Ch2 Algebra and Surdskjtfc

Embed Size (px)

Citation preview

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    1/50

    TERMINOLOGY

    2Algebra andSurds

    Binomial:A mathematical expression consisting oftwo terms such as 3x + or x3 1-

    Binomial product:The product of two binomialexpressions such as ( 3) (2 4)x x+ -

    Expression:A mathematical statement involving numbers,pronumerals and symbols e.g. x2 3-

    Factorise:The process of writing an expression as aproduct of its factors. It is the reverse operation ofexpanding brackets i.e. take out the highest common

    factor in an expression and place the rest in bracketse.g. 2 8 2( 4)y y= --

    Pronumeral:A letter or symbol that stands for a number

    Rationalising the denominator:A process for replacing asurd in the denominator by a rational number withoutaltering its value

    Surd:From absurd. The root of a number that has anirrational value e.g. 3 . It cannot be expressed as arational number

    Term:An element of an expression containingpronumerals and/or numbers separated by an operationsuch as , , or# '+ - e.g. 2 , 3x -

    Trinomial:An expression with three terms such asx x3 2 1

    2- +

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    2/50

    45Chapter 2Algebra and Surds

    INTRODUCTION

    THIS CHAPTER REVIEWS ALGEBRAskills, including simplifying expressions,

    removing grouping symbols, factorising, completing the square and

    simplifying algebraic fractions. Operations with surds, including rationalisingthe denominator, are also studied in this chapter.

    DID YOU KNOW?

    One of the earliest mathematicians to use algebra was Diophantus of Alexandria. It is not known

    when he lived, but it is thought this may have been around 250 AD.

    In Baghdad around 700800 AD a mathematician named Mohammed Un-Musa

    Al-Khowarezmiwrote books on algebra and Hindu numerals. One of his books was named

    Al-Jabr wal Migabaloh, and the word algebracomes from the rst word in this title.

    Simplifying Expressions

    Addition and subtraction

    EXAMPLES

    Simplify

    1. x x7 -

    Solution

    7 7 1

    6

    x x x x

    x

    - = -

    =

    2. x x x4 3 62 2 2- +

    Solution

    4 3 6 6

    7

    x x x x x

    x

    2 2 2 2 2

    2

    - + = +

    =

    Here x is called a

    pronumeral.

    CONTINUED

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    3/50

    46 Maths In Focus Mathematics Extension 1 Preliminary Course

    3. x x x3 5 43 - - +

    Solution

    x x x x x3 5 4 8 43 3- - + = - +

    4. a b a b3 4 5- - -

    Solution

    3 4 5 3 5 4

    2 5

    a b a b a a b b

    a b

    - - - = - - -

    = - -

    Only add or subtract like

    terms. These have the

    same pronumeral (for

    example, 3x and 5x).

    1. 2 5x x+

    2. 9 6a a-

    3. 5 4z z-

    4. 5a a+

    5. b b4 -

    6. r r2 5-

    7. y y4 3- +

    8. x x2 3- -

    9. 2 2a a-

    10. k k4 7- +

    11. 3 4 2t t t+ +

    12. w w w8 3- +

    13. m m m4 3 2- -

    14. 3 5x x x+ -

    15. 8 7h h h- -

    16. b b b7 3+ -

    17. 3 5 4 9b b b b- + +

    18. x x x x5 3 7- + - -

    19. x y y6 5- -

    20. a b b a8 4 7+ - -

    21. 2 3xy y xy + +

    22. 2 5 3ab ab ab2 2 2- -

    23. m m m5 122 - - +

    24. 7 5 6p p p2 - + -

    25. 3 7 5 4x y x y + + -

    26. 2 3 8ab b ab b+ - +

    27. ab bc ab ac bc + - - +

    28. a x a x7 2 15 3 5 3- + - +

    29. 3 4 2x xy x y x y xy y 3 2 2 2 2 3- + - + +

    30. 3 4 3 5 4 6x x x x x3 2 2- - + - -

    2.1 Exercises

    Simplify

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    4/50

    47Chapter 2Algebra and Surds

    Multiplication

    EXAMPLES

    Simplify

    1. x y x5 3 2# #-

    Solution

    5 3 2 30

    30

    x y x xyx

    x y2# #- = -

    = -

    2. 3 4x y xy 3 2 5#- -

    Solution

    x y xy x y 3 4 123 2 5 4 7#- - =

    Use index laws

    to simplify this

    question.

    1. b5 2#

    2. x y2 4#

    3. p p5 2#

    4. z w3 2#-

    5. a b5 3#- -

    6. x y z2 7# #

    7. ab c8 6#

    8. d d4 3#

    9. a a a3 4# #

    10. y3 3-^ h

    11. 2x2 5

    ^ h 12. ab a2 33 #

    13. a b ab5 22 # -

    14. pq p q7 32 2 2#

    15. ab a b5 2 2#

    16. h h4 23 7# -

    17. k p p3 2#

    18. t3 34

    -^ h 19. m m7 26 5# -

    20. x x y xy 2 3 42 3 2# #- -

    2.2 Exercises

    Simplify

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    5/50

    48 Maths In Focus Mathematics Extension 1 Preliminary Course

    Division

    Use cancelling or index laws to simplify divisions.

    EXAMPLES

    Simplify

    1. v y vy 6 22 '

    Solution

    By cancelling,

    v y vy vy

    v y

    v y

    v v y

    v

    6 22

    6

    2

    6

    3

    2

    2

    1 1

    3 1 1

    '

    # #

    # # #

    =

    =

    =

    Using index laws,

    v y vy v y

    v y

    v

    6 2 3

    3

    3

    2 2 1 1 1

    1 0

    ' =

    =

    =

    - -

    2.15

    5

    ab

    a b2

    3

    Solution

    3

    3

    aba b a b

    a b

    b

    a

    155

    3

    2

    3

    3 1 1 2

    2 1

    2

    =

    =

    =

    - -

    -

    1

    1

    1. x30 5'

    2. y y2 '

    3.2

    8a2

    4.8aa2

    5.

    a

    a

    2

    8 2

    6.x

    xy

    2

    7. p p12 43 2'

    8.6

    3

    ab

    a b2 2

    9.1520

    xy

    x

    10. x

    x

    3

    94

    7-

    2.3 Exercises

    Simplify

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    6/50

    49Chapter 2Algebra and Surds

    11. ab b15 5'- -

    12.6

    2

    a b

    ab2 3

    13.pqs

    p

    4

    8-

    14. cd c d 14 212 3 3'

    15.4

    2

    x y z

    xy z3 2

    2 3

    16.pq

    p q

    7

    423

    5 4

    17. a b c a b c 5 209 4 2 5 3 1'- - -

    18. a b

    a b

    4

    29 2 1

    5 2 4

    - -

    -

    ^^

    hh

    19. x y z xy z5 154 7 8 2'- -

    20. a b a b9 184 13 1 3

    '- -- -^ h

    Removing grouping symbols

    The distributive law of numbers is given by

    a b c ab ac + = +] g

    EXAMPLE

    ( )7 9 11 7 20

    140

    # #+ =

    =

    Using the distributive law,

    ( )7 9 11 7 9 7 1163 77

    140

    # # #+ = +

    = +

    =

    EXAMPLES

    Expand and simplify.1. a2 3+] gSolution

    2( 3) 2 2 3

    2 6

    a a

    a

    # #+ = +

    = +

    This rule is used in algebra to help remove grouping symbols.

    CONTINUED

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    7/50

    50 Maths In Focus Mathematics Extension 1 Preliminary Course

    2. x2 5- -] gSolution

    ( ) ( )x x

    xx

    2 5 1 2 5

    1 2 1 52 5

    # #

    - - = - -

    = - - -

    = - +

    3. a ab c 5 4 32 + -] gSolution

    ( )a ab c a a ab a c

    a a b a c

    5 4 3 5 4 5 3 5

    20 15 5

    2 2 2 2

    2 3 2

    # # #+ - = + -

    = + -

    4. y5 2 3- +

    ^ h

    Solution

    ( )y y

    y

    y

    5 2 3 5 2 2 3

    5 2 6

    2 1

    # #- + = - -

    = - -

    = - -

    5. b b2 5 1- - +] ]g gSolution

    ( ) ( )b b b bb b

    b

    2 5 1 2 2 5 1 1 12 10 1

    11

    # # # #- - + = + - - -

    = - - -

    = -

    1. x2 4-] g2. h3 2 3+] g3. a5 2- -] g4. x y2 3+^ h5. x x 2-] g6. a a b2 3 8-] g

    7. ab a b2 +] g8. n n5 4-] g9. x y xy y 3 22 2+_ i10. k3 4 1+ +] g11. t2 7 3- -] g 12. y y y4 3 8+ +^ h

    2.4 Exercises

    Expand and simplify

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    8/50

    51Chapter 2Algebra and Surds

    13. b9 5 3- +] g14. x3 2 5- -] g15. m m5 3 2 7 2- + -] ]g g

    16. h h2 4 3 2 9+ + -

    ] ]g g17. d d3 2 3 5 3- - -] ]g g18. a a a a2 1 3 42+ - + -] ^g h19. x x x3 4 5 1- - +] ]g g

    20. ab a b a2 3 4 1- - -] ]g g21. x x5 2 3- - -] g 22. y y8 4 2 1- + +^ h

    23. a b a b+ --

    ] ]g g24. t t2 3 4 1 3- - + +] ]g g 25. a a4 3 5 7+ + --] ]g g

    Binomial Products

    A binomialexpression consists of two numbers, for example 3.x +

    A set of two binomial expressions multiplied together is called a binomialproduct.

