrochirus)  (MOE,  2003).  It  is  important  to  recognize  

these  changes  in  the  ecology  of  the  lake,  as  fish  species  are  an  excellent  biological  indicator  of  

lake  health.    

Kushog  Lake  is  managed  as  a  cold-­‐water  fishery  with  a  lake  trout  population.  Lake  trout  are  

favourable  biological  indicators  of  cold-­‐water  lake  health,  because  they  tend  to  be  vulnerable  

to  factors  such  as  warmer  temperatures  and/or  oxygen  depletion.  Research  has  shown  that  

lake  trout  have  a  more  fixed  physiology  limit  and  cannot  tolerate  warmer  temperatures,  

whereas  other  species  are  more  tolerant  of  temperature  increase  (Chetkiewicz  et  al.,  2012).    In  

fact,  the  suitability  of  the  lake  trout  as  a  biological  indicator  has  been  researched  and  used  for  

oligotrophic  waters  of  the  Great  Lakes.  The  lake  trout  was  selected  as  an  exemplary  organism  

for  the  detection  of  a  healthy  system  for  the  Great  Lakes  because  the  species  occupies  a  

sensitive  and  integrative  part  at  the  top  trophic  level  of  the  system.  Additionally,  the  lake  trout  

acts  as  a  major  controlling  factor  over  the  remainder  of  the  cold-­‐water  community  because  it  

plays  a  vital  role  as  a  terminal  predator  (Edwards  et  al,  1990).  Overall,  the  lake  trout  represents  

a  vital  component  to  northern,  cold-­‐water  lake  systems.  There  continued  presence  can  be  

understood  as  an  indication  of  health  and  well  being  of  Kushog  Lake.  Conversely,  if  a  fisheries  

assessment  indicates  that  numbers  decline  or  they  were  to  be  extirpated  from  the  lake,  this  

would  indicate  a  change  in  the  health  and  well  being  of  Kushog  Lake.    

 

 

 

 

 

Page 22: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   21    

   

3.0 Current  State  of  Knowledge  on  Lake  Ecosystems      

3.1        The  Lake  Environment    

3.1.1 Introduction  

It  is  important  to  understand  a  lake  as  a  dynamic  environment.  There  are  a  multitude  of  

interactions  between  the  physical,  chemical  and  biological  properties  of  the  waters  and  

surrounding  environment.      Therefore,  it  is  necessary  to  view  a  lake  as  it  own  ecosystem,  with  

consideration  of  relationships  between  organisms,  and  changes  in  organism  populations  in  

response  to  variable  physical,  chemical  and  biological  conditions.  Elements  of  a  lake  

environment  may  act  in  synergistic,  additive  or  reductive  ways  with  one  another.    One  modality  

for  engaging  this  thinking  is  considering  how  the  watershed,  and  all  the  activities  contained  

within,  determines  the  metabolism  (i.e.  productivity  through  time)  of  a  lake  through  nutrient  

inputs.    The  lake  ecosystem  does  not  just  represent  the  water  held  within  the  lake,  but  rather  it  

extends  into  its  littoral  banks  and  wetlands,  up  the  inflow  streams  and  associated  riparian  

zones,  and  into  the  entire  terrestrial  landscape  which  drains  into  the  lake.    Therefore,  if  a  

specific  concern  is  identified  within  a  lake,  consideration  of  both  the  cause  and  interactions  

between  these  compartments  must  be  investigated  in  order  to  devise  a  management  response.      

The  intent  of  these  next  sections  is  to  highlight  some  of  these  properties  and  interactions  which  

occur  within  lakes,  to  inform  and  interpret  the  nature  of  Kushog  Lake.    

 

3.1.2 Lake  Thermal  Structure  

Temperate  deep  lakes  thermally  stratify  during  the  winter  and  summer  and  mix  during  the  

spring  and  fall.    During  summer,  increased  insolation  and  associated  energy  increases  the  

temperature  of  water  at  the  surface,  while  deeper  cooler  and  thus  denser  water  do  not  receive  

as  much  light  and  are  not  warmed  to  the  same  extent.    The  orientation  of  a  lake  in  relation  to  

prevailing  winds  changes  the  fetch  and  wave  action  occurring  on  the  lake.  This  in  turn,  changes  

the  depth  to  which  wave  action  mixes  the  upper  layer  and  the  depth  of  the  warmed  layer  

Page 23: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   22    

   

termed  the  ‘epilimnion’.    In  the  winter,  however,  water  which  is  directly  beneath  an  iced  

surface  is  cooled  to  0°C  and  deeper  waters  are  warmer  and  denser  at  4°C.    

In  the  summer  stratification  below  the  hypolimnion,  often  there  is  a  rapid  temperature  drop  or  

themocline.  This  zone  can  have  variable  temperatures  at  depth  and  is  a  transition  zone  to  the  

‘hypolimnion’.  The  hypolimnion  is  the  densest  and  coolest  section  of  the  lake  with  water  

temperatures  around  4    ͦC  and  provides  critical  habitat  for  cold  water  fishes.  Essentially,  it  is  the  

seasonal  differences  in  water  temperature  and  the  associated  density  changes  which  cause  

these  layers  to  form.  In  the  spring  and  fall  as  temperatures  warm  and  cool  respectively,  the  

difference  in  temperature  between  the  surface  layer  and  deeper  layers  is  significantly  reduced  

which  results  in  a  turn  over  or  mixing  event.    

The  summer  thermal  stratification  separates  the  water  of  the  lake  into  distinct  parts;  a  zone  

where  relatively  high  levels  of  solar  illumination  give  rise  to  warm  waters  where  phytoplankton  

add  to  primary  productivity  through  photosynthesis  and  a  deep  dark  and  cold  environment,  

where  decomposition  takes  place.  The  winter  season  is  also  generally  marked  by  increased  

rates  of  decomposition  relative  to  production;  anoxic  conditions  can  manifest  if  large  amounts  

of  organic  matter  are  generated  in  the  previous  summer,  which  will  impact  deep  water  species  

such  as  Lake  Trout.    

This  thermal  stratification  and  the  associated  mixing  events  are  important  features  of  lakes  

with  implications  for  nutrient  dynamics  and  habitat  selection  by  aquatic  organisms,  as  well  as  

for  potential  for  algal  blooms  and  the  speciation  of  them  (see  section  3.1.3).    For  example,  it  is  

best  to  sample  a  lake  for  phosphorus  immediately  after  the  spring  turn  over  event  to  get  a  

homogenous  representative  sample.  The  lake  at  this  point  is  well  mixed  and  can  give  the  best  

indication  of  the  phosphorus  concentration  of  the  water  and  its  associated  trophic  status.  In  the  

summer,  stratification  can  lead  to  thermally  isolated  or  induced  algal  production  which  is  not  

representative  of  the  whole  lake.      

 

 

Page 24: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   23    

   

3.1.3 Lake  Habitats  and  Food  Chains  

Within  the  lake  environment  itself  there  are  a  number  of  different  habitats  including  the  pelagic  

(open  water),  littoral  (lake  margin)  and  profundal  (bottom  water  and  sediment)  zones.    Each  

zone  has  its  own  set  of  unique  inhabitants,  structures,  interactions  and  processes.    This  leads  to  

complex  interfaces  of  energy  exchange.    

The  pelagic  zone  is  where  most  of  the  primary  production  is  generated  through  the  

photosynthetic  activity  of  phytoplankton.  This  acts  as  the  base  of  a  food  web  within  a  lake  

ecosystem,  resulting  in  a  transfer  of  energy  up  through  trophic  levels.    Phytoplankton  and  

cyanobacteria  are  limited  to  zones  in  which  they  can  carry  out  photosynthetic  activity  and  

mixing  within  the  epilimnion  through  wind  generated  wave  action,  will  generally  keep  them  

suspended.    However,  cyanobacteria  responsible  for  so  called  ‘blue-­‐green’  algae  blooms  have  

the  ability  to  ascend  and  descend  within  the  water  column  to  adjust  to  variable  light  and  

nutrient  conditions.  Small  and  unicellular  phytoplankton  and  bacteria  are  in  turn  consumed  by  

zooplankton.    Species  of  Daphnia,  an  abundant  type  of  zooplankton,  are  generalist  filter  feeders  

which  can  ingest  most  algae  encountered,  but  prefer  nutrient  dense  types  over  less  nutritious  

types  like  cyanobacteria.  Zooplankton  is  then  consumed  by  invertebrate  species  and  

planktivorous  fish,  which  are  then  consumed  by  piscivorous  fish,  which  cap  the  top  of  the  food  

chain  within  the  lake.    Of  course,  these  fish  can  then  be  removed  and  consumed  by  birds,  bears,  

foxes  or  humans,  to  name  a  few.    

The  littoral  zones  of  lakes  are  also  quite  productive;  however  productivity  here  is  dominated  by  

macrophytes  (rooted  plants),  which  provide  structure  for  colonization  of  attached  submerged  

algae  species.    This  habitat  is  then  well  suited  for  invertebrates  and  benthic  invertebrates  which  

feed  by  scraping  or  grazing,  and  fish  species  which  prefer  sheltered  habitats  for  foraging,  cover  

and  breeding.    The  littoral  zone  is  also  an  important  interface  between  the  upland  terrestrial  

communities  and  the  open  water;  it  will  often  capture  chemical  or  organic  matter  laden  

sediment  or  runoff  from  the  watershed.    Transformation  of  these  materials  are  of  paramount  

importance  to  maintaining  open  water  ecosystem  integrity.    

Page 25: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   24    

   

The  profundal  zone  is  the  sediment-­‐  water  interface  at  the  bottom  of  the  lake.  The  key  

processes  occurring  here  are  variations  in  reduction  and  oxidation  reactions  (redox)  involving  

the  transformation  of  key  nutrients  and  trace  elements.    The  pH  and  oxygenation  of  the  water  

within  these  zones  will  govern  the  type  and  scope  of  process  that  occur  here,  a  complete  

discussion  of  which  are  beyond  the  scope  of  this  paper.    A  crucial  point  however  is  that  when  

the  oxygen  demand  of  bacteria  dwelling  within  sediments  is  greater  than  that  which  is  present  

in  the  water,  dissolved  oxygen  is  depleted,  thereby  forming  hypoxic  or  anoxic  conditions  which  

can  have  deleterious  effects  on  sensitive  fish  species  such  as  lake  trout.  

 

3.2  Nutrient  Dynamics    

3.2.1 Introduction  

This  following  section  reviews  a  selection  of  papers  and  general  information  which  may  provide  

insight  into  some  of  the  water  quality  conditions  on  Kushog  Lake,  aid  in  interpretation  of  

existing  data,  and  be  utilized  in  consideration  of  future  monitoring  efforts.    

3.2.2 Phosphorous  

Phosphorus  is  the  limiting  nutrient  within  a  freshwater  system,  due  to  relative  scarcity  in  

bioavailable  forms  when  compared  to  nitrogen  and  carbon  (Schindler  et  al.,  1974).    The  only  

natural  source  of  phosphorous  from  the  watershed  is  in  the  form  of  the  phosphate  ion,  which  

has  poor  water  solubility.  Phosphorus  has  a  strong  affinity  for  soils  and  sediments.  This  means  

that  under  ‘natural’  conditions,  the  bioavailability  of  phosphorus  in  lakes  is  quite  low  and  any  

available  amount  will  be  rapidly  up  taken  by  phytoplankton  (Currie  and  Kalff,  1984).  

