34
Biochemistry: A Short Course First Edition Biochemistry: A Short Course First Edition Tymoczko • Berg • Stryer © 2013 W. H. Freeman and Company CHAPTER 19 Harvesting Electrons from the Cycle

CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2

Biochemistry: A Short CourseFirst Edition

Biochemistry: A Short CourseFirst Edition

Tymoczko • Berg • Stryer

© 2013 W. H. Freeman and Company

CHAPTER 19Harvesting Electrons from the Cycle

Page 2: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2
Page 3: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2

Chapter 19 Outline

Page 4: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2

The citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO2.

In the process of oxidation, high‐energy electrons are captured in the form of NADH and FADH2.

The function of the citric acid cycle is to harvest high‐energy electrons from carbon fuels.

Page 5: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2

In the first stage of the citric acid cycle, two carbons are introduced into the cycle by condensation of an acetyl group with a four‐carbon compound, oxaloacetate.

The six‐carbon compound formed (citrate) undergoes two oxidative decarboxylations, generating two molecules of CO2.

In the second stage, oxaloacetate is regenerated.

Both stages generate high‐energy electrons that are used to power the synthesis of ATP in oxidative phosphorylation.

Page 6: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2
Page 7: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2
Page 8: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2

The first stage generates two molecules of CO2 by oxidative decarboxylations.

Page 9: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2

Citrate synthase catalyzes the condensation of acetyl CoA and oxaloacetate to form citrate.

Page 10: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2

Citrate synthase exhibits induced fit.

Oxaloacetate binding by citrate synthase induces structural changes that lead to the formation of the acetyl CoA binding site. 

The formation of the reaction intermediate citryl CoA causes a structural change that completes active site formation.

Citryl CoA is cleaved to form citrate and coenzyme A.

Page 11: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2
Page 12: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2

Aconitase catalyzes the formation of isocitrate from citrate.

Page 13: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2

Aconitase is inhibited by fluoroacetate, a suicide inhibitor, which irreversibly inhibits aconitase after aconitase forms fluorocitrate.

Fluoroacetate is found in the genus Gastrolobium, a flowering plant native to Australia.

Page 14: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2

Isocitrate dehydrogenase catalyzes the oxidative decarboxylation of isocitrate, forming α‐ketoglutarate and capturing high‐energy electrons as NADH.

Page 15: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2

α‐Ketoglutarate dehydrogenase complex catalyzes the synthesis of succinyl CoA from α‐ketoglutarate, generating NADH.

The enzyme and the reactions are structurally and mechanistically similar to the pyruvate dehydrogenase complex.

Page 16: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2

Succinyl CoA synthetase catalyzes the cleavage of a thioester linkage and concomitantly forms ATP.

Page 17: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2

Cleavage of the thioester of succinyl CoA powers the formation of ATP.

The formation of ATP by succinyl coenzyme A synthetase is an example of a substrate‐level phosphorylation because succinyl phosphate, a high phosphoryl‐transfer potential compound, donates a phosphate to ADP.

Page 18: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2
Page 19: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2

Succinate dehydrogenase, fumarase, and malate dehydrogenase catalyze successive reactions to regenerate oxaloacetate.

FADH2 and NADH are generated.

Oxaloacetate can condense with another acetyl CoA to initiate another cycle.

Page 20: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2

The net reaction of the citric acid cycle is:

The electrons from NADH will generate 2.5 ATP when used to reduce oxygen in the electron‐transport chain.

The electrons from FADH2 will power the synthesis of 1.5 ATP with the reduction of oxygen in the electron‐transport chain.

Page 21: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2
Page 22: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2
Page 23: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2
Page 24: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2

The key control points in the citric acid cycle are the reactions catalyzed by isocitrate dehydrogenase and α‐ketoglutarate dehydrogenase.

Recall that pyruvate dehydrogenase controls entry of glucose‐derived acetyl CoA into the cycle.

Page 25: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2
Page 26: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2

Many of the components of the citric acid cycle are precursors for biosynthesis of key biomolecules.

Page 27: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2
Page 28: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2

Because the citric acid cycle provides precursors for biosynthesis, reactions to replenish the cycle components are required if the energy status of the cells changes.

These replenishing reactions are called anapleurotic reactions.

A prominent anapleurotic reaction is catalyzed  by pyruvate carboxylase. Recall that this reaction is also used in gluconeogenesis and is dependent on the presence of acetyl CoA.

Page 29: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2
Page 30: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2
Page 31: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2

Defects in succinate dehydrogenase, fumarase or pyruvate dehydrogenase kinase can contribute to the development of cancer.

These defects contribute to use of aerobic glycolysis by cancer cells.

Page 32: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2

The glyoxylate cycle is similar to the citric acid cycle but bypasses the two decarboxylation steps, allowing the synthesis of carbohydrates from fats.

Succinate can be converted into oxaloacetate and then into glucose.

The glyoxylate cycle is prominent in oil‐rich seeds such as sunflower seeds.

Page 33: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2
Page 34: CHAPTER 19 Harvesting Electrons from the Cyclecontents.kocw.net/KOCW/document/2014/korea/leejinhyup/06.pdfThe citric acid cycle oxidizes the acetyl fragment of acetyl CoA to CO 2