    Example: x x3 2+ -] ]g g.Each term in the rst bracket is multiplied by each term in the second

    bracket.

    a b x y ax ay bx by + + = + + +] ^g h

    Proof

    a b c d a c d b c d

    ac ad bc bd

    + + = + + +

    = + + +] ] ] ]g g g g

    EXAMPLES

    Expand and simplify

    1. 3 4p q+ -^ ^h hSolution

    p q pq p q3 4 4 3 12+ - = - + -^ ^h h

    2. 5a 2+] g Solution

    ( 5)( 5)

    5 5 25

    10 25

    a a a

    a a a

    a a

    5 2

    2

    2

    + = + +

    = + + +

    = + +

    ] g Can you see a quick

    way of doing this?

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    9/50

    52 Maths In Focus Mathematics Extension 1 Preliminary Course

    The rule below is not a binomial product (one expression is a trinomial), but itworks the same way.

    a b x y z ax ay az bx by bz+ + + = + + + + +] ^g h

    EXAMPLE

    Expand and simplify .x x y4 2 3 1+ - -] ^g h Solution

    ( ) ( )x x y x xy x x y

    x xy x y

    4 2 3 1 2 3 8 12 4

    2 3 7 12 4

    2

    2

    + - - = - - + - -

    = - + - -

    1. 5 2a a+ +] ]g g2. x x3 1+ -] ]g g3. 2 3 5y y- +^ ^h h4. 4 2m m- -] ]g g5. 4 3x x+ +] ]g g6. 2 5y y+ -^ ^h h7. 2 3 2x x- +] ]g g8. 7 3h h- -] ]g g9. 5 5x x+ -] ]g g10. a a5 4 3 1- -

    ] ]g g

    11. 2 3 4 3y y+ -^ ^h h12. 4 7x y- +] g h13. 3 2x x2 + -^ ]h g14. 2 2n n+ -] ]g g15. 2 3 2 3x x+ -] ]g g16. 4 7 4 7y y- +^ ^h h

    17. 2 2a b a b+ -] ]g g18. 3 4 3 4x y x y - +^ ^h h19. 3 3x x+ -] ]g g20. 6 6y y- +^ ^h h21. a a3 1 3 1+ -] ]g g22. 2 7 2 7z z- +] ]g g23. 9 2 2x x y+ - +] g h24. b a b3 2 2 1- + -] ]g g25. 2 2 4x x x2+ - +] g h26. 3 3 9a a a2- + +

    ] ^g h

    27. 9a 2+] g 28. 4k 2-] g 29. 2x 2+] g 30. 7y 2-^ h 31. 2 3x 2+] g 32. 2 1t 2-] g

    2.5 Exercises

    Expand and simplify

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    10/50

    53Chapter 2Algebra and Surds

    33. 3 4a b 2+] g 34. 5x y2-^ h 35. 2a b 2+] g

    36. a b a b- +

    ] ]g g

    37. a b 2+] g 38. a b 2-] g 39. a b a ab b2 2+ - +] ^g h

    40. a b a ab b2 2

    - + +

    ] ^g h

    Some binomial products have special results and can be simplied quickly

    using their special properties. Binomial products involving perfect squares

    and the difference of two squares occur in many topics in mathematics. Their

    expansions are given below.

    Difference of 2 squares

    a b a b a b2 2+ - = -] ]g g

    Proof

    ( ) ( )a b a b a ab ab b

    a b

    2 2

    2 2

    + - = - + -

    = -

    a b a ab b22 2 2+ = + +] g

    Perfect squares

    Proof

    ( )( )

    2

    a b a b a b

    a ab ab b

    a ab b

    2

    2 2

    2 2

    + = + +

    = + + +

    = + +

    ] g

    2a b a ab b2 2 2- = - +] g

    Proof

    ( )( )

    2

    a b a b a b

    a ab ab b

    a ab b

    2

    2 2

    2 2

    - = - -

    = - - +

    = - +

    ] g

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    11/50

    54 Maths In Focus Mathematics Extension 1 Preliminary Course

    EXAMPLES

    Expand and simplify

    1. 2 3x 2-] g Solution

    ( )x x x

    x x

    2 3 2 2 2 3 3

    4 12 9

    2 2 2

    2

    - = - +

    = - +

    ] ]g g

    2. 3 4 3 4y y- +^ ^h hSolution

    (3 4)(3 4) 4

    9 16

    y y y

    y

    3 2 2

    2

    - + = -

    = -

    ^ h

    1. 4t 2+] g 2. 6z 2-] g 3. x 1 2-] g

    4. 8y 2+^ h 5. 3q 2+^ h 6. 7k 2-] g 7. n 1 2+] g

    8. 2 5b 2+] g 9. 3 x 2-

    ] g

    10. y3 1 2-^ h

    11. x y2+^ h 12. a b3 2-] g

    13. 4 5d e 2+] g 14. 4 4t t+ -] ]g g15. x x3 3- +] ]g g

    16. p p1 1+ -^ ^h h

    17. 6 6r r+ -] ]g g18. x x10 10- +] ]g g

    19. 2 3 2 3a a+ -] ]g g20. 5 5x y x y - +^ ^h h21. a a4 1 4 1+ -] ]g g

    22. 7 3 7 3x x- +] ]g g23. 2 2x x2 2+ -^ ^h h24. 5x2

    2+

    ^ h

    25. 3 4 3 4ab c ab c - +] ]g g26.

    2x x

    2

    +b l

    27.1 1

    a a a a- +b bl l

    28. x y x y 2 2+ - - -_ _i i6 6@ @

    29. a b c2

    + +] g6 @

    2.6 Exercises

    Expand and simplify

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    12/50

    55Chapter 2Algebra and Surds

    30. x y12

    + -] g7 A

    31. a a3 32 2+ - -] ]g g

    32. 16 4 4z z- - +] ]g g33. 2 3 1 4x x

    2

    + + -] g 34. 2x y x y 2+ - -^ ^h h35. n n n4 3 4 3 2 52- + - +] ]g g

    36. x 4 3-] g

    37. x x x1 1

    22 2

    - - +b bl l 38. x y x y 42 2

    2 2 2+ -_ i

    39. 2 5a3

    +

    ] g 40. x x x2 1 2 1 2 2- + +] ] ]g g g

    Expand (x 4) (x 4) .- - 2

    PROBLEM

    Find values of all pronumerals that make this true.

    i i c c b

    a b c

    d e

    f e b

    i i i h g

    #

    Try c 9.=

    Factorisation

    Simple factors

    Factors are numbers that exactly divide or go into an equal or larger number,

    without leaving a remainder.

    EXAMPLES

    The numbers 1, 2, 3, 4, 6, 8, 12 and 24 are all the factors of 24.

    Factors of 5xare 1, 5, xand 5x.

    To factorise an expression, we use the distributive law.

    a bax bx x ++ = ] g

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    13/50

    56 Maths In Focus Mathematics Extension 1 Preliminary Course

    EXAMPLES

    Factorise

    1. 3 12x +

    Solution

    The highest common factor is 3.

    x x3 12 3 4+ = +] g

    2. 2y y2 -

    Solution

    The highest common factor isy.

    y y y y2 22 - = -^ h

    3. 2x x3 2-

    Solution

    x and x2are both common factors. We take out the highest common

    factor which is x2.

    x x x x2 23 2 2- = -] g

    4. x xy5 3 32+ ++] ]g gSolution

    The highest common factor is 3x + .

    x x x y y5 3 3 3 5 22+ + + ++ =] ] ] ^g g g h

    5. 8 2a b ab3 2 3-

    Solution

    There are several common factors here. The highest common

    factor is 2ab2.

    8 2 2 4a b ab ab a b3 2 3 2 2

    - = -^ h

    Check answers by

    expanding brackets.

    Divide each term by 3 to

    nd the terms inside the

    brackets.

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    14/50

    57Chapter 2Algebra and Surds

    1. 2 6y+

    2. x5 10-

    3. 3 9m -

    4. 8 2x +

    5. y24 18-

    6. 2x x2 +

    7. 3m m2 -

    8. 2 4y y2

    +

    9. 15 3a a2-

    10. ab ab2 +

    11. 4 2x y xy 2 -

    12. 3 9mn mn3 +

    13. 8 2x z xz2 2-

    14. 6 3 2ab a a2+ -

    15. 5 2x x xy 2 - +

    16. 3 2q q5 2-

    17. 5 15b b3 2+

    18. 6 3a b a b2 3 3 2-

    19. x m m5 7 5+ + +] ]g g

    20. y y y2 1 1- - -^ ^h h

    21. 4 7 3 7y x y+ - +^ ^h h22. 6 2 5 2x a a- + -] ]g g23. x t y t2 1 2 1+ - +] ]g g

    24. a x b x3 2 2 3 2- + -] ]g gc x3 3 2- -] g

    25. 6 9x x3 2+

    26. 3 6pq q5 3-

    27. 15 3a b ab4 3 +

    28. 4 24x x3 2-

    29. 35 25m n m n3 4 2-

    30. 24 16a b ab2 5 2+

    31. r rh2 22r r+

    32. 3 5 3x x2

    - + -] ]g g33. 4 2 4y x x2 + + +] ]g g34. a a a1 1 2+ - +] ]g g

    35. ab a a4 1 3 12 2+ - +^ ^h h

    2.7 Exercises

    Factorise

    Grouping in pairs

    If an expression has 4 terms, it may be factorised in pairs.