Additionally,  when  waters  are  well  oxygenated  and  contain  of  certain  iron  species,  phosphate  

can  combine  with  these  elements  to  form  insoluble  salts  which  precipitate  out  of  the  water  

column  and  sink  to  the  bottom  sediments,  further  limiting  availability.    If  however,  anoxic  

conditions  are  initiated  there  can  be  a  release  of  the  phosphorus  back  into  the  water  column;  

these  are  termed  ‘internal  loading  events’.  This  can  then  in  turn  stimulate  algal  blooms  through  

Page 26: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   25    

   

mixing  events.    In  terms  of  management  considerations  for  fresh  water  lakes,  there  is  a  general  

consensus  that  preventing  anthropogenic  inputs  of  this  limiting  nutrient  is  essential  to  

preventing  excessive  algal  blooms.    

 Phosphorus  Characterization  in  Sediments  Impacted  by  Septic  Effluent  at  Four  Sites  in  Central  Canada  (Zanini,  Robertson,  Ptacek,  Schiff  and  Mayer,  1998).  

A  relevant  article  that  pertains  to  perceived  phosphorus  issues  on  Kushog  is  the  1998  article  by  

Zanini  et  al. The  article  serves  to  explain  how  phosphorus  content  in  sediments  is  impacted  by  

septic  outflows.  They  look  at  four  particular  sites  in  central  Canada,  one  area  being  Muskoka.  

This  article  has  significant  relevance  to  Kushog  Lake  specifically,  because  a  majority  of  the  

cottages  located  on  the  perimeter  of  the  lake  have  septic  systems.  Moreover,  there  is  concern  

over  whether  the  cottage  owners  are  maintaining  these  systems  regularly.  The  authors  

conclude  that  phosphorus  accumulation  occurs  within  sediment  zones  that  are  very  close  to  

infiltration  pipes.  This  is  observed  to  be  a  common  occurrence  at  septic  system  sites  (Zanini  et  

al,  1998).  The  authors  cite  an  example  in  Australia,  where  enriched  Phosphorus  concentrations  

were  observed  to  occur  within  14  cm  of  the  infiltration  pipes  at  a  29  year  old  septic  system.  

Furthermore,  the  findings  suggest  that  the  physical  and  chemical  characteristics  of  the  

sediments  will  affect  phosphorus  attenuation.  The  quantity  of  phosphorus  that  is  immobilized  is  

likely  to  be  controlled  by  a  number  of  specific  factors,  including  the  composition  of  the  effluent,  

particularly  speciation  of  iron,  nitrogen,  and  alkalinity;  the  amount  of  reductive  dissolution  of  

iron  that  occurs  in  the  sub  tile  sediments  prior  to  oxidation;  and  the  degree  of  oxidation  of  the  

effluent  and  the  buffering  capacity  of  the  sediments  (Zanini  et  al,  1998).    

The  important  point  here,  is  that  phosphorus  has  a  strong  affinity  for  the  soil  and  is  fairly  

immobile  in  this  form.    Preventing  phosphorus  laden  sediments  from  entering  waters  should  be  

prioritized.    Another  key  point  is  that  accumulation  of  phosphorous  seems  to  occur  in  the  

immediate  vicinity  of  infiltration  pipes;  this  suggests  that  phosphorus  is  not  leaching  into  

sediments  meters  or  tens  of  meters  away  from  the  infiltration  pipes.  We  want  to  stress  

however,  that  best  practices  management  and  the  maintence  of  septic  systems  should  still  be  

Page 27: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   26    

   

prioritized  to  ensure  raw  or  partially  treated  sewage  is  not  entering  the  lake,  which  would  

contribute  to  elevated  phosphorous/  nitrogen  concentration  and  bacterial  counts.    

 

3.2.3 Nitrogen    

Nitrogen  is  often  naturally  available  in  higher  quantities  in  lakes,  and  present  in  both  organic  

and  inorganic  forms,  in  both  dissolved  and  particulate  forms.  It  is  often  not  the  limiting  nutrient  

to  primary  production  in  healthy  lakes.    Nitrogen  can  become  a  limiting  nutrient  when  

phosphorus  levels  are  high;  that  is,  when  the  ratio  of  phosphorus  to  nitrogen  is  high,  but  in  

healthy  lakes  this  will  not  occur.    Algal  cells    require  nitrogen  to  synthesize  proteins  and  take  up  

this  nutrient  in  the  form  of  ammonia  ions  (NH4+)  or  NO3

-­‐  (nitrate).    Cyanobacteria  have  a  

competitive  advantage  in  that  they  can  fix  N2  (nitrogen  gas)  from  the  air-­‐water  interface,  so  that  

in  possible  nitrogen  limited  situations,  they  are  still  able  to  obtain  the  nutrient.    Again,  nutrient  

limitation  by  nitrogen  is  generally  not  a  common  observance,  but  it  can  occur  when  phosphorus  

levels  far  exceed  nitrogen  levels.      

 

3.2.4 Calcium  

Calcium  concentrations  in  surface  waters  on  the  Precambrian  Shield  are  determined  by  the  

supply  of  calcium  originating  from  the  terrestrial  pool  and  to  a  lesser  extent  atmospheric  

deposition.    The  supply  is  contingent  on  the  calcium-­‐weathering  rate  in  soils  and  extractions  of  

calcium  from  the  catchment  through  activities  such  as  timber  harvesting  (Watmough  and  

Aherne,  2008).  A  number  of  mass  balance  studies  of  forest  ecosystems  have  indicated  that  

calcium  losses  are  exceeding  the  inputs  (i.e.  weathering  rates)(  Likens  et  al.,  1998;  Watmough  

and  Dillion  2003,  2004).    Additionally,  the  acid  sensitive  soils  of  this  region  have  likely  suffered  

calcium  losses  from  historical  acid  deposition,  which  caused  extensive  leeching  of  the  already  

naturally  limited  pool.  This  has  resulted  in  a  corresponding  decline  in  the  calcium  concentration  

of  surface  waters  within  these  catchments,  raising  concerns  that  Calcium  limitation  will  pose  a  

threat  to  aquatic  biota.    Calcium  is  a  nutrient  which  is  required  by  all  lake  dwelling  organisms  

Page 28: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   27    

   

and  is  particular  concern  for  the  calcium  rich  zooplankton,  Daphia  sp.    Dr.  Norman  Yan  (now  

retired)  and  colleagues  at  York  University  demonstrated  that  most  lake  dwelling  Daphnia  

species  suffer  reproductive  stress  with  lake  calcium  levels  below  concentrations  of  1.5  mg/L.    

A  large  proportion  of  the  Canadian  Shield  lakes  that  have  been  examined  have  calcium  

concentrations  approaching  or  below  the  threshold  at  which  Daphnia  populations  suffer  

reduced  survival  and  fertility  (Jeziorski  et  al,  2008).  Watmough  and  Aherne  also  elaborate  on  

this  current  issue;  they  predict  that  calcium  concentrations  in  individual  lakes  will  decline  by  

10%  -­‐  40  %  as  compared  to  current  values.    

 3.2.5 Dissolved  Organic  Carbon  and  Wetlands  

Effect  of  Landscape  form  on  Export  of  Dissolved  Organic  Carbon,  Iron  and  Phosphorus  from  Forested  Stream  Catchments.  (Dillon  and  Molots,  1997).  

 

Dillon  and  Molot  (1997)  present  dissolved  carbon  (DOC),  total  phosphorus  (TP),  and  iron  (Fe)  

export  data  for  20  undisturbed  forested  catchments  draining  into  seven  lakes  in  central  

Ontario.  They  provide  regression  models  of  the  chemical  export  as  functions  of  landscape  

composition.  The  chemical  composition  of  surface  waters  depends  upon  in  situ  processes,  the  

external  supply  of  substances,  their  loss  rate  from  the  lake  or  stream,  and  the  modifying  effects  

of  factors  such  as  climate.  Furthermore,  the  flux  of  metals,  nutrients  and  DOC  from  a  catchment  

significantly  affects  water  chemistry.  These  factors  determine  the  chemical  composition  of  

waters  in  Ontario  and  can  be  related  back  to  the  water  quality  of  Kushog  Lake.  DOC  plays  a  vital  

role  in  lake  chemistry  because  it  complexes  many  metals  and  nutrients.  DOC  often  controls  

transparency;  the  organic  acids  that  comprise  a  portion  of  DOC  affect  pH  and  alkalinity.  Iron  is  

also  an  important  factor  to  consider  in  the  chemistry  of  lakes  and  rivers.  Iron  is  important  

because  it  enhances  phosphorus  complexity  with  DOC,  reduces  DOC  export  from  podzolic  soils,  

and  reduces  TP  export  from  mineral  soils  when  oxidized  (Dillon  and  Molot,  1997).  Hence,  DOC  

and  Fe  are  extremely  important  factors  to  consider  in  regard  to  surface  water  quality  because  

they  influence  biological  productivity  in  phosphorus-­‐limited  waters.  Consequently,  it  is  

Page 29: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   28    

   

important  to  take  these  parameters  in  account  when  analyzing  the  current  data  pertaining  to  

Kushog  Lake.    

 

4.0 Lake  Health  and  Water  Quality  Assessment      4.1 Synthesis  of  Kushog  Monitoring  

The  intent  of  this  section  is  review,  summarize  and  consolidate  of  the  data  sources  and  

literature  that  are  either  1)  derived  directly  from  Kushog  Lake,  including  data  collected  from  

field  work  and  reports  created  therein,  or  2)  directly  applicable  to  Kushog  including  water  

quality  guideline  documents  and  alternate  data  sources  we  retrieved  to  use  in  the  Lake  Health  

and  Water  Quality  Assessment.    

It  should  be  noted  that  while  the  Kushog  research  we  are  aware  of  is  summarized  and  

consolidated  here,  not  all  of  it  pertains  to  or  is  used  in  the  Lake  Health  and  Water  Quality  

Assessment.  The  majority  of  this  information  can  be  considered  as  grey  literature  including  

personal  communications,  government/NGO  reports  and  data,  student  produced  reports  and  

data,  consultant’s  reports  and  maps,  and  community/KLOPA  produced  documents.      

We  believe  that  by  having  these  documents  summarized  and  consolidated  in  one  location,  it  

will  be  more  accessible  for  possible  future  projects.  In  each  section,  the  relevant  titles  are  listed  

along  with  a  brief  summary  of  the  content  and/or  data  type  contained  within.  Also  provided  are  

the  citations  where  appropriate  for  the  Kushog  related  reports.    We  have  also  provided  a  USB  

with  this  report  which  contains  all  known  research  and  data  for  Kushog  Lake.    

 

 

 

 

 

Page 30: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   29    

   

 

4.1.1 Reports  and  Documents    

Christie,  A.  E.  Ministry  of  Environment,  Waste  Management  in  Ontario:  Water  Resources  

Commission  (1968).  Nutrient-­‐phytoplankton  relationships  in  eight  southern  Ontario  

lakes  (No.  23.  ).  Toronto,  Ontario:  Queen's  Printer  for  Ontario.  

Published  in  1968  this  is  the  earliest  consolidated  report  and  data  available  for  Kushog  Lake.    It  

was  produced  by  A.  E.  Christie  in  partnership  with  MOE  and  the  Water  Resources  Commission  

of  Waste  Management  in  Ontario.  This  study  evaluated  the  relationships  between  the  nutrient  

availability  and  the  algal  production  of  eight  shield  lakes  which  reside  within  the  Trent  River  

Basin.    It  appears  this  study  was  initially  undertaken  as  a  mode  to  understand  controls  on  algal  

growth  in  the  interest  of  preventing  excessive  algal  growth.    There  was  interest  in  these  aspects  

with  regard  to  problems  of  filter  clogging,  taste  and  odours,  and  recreational  impairment,  

which  was  and  still  is  fundamental  to  proper  water  management.    

