27
Chapter 2  – Operational Amplifiers Introduction http://engr.calvin.edu/PRibeiro_WEBPAGE/courses/engr311/Handouts/OpAmp-tutorial-1.ppt Textbook CD http://www.clarkson.edu/%7Esvoboda/eta/designLab/InvertingAmplifierDesign.html 

Chap2

Embed Size (px)

Citation preview

Page 2: Chap2

5/16/2018 Chap2 - slidepdf.com

http://slidepdf.com/reader/full/chap2-55ab4f4c2e91b 2/27

 

The OP-AMP Terminals

Symbol

Power Supplies

Page 3: Chap2

5/16/2018 Chap2 - slidepdf.com

http://slidepdf.com/reader/full/chap2-55ab4f4c2e91b 3/27

 

Fairchild uA702 – The first op-amp designed by Bob Widlar

Page 4: Chap2

5/16/2018 Chap2 - slidepdf.com

http://slidepdf.com/reader/full/chap2-55ab4f4c2e91b 4/27

 

The OP-AMP Terminals

Page 5: Chap2

5/16/2018 Chap2 - slidepdf.com

http://slidepdf.com/reader/full/chap2-55ab4f4c2e91b 5/27

 

The OP-AMP Terminals

Page 6: Chap2

5/16/2018 Chap2 - slidepdf.com

http://slidepdf.com/reader/full/chap2-55ab4f4c2e91b 6/27

 

The Ideal OP-AMP

-VS

vid

Inverting

Noninverting

Output

 _  i(-)

i(+)

v

 

O = Advid

RO

ARi

Open-loop gain

Exercise 2.2

Page 7: Chap2

5/16/2018 Chap2 - slidepdf.com

http://slidepdf.com/reader/full/chap2-55ab4f4c2e91b 7/27

Analysis of Circuits Containing Ideal OP-AMPS

The Inverting Configuration

The inverting closed-loop configuration.

Closed-Loop Gain

Virtual Short-Circuit

Virtual Ground

Negative and Positive Feedback 

 

Page 8: Chap2

5/16/2018 Chap2 - slidepdf.com

http://slidepdf.com/reader/full/chap2-55ab4f4c2e91b 8/27

Analysis of Circuits Containing Ideal OP-AMPS

The Closed-Loop Gain

Analysis of the inverting configuration

-

     

Page 9: Chap2

5/16/2018 Chap2 - slidepdf.com

http://slidepdf.com/reader/full/chap2-55ab4f4c2e91b 9/27

Analysis of Circuits Containing Ideal OP-AMPS

Effect of Finite Open-Loop Gain

i1

vI

vo

A

 

 

 

 

R1

vI

vo

A

R1

vo

vo

Ai1 R2

vo

A

vIvo

A

R1

  

  

R

G

vo

vI

R2

R1

1

1R2

R1 

   

A

 

Page 10: Chap2

5/16/2018 Chap2 - slidepdf.com

http://slidepdf.com/reader/full/chap2-55ab4f4c2e91b 10/27

Analysis of Circuits Containing Ideal OP-AMPS

Exercise 2.1

 

Page 11: Chap2

5/16/2018 Chap2 - slidepdf.com

http://slidepdf.com/reader/full/chap2-55ab4f4c2e91b 11/27

Analysis of Circuits Containing Ideal OP-AMPS

Input and Output Resistances

R

i

vI

iI

vI

vI

R1

R1

R

o

0

 

Page 12: Chap2

5/16/2018 Chap2 - slidepdf.com

http://slidepdf.com/reader/full/chap2-55ab4f4c2e91b 12/27

Analysis of Circuits Containing Ideal OP-AMPS

Exercise 2.2

  

Page 13: Chap2

5/16/2018 Chap2 - slidepdf.com

http://slidepdf.com/reader/full/chap2-55ab4f4c2e91b 13/27

Other Applications of the Inverting Configuration

With General Impedances

R2

+

R1

vo

is

vs

Z1

Z2

 

Page 14: Chap2

5/16/2018 Chap2 - slidepdf.com

http://slidepdf.com/reader/full/chap2-55ab4f4c2e91b 14/27

Other Applications of the Inverting Configuration

The Integrator

+ vo

ic

i-

R

vs

is

C vo t( )1

C R0

t

tvI t( ) 

d

Vo

VI

1

s C R

 