    ( ) ( )

    ( ) ( )

    ax bx ay by x a b y a b

    a b x y

    + + + = + + +

    = + +

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    15/50

    58 Maths In Focus Mathematics Extension 1 Preliminary Course

    EXAMPLES

    Factorise

    1. 2 3 6x x x2 - + -

    Solution

    2 3 6 ( 2) 3( 2)

    ( 2)( 3)

    x x x x x x

    x x

    2- + - = - + -

    = - +

    2. 2 4 6 3x y xy - + -

    Solution

    ( ) ( )

    ( ) ( )

    ( ) ( )

    ( ) ( )

    ( ) ( )

    ( ) ( )

    x y xy x y x

    x y x

    x y

    x y xy x y x

    x y x

    x y

    2 4 6 3 2 2 3 2

    2 2 3 2

    2 2 3

    2 4 6 3 2 2 3 2

    2 2 3 2

    2 2 3

    or

    - + - = - + -

    = - - -

    = - -

    - + - = - - - +

    = - - -

    = - -

    1. 2 8 4x bx b+ + +

    2. 3 3ay a by b- + -

    3. x x x5 2 102 + + +

    4. 2 3 6m m m2 - + -

    5. ad ac bd bc - + -

    6. 3 3x x x3 2+ + +

    7. ab b a5 3 10 6- + -

    8. 2 2xy x y xy 2 2- + -

    9. ay a y 1+ + +

    10. 5 5x x x2 + - -

    11. 3 3y ay a+ + +

    12. 2 4 2m y my - + -

    13. x xy xy y 2 10 3 152 2+ - -

    14. 4 4a b ab a b2 3 2+ - -

    15. x x x5 3 152- - +

    16. 7 4 28x x x4 3+ - -

    17. 7 21 3x xy y - - +

    18. 4 12 3d de e+ - -

    19. x xy y 3 12 4+- -

    20. a ab b2 6 3+ - -

    21. x x x3 6 183 2 +- -

    22. pq p q q3 32+- -

    2.8 Exercises

    Factorise

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    16/50

    59Chapter 2Algebra and Surds

    23. x x x3 6 5 103 2- - +

    24. 4 12 3a b ac bc - + -

    25. 7 4 28xy x y + - -

    26. x x x4 5 204 3

    - - +

    27. x x x4 6 8 123 2- + -

    28. 3 9 6 18a a ab b2 + + +

    29. y xy x5 15 10 30+- -

    30. r r r2 3 62

    r r+ - -

    Trinomials

    A trinomialis an expression with three terms, for example 4 3.x x2 - +

    Factorising a trinomial usually gives a binomial product.

    x a b x a x bx ab2 + + ++ + =] ] ]g g g

    Proof

    ( )

    ( ) ( )

    ( ) ( )

    x a b x ab x ax bx ab

    x x a b x a

    x a x b

    2 2+ + + = + + +

    = + + +

    = + +

    EXAMPLES

    Factorise

    1. 5 6m m2 - +

    Solution

    a b 5+ = - and 6ab = +

    62

    3

    5

    +-

    -

    -

    '

    Numbers with sum 5- and product 6+ are 2- and 3.-

    [ ] [ ]m m m m

    m m

    5 6 2 3

    2 3

    2` - + = + - + -

    = - -

    ] ]] ]

    g gg g

    2. 2y y2 + -

    Solution

    1a b+ = + and 2ab = -

    2211

    -+

    -

    +

    '

    Two numbers with sum 1+ and product 2- are 2+ and 1- .

    y y y y2 2 12` + - = + -^ ^h h

    Guess and check by

    trying 2- and 3-

    or 1- and .6-

    Guess and check by

    trying 2 and 1- or

    2- and 1.

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    17/50

    60 Maths In Focus Mathematics Extension 1 Preliminary Course

    The result x a b x a x bx ab2

    + + + ++ =] ] ]g g gonly works when the coefcientof x2(the number in front of x2) is 1. When the coefcient of x2is not 1, forexample in the expression 5 2 4,x x2 - + we need to use a different method to

    factorise the trinomial.

    There are different ways of factorising these trinomials. One method is

    the cross method. Another is called the PSF method. Or you can simply guess

    and check.

    1. 4 3x x2 + +

    2. y y7 122 + +

    3. m m2 12 + +

    4. t t8 162 + +

    5. 6z z2 + -

    6. 5 6x x2 - -

    7. v v8 152 - +

    8. 6 9t t

    2- +

    9. x x9 102 + -

    10. 10 21y y2 - +

    11. m m9 182 - +

    12. y y9 362 + -

    13. 5 24x x2 - -

    14. 4 4a a2 - +

    15. x x14 322 + -

    16. 5 36y y2 - -

    17. n n10 242 +-

    18. x x10 252 +-

    19. p p8 92 + -

    20. k k7 102 +-

    21. x x 12

    2+ -

    22. m m6 72 - -

    23. 12 20q q2 + +

    24. d d4 52 - -

    25. l l11 182 +-

    2.9 Exercises

    Factorise

    EXAMPLES

    Factorise

    1. 5 13 6y y2 - +

    Solutionguess and check

    For 5y2, one bracket will have 5yand the othery:

    .y y5^ ^h h Now look at the constant (term withoutyin it): .6+

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    18/50

    61Chapter 2Algebra and Surds

    The two numbers inside the brackets must multiply to give 6.+

    To get a positive answer, they must both have the same signs.

    But there is a negative sign in front of 13yso the numbers cannot be both

    positive. They must both be negative.

    y y5 - -

    ^ ^h hTo get a product of 6, the numbers must be 2 and 3 or 1 and 6.Guess 2 and 3 and check:

    3 5 15 2 6

    5 17 6

    y y y y y

    y y

    5 2 2

    2

    - = - - +

    = - +

    -^ ^h h

    This is not correct.

    Notice that we are mainly interested in checking the middle two terms,

    .y y15 2and- -

    Try 2 and 3 the other way around:

    .y y5 3 2- -^ ^h h Checking the middle terms: y y y10 3 13- - = -

    This is correct, so the answer is .y y5 3 2- -^ ^h h Note: If this did not check out, do the same with 1 and 6.Solutioncross method

    Factors of 5y2are 5yandy.

    Factors of 6 are 1- and 6- or 2- and .3-

    Possible combinations that give a middle term of y13- are

    By guessing and checking, we choose the correct combination.

    y13-

    y y

    y y

    5 2 10

    3 3

    #

    #

    - = -

    - = -

    y y y y5 13 6 5 3 22` - + = - -^ ^h hSolutionPSF method

    P:Product of rst and last terms 30y2

    S:Sum or middle term y13-

    F:Factors of Pthat give S ,y y3 10- -

    y yy

    y

    30 310

    13

    2 -

    -

    -

    )

    y y y y y

    y y y

    y y

    5 13 6 5 3 10 6

    5 3 2 5 3

    5 3 2

    2 2` - + = - - +

    = - - -

    = - -

    ^ ^^ ^

    h hh h

    5y

    y 3-

    2- 5y

    y 2-

    3- 5y

    y 6-

    1- 5y

    y 1-

    6-

    5y

    y 2-

    3-

    CONTINUED

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    19/50

    62 Maths In Focus Mathematics Extension 1 Preliminary Course

    2. 4 4 3y y2 + -

    Solutionguess and check

    For 4y2, both brackets will have 2yor one bracket will have 4yand the

    othery.Try 2yin each bracket:

    .y y2 2^ ^h h

    Now look at the constant: .3-

    The two numbers inside the brackets must multiply to give .3-

    To get a negative answer, they must have different signs.

    y y2 2 +-^ ^h h

    To get a product of 3, the numbers must be 1 and 3.

    Guess and check:

    y y2 3 2 1+-^ ^h h

    Checking the middle terms: y y y2 6 4- = -

    This is almost correct, as the sign is wrong but the coefcient is right

    (the number in front ofy).

    Swap the signs around:4 6 2 3

    4 4 3

    y y y y y

    y y

    2 1 2 3 2

    2

    + = +

    = +

    - - -

    -

    ^ ^h h

    This is correct, so the answer is .y y2 1 2 3- +^ ^h h

    Solutioncross method

    Factors of 4y2are 4yandyor 2yand 2y.

    Factors of 3 are 1- and 3 or 3- and 1.

    Trying combinations of these factors givesy y

    y y

    y

    2 1 2

    2 3 6

    4

    #

    #

    - = -

    =

    y y y y4 4 3 2 3 2 12` + - = + -^ ^h h

    SolutionPSF method

    P:Product of rst and last terms y12 2-

    S:Sum or middle term 4y

    F:Factors of Pthat give S ,y y6 2+ -

    y yy

    y

    12 62

    4

    2-+

    -

    +

    ) y y y y y

    y y y

    y y

    4 4 3 4 6 2 3

    2 2 3 1 2 3

    2 3 2 1

    2 2` + - = + - -

    = + - +

    = + -

    ^ ^

    ^ ^

    h h

    h h

    2y

    2y 1-

    3

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    20/50

    63Chapter 2Algebra and Surds

    Perfect squares

    You have looked at some special binomial products, including

    2a b a ab b2 2 2+ = + +] g and 2 .a b a ab b2 2 2- = - +] g When factorising, use these results the other way around.