This  is  a  lake  sampling  study  for  which  a  number  of  chemical  variables  were  determined  and  

relationships  explored.  The  most  valuable  part  of  this  report  is  the  water  chemistry  and  

chlorophyll  data  it  contains.  The  data  provide  the  earliest  known  record  of  water  quality  data  

on  Kushog  Lake  and  other  lakes  within  its  physiographic  region.      

Ministry  of  the  Environment  (MOE)  (2003).  Water  data  for  Kushog  lake.    

Produced  in  2003  it  is  a  summary  of  water  quality  data  for  2002  and  2003.  It  includes  

measurements  for  “North,  Middle  and  South”  basins  for  the  variables  of  Secchi  Depth  (m),  Total  

Dissolved  Phosphorus(reactive),  Ammonia,  Nitrite,  Nitrate,  Total  Kjeldahl  Nitrogen,  Dissolved  

Organic  Carbon,  Dissolved  Inorganic  Carbon,  pH,  Total  Alkalinity  and  Conductivity.  Other  key  

aspects  include  dissolved  oxygen  and  temperature  at  depth,  as  well  as  a  summary  of  fisheries  in  

the  lake  (no  population  level  data,  only  occurrence  of  species).    

Heaven,  P.,  &  Brady,  C.  (2011).  Kushog  lake  watershed:  stream  and  desktop  analysis  final  

report.  In  Project  Number:  11019.  Minden,  Ontario:  Glenside  Ecological  Services  Limited  

Page 31: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   30    

   

This  report  was  produced  by  the  ecological  and  GIS  consulting  company  Glenside  Ecological  

Services  Limited  at  the  request  of  KLOPA  to  better  understand  the  lake’s  watershed  and  

hydrological  characteristics.    The  report  presents  a  delineation  of  lake  watershed  and  the  

nested  sub-­‐watersheds  obtained  through  ArcGIS.  Within  the  sub-­‐watersheds,  wetland  

complexes  (including,  area  and  type)  and  streams  (inflows)  were  also  delineated  and  mapped.    

Using  information  based  on  the  size  of  the  wetlands,  this  report  also  provides  

recommendations  for  the  prioritization  of  wetlands  for  further  investigation,  as  possible  

provincially  significant  wetlands  or  Species  At  Risk  habitat.    The  report  also  contains  a  review  of  

the  Ministry  of  Natural  Resources  lake  management  files,  Aquatic  Habitat  Inventory  studies,  

and  1970’s  fish  species  surveys.  Finally,  report  provides  recommendations  for  the  further  

investigation  of  streams  (inflows),  and  that  early  spring  field  investigations  be  conducted  to  

confirm  the  findings  of  the  GIS  analysis.  See  page  35  of  the  report  for  a  full  outline  of  their  

recommendations.  

Goutos,  D.,  Hawkins,  A.,  Jansen,  K.,  &  O’Halloran,L.  (2012).  Kushog  lake  subwatersheds  1-­‐10:  

Ground  truthing  inflows  and  establishing  long-­‐term  monitoring  sites  final  report.  In  L.  O  

(Ed.),Credit  for  Product,  Ecosystem  Management  Technology  .  Lindsay,  Ontario:  Fleming  

College    

Burns,  R.,  Ciancio,  M.,  Gavrilova,  M.,  &  Keegan,  M.  (2013).  Ground  truthing  inflows  in  

subwatersheds  1,  10-­‐14,  26-­‐31:  Phase  2,  north  of  the  ox  narrows.  In  Credit  for  Product,  

Ecosystem  Management  Technology  .  Lindsay,  Ontario:  Fleming  College  

In  response  to  the  Heaven  and  Brady  report  listed  above,  a  partnership  between  KLOPA  and  the  

indentified  Fleming  College  Credit  for  Product  program  was  developed  to  “ground  truth”  the  

inflows  that  were  delineated  by  the  GIS  analysis.  They  also  recorded  using  GPS  the  location  of  

culverts  and  streams  which  did  not  appear  in  the  maps  produced  by  Heaven  and  Brady  (2011).    

At  inflows  where  there  was  significant  flow,  a  measurement  of  the  flow  rate  was  obtained  as  

well  as  measurements  of  the  conductivity,  pH,  alkalinity,  temperature  and  dissolved  oxygen.  

Additionally,  at  select  inflows,  rapid  bioassessment  of  benthic  invertebrates  was  completed  

following  the  Ontario  Benthic  Biomonitoring  Network  protocols.  The  report  contains  a  

Page 32: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   31    

   

description  of  the  methodology,  as  well  as  interpretations  of  the  results  concerning  the  benthic  

data.    

KLOPA.  (2010).  Kushog  lake  plan  summary.  The  Kushog  Lake  Property  Owners  Association  

This  document,  which  is  a  summary  of  the  larger  200+  page  Kushog  Lake  Plan  document,  was  

created  with  the  intention  to  be  widely  distributed  to  Kushog  Lake  residents.  Components  of  it  

regularly  appear  in  KLOPAs  newsletters.  It  is  a  comprehensive  document  containing  information  

on  the  general  geography  of  the  lake,  historical  development,  social  elements,  natural  history/  

heritage,  physical  elements,  and  land  use,  as  well  as  an  agenda  for  adaptive  management.    It  

gives  good  insight  into  how  KLOPA  perceives  the  status  of  the  lake’s  health  and  what  their  

priorities  and  concerns  are  for  its  maintence.    It  should  be  noted  that  it  was  created  from  the  

contributions  of  numerous  individuals,  and  it  is  not  always  clear  where  the  information  

contained  within  the  document  originates  from.    

Collection  of  Miscellaneous  Memos    

This  was  provided  to  us  by  KLOPA  in  an  email;  it  is  a  pdf  document  containing  a  number  of  

emails.  They  are  mostly  centered  around  the  discussion  and  interpretation  of  data  and  

environmental  conditions  on  the  lake,  including  secchi  and  phosphorous  concentrations.  It  

gives  insight  into  how  these  results  have  been  interpreted  by  the  host,  and  those  

organizations/individuals  they  have  partnered  with  such  as  the  MOE  and  representatives  from  

the  Dorset  Environmental  Center.  There  is  also  a  pdf  that  was  provided  in  one  memo,  which  

outlines  a  record  of  MOE  involvement  in  1988.  It  provides  a  record  of  low  pH  from  the  legacy  of  

the  acid  rain  era,  and  acknowledges  the  positive  impact  that  reductions  of  bathing  and  dumping    

of  had  on  phosphorus  concentrations  within  the  lake.    

 

 

 

 

Page 33: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   32    

   

4.1.2 Data  Collection  

Lake  Partnership  Program  (LPP).  Ministry  of  Environment,  Dorset  Environmental  Science  Center  

(DESC).  (2014).  Ontario  lake  partner  program:  Monitoring  data  

The  Lake  Partner  Program  is  a  volunteer  based  water  quality  monitoring  program.    It  is  

coordinated  by  the  Ontario  Ministry  of  the  Environment  through  the  Dorset  Environmental  

Center.  The  program  was  initiated  in  1996.  Volunteers  from  the  partner  lakes  collect  water  

samples,  which  are  evaluated  for  total  phosphorus  concentrations,  and  perform  secchi  depth  

measurements.  The  data  are  available  in  an  online  repository  which  can  be  accessed  through  

the  Dorset  environmental  center  website  or  at  the  Ontario  Ministry  of  the  Environment  (MOE)  

website  (http://desc.ca/programs/lpp  and  http://www.ontario.ca/data/ontario-­‐lake-­‐partner).    

The  quality  and  resolution  of  these  data  varies  by  lake.    Phosphorus  and  secchi  data  can  be  

retrieved  by  using  an  interactive  map  or  by  searching  the  lake  of  interest.  Data  are  returned  to  

the  investigator  in  either  Excel  spread  sheets  from  the  MOE  or  a  combination  of  Excel  and  pdf  

files  from  DESC.    This  data  are  available  from  2002-­‐2013  and  in  future  as  new  data  are  provided.  

Also  available  from  the  DESC  website  are  pre-­‐2002  data  for  LPP  lakes.    The  concentration  of  

calcium  was  added  to  the  monitoring  program  in  2008,  in  acknowledgement  of  its  critical  

importance  in  the  metabolism  of  lakes  and  trends  that  suggest  it  may  be  in  decline.  Kushog  has  

participated  in  all  of  these  sampling  initiatives  and  has  good  temporal  and  spatial  coverage.  

Sampling  has  occurred  in  the  Northern,  Middle  and  Southern  basins  of  the  lake.  There  is  

variability  in  the  timing  of  the  samples  were  taken,  however,  early  May  samples  are  always  

taken.    

Goutos,  D.,  Hawkins,  A.,  Jansen,  K.,  &  O’Halloran,L.  (2012).  Kushog  lake  subwatersheds  1-­‐

10:ground  truthing  inflows  and  establishing  long-­‐term  monitoring  sites  final  report.  In  L.  

O  (Ed.),Credit  for  Product,  Ecosystem  Management  Technology  .  Lindsay,  Ontario:  

Fleming  College    

Page 34: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   33    

   

Burns,  R.,  Ciancio,  M.,  Gavrilova,  M.,  &  Keegan,  M.  (2013).  Ground  truthing  inflows  in  

subwatersheds  1,  10-­‐14,  26-­‐31:  Phase  2,  north  of  the  ox  narrows.  In  Credit  for  Product,  

Ecosystem  Management  Technology  .  Lindsay,  Ontario:  Fleming  College  

Raw  2014  data  provided  to  us  in  Excel/Word  format  from  Emma  Horrigan  at  U-­‐links  Haliburton    

The  field  component  of  these  reports  involved  the  collection  of  water  chemistry  and  benthic  

invertebrate  data  at  inflows  to  Kushog  Lake.  The  water  chemistry  measurements  consist  of  

conductivity,  pH,  alkalinity,  temperature  and  dissolved  oxygen,  consistent  with  what  is  required  

for  the  OBBM  protocols.  Benthic  invertebrate  data  are  available  for  Hindon  or  ‘Lost  Creek’  

(2012),  Fleming  (2012),  Bennett  (renamed  in  2014)(2013,  2014),  Harrison(2013,2014),  Margaret  

(2013,2014),  Kanawa  (2013),  Kabakwa  (2014)  inflows.  The  sampling  was  performed  to  the  

coarse  27  group  level,  consistent  with  OBBM  protocols  for  streams.    

Sediment  Data  for  Kushog  Lake  2013  &  2014  

Sediment  core  data  were  collected  by  Fleming  students  under  the  guidance  of  Dr.  Eric  Sager  for  

the  analysis  of  metallic  ions;  with  a  total  of  19  analyses  evaluated.    These  data  were  received  

from  Dr.  Eric  Sager.    Sampling  locations  are  consistent  with  other  monitoring  programs  that  

have  been  carried  out  in  the  lake,  in  locations  that  include  North,  Middle  and  South  basins  of  

Kushog.    It  should  be  noted  that  there  were  also  student  reports  created,  and  one  in  particular  

by  a  Mr.  Sean  Whitten,  which  provides  an  excellent  dissemination  and  interpretation  of  these  

data.  He  also  compared  the  2014  data  to  the  Canadian  Environmental  Quality  Guideline  (EQG),  

and  Sediment  Quality  Guideline  for  the  Protection  of  Aquatic  Life.    