Page 15: Chap2

5/16/2018 Chap2 - slidepdf.com

http://slidepdf.com/reader/full/chap2-55ab4f4c2e91b 15/27

Other Applications of the Inverting Configuration

PSpice Simulation Tips

 

Page 16: Chap2

5/16/2018 Chap2 - slidepdf.com

http://slidepdf.com/reader/full/chap2-55ab4f4c2e91b 16/27

Other Applications of the Inverting Configuration

The Differentiator

R2

+

R1

vo

is

vs

Z1 = 1/sC

Z2 = R

 

Page 17: Chap2

5/16/2018 Chap2 - slidepdf.com

http://slidepdf.com/reader/full/chap2-55ab4f4c2e91b 17/27

Other Applications of the Inverting Configuration

The Weighted Summer

 

Page 18: Chap2

5/16/2018 Chap2 - slidepdf.com

http://slidepdf.com/reader/full/chap2-55ab4f4c2e91b 18/27

Other Applications of the Inverting Configuration

The Non-Inverting Configuration

vi

v2

v1

vo

AA infinit

vo

vI

vI

R1R2

vo

vI

1

R2

R1

 

Page 19: Chap2

5/16/2018 Chap2 - slidepdf.com

http://slidepdf.com/reader/full/chap2-55ab4f4c2e91b 19/27

Other Applications of the Inverting Configuration

The Voltage Follower

 

Page 20: Chap2

5/16/2018 Chap2 - slidepdf.com

http://slidepdf.com/reader/full/chap2-55ab4f4c2e91b 20/27

A difference amplifier.

Other Applications of the Inverting Configuration

The Difference Amplifier

 

Page 21: Chap2

5/16/2018 Chap2 - slidepdf.com

http://slidepdf.com/reader/full/chap2-55ab4f4c2e91b 21/27

Applications of superposition to the analysis of the current circuit of Fig.. 2.21.

Other Applications of the Inverting Configuration

The Difference Amplifier

 

Page 22: Chap2

5/16/2018 Chap2 - slidepdf.com

http://slidepdf.com/reader/full/chap2-55ab4f4c2e91b 22/27

Finding the input resistance of the difference amplifier.

Other Applications of the Inverting Configuration

The Difference Amplifier – Input Resistances

 

Page 23: Chap2

5/16/2018 Chap2 - slidepdf.com

http://slidepdf.com/reader/full/chap2-55ab4f4c2e91b 23/27

Representation of the common-mode and differential components of the input signal to a difference amplifier. Note that v1 = vCM - vd /2

and v2 = v

CM + vd /2.

Other Applications of the Inverting Configuration

The Difference Amplifier – Common-Mode and Differential

Components of the input signal

 

Page 24: Chap2

5/16/2018 Chap2 - slidepdf.com

http://slidepdf.com/reader/full/chap2-55ab4f4c2e91b 24/27

 (a) A popular circuit for an instrumentation amplifier. (b) Analysis of the circuit in (a) assuming ideal op-amps. (c) To make the gainvariable, R1 is implemented as the series combination of a fixed resister R1 f  and a variable resistor R1v. Resistor R1 f  ensures that the

maximum available gain is limited.

Other Applications of the Inverting Configuration

Instrumentation Amplifier

 

Page 25: Chap2

5/16/2018 Chap2 - slidepdf.com

http://slidepdf.com/reader/full/chap2-55ab4f4c2e91b 25/27

Open-loop gain of a typical general-purpose internally

compensated op amp.

Effect Of Finite Open-Loop Gain and Bandwidth On Circuit

Performance

fb = 3-db or break frequency

ft = unity gain bandwidth 

Page 26: Chap2

5/16/2018 Chap2 - slidepdf.com

http://slidepdf.com/reader/full/chap2-55ab4f4c2e91b 26/27

 (a) Unity-gain follower. (b) Input step waveform. (c) Linearly rising output waveform obtained when the amplifier is slew-rate

limited. (d) Exponentially rising output waveform obtained when V is sufficiently small so that the initial slope (wt V ) is smaller then or

equal to SR.

 

Page 27: Chap2

5/16/2018 Chap2 - slidepdf.com

http://slidepdf.com/reader/full/chap2-55ab4f4c2e91b 27/27

Effect of slew-rate limiting on output sinusoidal waveforms.