    Factorise

    1. a a2 11 52 + +

    2. 5 7 2y y2 + +

    3. x x3 10 72 + +

    4. 3 8 4x x2 + +

    5. 2 5 3b b2 - +

    6. 7 9 2x x2 - +

    7. 3 5 2y y2 + -

    8. x x2 11 12

    2+ +

    9. p p5 13 62 + -

    10. x x6 13 52 + +

    11. y y2 11 62 - -

    12. x x10 3 12 + -

    13. 8 14 3t t2 - +

    14. x x6 122 - -

    15. 6 47 8y y2 + -

    16. n n4 11 62 +-

    17. t t8 18 52 + -

    18. q q12 23 102 + +

    19. r r8 22 62 + -

    20. x x4 4 152 - -

    21. y y6 13 22 +-

    22. p p6 5 62 - -

    23. x x8 31 21

    2+ +

    24. b b12 43 362 +-

    25. x x6 53 92 - -

    26. 9 30 25x x2 + +

    27. 16 24 9y y2 + +

    28. k k25 20 42 +-

    29. a a36 12 12 +-

    30. m m49 84 362 + +

    2.10 Exercises

    a ab b a b

    a ab b a b

    2

    2

    2 2 2

    2 2 2

    + + = +

    - + = -

    ]]

    gg

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    21/50

    64 Maths In Focus Mathematics Extension 1 Preliminary Course

    EXAMPLES

    Factorise

    1. 8 16x x2 - +

    Solution

    8 16 2(4) 4x x x x

    x 4

    2 2 2

    2

    - + = - +

    = -] g

    2. 4 20 25a a2 + +

    Solution

    4 20 25 2(2 )(5) 5a a a a

    a

    2

    2 5

    2 2 2

    2

    + + = + +

    = +

    ]

    ]

    g

    g

    Factorise

    1. y y2 12 - +

    2. 6 9x x2

    + +

    3. m m10 252 + +

    4. 4 4t t2 - +

    5. x x12 362 - +

    6. x x4 12 92 + +

    7. b b16 8 12 - +

    8. a a9 12 42 + +

    9. x x25 40 162 - +

    10. y y49 14 12 + +

    11. y y9 30 252 +-

    12. k k16 24 92 +-

    13. 25 10 1x x2

    + +

    14. a a81 36 42 +-

    15. 49 84 36m m2 + +

    16. t t412

    + +

    17. x x

    34

    942

    - +

    18. yy

    95

    6

    2512

    + +

    19. xx

    2 122

    + +

    20. kk

    25 04

    222

    - +

    2.11 Exercises

    In a perfect square, the

    constant term is always a

    square number.

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    22/50

    65Chapter 2Algebra and Surds

    Difference of 2 squares

    A special case of binomial products is a b a b a b2 2+ - = -] ]g g .

    a b a ba b2 2 + -- = ] ]g g

    EXAMPLES

    Factorise

    1. 36d2 -

    Solution

    d d

    d d

    36 6

    6 6

    2 2 2=

    = +

    - -

    -] ]g g

    2. b9 12 -

    Solution

    ( ) ( )

    b b

    b b

    9 1 3 1

    3 1 3 1

    2 2 2- = -

    = + -

    ] g

    3. ( ) ( )a b3 12 2+ - -

    Solution

    [( ) ( )][( ) ( )]

    ( ) ( )

    ( )( )

    a b a b a b

    a b a b

    a b a b

    3 1 3 1 3 1

    3 1 3 1

    2 4

    2 2+ - - = + + - + - -

    = + + - + - +

    = + + - +

    ] ]g g

    Factorise

    1. 4a2 -

    2. 9x2 -

    3. y 12 -

    4. 25x2 -

    5. 4 49x2 -

    6. 16 9y2 -

    7. z1 4 2-

    8. t25 12 -

    9. 9 4t2 -

    10. x9 16 2-

    11. 4x y2 2-

    12. 36x y2 2-

    2.12 Exercises

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    23/50

    66 Maths In Focus Mathematics Extension 1 Preliminary Course

    13. 4 9a b2 2-

    14. x y1002 2-

    15. 4 81a b2 2-

    16. 2x y2 2

    + -

    ] g 17. a b1 22 2- - -] ]g g 18. z w12 2- +] g 19. x

    412

    -

    20.y

    91

    2

    -

    21. x y2 2 12 2+ - +] ^g h 22. x 14 -

    23. 9 4x y6 2-

    24. x y164 4-

    25. 1a8 -

    Sums and differences of 2 cubes

    a b a ab ba b3 3 2 2+ - ++ = ] ^g h

    a b a b a ab b3 3 2 2- = - + +] ^g h

    Proof

    ( ) ( )a b a ab b a a b ab a b ab b

    a b

    2 2 3 2 2 2 2 3

    3 3

    + - + = - + + - +

    = +

    Proof

    ( ) ( )a b a ab b a a b ab a b ab b

    a b

    2 2 3 2 2 2 2 3

    3 3

    - + + = + + - - -

    = -

    EXAMPLES

    Factorise

    1. 8 1x3 +

    Solution

    ( ) [ ( )( ) ]

    ( ) ( )

    x x

    x x x

    x x x

    8 1 2 1

    2 1 2 2 1 1

    2 1 4 2 1

    3 3 3

    2 2

    2

    + = +

    = + - +

    = + - +

    ]]

    gg

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    24/50

    67Chapter 2Algebra and Surds

    Factorise

    1. b 83 -

    2. 27x3

    +

    3. 1t3 +

    4. 64a3 -

    5. 1 x3-

    6. 8 27y3+

    7. 8y z3 3+

    8. 125x y3 3-

    9. 8 27x y3 3+

    10. 1a b3 3 -

    11. 1000 8t3+

    12.x8

    273

    -

    13.a b

    1000 13 3

    +

    14. x y1 3 3+ -] g 15. x y z216125 3 3 3+

    16. 2 1a a3 3- - +] ]g g 17.

    x1

    27

    3

    -

    18. 3y x3 3+ +] g 19. x y1 23 3+ + -] ^g h 20. 8 3a b3 3+ -] g

    2.13 Exercises

    2. 27 64a b3 3-

    Solution

    ( )[ ( )( ) ]( )( )

    a b a b

    a b a a b ba b a ab b

    27 64 3 4

    3 4 3 3 4 43 4 9 12 16

    3 3 3 3

    2 2

    2 2

    - = -

    = - + +

    = - + +

    ] ]

    ] ]

    g g

    g g

    Mixed factors

    Sometimes more than one method of factorising is needed to completely

    factorise an expression.

    EXAMPLE

    Factorise 5 45.x2 -

    Solution

    5 45 5( 9) (using simple factors)

    5( 3)( 3) (the difference of two squares)

    x x

    x x

    2 2- = -

    = + -

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    25/50

    68 Maths In Focus Mathematics Extension 1 Preliminary Course

    Factorise

    1. x2 182 -

    2. p p3 3 362 - -

    3. y5 53 -

    4. 4 8 24a b a b ab a b3 2 2 2 2+ - -

    5. a a5 10 52 - +

    6. x x2 11 122- + -

    7. z z z3 27 603 2+ +

    8. ab a b9 43 3

    -

    9. x x3 -

    10. x x6 8 82 + -

    11. m n mn3 15 5- - +

    12. x x3 42 2- - +] ]g g 13. y y y5 5162 + +-^ ^h h14. x x x8 84 3- + -

    15. x 16 -

    16. x x x3 103 2- -

    17. x x x3 9 273 2- - +

    18. 4x y y2 3 -

    19. 24 3b3-

    20. 18 33 30x x2 + -

    21. 3 6 3x x2 - +

    22. 2 25 50x x x3 2+ - -

    23. 6 9z z z3 2

    + +

    24. 4 13 9x x4 2- +

    25. 2 2 8 8x x y x y 5 2 3 3 3+ - -

    26. 4 36a a3 -

    27. 40 5x x4-

    28. a a13 364 2 +-

    29. k k k4 40 1003 2+ +

    30. x x x3 9 3 93 2+ - -

    2.14 Exercises

    You will study this in

    Chapter 12.

    DID YOU KNOW?

    Long division can be used to nd factors of an expression. For example, 1x - is a factor of

    4 5x x+ -3 . We can nd the other factor by dividing 4 5x x+ -3 by 1.x -

    -

    5

    4

    5 5

    5 5

    0

    x x

    x

    x x

    x x

    x x

    x

    x

    2

    3

    2

    -

    + +

    +

    -

    -

    2

    3

    2

    1x - + 4 5x -g

    So the other factor of 4 5x x+ -3 is 5x x2 + +

    4 5 ( 1) ( 5)x x x x x3

    ` + - = - + +2

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    26/50

    69Chapter 2Algebra and Surds

    Completing the Square

    Factorising a perfect square uses the results

    a ab b a b22 2 2!! + = ] g

    EXAMPLES

    1. Complete the square on .x x62 +

    Solution

    Using 2 :a ab b2 2+ +

    a x

    ab x2 6

    =

    =

    Substituting :a x=

    xb x

    b

    2 6

    3

    =

    =

    To complete the square:

    a ab b a b

    x x x

    x x x

    2

    2 3 3 3

    6 9 3

    2 2 2

    2 2 2

    2 2

    + + = +

    + + = +

    + + = +

    ]] ]

    ]

    gg g

    g

    2. Complete the square on .n n102 -

    Solution

    Using :a ab b22 2+-

    a n

    ab x2 10

    =

    =

    Substituting :a n=

    nb nb

    2 10

    5

    =

    =

    To complete the square:

    a ab b a b

    n n n

    n n n

    2

    2 5 5 5

    10 25 5

    2 2 2

    2 2 2

    2 2

    - + = -

    - + = -

    - + = -

    ]] ]

    ]

    gg g

    g

    Notice that 3 is half of 6.

    Notice that 5 is half of 10.

    To complete the square on ,a pa2 + dividepby 2 and square it.