 

 

 

 

 

Page 35: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   34    

   

4.1.3 Summary  Table  

Table  2.    Summary  of  known  data  sources  and  reports  specific  to  Kushog  Lake  as  of  September  2014  

Document  Title,  Year  

Source/Author   Type   Brief  Summary  of  Content/Data  Type  and  Usage  

Total  Phosphorus,  2013  (excel)  

Ontario  Lake  Partner  Program(LPP)  

Volunteer  sampled  monitoring  data  

-­‐total   phosphorus   data   from   2002-­‐2013   sampled   at   4  locations  in  the  lake,  in  Spring,  Summer  and  Fall.    

Phosphorus  Pre  2002  Averages  (excel)  

Dorset  Environmental  Center    

Unverified   -­‐presents   the   pre   2002   annual   means   of   total  phosphorous  data  for  entire  lake.    

Water  Clarity  (secchi),  2013  (excel)  

Ontario  Lake  Partner  Program(LPP)  

Volunteer  sampled  monitoring  data  

-­‐secchi   depth   data   from   2002-­‐2013   sampled   at   4  locations  in  the  lake  

Calcium,  2013  (excel/pdf)  

Ontario  Lake  Partner  Program  

Volunteer  sampled  monitoring  data  

-­‐calcium   data   from   2008-­‐2012   samples   at   4   locations   in  the  lake  

Sediment    Data  2013  &  2014  (pdfs)  

Fleming  College  Students  and  Prof.  Eric  Sager  

Credit  for  Product  Field,  Lab  and  Reports  

-­‐sediment  core  sampling  and  analysis  of  19  metallic   ions  at  depths  of  0-­‐15  cm  and  15-­‐30  cm  into  sediment.    -­‐also   students   reports   which   provided   a   comparison   of  data   values   to   EQG   sediment   quality   guidelines   for   the  protection  of  aquatic  life.    

Nutrient  Phytoplankton  Relationships  in  Eight  Ontario  Lakes  1968  

Waste  Management  in  Ontario,  Water  Resources  Commission,  A.E.  Christie  

Government  Report,  data  

-­‐provides   oldest   record   of   study   on   Kushog   Lake   in  comparison  to  other  lakes.  -­‐has  historical  total  active  phosphorus  data,  which  differs  from  the  LPP  measurement  of  total  phosphorus.      

Kushog  Lake  Watershed:  Wetland  and  Stream  Desktop  Analysis,  2011  

Glenside  Ecological  Consultants  Inc.  (Heaven  &  Brady)  

Consultant  Report/  GIS  desktop  analysis  and  final  report  

-­‐provides  maps  of  Kushog  Lake  Watershed  and  Kushog  Lake,  wetland  complexes,  inflows  -­‐%/hectares  of  wetland,  watershed  area,  %  wetland  by  type  -­‐delineated  inflows  and  wetland  complexes  on  Kushog  Lake  -­‐provided  summary  of  fisheries,  species  level    

Ground-­‐truthing  Inflows,  2012  &2013  

Fleming  College    Students  

Credit  for  Product  -­‐Field  work  and  Reports  

-­‐in   response   to   the   Glenside   desktop   analysis,   ground-­‐truthing  of  the  inflow  data  was  performed  by  two  groups  of  students  in  2012  and  2013.    -­‐they   recorded   GPS   location,   and   water   chemistry   data  where  possible  (pH,  temperature,  alkalinity,  conductivity,  dissolved  oxygen)  

Benthic  Invertebrate  Sampling  (excel-­‐data,  Reports-­‐pdf)  

Fleming  College  Students  

Credit  for  Product-­‐  Reports  and  data  

-­‐students   performed   rapid   bioassay   of   benthic  invertebrates   at   streams   on   Kushog   Lake   (Fleming)  (2012),   Hindon   (2012),   Kanawa   (2013),   Bennet   (2013   &  2014),  Harrison  (2013  &  2014),  Margaret   (2013  &  2014),  Kabakawa(2014)  

Page 36: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   35    

   

-­‐  recorded  coarse  27  group  OBBN  level  data    

Water  Quality  for  Kushog  Lake,  2003    

Ministry  of  the  Environment    

Government  report  and  data  

-­‐basic   geographic   information,   lake   morphology,  bathymetry  map,  shoreline  development  -­‐average   secchi,   total   phosphorus,   nitrogen,   DOC,   DIC,  pH,  alkalinity  and  conductivity  values  for  2002  &  2003  -­‐lake   temperature   and   dissolved   oxygen   depth   profiles  for  2002  &  2003  -­‐fisheries  summary,  species  level,  spawning  locations  

 Kushog  Lake  Plan,  2010  

 KLOPA,  various    

 Summary  report,  community  organization  

 -­‐includes   how   KLOPA   currently   perceives   status   of   their  lake  health,  what  their  priorities  and  concerns  are  -­‐  cultural  and  historical  overview  of  the  lake  -­‐recreation  uses  and  population/residence  data  -­‐    overview  of  physical  geography  

‘Misc  Memos’   Various   Email  discourse  provided  by  host/data  

-­‐provides   insight   into   the   history   of   water   quality  monitoring  and  reporting  on  Kushog  and  how  KLOPA  has  responded  to  interpretation  of  the  data    

Kushog  Hears  from  MOE,  1988  

Unknown  KLOPA  representative  

Excerpt  from  newsletter,  historical    

-­‐record  of  MOE  attention   in  1988,  outlines   low  pH   from  acid  rain  era,  acknowledgement  of  reductions  of  bathing  and   dumping   in   the   lake   in   response   to   phosphorous  being  identified  as  nutrient  of  concern.    

 

4.2      Regional  Comparison  

This  section  will  present  the  results,  as  well  as  methodology  behind  the  data  analysis  completed  

for  total  phosphorus  and  secchi  depth  for  Kushog  Lake,  in  comparison  to  5  other  lakes  within  

the  Gull  River  Watershed.  Phosphorus  and  secchi  depth  are  analyzed  specifically  because  of  the  

long  record  provided  by  the  Lake  Partner  Program.  Furthermore,  this  section  will  compare  

temperature  and  dissolved  oxygen  graphs  provided  by  the  Ministry  of  the  Environment.  Lastly,  

it  will  serve  to  review  the  relative  concentrations  of  total  phosphorus,  nitrate,  chloride  and  

suspended  solid  between  2002  and  2003  within  the  Gull  River,  which  is  the  main  tributary  for  

the  watershed.  

4.2.1 Gull  River  Watershed  

To  put  Kushog  into  context  within  the  larger  Gull  River  Watershed,  a  regional  comparison  is  

made  with  reference  to  total  phosphorus  concentrations  (µg/L).  Kushog  Lake  is  compared  with  

5  other  lakes;  Boshkung,  Twelve  Mile,  Big  Hawk,  Eagle,  and  Gull  lake,  which  are  all  situated  

within  the  Gull  River  Watershed  (Fig.  8).  These  lakes  are  selected  out  of  17  lakes  because  they  

Page 37: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   36    

   

each  have  consistent  amount  of  data  over  20  years,  from  1993-­‐2013.  The  data  were  retrieved  

from  the  Dorset  Environmental  Science  Centre,  Lake  Partner  Program.    

The  trophic  status  of  the  lake  is  indicated  by  the  two  lines  shown  in  Fig.  8.  Trophic  status  is  a  

measure  of  a  lakes  productivity  and  sensitivity  in  terms  of  nutrient  input.  There  are  a  total  of  

three  trophic  categories  with  respect  to  nutrient  status.  Lakes  with  less  than  10  µg/L  total  

phosphorus  are  considered  oligotrophic.  These  lakes  are  unproductive  and  rarely  experience  

algal  blooms.  Lakes  with  total  phosphorus  between  10  and  20  µg/L  are  termed  mesotrophic  

and  can  be  either  clear  and  unproductive  or  susceptible  to  moderate  algal  blooms.  Lakes  over  

20  µg/L  are  classified  as  eutrophic  and  may  exhibit  nuisance  algal  blooms  (DESC,  2013).  The  

bottom  blue  line  on  the  graph  symbolizes  the  threshold  below  a  given  lake  is  considered  an  

oligotrophic.  The  region  in  between  the  blue  and  black  line  indicates  the  range  for  a  

mesotrophic  lake,  and  anything  above  the  top  black  line  indicates  a  eutrophic  lake.  

 

Figure  8.  Twenty  year  (1993-­‐2013)  average  phosphorus  concentration  (µg/L)  for  Kushog  Lake  in  comparison  to  other  lakes  within  Gull  River  Watershed  

 

0.0  

5.0  

10.0  

15.0  

20.0  

25.0  

30.0  

Kushog     Boshkung     Twelve  Mile   Big  Hawk     Eagle   Gull    

Total  Pho

spho

rus  (µg

/L)      

Oligotrophic  

Mesotrophic  

Eutrophic  

Page 38: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   37    

   

It  is  evident  that  each  sample  lake,  including  Kushog,  falls  within  the  range  representing  

oligotrophic  (≤10  µg/L)  conditions.  It  can  be  seen  that  Eagle  Lake  has  the  highest  value  at  

approximately  8  µg/L  and  Big  Hawk  has  the  lowest  value  at  4  µg/L.  Kushog  falls  in  between  both  

of  these  lakes  at  approximately  5  µg/L.    

To  further  the  analysis,  Fig.  9  was  created  to  segregate  total  phosphorus  averages  between  

1994  –  2001  and  2001  –  2013  for  all  6  lakes  in  order  to  observe  if  there  is  any  significant  change  

in  concentration  between  the  two  time  periods.  The  significance  for  the  subdivision  between  

the  two  time  periods  is  in  order  to  identify  any  short-­‐term  trends  and  detect  if  there  is  evidence  

for  a  decline  or  increase  over  time.    

 

 

Figure  9.  Average  total  phosphorus  (µg/L)  displayed  as  approximate  ten  year  time  periods  for  Kushog  Lake  and  5  other  lakes  Within  the  Gull  River  Watershed.    Presented  as  approximate  decades  to  display  that  little  change  has  occurred  over  the  20  year  time  span,  with  only  marginal  decreases,  with  the  exception  of  Big  Hawk.    

 

5.9  5.2  

7.0   6.8  7.0  

5.8  

4.3  5.0  

8.1  7.7  7.6  

6.6  

0.0  

1.0  

2.0  

3.0  

4.0  

5.0  

6.0  

7.0  

8.0  

9.0  

1994-­‐2001  average  

2002-­‐2013  average  

Total  Pho

spho

rus  (µg

/L)    

Kushog     Boshkung     Twelve  Mile   Big  Hawk     Eagle   Gull    

Page 39: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   38    

   

It  is  evident,  that  there  is  not  a  substantial  difference  between  the  two  time  periods  for  each  

lake  with  the  exception  of  Big  Hawk.  However,  it  can  be  seen  that  there  is  a  slight  drop  in  total  

phosphorus  concentrations  between  the  1994  –  2001  time  period  and  the  2002-­‐2013  time  

period.  Kushog  for  example,  dropped  from  5.9  µg/L  to  5.2  µg/L.  This  verifies  the  fact  that  

Kushog  Lake,  as  well  as  Boshkung,  Twelve  mile,  Big  Hawk,  Eagle  and  Gull  lake  are  well  within  

the  oligotrophic  region  of  low  nutrient  productivity  (≤10  µg/L)  and  show  no  trends  that  would  

indicate  an  increase  of  total  phosphorus.    