    2 2a pa

    pa

    p2

    2 2

    + + = +d dn n

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    27/50

    70 Maths In Focus Mathematics Extension 1 Preliminary Course

    EXAMPLES

    1. Complete the square on .x x122 +

    Solution

    Divide 12 by 2 and square it:

    x x x x

    x x

    x

    122

    1212 6

    12 36

    6

    22

    2 2

    2

    2

    + + = + +

    = + +

    = +

    c

    ]

    m

    g

    2. Complete the square on .y y22 -

    Solution

    Divide 2 by 2 and square it:

    y y y y

    y y

    y

    222

    2 1

    2 1

    1

    22

    2 2

    2

    2

    + = +

    = +

    =

    - -

    -

    -

    c

    ^

    m

    h

    Complete the square on

    1. x x42 +

    2. 6b b2 -

    3. 10x x2 -

    4. 8y y2 +

    5. 14m m2 -

    6. 18q q2 +

    7. 2x x2 +

    8. 16t t2 -

    9. 20x x2 -

    10. 44w w2 +

    11. 32x x2 -

    12.y y32 +

    13. 7x x2 -

    14. a a2 +

    15. 9x x2 +

    16.yy

    2

    52

    -

    17. k k

    2112

    -

    18. 6x xy2 +

    19. a ab42 -

    20.p pq82 -

    2.15 Exercises

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    28/50

    71Chapter 2Algebra and Surds

    Simplify

    1.a

    55 10+

    2.t

    36 3-

    3.y

    6

    8 2+

    4.d4 2

    8

    -

    5.x x

    x

    5 22

    2

    -

    6.y y

    y

    8 16

    42

    - +

    -

    7.a a

    ab a

    3

    2 42

    2

    -

    -

    8. s s

    s s

    5 6

    22

    2

    + +

    + -

    9.b

    b

    1

    12

    3

    -

    -

    10.p

    p p

    6 9

    2 7 152

    -

    + -

    11.

    a a

    a

    2 3

    12

    2

    + -

    -

    12.x

    x xy

    8

    2 233

    -

    - -+] ]g g

    13.x x

    x x x

    6 9

    3 9 272

    3 2

    + +

    + - -

    14.p

    p p

    8 1

    2 3 23

    2

    +

    - -

    15. 2 2ay by ax bx

    ay ax by bx

    - - +

    - + -

    2.16 Exercises

    Algebraic Fractions

    Simplifying fractions

    EXAMPLES

    Simplify

    1.2

    4 2x +

    Solution

    x x

    x2

    4 22

    2 1

    2 1

    2+=

    +

    = +

    ] g

    2.8

    2 3 2

    x

    x x3

    2

    -

    - -

    Solution

    x

    x x

    x x x

    x x

    x x

    x

    8

    2 3 2

    2 2 4

    2 1 2

    2 4

    2 1

    3

    2

    2

    2

    -

    - -=

    - + +

    + -

    =

    + +

    +

    ] ^] ]

    g hg g

    Factorise rst, then cancel.

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    29/50

    72 Maths In Focus Mathematics Extension 1 Preliminary Course

    Operations with algebraic fractions

    EXAMPLES

    Simplify

    1.x x

    51

    43-

    - +

    Solution

    x x x x

    x x

    x

    51

    43

    20

    4 1 3

    204 4 5 15

    2019

    5--

    +=

    - +

    = - - -

    = - -

    -] ]g g

    2.b

    a b ab

    b

    a

    27

    2 10

    4 12

    253

    2 2

    '+

    +

    +

    -

    Solution

    b

    a b ab

    b

    a

    b

    a b ab

    a

    b

    b b b

    ab a

    a a

    b

    a b b

    ab

    27

    2 10

    4 12

    25

    27

    2 10

    25

    4 12

    3 3 9

    2 5

    5 5

    4 3

    5 3 9

    8

    3

    2 2

    3

    2

    2

    2

    2

    ' #

    #

    +

    +

    +

    -=

    +

    +

    -

    +

    =

    + - +

    +

    + -

    +

    =- - +

    ] ^]

    ] ]]

    ] ^

    g hg

    g gg

    g h

    3.5

    22

    1x x-

    ++

    Solution

    x x x x

    x x

    x x

    x x

    x xx

    52

    21

    5 2

    2 5

    5 2

    2 4 5

    5 23 1

    2 1

    -+

    +=

    - +

    + -

    =

    - +

    + + -

    =

    - +

    -

    +

    ] ]] ]

    ] ]] ]

    g gg g

    g gg g

    Do algebraic fractions

    the same way as ordinary

    fractions.

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    30/50

    73Chapter 2Algebra and Surds

    1. Simplify

    (a)2 4

    3x x+

    (b)5

    1

    3

    2y y++

    (c)3

    24

    a a+-

    (d)6

    3

    2

    2p p-+

    +

    (e)2

    53

    1x x--

    -

    2. Simplify

    (a) 2

    3

    6 3

    2

    b a

    b b2#

    + -

    +

    (b)2 1

    4

    2

    1

    q q

    p

    p

    q2

    2 3

    #

    + +

    -

    +

    +

    (c)xyab

    x y xy

    ab a53

    2

    12 62

    2 2'

    +

    -

    (d)x y

    ax ay bx by

    ab a b

    x y2 2 2 2

    3 3

    #

    -

    - + -

    +

    +

    (e)x

    x x

    x x

    x x

    25

    6 9

    4 5

    5 62

    2

    2

    2

    '-

    - +

    + -

    - +

    3. Simplify

    (a)2 3x x+

    (b)1

    1 2x x-

    -

    (c) 13

    a b+

    +

    (d)2

    xx

    x2-

    +

    (e)1

    p q

    p q

    - ++

    (f)1

    13

    1x x+

    +-

    (g) 42 23x x2 --

    +

    (h)2 1

    11

    1

    a a a2 + ++

    +

    (i)2

    23

    11

    5y y y+

    -+

    +-

    (j)16

    2

    12

    7

    x x x2 2--

    - -

    4. Simplify

    (a)y

    x

    x

    y

    y

    x x

    4 12

    3

    6 24

    9

    27

    2 822

    3

    2

    # #

    - -

    -

    +

    - -

    (b)y y

    a a

    y

    aay

    y y

    4 4

    5

    4

    3 155

    22

    2

    2

    2

    ' #- +

    -

    -

    - - -

    (c)x x

    x

    x

    x x

    33

    9

    2 84 16

    32

    2

    #-

    +

    -

    +

    -

    +

    (d)b

    b

    b b

    b

    b

    b

    2 6

    5

    6 12

    2

    '+ + -

    -+

    (e)x x

    x x

    x

    xx

    x x

    5 10

    8 15

    10

    92 10

    5 62

    2

    2

    2 2

    ' #+

    - + -

    -

    + +

    5. Simplify

    (a)7 10

    1

    2 15

    2

    6

    4

    x x x x x x2 2 2- +-

    - -

    +

    + -

    (b)4

    52

    32

    2

    x x x2 --

    --

    +

    (c)2 3

    p pq pq q2 2++

    -

    (d)1

    a b

    a

    a b

    b

    a b2 2+-

    -+

    -

    (e) x y

    x y

    y x

    x

    y x

    y

    2 2-

    +

    +-

    -

    -

    2.17 Exercises

    Substitution

    Algebra is used in writing general formulae or rules. For example, the formula

    A lb= is used to nd the area of a rectangle with length land breadth b. We

    can substitute any values for land bto nd the area of different rectangles.

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    31/50

    74 Maths In Focus Mathematics Extension 1 Preliminary Course

    EXAMPLES

    1. P l b2 2= + is the formula for nding the perimeter of a rectangle

    with length land breadth b. FindPwhen .l 1 3= and . .b 3 2=

    Solution

    . .

    . .

    P l b2 2

    2 1 3 2 3 2

    2 6 6 4

    9

    = +

    = +

    = +

    =

    ] ]g g

    2. V r h2r= is the formula for nding the volume of a cylinder with

    radius rand height h. Find V(correct to 1 decimal place) when 2.1r=

    and 8.7.h =

    Solution

    . ( . )

    120.5

    V r h

    2 1 8 7

    correct to1 decimal place

    2

    2

    r

    r

    =

    =

    =

    ] g

    3. IfF C

    59

    32= + is the formula for changing degrees Celsius C] gintodegrees Fahrenheit F] gndFwhen 25.C = Solution

    F C

    59

    32

    5

    2532

    5225

    32

    5225 160

    5385

    77

    9

    = +

    = +

    = +

    = +

    =

    =

    ] g

    This means that 25 Cis the same as .77 F

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    32/50

    75Chapter 2Algebra and Surds

    1. Given 3.1a = and 2.3b = - nd,

    correct to 1 decimal place.

    (a) ab3(b) b

    (c) a5 2

    (d) ab3

    (e) a b 2+] g (f) a b-

    (g) b2-

    2. T a n d1= + -] g is the formulafor nding the term of an

    arithmetic series. Find Twhen

    ,a n4 18= - = and .d 3=

    3. Given ,y mx b= + the equation

    of a straight line, ndyif

    ,m x3 2= = - and 1.b = -

    4. If 100 5h t t2= - is the height of

    a particle at time t, nd hwhen

    5.t=

    5. Given vertical velocity ,v gt= -

    nd v when 9.8g= and 20.t=

    6. If 2 3y x= + is the equation of

    a function, ndywhen 1.3,x =

    correct to 1 decimal place.

    7. S r r h2r= +] gis the formula forthe surface area of a cylinder.

    Find S when 5r= and 7,h =

    correct to the nearest whole

    number.

    8. A r2r= is the area of a circle with

    radius r. FindAwhen 9.5,r=

    correct to 3 signicant gures.

    9. Given u ar 1n

    n=

    - is the nth term

    of a geometric series, nd unif

    5,a = 2r= - and 4.n =

    10. Given3

    V lbh= 1 is the volume

    formula for a rectangular

    pyramid, nd Vif . , .l b4 7 5 1= =

    and 6.5.h =

    11. The gradient of a straight line is

    given by .m x x

    y y

    2 1

    2 1=

    -

    -

    Find m

    if , ,x x y3 1 21 2 1

    = = - = - and

    5.y2

    =

    12. If2

    A h a b= +1 ] ggives the areaof a trapezium, ndAwhen

    , .h a7 2 5= = and 3.9.b =

    13. Find Vif3

    V r3r= 4 is the volume

    formula for a sphere with radius r

    and 7.6,r= to 1 decimal place.

    14. The velocity of an object at a

    certain time tis given by the

    formula .v u at = + Find vwhen

    4 5,u a= =1 3and

    6.t= 5

    15. Given1

    ,Sr

    a=

    -nd Sif 5a =

    and3

    .r= 2 Sis the sum to innity

    of a geometric series.

    16. ,c a b2 2= + according to

    Pythagoras theorem. Find thevalue of cif 6a = and 8.b =

    17. Given 16y x2= - is the

    equation of a semicircle, nd the

    exact value ofywhen 2.x =

    2.18 Exercises

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    33/50

    76 Maths In Focus Mathematics Extension 1 Preliminary Course

    18. Find the value ofEin the energy

    equationE mc2= if 8.3m = and

    1.7.c=

    19. 1100

    A P r n

    = +c m is the formulafor nding compound interest.

    FindAwhen ,P r200 12= = and

    5,n = correct to 2 decimal places.

    20. If Sr

    ra

    1

    1=

    -

    -n^ h

    is the sum of

    a geometric series, nd Sif

    ,a r3 2= = and 5.n =

    21. Find the value of ca b2

    3 2

    if

    4 3

    ,a b2 3

    = =3 2c cm m and .c

    21 4

    = c m

    Surds

    An irrational numberis a number that cannot be written as a ratio or fraction

    (rational). Surdsare special types of irrational numbers, such as 2, 3and 5 .

    Some surds give rational values: for example, 9 3.=

    Others, like 2,donot have an exact decimal value. If a question involving surds asks for an exact

    answer, then leave it as a surd rather than giving a decimal approximation.

    Simplifying surds

    a b ab

    a bb

    a

    b

    a

    #

    '

    =

    = =

    Class Investigations

    Is there an exact decimal equivalent for1. 2?

    Can you draw a line of length exactly2. 2?

    Do these calculations give the same results?3.

    (a) 9 4# and 9 4#

    (b)9

    4and

    94

    (c) 9 4+ and 9 4+

    (d) 9 4- and 9 4-

    Here are some basic properties of surds.

    x x x2 2

    = =^ h

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    34/50

    77Chapter 2Algebra and Surds

    EXAMPLES

    1. Express in simplest surd form 45 .

    Solution

    45 9 5

    9 5

    3 5

    3 5

    #

    #

    #

    =

    =

    =

    =

    2. Simplify 3 40 .

    Solution

    3 33

    3 2

    6

    40 4 104 10

    10

    10

    #

    # #

    # #

    =

    =

    =

    =

    3. Write 5 2as a single surd.

    Solution

    5 2 25 2

    50

    #=

    =

    54 also equals

    3 15# but this will

    not simplify. We look

    for a number that is a

    perfect square.

    Find a factor of 40 that

    is a perfect square.

    1. Express these surds in simplest

    surd form.

    (a) 12

    (b) 63

    (c) 24(d) 50

    (e) 72

    (f) 200

    (g) 48

    (h) 75

    (i) 32

    (j) 54

    (k) 112

    (l) 300

    (m) 128

    (n) 243

    (o) 245

    (p) 108

    (q) 99

    (r) 125

    2. Simplify

    (a) 2 27

    (b) 5 80

    2.19 Exercises

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    35/50

    78 Maths In Focus Mathematics Extension 1 Preliminary Course

    (c) 4 98

    (d) 2 28

    (e) 8 20

    (f) 4 56

    (g) 8 405(h) 15 8

    (i) 7 40

    (j) 8 45

    3. Write as a single surd.

    (a) 3 2

    (b) 2 5

    (c) 4 11

    (d) 8 2

    (e) 5 3

    (f) 4 10

    (g) 3 13

    (h) 7 2

    (i) 11 3

    (j) 12 7

    4. Evaluate xif

    (a) 3 5x =

    (b) 2 3 x=

    (c) 3 7 x=

    (d) 5 2 x=

    (e) 2 11 x=

    (f) 7 3x =

    (g) 4 19 x=

    (h) 6 23x =

    (i) 5 31 x=

    (j) 8 15x =

    Addition and subtraction

    Calculations with surds are similar to calculations in algebra. We can only add

    or subtract like terms with algebraic expressions. This is the same with surds.

    EXAMPLES

    1. Simplify 3 2 4 2 .+

    Solution

    3 4 72 2 2+ =

    2. Simplify 3 12 .-

    Solution

    First, change into like surds.3 12 3 4 3

    3 2 3

    3

    #- = -

    = -

    = -

    3. Simplify 2 2 2 3 .- +

    Solution

    2 2 2 3 2 3- + = +

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    36/50

    79Chapter 2Algebra and Surds

    Multiplication and division

    Simplify

    1. 5 2 5+

    2. 3 2 2 2-

    3. 3 5 3+

    4. 7 3 4 3-

    5. 5 4 5-

    6. 4 6 6-

    7. 2 8 2-

    8. 5 4 5 3 5+ +

    9. 2 2 2 3 2- -

    10. 5 45+

    11. 8 2-

    12. 3 48+

    13. 12 27-

    14. 50 32-

    15. 28 63+

    16. 2 8 18-

    17. 3 54 2 24+

    18. 90 5 40 2 10- -

    19. 4 48 3 147 5 12+ +

    20. 3 2 8 12+ -

    21. 2863 50--

    22. 12 45 48 5-- -

    23. 150 45 24+ +

    24. 32 243 50 147-- +

    25. 80 3 245 2 50- +

    2.20 Exercises

    To get a b c d ac bd ,# =

    multiply surds with surds and

    rationals with rationals.

    a b ab

    a b c d ac bd

    a a a a2

    #

    #

    #

    =

    =

    = =

    EXAMPLES

    Simplify

    1. 2 2 5 7# -

    Solution

    2 2 5 7 10 14# - = -

    b

    a

    b

    a=

    CONTINUED

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    37/50

    80 Maths In Focus Mathematics Extension 1 Preliminary Course

    2. 4 2 5 18#

    Solution

    4 2 5 18 20 36

    20 6

    120

    #

    #

    =

    =

    =

    3.4 2

    2 14

    Solution

    4 2

    2 14

    4 2

    2 2 7

    27

    #=

    =

    4.15 2

    3 10

    Solution

    15 2

    3 10

    15 2

    3 5 2

    55

    # #=

    =

    5.310

    2d n

    Solution

    33

    310

    3

    10

    3

    10

    2

    2

    2

    =

    =

    =1

    d ^^n h

    h

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    38/50

    81Chapter 2Algebra and Surds

    Simplify

    1. 7 3#

    2. 3 5#

    3. 2 3 3#

    4. 5 7 2 2#

    5. 3 3 2 2#-

    6. 5 3 2 3#

    7. 4 5 3 11#-

    8. 2 7 7#

    9. 2 3 5 12#

    10. 6 2#

    11. 28 6#

    12. 3 2 5 14#

    13. 10 2 2#

    14. 2 6 7 6# -

    15. 2 2^ h 16. 2 7

    2^ h 17. 3 5 2# #

    18. 2 3 7 5# # -

    19. 2 6 3 3# #

    20. 2 5 3 2 5 5# #- -

    21. 2 2

    4 12

    22.3 6

    12 18

    23.10 2

    5 8

    24.2 12

    16 2

    25.5 10

    10 30

    26.6 20

    2 2

    27.8 10

    4 2

    28.3 15

    3

    29.8

    2

    30.6 10

    3 15

    31.5 8

    5 12

    32.10 10

    15 18

    33.2 6

    15

    34.32

    2d n

    35.

    7

    52

    d n

    2.21 Exercises

    Expanding brackets

    The same rules for expanding brackets and binomial products that you use in

    algebra also apply to surds.

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    39/50

    82 Maths In Focus Mathematics Extension 1 Preliminary Course

    Simplifying surds by removing grouping symbols uses these general rules.

    b c ab ac a + = +^ h

    Proofa b c a b a c

    ab ac

    # #+ = +

    = +

    ^ h

    Binomial product:

    a b c d ad bd ac bc + + = + + +^ ^h h Proof

    a b c d a c a d b c b d

    ac ad bc bd

    # # # #+ + = + + +

    = + + +

    ^ ^h h

    Perfect squares:

    a b a ab b22

    + = + +^ h Proof

    a b a b a b

    a ab ab b

    a ab b2

    2

    2 2

    + = + +

    = + + +

    = + +

    ^ ^ ^h h h

    a b a ab b22

    - = - +^ h Proof

    a b a b a b

    a ab ab b

    a ab b2

    2

    2 2

    - = - -

    = - - +

    = - +

    ^ ^ ^h h h

    Difference of two squares:

    a b a b a b+ - = -^ ^h h

    Proof

    a b a b a ab ab b

    a b

    2 2+ - = - + -

    = -

    ^ ^h h

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    40/50

    83Chapter 2Algebra and Surds

    EXAMPLES

    Expand and simplify

    1. 2 5 2+^ hSolution

    ( )2 5 2 2 5 2 2

    10 4

    10 2

    # #+ = +

    = +

    = +

    2. 3 7 2 3 3 2-^ hSolution

    ( )3 7 2 3 3 2 3 7 2 3 3 7 3 2

    6 21 9 14

    # #- = -

    = -

    3. 2 3 5 3 2+ -^ ^h hSolution

    ( ) ( )2 3 5 3 2 2 3 2 2 3 5 3 3 5 2

    6 2 3 15 3 10

    # # # #+ - = - + -

    = - + -

    4. 5 2 3 5 2 3+ -^ ^h hSolution

    ( 2 )( 2 ) 2 2 2 2

    5 2 2 4 3

    5 12

    7

    5 3 5 3 5 5 5 3 3 5 3 3

    15 15

    # # # #

    #

    + - = - + -

    = - + -

    = -

    = -

    Another way to do this question is by using the difference of two squares.