The  next  trend  that  was  evaluated  pertains  to  Kushog  Lake  exclusively.  Fig.  10  displays  the  total  

phosphorus  average  for  each  year  between  1993  and  2013.  The  dotted  line  represents  the  

division  between  oligotrophic  and  mesotrophic.  Generally,  there  is  no  dramatic  increase  or  

decrease  in  the  trend,  as  the  data  tends  to  remain  steady  within  the  oligotrophic  range.  

However  there  are  several  inconsistencies  within  the  graph  that  will  be  addressed  later  in  the  

interpretation  section.  These  inconsistencies  include:  the  two  anomalous  data  points  within  the  

graph,  specifically  between  the  time  periods  of  1999  and  2001  as  well  as  the  absence  of  total  

phosphorus  data  for  the  time  period  of  1988.  Overall,  the  higher  concentration  of  total  

phosphorus  in  a  lake  directly  influences  algal  growth  and  decreases  the  overall  water  clarity  

(MOE,  2010).  With  that  in  mind,  water  clarity  is  another  common  method  to  measure  trophic  

status  within  the  lake.    

 

Page 40: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   39    

   

 

Figure  10.    Mean  annual  average  phosphorus  concentrations  (µg/L)for  Kushog  Lake,  during  the  20  year  period  of  1993  to  2013.      

 

Water  clarity  is  a  sensitive  indicator  of  long-­‐term  changes  in  trophic  status.  It  has  been  shown  

that  Secchi  disc  measurements  are  less  subject  to  within  year  variability  than  either  chlorophyll  

a  or  phosphorous  measurements,  and  consequently,  can  provide  a  much  better  monitoring  tool  

for  early  trophic  status.  Water  clarity  readings  nonetheless  are  valuable  to  track  changes  in  the  

lake  that  might  be  occurring  and  would  otherwise  not  be  noticed  from  monitoring  total  

phosphorus  concentrations  alone  (DESC,  2013;  MOE,  2010).  Secchi  depth  is  measured  through  

the  process  of  lowering  a  pole  with  a  disc  mounted  on  it  and  recording  the  water  depth  at  

which  the  disk  is  no  longer  visible.  

Fig.  11  compares  secchi  depth  measurements  for  Kushog  Lake  with  5  other  lakes  within  the  Gull  

River  Watershed.  The  data  for  this  analysis  were  retrieved  from  the  Dorset  Environmental  Lake  

Partner  Program  covering  a  time  period  of  20  years  (1992  –  2012).  The  average  was  obtained  

for  each  20  year  period  for  every  individual  lake  and  then  presented  in  the  bar  graph.  Eagle  

0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  

Mean  an

nual  Total  Pho

spho

urs  (µg

/L)      

Year  

Oligotrophic    

Page 41: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   40    

   

Lake  has  the  highest  secchi  depth  (clarity)  of  approximately  7  m  while  Gull  Lake  has  the  lowest  

secchi  depth  of  3.5  m.  The  values  for  Kushog  Lake  fall  in  the  middle  between  the  two  at  5  m.    

 

 

Figure  11.  20-­‐Year  Average  Secchi  Depths  (m)  for  Kushog  Lake  in  Comparison  with  other  Lakes  within  the  Gull  River  Watershed  

 

The  relationship  between  secchi  depth  (m)  and  total  phosphorus  (µg/L)  between  1993  and  

2013  for  Kushog  Lake  exclusively  is  displayed  in  Fig.  12.  This  graph  combines  phosphorus  and  

clarity  data  into  a  time  series  that  can  be  easily  compared.  This  is  essential  as  the  concentration  

of  nutrients  within  a  lake,  such  as  phosphorus,  directly  influences  water  clarity  and  sequentially  

the  lake’s  trophic  status.  Total  phosphorus  is  symbolized  as  the  red  trend  line  and  secchi  depth  

is  symbolized  by  the  blue  trend  line.  The  dotted  line  that  runs  parallel  with  the  10  mg/L  

indicates  a  tropic  status  of  oligotrophic.  In  general  there  is  good  agreement  between  the  two  

time  series.  However,  the  one  anomaly  evident  is  that  of  total  phosphorus  around  1999  and  

0  

1  

2  

3  

4  

5  

6  

7  

8  

 Mean  De

pth  (m

)  

Kushog  Lake   Boshkung  Lake   Twelve  Mile  Lake   Eagle  Lake   Gull  Lake  

Page 42: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   41    

   

2001.  It  spikes  from  2  µg/L  to  8  µg/L  within  2  years.  There  is  no  consistent  temporal  trend  over  

the  time  frame  for  either  of  the  measurements.    

 

 

Figure  12.  Mean  Secchi  Depth  with  Total  Phosphorus  over  20-­‐  year  Average  for  Kushog  Lake  

 

The  average  calcium  concentration  for  Kushog  Lake  in  comparison  with  9  other  lakes  within  the  

Gull  River  Watershed  is  depicted  in  Fig.  13.    The  averages  were  based  on  a  four-­‐year  time  

period,  between  2009  and  2012.  Kushog  has  an  approximate  average  of  2.4  mg/L  of  calcium,  

which  is  fairly  low  as  compared  to  Gull,  Horseshoe  and  Moore  Lake.  Gull  Lake  has  

approximately  7.1  mg/L  of  calcium,  the  highest  of  all  Lakes  displayed;  whereas  Big  Hawk  Lake  

has  the  lowest  value  of  the  10  lakes,  at  approximately  1.7  mg/L.  It  is  evident  that  there  is  

significant  variation  between  the  10  lakes.  

 

0  

1  

2  

3  

4  

5  

6  

7  

8  

9  

10  

11  

1993   1995   1997   1999   2001   2003   2005   2007   2009   2011   2013  Mean  Dp

eth  (m

)  and

 Total  Pho

spho

rus  (µg

/L  )  

Secchi  Depth  (m)   TP(µg/L)    

Oligotrophic  

Page 43: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   42    

   

 

Figure  13:  Average  Calcium  Concentration  for  Kushog  Lake  and  9  other  lakes  within  the  Gull  River  Watershed  between  2009  and  2012.  Dashed  line  indicates  1.5  mg/L  threshold  ,  beyond  which  Daphnia  experience  reproductive  stress.    Star  indicates  historical  level  as  measured  by  A.E.  Christie  in  1968  at  5.0  mg/L.    

 

4.3          Water  Quality  Guidelines  Comparison  

This  section  addresses  and  compares  measurements  for  Kushog  Lake  (provided  by  the  Ministry  

of  the  Environment  as  well  as  the  Lake  Partner  Program)  with  three  standard  Ontario  water  

quality  guidelines.  These  guidelines  include:  recreational  water  quality,  aquatic  life  and  drinking  

water  quality  standards.  The  parameters  selected  for  the  comparison  include:  water  clarity,  pH,  

nitrite,  nitrate  and  ammonia.    

4.3.1 Recreational  Guidelines  

Table  2  provided  below  displays  Ontario  standards  for  recreational  water  quality.  The  

document  provides  guidelines  for  the  protection  of  public  health  and  safety,  and  guidance  for  

0.0  

1.0  

2.0  

3.0  

4.0  

5.0  

6.0  

7.0  

8.0  Ca

lcium  (m

g/L)  

Page 44: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   43    

   

the  safety  of  recreational  waters  from  a  human  health  perspective  (Health  Canada,  2012).  The  

first  parameter  that  was  assessed  is  water  clarity  as  indicated  by  secchi  depth.  Kushog’s  secchi  

depth  value  (4.77  m)  was  retrieved  from  the  Lake  Partner  Program  from  a  20-­‐year  average.  The  

standard  guideline  proposes  that  water  should  be  sufficiently  clear  so  that  a  secchi  disk  is  

visible  at  a  minimum  depth  of  1.2  m.  Therefore,  the  measurements  for  Kushog  Lake  are  well  

within  this  range  and  therefore  water  clarity  is  not  of  concern  in  this  assessment.  

 The  second  parameter  that  was  analyzed  is  pH.  The  pH  values  were  retrieved  from  the  Ministry  

of  the  Environment  for  years  2002  and  2003.  The  measurements  were  split  into  north,  middle  

and  south  basins  and  were  obtained  both  on  the  surface  of  the  water  as  well  as  a  meter  from  

lake  bottom.  The  pH  values  range  slightly  between  6.58  and  6.88.  The  recreational  water  

quality  standard  advises  that  pH  should  remain  within  the  range  of  5.0  to  9.0  in  waters  used  for  

primary  contact  recreation.  Kushog’s  pH  value  falls  well  within  the  standard  range  and  does  not  

pose  any  concern.    

 

 

 

 

 

 

 

 

 

 

Page 45: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   44    

   

Table  2.  Comparison  between  Water  Clarity  and  Secchi  Depth  for  Kushog  Lake  and  Standards  Provided  

by  the  Recreational  Water  Quality  Guideline.    

Recreational  Water  Quality  Guidelines  Aesthetic  Objectives  

 Standard  

 Description  

 Kushog  Lake  (1992  to  2013)  

   

 Water  Clarity  (Secchi  Depth  m)  

 Secchi  Disc  visible  at  1.2  m  or  more  

 State  or  quality  of  being  clear.  Water  

should  be  sufficiently  clear  

that  a  Secchi  disc  is  visible  at  a  

minimum  depth  of  1.2m  

   

         

4.77  m  

     

 pH  

     

 5.0  -­‐  9.0  

   

For  waters  used  for  primary  contact  

recreation        

 North  

 

 Middle  

 South  

 Surface  

   Meter  off  

bottom  

 Surface  

 Meter  off  

bottom  

 Surface  

 Meter  Off  bottom  

 6.79  

 6.69  

 6.88  

 6.62  

 6.88  

 6.58  

 

 

4.3.2. Aquatic  Life  Guidelines  

Table  3  provided  below  displays  the  Ontario  standard  guidelines  for  aquatic  life  in  regard  to  

nitrate,  nitrite  and  pH.  These  guidelines  serve  to  provide  recommendations  on  the  ranges  for  

various  parameters  as  required  for  the  overall  protection  of  aquatic  life.  These  standards  are  

compared  to  Kushog’s  values  obtained  from  the  Ministry  of  the  Environment  for  2002  and  

2003.  The  data  are  separated  into  north,  middle  and  south  basins  and  then  further  divided  

between  samples  retrieved  from  surface  and  samples  retrieved  one  meter  from  the  bottom.  

The  standard  for  nitrate  is  provided  for  both  short  term  (550  mg/L)  and  long  term  (13  mg/L).  

Page 46: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   45    

   

Kushog’s  nitrate  values  range  from  0.064  mg/L  to  0.036  mg/L  for  the  surface  and  0.219  mg/L  to  

0.108  mg/L  for  one  meter  off  bottom.  

The  other  parameter  that  was  measured  was  nitrite  that  has  a  regional  standard  of  60  000  NO2-­‐

N.  Kushog’s  nitrate  values  range  from  0.003  mg/L  to  0.002  mg/L  for  the  surface  and  meter  from  

bottom,  0.004  mg/L  to  0.003  mg/L.  The  last  parameter  that  was  assessed  was  pH  and  it  is  the  

only  parameter  which  falls  below  the  guideline.  It  is  our  opinion  that  the  low  pH  is  a  feature  of  

the  surrounding  environment;  the  poorly  weathered  granite  bedrock,  lack  of  calcium  

carbonate,  and  the  pressure  of  acidic  soils.  In  many  of  the  shield  lakes  there  is  a  legacy  of  acid  

rain  effects  and  we  cannot  discount  that  it  is  possible  that  this  effect  may  be  observed  here.    