    ( ) ( )5 2 3 5 2 3 5 2 35 4 3

    7

    2 2

    #

    + - = -

    = -

    = -

    ^ ^h h

    Notice that using the

    difference of two

    squares gives a rational

    answer.

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    41/50

    84 Maths In Focus Mathematics Extension 1 Preliminary Course

    1. Expand and simplify(a) 5 32 +^ h(b) 2 2 53 -^ h(c) 3 3 2 54 +^ h(d) 5 2 2 37 -^ h(e) 3 2 4 6-- ^ h(f) 3 5 11 3 7+^ h(g) 3 2 2 4 3- +^ h(h) 5 5 35 -^ h(i) 3 12 10+^ h(j) 2 3 18 3+^ h(k) 4 2 3 62- -^ h(l) 7 3 20 2 35- - +^ h(m)10 3 2 2 12-^ h(n) 5 22 +- ^ h(o) 2 3 2 12-^ h

    2. Expand and simplify(a) 2 3 5 3 3+ +^ ^h h(b) 5 2 2 7- -^ ^h h(c) 2 5 3 2 5 3 2+ -^ ^h h(d) 3 10 2 5 4 2 6 6- +^ ^h h(e) 2 5 7 2 5 3 2- -^ ^h h(f) 5 6 2 3 5 3+ -^ ^h h(g) 7 3 7 3+ -^ ^h h(h) 2 3 2 3- +^ ^h h(i) 6 3 2 6 3 2+ -^ ^h h(j) 3 5 2 3 5 2+ -^ ^h h(k) 8 5 8 5- +

    ^ ^h h

    (l) 2 9 3 2 9 3+ -^ ^h h

    (m) 2 11 5 2 2 11 5 2+ -^ ^h h(n) 5 2

    2+^ h

    (o) 2 2 3 2-^ h (p) 3 2 7

    2+^ h

    (q) 2 3 3 52

    +^ h (r) 7 2 5

    2-^ h

    (s) 2 8 3 52

    -^ h (t) 3 5 2 2

    2+^ h

    3. If 3 2a = , simplify

    (a) a2

    2(b) a3

    (2(c) a)3

    (d) 1a 2+] g (e) a a3 3+] ]g g

    4. Evaluate aand bif

    (a) 2 5 1 a b2

    + = +^ h (b) 2 2 5 2 3 5- -^ ^h h

    a b 10= +

    5. Expand and simplify

    (a) a a3 2 3 2+ - + +^ ^h h(b) 1p p 2- -_ i

    6. Evaluate kif

    .k2 7 3 2 7 3- + =^ ^h h 7. Simplify .x y x y 2 3+ -_ _i i 8. If 2 3 5 a b

    2- = -^ h , evaluate

    aand b.

    9. Evaluate aand bif

    .a b7 2 3 22

    - = +^ h 10. A rectangle has sides 5 1+ and

    2 5 1- . Find its exact area.

    2.22 Exercises

    Rationalising the denominator

    Rationalising the denominator of a fractional surd means writing it with a

    rational number (not a surd) in the denominator. For example, after

    rationalising the denominator,5

    3becomes

    5

    3 5.

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    42/50

    85Chapter 2Algebra and Surds

    Squaring a surd in the denominator will rationalise it since .x x2

    =^ h

    DID YOU KNOW?

    A major reason for rationalising the denominator used to be to make it easier to evaluate the

    fraction (before calculators were available). It is easier to divide by a rational number than an

    irrational one; for example,

    5

    3 3 2.236'=

    5

    3 53 2.236 5# '=

    This is hard to do

    without a calculator.

    This is easier to calculate.

    b

    abb ba b

    # =

    Multiplying by

    b

    b

    is the same as

    multiplying by 1.

    Proof

    b

    a

    b

    b

    b

    a b

    b

    a b

    2# =

    =

    EXAMPLES

    1. Rationalise the denominator of5

    3.

    Solution

    5

    3

    5

    5

    5

    3 5# =

    2. Rationalise the denominator of

    5 3

    2.

    Solution

    5 3

    2

    3

    3

    5 9

    2 3

    5 3

    2 3

    15

    2 3

    #

    #

    =

    =

    =

    Dont multiply by

    5 3

    5 3as it takes

    longer to simplify.

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    43/50

    86 Maths In Focus Mathematics Extension 1 Preliminary Course

    When there is a binomial denominator, we use the difference of two

    squares to rationalise it, as the result is always a rational number.

    To rationalise the denominator ofc d

    a b

    +

    +, multiply by

    c d

    c d

    -

    -

    Proof

    c d

    a b

    c d

    c d

    c d

    a b c d

    c d

    a b c d

    c d

    a b c d

    c d

    2 2

    #

    +

    +

    -

    -=

    + -

    + -

    =

    -

    + -

    =-

    + -

    ^ ^^ ^

    ^ ^^ ^

    ^ ^

    h hh h

    h hh h

    h h

    EXAMPLES

    1. Write with a rational denominator

    .2 3

    5

    -

    Solution

    2 35

    2 32 3

    2 35 2 3

    2 9

    10 3 5

    7

    10 3 5

    7

    10 3 5

    2 2#

    - +

    + =

    -

    +

    =-

    +

    =-

    +

    = -+

    ^ ^ h h

    2. Write with a rational denominator

    3 4 2

    2 3 5.

    +

    +

    Solution

    3 4 2

    2 3 5

    3 4 2

    3 4 2

    3 4 2

    2 3 5 3 4 2

    3 16 2

    2 3 8 6 15 4 10

    2 2#

    #

    #

    +

    +

    -

    -=

    -

    + -

    =-

    - + -

    ^ ^^ ^

    h hh h

    Multiply by the conjugate

    surd 2 3.+

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    44/50

    87Chapter 2Algebra and Surds

    29

    6 8 6 15 4 10

    29

    6 8 6 15 4 10

    =-

    - + -

    =- + - +

    3. Evaluate aand bif .a b3 2

    3 3

    -

    = +

    Solution

    3 2

    3 3

    3 2

    3 2

    3 2 3 2

    3 3 3 2

    3 2

    3 9 3 6

    3 2

    3 3 3 6

    1

    9 3 6

    9 3 6

    9 9 6

    9 54

    2 2

    #

    #

    #

    - +

    +=

    - +

    +

    =

    -

    +

    =

    -

    +

    =+

    = +

    = +

    = +

    ^ ^^

    ^ ^

    h hh

    h h

    .a b9 54So and= =

    4. Evaluate as a fraction with rational denominator

    3 2

    2

    3 2

    5.

    +

    +

    -

    Solution

    3 22

    3 2

    2

    3 2

    5

    3 2 3 2

    3 2

    3 2

    2 3 4 15 2 5

    3 4

    2 3 4 15 2 5

    1

    2 3 4 15 2 5

    2 3 4 15 2 5

    5

    2 2

    +

    +

    -

    =

    + -

    - +

    =

    -

    - + +

    =-

    - + +

    =-

    - + +

    = - + - -

    +

    ^ ^^ ^

    ^

    h hh h

    h

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    45/50

    88 Maths In Focus Mathematics Extension 1 Preliminary Course

    1. Express with rational

    denominator

    (a)7

    1

    (b)2 2

    3

    (c)5

    2 3

    (d)5 2

    6 7

    (e)3

    1 2+

    (f)2

    6 5-

    (g)5

    5 2 2+

    (h)2 7

    3 2 4-

    (i)4 5

    8 3 2+

    (j)7 5

    4 3 2 2-

    2. Express with rational

    denominator

    (a)3 2

    4

    +

    (b)2 7

    3

    -

    (c)5 2 6

    2 3

    +

    (d)3 4

    3 4

    +

    -

    (e)3 2

    2 5

    -

    +

    (f)2 5 3 2

    3 3 2

    +

    +

    3. Express as a single fraction with

    rational denominator

    (a)2 1

    12 1

    1+

    +-

    (b)2 3

    2

    2 3

    3

    -

    -

    +

    (c)5 2

    1

    3 2 5

    3

    +

    +

    -

    (d)2 3

    2 7

    2 3 2

    2#

    +

    -

    +

    (e) tt1

    + where t 3 2= -

    (f) zz12 2- where z 1 2= +

    (g)6 3

    3 2 4

    6 3

    2 1

    6 1

    2

    -

    ++

    +

    --

    -

    (h)2

    2 3

    3

    1++

    (i)2 3

    3

    3

    2

    +

    +

    (j)6 2

    5

    5 3

    2

    +

    -

    (k)4 3

    2 7

    4 3

    2

    +

    +-

    -

    (l)3 2

    5 2

    3 1

    2 3

    -

    --

    +

    +

    4. Find aand bif

    (a)b

    a

    2 5

    3=

    (b)b

    a

    4 2

    3 6=

    (c) a b5 1

    25

    +

    = +

    (d) a b7 4

    2 77

    -

    = +

    (e) a b2 1

    2 3

    -

    += +

    2.23 Exercises

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    46/50

    89Chapter 2Algebra and Surds

    5. Show that2 1

    2 1

    2

    4

    +

    -+ is

    rational.