 

Table  3.    Comparison  Nitrate,  Nitrite  and  pH  for  Kushog  Lake  and  Standards  Provided  by  the  Aquatic  Life  Water  Quality  Guideline.  

Aquatic  Life  Water  Quality  Guidelines        Chemical  Name  

   

     Standard        

   Description  (Chemical  Groups)        

 Kushog  Lake  (2002/2003)  

 North   Middle   South  

 Surface  (mg/L)  

Meter  Off  Bottom  (mg/L)  

 Surface  (mg/L)  

Meter  Off  

Bottom  (mg/L)  

 Surface  (mg/L)  

Meter  Off  Bottom  (mg/L)  

Nitrate   Short  Term:  >550  mg/L  Long  Term:  >13  mg/L    

Inorganic.  Inorganic  nitrogen  compounds  

 0.064  

 0.108  

 0.036  

 0.153  

 0.058  

 0.219  

 Nitrite  

>60  000    mg/L  NO₂-­‐N      

Inorganic.  Inorganic  nitrogen  compounds  

 0.0033  

 0.0033  

   0.003  

 0.004  

 0.002  

 0.002  

 pH  

 7.0  -­‐  8.7  

Inorganic.  Acidity,  alkalinity,  and  pH  

 6.79  

 6.69  

 6.89  

 6.67  

 6.88  

 6.58  

 

 

Page 47: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   46    

   

4.3.3. Drinking  Water  Standards  

Table  4  provided  below  displays  the  Ontario  Drinking  Water  Standards  in  regards  to  nitrate,  

nitrite,  pH,  and  ammonia.  The  Drinking  Water  Standards  are  established  by  the  Federal-­‐

Provincial-­‐  Territorial  Committee,  published  by  Health  Canada.  The  guidelines  review  the  

known  health  effects  associated  with  each  contaminant,  as  well  as  exposure  levels.  These  

standards  are  compared  to  Kushog’s  values  obtained  from  the  Ministry  of  the  Environment  for  

2002  and  2003.  The  data  is  separated  into  north,  middle  and  south  basins  and  then  further  

divided  between  samples  retrieved  from  surface  and  samples  retrieved  from  one  meter  off  

bottom.  The  standard  for  Nitrate  is  45  mg/L  that  is  naturally  occurring,  leaching  or  is  a  result  of  

runoff  from  agriculture.  Kushog’s  nitrate  values  range  from  0.036  mg/L  to  0.219  mg/L,  which  

fall  well  under  the  limit.  As  for  pH,  the  advised  standard  is  between  the  range  of  6.5  and  8.5.  

Kushog’s  pH  ranges  from  6.58  to  6.89,  which  resides  within  the  acceptable  range.  The  last  

parameter  assessed  is  ammonia,  which  does  not  require  a  standard  value  because  it  is  

produced  in  the  body  and  efficiently  metabolized  in  healthy  people.  Furthermore,  the  guideline  

states  that  there  are  no  adverse  effects  at  levels  found  in  drinking  water  (Health  Canada,  2012).  

Kushog’s  ammonia  values  are  fairly  low,  ranging  from  0.003  mg/l  to  0.050  mg/L  and  would  have  

no  impact  on  the  quality  of  drinking  water.  

 

 

 

 

 

 

 

 

Page 48: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   47    

   

Table  4.    Comparison  between  Nitrate,  Nitrite,  pH,  and  Ammonia  for  Kushog  Lake  and  Standards  Provided  by  the  Recreational  Water  Quality  Guideline.  

Drinking  Water  Quality  Guidelines        Chemical  Name  

   

     Standard        

   Description  (Chemical  Groups)        

 Kushog  Lake  (2002/2003)  

 North   Middle   South  

 Surface  (mg/L)  

Meter  Off  Bottom  (mg/L)  

 Surface  (mg/L)  

Meter  Off  

Bottom  (mg/L)  

 Surface  (mg/L)  

Meter  Off  Bottom  (mg/L)  

Nitrate    >45  mg/L    

Naturally  occurring;  leaching  or  runoff  from  agricultural  use,  may  be  produced  from  excess  ammonia  or  microbial  activity.  

 0.064  

 0.108  

 0.036  

 0.153  

 0.058  

 0.219  

 Nitrite  

 >3.2  mg/L      

 0.0033  

 0.0033  

   0.003  

 0.004  

 0.002  

 0.002  

 pH  

   

 6.5  –  8.5  

Inorganic.  Acidity,  alkalinity,  and  pH    

 6.79  

 6.69  

 6.89  

 6.67  

 6.88  

 6.58  

       

 Ammonia  

 None  Required  

Guideline  value  not  necessary  as  it  is  produced  in  the  body  and  efficiently  metabolized  in  healthy  people.  No  adverse  effects  at  levels  found  in  drinking  water  

       0.050  

       

0.011  

       

0.015  

       

0.012  

       

0.009  

       

0.003  

 

 

Page 49: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   48    

   

4.4  Benthic  Invertebrates  as  Biological  Indicators    

 Benthic  invertebrates  are  used  as  indicators  of  river,  stream  and  lake  water  quality  through  

analysis  of  their  community  structures.    Benthic  invertebrates  are  a  common  and  diverse  group  

of  organisms,  they  are  relatively  immobile,  and  have  yearly  life  cycles  which  allows  for  the  

changes  in  their  diversity  and  abundance  to  be  tracked  through  both  space  and  time  (Plafkin  et  

al.,  1989;  Reynoldson  et  al.,1997).  It  is  possible  to  relate  observed  changes  in  community  

structure  in  a  stream,  river  or  lake  to  anthropogenic  influences  or  disturbances  (Bailey  et  al.,  

1998).  This  is  accomplished  in  Ontario  by  following  a  detailed  sampling  and  analysis  protocol  

outlined  in  the  OBBM  Protocol  Manual  (2007);  this  involves  identifying  a  test  site,  sampling  the  

site  and  sub-­‐sampling  the  benthos  in  the  lab,  sorting  and  identifying  the  benthos  to  at  least  a  

coarse  27  taxonomic  group  level  and  using  raw  data  to  calculate  indices  based  on  known  

tolerances  of  the  benthos  to  disturbances  of  interest  (e.g.  agricultural  runoff,  organic  pollution  

or  industrial  effluent).      

 

The  indices  or  metrics,  are  numerical  measures  which  attempt  to  characterize  the  community  

of  benthos.  Some  examples  of  these  include;  species  richness,  community  composition  

measures,  tolerance/intolerance  measures  and  functional  feeding  group  measures.    To  

illustrate,  an  example  of  a  community  composition  richness  measure  is  the  total  number  of  the  

taxa  Ephemeroptera,  Plecoptera  and  Trichoptera  present  in  the  sample  at  a  site.  This  may  be  

represented  as  a  percentage  or  proportion  of  the  sample.  These  taxa  are  known  to  be  generally  

sensitive  to  disturbance  or  water  quality  impairment,  thus  if  their  representativeness  within  the  

sample  is  low,  we  can  infer  that  some  disturbance  or  impairment  has  occurred.  However,  

determining  what  the  ‘natural’  or  ‘normal’  proportion  is  (i.e.  under  unimpaired  or  pristine  

conditions)  in  a  stream,  river  or  lake  can  be  quite  challenging,  due  to  natural  variation  and  so  

ideally,  this  must  be  addressed  in  the  sampling  design  and  analysis.    

 

Once  that  value  of  the  index/metric  has  been  established,  a  comparison  can  be  made  between  

the  test  sites  value  and  the  control  site*  OR  the  Reference  Site**  to  determine  if  differences  

Page 50: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   49    

   

exist,  if  the  control*  or  Reference  Site**  has  been  determined.  There  is  a  marked  difference  

between  a  control  site*  and  a  Reference  Site  **;  simply,  a  control  site  is  a  point  measurement  

or  singular  site  and  a  Reference  Site**  is  non-­‐point,  multi  measurement  value  (e.g.  an  average  

of  the  values  of  multiple  sites),  which  attempts  to  determine  normalcy  by  accounting  for  the  

natural  and  environmental  variation.    

 

As  indicated  in  the  OBBM  Protocol  Manual  (2007),  one  of  the  principal  questions  this  type  of  

biomonitoring  seeks  to  answer  is,  is  the  benthos  community  observed  at  a  test  site  normal  

(Jones  et  al,  2005)?  In  order  to  determine  normalcy,  a  methodology  involving  a  Reference  

Condition  Approach  (RCA)  has  been  adopted  by  the  OBBN.    Reference  Sites**  are  considered  to  

be  ‘minimally  impacted’  and  serve  as  a  control,  against  which  the  test  site  is  compared  

(Reynoldson  et  al.,  1997).  In  this  way,  if  the  test  site  shows  a  significant  difference  from  the  

established  Reference  Site,  the  test  site  is  not  normal  and  considered  to  be  impacted.  Further,  

the  amount  that  a  test  site  is  outside  the  range  of  normalcy  is  indicative  of  the  magnitude  of  

the  degradation  a  disturbance  has  caused  (Bailey  et  al,  1997).    

On  Kushog  Lake,  the  approach  to  benthic  sampling  has  been  to  survey  inflows  into  the  lake  for  

their  communities  using  the  Rapid  Bioassessment  Protocol  as  described  in  the  OBBM  protocol  

manual  (2007).  The  full  findings  of  these  surveys  are  described  in  the  Fleming  College  student  

reports,  available  on  the  USB  appendix  provided  with  this  report.  .    The  Benthic  Fact  Sheet  

included  within  this  report  also  provides  a  summary  of  typical  indices  and  some  possible  

interpretations  and  a  summary  of  the  process.    

Further,  in  these  reports  are  descriptions  and  interpretation  of  the  indices,  relative  to  the  

Kushog  Lake  inflows.  In  general,  the  conclusions  of  these  reports  have  indicated  that  the  water  

of  the  inflows  into  Kushog  Lake  is  of  good  quality.  There  are  some  indices  that  suggest  that  

there  may  be  some  organic  pollution  occurring;  however  without  a  comparison  to  what  is  

considered  normal  for  the  region,  without  repeated  and  consistent  sample  years,  there  can  be  

limited  confidence  in  this  assertion.  An  example  of  this  is  that  while  a  metric  may  suggest  that  

‘organic  pollution  is  possible’  its  cause  is  difficult  to  determine,  and  that  cause  may  be  entirely  

Page 51: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   50    

   

natural  or  anthropogenic.  For  example  organic  pollution  could  be  increased  due  to  a  nearby  

cottage  property  with  less  than  intact  riparian  zones,  but  it  is  also  just  as  possible  that  this  

observation  could  be  related  to  the  proportion  wetlands  in  the  catchment  of  that  inflow.  

 At  this  point  in  time,  the  monitoring  and  analysis  on  Kushog  Lake  is  limited  to  creation  of  the  

indices  and  their  values,  without  a  control  site*  or  Reference  Site**  to  compare  them  to,  to  

determine  if  the  sites  lie  outside  the  range  of  what  is  considered  ‘normal’.    However,  MOE  

scientist  Chris  Jones  at  the  Dorset  Environmental  Center,  has  recently  completed  compiling  a  

dataset  of  Reference  Sites**  for  stream  inflows  into  Shield  Lakes  in  the  Haliburton  and  

Muskoka  regions.  We  have  included  in  the  USB  appendix  a  dataset  we  retrieved  from  him  of  

these  Reference  sites.    This  dataset  can  be  used  as  the  basis  of  a  future  project  to  calculate  

average  indices/metrics  for  these  References  Sites.    However,  in  order  for  Kushog  data  to  have  

meaningful  comparisons  to  these  Reference  Site  conditions,  they  must  be  from  the  same  time  

of  the  year.  The  OBBM  manual  states  that  while  monitoring  can  occur  at  any  point  (spring,  

summer,  fall),  when  making  comparisons  between  reference  and  test  sites,  the  data  must  be  

from  the  same  time  period.    This  is  because  the  community  structure  changes  throughout  the  

ice  free  season,  and  we  can  understand  that  the  typical  community  present  in  the  spring  will  be  

different  from  the  typical  community  present  in  the  fall.  To  this  end,  the  reference  conditions  

created  by  Chris  Jones  at  the  MOE  are  for  spring  conditions,  and  Kushog  data  is  from  the  fall.    In  

order  to  remedy  this  and  to  make  meaningful  comparisons,  Kushog  data  would  need  to  be  

collected  from  this  point  onward,  in  the  spring  season.    