    6. If x 3 2= + , simplify

    (a) 1x x+

    (b)1

    xx

    2

    2+

    (c)1

    x x

    2

    +b l

    7. Write5 2

    2

    5 2

    1

    +

    +

    -

    -

    3

    5 1+as a single fraction with

    rational denominator.

    8. Show that3 2 2

    22

    8+

    + is

    rational.

    9. If x21

    3+ = , where ,x 0!

    nd xas a surd with rational

    denominator.

    10. Rationalise the denominator of

    2b

    b 2

    -

    + b 4!] g

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    47/50

    90 Maths In Focus Mathematics Extension 1 Preliminary Course

    1. Simplify

    (a) y y5 7-

    (b)a

    33 12+

    (c) k k2 33 2#-

    (d)x y

    3 5+

    (e) 4 3 5a b a b- - -

    (f) 8 32+

    (g) 3 5 20 45- +

    2. Factorise

    (a) 36x2 -

    (b) 2 3a a2 + -

    (c) 4 8ab ab2 -

    (d) y xy x5 15 3- + -

    (e) 4 2 6n p- +

    (f) 8 x3-

    3. Expand and simplify

    (a) bb 23 -+

    ] g(b) x x2 1 3- +] ]g g(c) m m5 3 2+ --] ]g g(d) 4 3x 2-] g (e) 5 5p p- +^ ^h h(f) a a47 2 5+- -] g (g) 2 2 53 -^ h(h) 3 7 3 2+ -^ ^h h

    4. Simplify

    (a)

    b

    a

    a

    b

    5

    4 12

    27

    103 3

    #-

    -

    (b)m m

    mm

    m

    2

    5 103 3

    42

    2

    '- -

    +

    +

    -

    5. The volume of a cube is .V s3=

    Evaluate Vwhen 5.4.s =

    6. (a) Expand and simplify

    .2 5 3 2 5 3+ -^ ^h h Rationalise the denominator of(b)

    .2 5 3

    3 3

    +

    7. Simplify .x x x x2

    33

    1

    6

    22

    -+

    +-

    + -

    8. If ,a b4 3= = - and ,c 2= - nd the

    value of(a) ab2

    (b) a bc-

    (c) a

    (d) bc3] g (e) c a b2 3+] g

    9. Simplify

    (a)6 15

    3 12

    (b)2 2

    4 32

    10. The formula for the distance an object

    falls is given by 5 .d t2= Find dwhen

    1.5.t=

    11. Rationalise the denominator of

    (a)5 3

    2

    (b)2

    1 3+

    12. Expand and simplify

    (a) 3 2 4 3 2- -^ ^h h(b) 7 2

    2+^ h

    13.Factorise fully

    (a) 3 27x2 -

    (b) x x6 12 182 - -

    (c) 5 40y3 +

    Test Yourself 2

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    48/50

    91Chapter 2Algebra and Surds

    14. Simplify

    (a)93

    xyx y

    5

    4

    (b)15 5

    5x -

    15. Simplify

    (a) 3 112^ h

    (b) 2 33^ h

    16. Expand and simplify

    (a) a b a b+ -] ]g g(b) a b 2+] g (c) a b 2-] g

    17. Factorise

    (a) 2a ab b2 2- +

    (b) a b3 3-

    18. If 3 1,x = + simplify1

    x x+ and

    give your answer with a rational

    denominator.

    19. Simplify

    (a)

    4 3

    a b+

    (b)2

    35

    2x x--

    -

    20. Simplify5 2

    3

    2 2 1

    2,

    +

    -

    -

    writing

    your answer with a rational denominator.

    21. Simplify

    (a) 3 8

    (b) 2 2 4 3#-

    (c) 108 48-

    (d)2 18

    8 6

    (e) 5 3 2a b a# #- -

    (f)6

    2

    m n

    m n2 5

    3

    (g) 3 2x y x y - - -

    22. Expand and simplify

    (a) 2 3 22 +^ h(b) 5 7 3 5 2 2 3- -^ ^h h(c) 3 2 3 2+ -^ ^h h(d) 4 3 5 4 3 5- +^ ^h h(e) 3 7 2

    2-^ h

    23. Rationalise the denominator of

    (a)7

    3

    (b)5 3

    2

    (c)5 1

    2-

    (d)3 2 3

    2 2

    +

    (e)4 5 3 3

    5 2

    -

    +

    24. Simplify

    (a)x x

    53

    22

    - -

    (b)a a

    72

    32 3+

    +

    -

    (c)x x1

    11

    22

    -

    -+

    (d)2 3

    4

    3

    1

    k k k2 + -+

    +

    (e)2 5

    3

    3 2

    5

    +

    -

    -

    25. Evaluate nif

    (a) 108 12 n- =

    (b) 112 7 n+ = (c) 2 8 200 n+ =

    (d) 4 147 3 75 n+ =

    (e) n2 2452

    180+ =

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    49/50

    92 Maths In Focus Mathematics Extension 1 Preliminary Course

    26. Evaluate xx

    12

    2

    + if x1 2 3

    1 2 3=

    -

    +

    27. Rationalise the denominator of2 7

    3

    (there may be more than one answer).

    (a)28

    21

    (b)28

    2 21

    (c)14

    21

    (d) 721

    28. Simplify .x x

    53

    41-

    - +

    (a)x

    20

    7+- ] g

    (b)20

    7x +

    (c)x

    2017+

    (d)x

    20

    17- +] g

    29. Factorise 4 4x x x3 2- - + (there may be

    more than one answer).

    (a) x x1 42 - -^ ]h g(b) x x1 42 + -^ ]h g(c) x x 42 -] g(d) x x x4 1 1- + -] ] ]g g g

    30. Simplify .3 2 2 98+

    (a) 5 2

    (b) 5 10

    (c) 17 2

    (d) 10 2

    31. Simplify .

    x x x4

    3

    2

    2

    2

    12

    -

    +-

    -+

    (a)2 2

    5

    x x

    x

    + -

    +

    ] ]g g(b)

    2 2

    1

    x x

    x

    + -

    +

    ] ]g g(c)

    2 2

    9

    x x

    x

    + -

    +

    ] ]g g(d)

    2 2

    3

    x x

    x

    + -

    -

    ] ]g g

    32. Simplify .ab a ab a5 2 7 32 2- - -

    (a) 2ab a2+

    (b) ab a2 5 2- -

    (c) a b13 3-

    (d) 2 5ab a2- +

    33. Simplify .2780

    (a)3 3

    4 5

    (b)9 3

    4 5

    (c)9 38 5

    (d)3 3

    8 5

    34. Expand and simplify .x y3 2 2-^ h (a) x xy y 3 12 22 2- -

    (b) x xy y 9 12 42 2- -

    (c) 3 6 2x xy y 2 2- +

    (d) x xy y 9 12 42 2- +

    35. Complete the square on .a a162

    - (a) a a a16 16 42 2- + = -^ h (b) a a a16 64 82 2- + = -^ h (c) a a a16 8 42 2- + = -^ h (d) a a a16 4 22 2- + = -^ h

  • 8/13/2019 Ch2 Algebra and Surdskjtfc

    50/50

    93Chapter 2Algebra and Surds

    1. Expand and simplify

    (a) ab a b b aa4 2 32 2- --] ]g g(b) 2 2y y2 2- +_ _i i(c) x2 5 3-] g

    2. Find the value of x y+ with rational

    denominator if x 3 1= + and

    2 5 3

    1.y=

    -

    3. Simplify .7 6 54

    2 3

    -

    4. Complete the square on .x ab

    x2 +

    5. Factorise

    (a) ( ) ( )x x4 5 42+ + +

    (b) 6x x y y 4 2 2- -

    (c) 125 343x3 +

    (d) 2 4 8a b a b2 2- - +

    6. Complete the square on .x x4 122 +

    7. Simplify .x x

    xy x y

    4 16 12

    2 2 6 62

    - +

    + - -

    8.| |

    da b

    ax by c

    2 2

    1 1=

    +

    + +

    is the formula for

    the perpendicular distance from a

    point to a line. Find the exact value

    of dwith a rational denominator if

    , , ,a b c x2 1 3 41= = - = = - and 5.y1 =

    9. Simplify1

    .a

    a

    13

    3

    +

    +^ h

    10. Factorise .b

    a42 2

    2

    -

    11. Simplify .x

    x y

    x

    x y

    x x

    x y

    3

    2

    3 6

    3 22

    -

    +

    ++

    -

    -

    + -

    +

    12. (a) Expand .x2 1 3-^ h Simplify(b) .

    x x x

    x x

    8 12 6 1

    6 5 43 2

    2

    - + -

    + -

    13. Expand and simplify 3x x1 2- -] ^g h .14. Simplify and express with rational

    denominator .3 4

    2 5

    2 1

    5 3

    +

    +-

    -

    15. Complete the square on3

    .x x2 + 2

    16. If ,xk l

    lx kx1 2

    =+

    +

    nd the value of xwhen

    , ,k l x3 2 51

    = = - = and 4.x2

    =

    17. Find the exact value with rational

    denominator of x x x2 3 12 - + if 2 5 .x =

    18. Find the exact value of

    (a) xx

    122

    + if x1 2 3

    1 2 3=

    -

    +

    (b) aand bif a b2 3 3

    3 43

    +

    -= +

    19.2

    A r2 i= 1 is the area of a sector of a

    circle. Find the value of iwhenA 12=

    and 4.r=

    20. If V r h2r= is the volume of a cylinder,

    nd the exact value of rwhen 9V= and

    16.h =

    21. If2

    ,s u at 2= + 1 nd the exact value of s

    Challenge Exercise 2