Another  consideration  which  relates  to  the  benthic  invertebrate  data,  is  the  relative  value  of  

stream  inflow  monitoring  versus  lake  level  monitoring.  In  Muskoka  region,  the  emphasis  for  

benthic  monitoring  has  been  placed  on  lake  monitoring,  not  stream  inflows.  The  reference  

conditions  in  Muskoka  were  first  created  for  lakes  through  the  Muskoka  Waterweb,  the  Dorset  

Environmental  Center  and  the  District  of  Muskoka.  The  reference  conditions  on  these  lakes  are  

based  on  147  samples  collected  at  76  reference  sites  between  2004  and  2011.  Reference  sites  

from  9  mesotrophic  and  26  oligotrophic  lakes  throughout  Muskoka  were  used.      In  reflection  of  

this  information  we  began  to  consider  that,  given  that  it  is  long  term  lake  health  we  are  

Page 52: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   51    

   

interested  in,  that  it  might  be  a  better  approach  to  establish  a  lake  level  monitoring  program,  as  

opposed  to  trying  to  monitor  numerous  inflows.    In  a  personal  communication  with  MOE  

scientist  Chris  Jones  in  February  of  2015,  he  confirmed  that  in  his  opinion,  establishing  a  lake  

level  monitoring  program  would  give  better  insight  into  the  water  quality  and  associated  lake  

health  of  Kushog  than  would  monitoring  of  multiple  inflow  sites.    

 

5.0 Interpretation  and  Discussion      

5.1  Interpretation  of  Lake  Water  Quality  Parameters  

The  main  goals  of  the  data  presented  within  the  regional  comparison  section  were  to  

determine  the  state  of  water  quality  and  assess  changes  in  productivity  within  Kushog  Lake  in  

comparison  to  other  lakes  within  the  Gull  River  Watershed.  Trophic  status  thresholds  were  

used  to  classify  each  particular  lake,  as  trophic  status  can  be  affected  by  changes  in  productivity  

thereby  making  it  a  good  indicator  for  potential  impacts.  Trophic  status  is  commonly  measured  

or  monitored  using  at  least  one  of  the  three  parameters:  transparency  (secchi  depth),  

chlorophyll  a,  and  total  phosphorus  (TP)  concentration  (MOE,  2010).  For  this  report,  secchi  

depth  and  total  phosphorus  concentration  are  used  as  the  best  representation  of  lake  quality.  

Furthermore,  a  4-­‐year  average  of  calcium  data  was  assessed  for  Kushog  with  9  other  lakes  in  

the  Gull  River  watershed  (Fig.  13).  As  mentioned  within  section  3.2.4,  when  calcium  becomes  

too  low  within  a  freshwater  lake  ecosystem,  daphnia  tends  to  decline  because  calcium  is  an  

essential  component  for  their  survival.  This  species  is  important  as  it  is  a  naturally  occurring  bio-­‐

control  agent,  affecting  algae  growth  (Jeziorski  et  al,  2008).    

 The  first  analysis  (refer  back  to  Fig.  8)  represents  20  year  phosphorus  averages  for  Kushog  Lake  

in  comparison  to  5  other  lakes  within  the  Gull  River  Watershed.  It  can  be  established  that  all  5  

lakes  fall  within  the  range,  representing  oligotrophic  status  (≤10  µg/L).  Kushog  has  a  total  

phosphorus  amount  of  5  µg/L,  which  falls  well  under  the  10  µg/L  standard.  This  means  that  

Kushog  Lake  has  low  primary  productivity,  the  result  of  low  nutrient  concentrations  as  well  as  

low  algal  production.  This  is  true  for  all  of  the  5  lakes  as  they  all  fall  within  the  same  range.  

Page 53: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   52    

   

Eagle  Lake  has  the  highest  total  phosphorus  value  at  7  µg/L.  This  may  suggest  that  it  is  in  an  

early  phase  of  transitioning  from  oligotrophic  to  mesotrophic.    

Fig.  9  takes  this  analysis  a  step  further  by  comparing  total  phosphorus  for  each  of  the  6  lakes  

between  the  time  periods  of  1994  to  2001  and  2001  to  2013.  All  of  the  lakes  in  exception  of  Big  

Hawk  Lake,  decline  in  total  phosphorus  between  the  two  time  periods.  This  decline  ranges  

within  the  values  of  0.2  µg/L  to  1.2  µg/L.  Big  Hawk,  however,  increased  in  total  phosphorus  by  

about  0.7  µg/L.  Overall,  the  common  pattern  demonstrated  through  this  graph  indicates  that  

there  is  a  slight  decline  over  the  span  of  19  years  in  total  phosphorus.  This  occurrence  holds  

true  to  the  fact  that  phosphorus  is  a  limiting  nutrient  in  northern  freshwater  lake  systems  and  

there  is  no  indication  that  it  is  increasing  or  will  increase  in  the  next  several  years.    

Fig.  10  was  produced  for  the  intention  to  isolate  Kushog  Lake  for  the  analysis  of  total  

phosphorus  between  1993  and  2013.  The  data  points  tend  to  be  fairly  consistent  and  stagnant  

fluctuating  within  the  range  of  3  µg/L  and  7  µg/L,  none  of  the  values  exceed  10  µg/L.  There  are  

two  outliers  between  the  time  periods  of  1999  and  2001  This  could  be  attributed  to  sample  

contamination  within  the  field  (particularly  for  the  higher  data  point),  for  example  if  a  single  

zooplankton  was  present  in  the  sampling  container  after  rinsing  with  unfiltered  surface  water  

(DESC,  2013).  Otherwise,  the  outliers  could  be  more  likely  attributed  to  seasonal  anomalies,  

such  as  high  or  low  rainfall  events.  It  is  not  uncommon  to  have  outliers,  and  these  data  should  

not  be  interpreted  as  an  indication  of  temporal  trend.  Fig.  12  displays  the  same  relationship  

however  simultaneously  displayed  with  secchi  depth  between  1993  and  2013.  The  secchi  depth  

follows  closely  in  unison  with  the  total  phosphorus  data.    It  has  been  suggested  by  the  MOE  

that  transparency  observations  may  be  influenced  by  other  factors  than  those  related  to  

trophic  status  and  therefore  should  be  interpreted  together  with  total  phosphorus  especially  

for  between-­‐lake  comparisons.  Therefore,  it  is  evident  that  there  is  influence  between  the  two  

parameters  within  Kushog  Lake  as  this  is  seen  by  how  close  the  data  trend  align  with  one  

another.  Fig.  11  compares  the  average  secchi  depth  for  Kushog  Lake  and  compares  it  with  4  

other  lakes.  What  can  be  taken  from  this  particular  graph  is  the  fact  that  each  lake  falls  well  

within  the  recreational  water  quality  guideline  (refer  to  table.  2)  stating  that  the  secchi  disc  

Page 54: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   53    

   

should  visible  at  1.2  m  or  more.  Each  lake  falls  within  the  range  of  4  m  to  7  m,  which  is  an  

indication  for  fairly  high  transparency  and  does  not  reflect  any  sign  of  problems.  

The  last  analysis  that  was  conducted  was  to  compare  calcium  averages  between  Kushog  and  9  

other  lakes.  The  importance  of  this  analysis  was  due  to  the  fact  that  calcium  is  an  essential  

ingredient  for  bone  growth  in  Daphnia  and  this  species  is  important  as  it  is  a  naturally  occurring  

bio-­‐control  agent,  affecting  algae  growth.  Therefore,  The  reason  for  such  variation  of  calcium  

between  the  10  lakes  could  be  attributed  to  the  fact  that  Gull,  Horseshoe,  and  Moore  Lake  have  

regional  differences  in  geology  including  bands  of  limestone,  which  would  positively  influence  

the  calcium  concentrations  of  those  waters.  

 

5.2      Water  Quality  Guidelines  Interpretation  

Three  standard  Ontario  water  quality  guidelines  were  used  in  comparison  with  data  relevant  to  

Kushog  Lake.  These  guidelines  included:  recreational  water  quality,  aquatic  life  water  quality  

and  drinking  water  quality.  Secchi  depth,  nitrate,  nitrite,  pH  and  ammonia  were  some  of  the  

available  parameters  for  Kushog  Lake,  provided  by  the  Ministry  of  the  Environment  (2003).  

Comparing  Kushog  Lake  with  the  standards  provided  by  Health  Canada  was  an  effective  way  to  

rationalize  what  is  occurring  within  the  lake  as  well  as  surrounding  lakes  to  what  is  suggested  to  

be  the  norm  for  this  particular  region.  Nonetheless,  it  must  be  considered  that  there  are  other  

parameters  that  could  be  compared  between  with  the  guidelines,  however  secchi  depth,  pH,  

nitrite,  nitrate  and  ammonia  were  the  only  ones  available  to  conduct  the  analysis.  From  what  

was  available,  it  was  evident  through  the  tables  created  that  Kushog  Lake  fell  well  within  the  

standard  guidelines  for  each  respected  parameter.  Therefore,  the  analysis  demonstrates  that  

there  is  no  current  concern  or  sign  of  potential  concern  of  any  threat  to  the  quality  of  drinking  

water,  recreational  activity  or  aquatic  life  present  within  the  lake.    

 

 

Page 55: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   54    

   

 

6.0 Recommendations      v Continue  excellent  participation  in  Lake  Partner  Program  for  monitoring  of  total  

phosphorus  concentrations,  secchi  depth  and  perhaps  most  importantly,  calcium  

concentrations.  Given  the  concerns  over  regional  calcium  depletion,  establishing  a  

record  of  concentrations  will  be  essential  for  determining  whether  or  not  changes  occur  

through  time.  

 

v Report  any  suspected  blue  green  algal  bloom  activity  to  the  MOE  Spills  Action  center  

and  call  local  health  unit.    We  believe  it  is  unlikely  that  Kushog  would  suffer  from  the  

development  of  this  type  of  bloom.  Further  information  on  identifying  blue  green  algae  

blooms,  precautions  to  be  taken  if  bloom  is  suspected  and  how  to  report  can  be  found  

at  http://www.ontario.ca/environment-­‐and-­‐energy/blue-­‐green-­‐algae.    Usually  the  MOE  

will  send  a  representative  to  come  and  sample  the  bloom  to  determine  its  speciation.    

 

v Establish  Lake  level  benthic  monitoring  program.  This  is  suggested  as  opposed  to  inflow  

sites  due  to  the  high  flushing  rate  of  this  lake  and  the  relative  small  contribution  of  each  

stream  or  inflow.  A  lake  level  benthic  monitoring  program  will  give  an  indication  of  the  

current  and  perhaps  typical  benthic  community,  which  through  time,  if  changes  in  

community  structure  are  observed,  may  be  an  indication  of  lake  level  changes.    

Essentially,  the  high  flushing  rate  combined  with  relatively  immobility  of  lake  benthic  

invertebrates,  will  give  a  better  indication  of  lake  health.    Further,  these  may  the  

compared  to  the  established  regional  reference  conditions  to  determine  how  Kushog  

compares  to  these  ‘pristine’  or  typical  sites.    

 

v Additionally,  it  would  be  possible  to  establish  lake  level  monitoring  sites  varying  degrees  

of  shoreline  development.    For  example,  a  possible  design  could  include  control  sites  

(e.g.  crown  land),  low  development  (e.g.  naturalized  or  restored  shoreline),  and  high  

Page 56: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   55    

   

development  (e.g.  natural  riparian  vegetation  removed  with  lawn).      Another  idea  is  that  

if  there  is  suspected  problem  site  (e.g.  knowledge  of  historical  pollution  or  suspect  

septic  system)  sampling  could  be  targeted  to  those  areas.    

 

v If  there  is  a  concern  about  dump  effluent  leaking  into  Margaret  Creek  (1)  contact  the  

waste  management  facility  to  determine  what  type  of  control  measures  they  have  in  

place  to  ensure  leachate  is  contained  (2)  Consider  a  sampling  study  which  would  

investigate  concentration  or  presence  of  contaminant  of  interest  with  increasing  

proximity  to  dump  site;  that  measures  along  a  gradient  from  close  proximity  with  

increasing  distance  downstream  towards  lake.    Alternatively,  determine  if  there  is  

change  in  benthic  community  with  increasing  distance  from  waste  management  site.  

   

Appendix:  USB  Appendix  provided  to  host  KLOPA  with  submission  of  this  report  to  Trent  University  Geography  Department  

 

 

 

 

 

 

 

 

 

 

 

 

Page 57: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   56    

   

References    

Burns,  R.,  Ciancio,  M.,  Gavrilova,  M.,  &  Keegan,  M.  (2013).  Ground  truthing  inflows  in  subwatersheds  1,  10-­‐14,  26-­‐31:  Phase  2,  north  of  the  ox  narrows.  In  Credit  for  Product,  Ecosystem  Management  Technology  .  Lindsay,  Ontario:  Fleming  College  

Christie,  A.  E.  Ministry  of  Environment,  Waste  Management  in  Ontario:  Water  Resources  Commission  (1968).  Nutrient-­‐phytoplankton  relationships  in  eight  southern  Ontario  lakes  (No.  23.  ).  Toronto,  Ontario:  Queen's  Printer  for  Ontario.  

Chetkiewicz,  C.,  McDermid,  J.,  Cross,  M.,  &  Rowland,  E.  (2012).  Climate  change  and  freshwater  fish  in  ontario's  far  north.  In  Workshop  Summary  Report.  Peterborough,  Ontario:  Wildlife  Conservation  Society.  Retrieved  from  http://www.wcscanada.org/DesktopModules/Bring2mind/DMX/Download.aspx?EntryId=14249&PortalId=96&DownloadMethod=attachment  

 Currie,  D.  J.,  &  Kalff,  J.  (1984).  The  relative  importance  of  bacterioplankton  and  phytoplankton  

in  phosphorus  uptake  in  freshwater1.  Limnology  and  Oceanography,  29(2),  311-­‐321.    Dorset  Environmental  Science  Centre  (DESC).  Ministry  of  the  Environment,  (2013).  Guide  to  

interpreting  total  phosphorus  and  secchi  depth  data  from  the  lake  partner  program.  Retrieved  from  website:  http://desc.ca/programs/lpp  

 Edwards,  J.  C.,  Ryder,  R.  A.,  &  Marshall,  T.  R.  (1990).  Using  lake  trout  as  a  surrogate  of  

ecosystem  health  for  oligotrophic  waters  of  the  great  lakes.  Journal  of  Great  Lakes  Research,  16(4),  591-­‐608.  

Evans,  M.,  &  Frick,  C.  (2001).  The  effects  of  road  salts  on  aquatic  ecosystems.  Environment  Canada:  Water  Science  and  Technology  Directorate,  02-­‐308.  Retrieved  from  http://brage.bibsys.no/xmlui/bitstream/handle/11250/193946/the_effects_road_salts.pdf?sequence=1&isAllowed=y  

Gunn,  J.  M.,  &  Sein,  R.  (2000).  Effects  of  forestry  roads  on  reproductive  habitat  and  exploitation  of  lake  trout  (salvelinus  namaycush)  in  three  experiemental  lakes.  Canadian  Journal  of  Fisheries  and  Aquatic  Sciences,  57(Suppl.2),  97-­‐104.  Retrieved  from  http://www.temagamistewardship.ca/Temagami_Stewardship/Studies_files/access-­‐study.pdf  

Goutos,  D.,  Hawkins,  A.,  Jansen,  K.,  &  O’Halloran,L.  (2012).  Kushog  lake  subwatersheds  1-­‐10:ground  truthing  inflows  and  establishing  long-­‐term  monitoring  sites  final  report.  In  L.  O  

Page 58: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   57    

   

(Ed.),Credit  for  Product,  Ecosystem  Management  Technology  .  Lindsay,  Ontario:  Fleming  College    

Government  of  Canada.  (2015,  Jan  12).  Canadian  climate  normals  for  1971-­‐2000  station  data.  Retrieved  from:  http://climate.weather.gc.ca/climate_normals/results_e.html?stnID=5168&lang=e&dCode=4&dispBack=1&StationName=Haliburton&SearchType=Contains&province=ALL&provBut=Go&month1=12&month2=1&submit=View  

Health  Canada  (2012).  Guidelines  for  Canadian  Drinking  Water  Quality—Summary  Table.  Water,  Air  and  Climate  Change  Bureau,  Healthy  Environments  and  Consumer  Safety  Branch,  Health  Canada,  Ottawa,  Ontario.  

Health  Canada  (2012).  Guidelines  for  Canadian  Recreational  Water  Quality,  Third  Edition.  Water,  Air  and  Climate  Change  Bureau,  Healthy  Environments  and  Consumer  Safety  Branch,  Health  Canada,  Ottawa,  Ontario.  (Catalogue  No  H129-­‐15/2012E).  

Heaven,  P.,  &  Brady,  C.  (2011).  Kushog  lake  watershed:  stream  and  desktop  analysis  final  report.  In  Project  Number:  11019.  Minden,  Ontario:  Glenside  Ecological  Services  Limited  

Hall,  A.  M.,  McCauley,  S.  J.,  &  Fortin,  M.  J.  (2014).  Recreational  boating,  landscape  configuration,  and  local  habitat  structure  as  driver  of  odonate  community  composition  in  an  island  setting.  Insect  Conservation  and  Diversity,  doi:  10.1111/icad.12080.  

Jansson,  M.,  Persson,  G.,  &  Broberg,  O.  (1986).  Phosphorus  in  acidified  lakes:  The  example  of  Lake  Gårdsjön,  Sweden.  Hydrobiologia,  139(1),  81-­‐96.  

Jeziorski,  A.,  Yan,  N.  D.,  Paterson,  A.  M.,  DeSellas,  A.  M.,  Turner,  M.  A.,  Jeffries,  D.  S.,  Smol,  J.  P.  (2008).  The  widespread  threat  of  calcium  decline  in  fresh  waters.  Science,  322(5906),  1374-­‐1377.  

KLOPA.  (2010).  Kushog  lake  plan  summary.  The  Kushog  Lake  Property  Owners  Association  

KLOPA.  (2011).  Kushog  lake  2011  newsletter.  In  (1  ed.,  Vol.  27,  pp.  1-­‐28).  Retrieved  from  http://www.kushoglake.org/images/11_Spring_KL_Newsletter.pdf  

 Lake  Partnership  Program  (LPP).  Ministry  of  Environment,  Dorset  Environmental  Science  Center  

(DESC).  (2014).  Ontario  lake  partner  program:  Monitoring  data  

Ministry  of  the  Environment  (MOE).  (2003).  Water  data  for  Kushog  lake  .  Word  Document:  Unknown.  

Page 59: CBE 4030 - Kushog Lake Report (1)

Kushog  Lake  Monitoring  Assessment   58    

   

Ministry  of  the  Environment  (MOE).  Environmental  sciences  &  standards  divison,  Standards  Development  Branch  (2010).  Strategies  and  parameters  for  trophic  status  and  water  quality  assessment.  Retrieved  from  website:  https://dr6j45jk9xcmk.cloudfront.net/documents/1158/87-­‐lakeshore-­‐capacity-­‐assessment-­‐handbook-­‐en-­‐4.pdf  

 Moore,  S.  K.,  Trainer,  V.  L.,  Mantua,  N.  J.,  Parker,  M.  S.,  Laws,  E.  A.,  Backer,  L.  C.,  &  Fleming,  L.  C.  

(2008).  Impacts  of  climate  variability  and  future  climate  change  on  harmful  algal  blooms  and  human  health.  Environmental  Health,doi:10.1186/1476-­‐069X-­‐7-­‐S2-­‐S4,  Retrieved  from  http://www.biomedcentral.com/content/pdf/1476-­‐069X-­‐7-­‐S2-­‐S4.pdf  

Parks  Canada.  (2014,  Dec  17).  Trent-­‐severn  waterway  national  historic  site  of  Canada.  Retrieved  from  http://www.pc.gc.ca/eng/lhn-­‐nhs/on/trentsevern/index.aspx  

Richards,  R.  P.,  &  Baker,  D.  B.  (1992).  Pesticide  concentration  patterns  in  agricultural  drainage  networks  in  the  lake  erie  basin.  Environmental  Toxicology  and  Chemistry,  12,  13-­‐26.  Retrieved  from  http://onlinelibrary.wiley.com/doi/10.1002/etc.5620120104/epdf  

Sharpley,  A.  N.,  Chapra,  S.  C.,  Wedepohl,  R.,  Sims,  J.  T.,  Daniel,  T.  C.,  &  Reddy,  K.  R.  (1994).  Managing  agricultural  phosphorus  for  protection  of  surface  waters:  Issues  and  options.  Journal  of  Environmental  Quality,  23(3),  437-­‐451.  Retrieved  from  http://soils.ifas.ufl.edu/wetlands/publications/PDF-­‐articles/189.Managing  agricultrual.pdf  

Schindler,  D.  W.,  &  Fee,  E.  J.  (1974).  Experimental  lakes  area:  whole-­‐lake  experiments  in  eutrophication.  Journal  of  the  Fisheries  Board  of  Canada,  31(5),  937-­‐953.  

Scholars  GeoPortal.  Kushog  Lake  Map.  Retrieved  on  April  20th  2015.  

Winter,  J.  G.,  DeSellas,  A.  M.,  Fletcher,  R.,  Heintsch,  L.,  Morley,  A.,  Nakamoto,  L.,  &  Utsumi,  K.  (1994).  Algal  blooms  in  ontario,  canada:  Increases  in  reports  since  1994.  Lake  and  Reservoir  Management,  (27),  107114.  Retrieved  from  http://www.tandfonline.com/doi/pdf/10.1080/07438141.2011.557765  

Wetzel,  R.  G.  (2011)Limnology:  Lake  and  river  ecosystems.  3d  ed.  San  Diego,  CA:  Academic  Press.  

Zanini  et  al.  (1998)  Phosphorus  Characterization  in  Sediments  Impacted  by  Septic  Effluent  at  Four  Sites  in  Central  Canada.  Journal  of  Contaminant  Hydrology.  33,  405  –  429