16
7/26/2019 Chapter 2 - Properties of Steel Areas http://slidepdf.com/reader/full/chapter-2-properties-of-steel-areas 1/16

Chapter 2 - Properties of Steel Areas

Embed Size (px)

Citation preview

Page 1: Chapter 2 - Properties of Steel Areas

7/26/2019 Chapter 2 - Properties of Steel Areas

http://slidepdf.com/reader/full/chapter-2-properties-of-steel-areas 1/16

Page 2: Chapter 2 - Properties of Steel Areas

7/26/2019 Chapter 2 - Properties of Steel Areas

http://slidepdf.com/reader/full/chapter-2-properties-of-steel-areas 2/16

CENTROID OF AN AREA

The centroid of a area is analogous to thecenter of gravity of a homogenous body. Thecentroid s often described as the point at

which a thin homogenous plate wouldbalance.

The centroid of complex area can be foundby dividing the area into basic shapes

(rectangles, triangles, circles, etc.)AT Xc = a1x1 + a2x2 + a3x3 + …

AT Yc = a1y1 + a2y2 + a3y3 + …

Page 3: Chapter 2 - Properties of Steel Areas

7/26/2019 Chapter 2 - Properties of Steel Areas

http://slidepdf.com/reader/full/chapter-2-properties-of-steel-areas 3/16

Page 4: Chapter 2 - Properties of Steel Areas

7/26/2019 Chapter 2 - Properties of Steel Areas

http://slidepdf.com/reader/full/chapter-2-properties-of-steel-areas 4/16

9 - 4

• Consider distributed forces whose magnitudes are

 proportional to the elemental areas on which theyact and also vary linearly with the distance of

from a given axis.

 F 

 A

 A

• Example: Consider a beam subjected to pure bending.

Internal forces vary linearly with distance from the

neutral axis which passes through the section centroid.

momentsecond

momentfirst022

dA ydA yk  M 

QdA ydA yk  R

 Aky F 

 x

Example: Consider the net hydrostatic force on asubmerged circular gate.

dA y M 

dA y R

 A y A p F 

 x

 

 

Page 5: Chapter 2 - Properties of Steel Areas

7/26/2019 Chapter 2 - Properties of Steel Areas

http://slidepdf.com/reader/full/chapter-2-properties-of-steel-areas 5/16

9 - 5

• Second moments or moments of inertia of

an area with respect to the x and y axes,

    dA x I dA y I   y x22

• Evaluation of the integrals is simplified by

choosing d A to be a thin strip parallel to

one of the coordinate axes.

• For a rectangular area,

331

0

22 bhbdy ydA y I h

 x    

• The formula for rectangular areas may also

 be applied to strips parallel to the axes,

dx y xdA xdI dx ydI   y x223

31

Page 6: Chapter 2 - Properties of Steel Areas

7/26/2019 Chapter 2 - Properties of Steel Areas

http://slidepdf.com/reader/full/chapter-2-properties-of-steel-areas 6/16

9 - 6

• The moment of inertia of a composite area A about a given axis is

obtained by adding the moments of inertia of the component areas

 A1, A2, A3, ... , with respect to the same axis.

Page 7: Chapter 2 - Properties of Steel Areas

7/26/2019 Chapter 2 - Properties of Steel Areas

http://slidepdf.com/reader/full/chapter-2-properties-of-steel-areas 7/16

In structural engineering, the section modulus of a

beam is the ratio of a cross section's second moment of area

to the distance of the extreme compressive fiber from the

neutral axis.

z or  s = 

For symmetrical sections this will mean the Zx max and

Zx min are equal. For unsymmetrical sections (T-beam forexample) the section modulus used will differ depending on

whether the compression occurs in the web or flange of the

section.

Page 8: Chapter 2 - Properties of Steel Areas

7/26/2019 Chapter 2 - Properties of Steel Areas

http://slidepdf.com/reader/full/chapter-2-properties-of-steel-areas 8/169 - 8

• The polar moment of inertia is an important

 parameter in problems involving torsion of

cylindrical shafts and rotations of slabs.

  dAr  J    20

• The polar moment of inertia is related to the

rectangular moments of inertia,

 x y   I  I 

dA ydA xdA y xdAr  J 

    22222

0

Page 9: Chapter 2 - Properties of Steel Areas

7/26/2019 Chapter 2 - Properties of Steel Areas

http://slidepdf.com/reader/full/chapter-2-properties-of-steel-areas 9/169 - 9

• Consider area A with moment of inertia

 I  x. Imagine that the area isconcentrated in a thin strip parallel to

the x axis with equivalent I  x.

 A

 I k  Ak  I    x x x x     2

k  x = radius of gyration with respectto the x axis

• Similarly,

 A

 J k  Ak  J 

 A

 I k  Ak  I 

OOOO

 y y y y

2

2

222 y xO   k k k   

Page 10: Chapter 2 - Properties of Steel Areas

7/26/2019 Chapter 2 - Properties of Steel Areas

http://slidepdf.com/reader/full/chapter-2-properties-of-steel-areas 10/169 - 10

Page 11: Chapter 2 - Properties of Steel Areas

7/26/2019 Chapter 2 - Properties of Steel Areas

http://slidepdf.com/reader/full/chapter-2-properties-of-steel-areas 11/16

The strength of a W14x38 rolled steel

beam is increased by attaching a plate

to its upper flange.

Determine the moment of inertia and

radius of gyration with respect to an

axis which is parallel to the plate and

passes through the centroid of the

section.

SOLUTION:

• Determine location of the centroid ofcomposite section with respect to a

coordinate system with origin at the

centroid of the beam section.

Apply the parallel axis theorem todetermine moments of inertia of beam

section and plate with respect to

composite section centroidal axis.

• Calculate the radius of gyration from the

moment of inertia of the compositesection.

Page 12: Chapter 2 - Properties of Steel Areas

7/26/2019 Chapter 2 - Properties of Steel Areas

http://slidepdf.com/reader/full/chapter-2-properties-of-steel-areas 12/16

SOLUTION:

• Determine location of the centroid of

composite section with respect to a

coordinate system with origin at the

centroid of the beam section.

12.5095.17

0011.20SectionBeam12.50425.76.75Plate

in,in.,in,Section   32

    A y A

 A y y A

in.792.2in17.95

in12.5023

 A A yY  A y AY 

Page 13: Chapter 2 - Properties of Steel Areas

7/26/2019 Chapter 2 - Properties of Steel Areas

http://slidepdf.com/reader/full/chapter-2-properties-of-steel-areas 13/16

• Apply the parallel axis theorem to determine

moments of inertia of beam section and plate

with respect to composite section centroidal

axis.

 

4

23

43

1212

 plate,

4

22section beam,

in2.145

792.2425.775.69

in3.472

792.220.11385

 Ad  I  I 

Y  A I  I 

 x x

 x x

• Calculate the radius of gyration from the

moment of inertia of the composite section.

2

4

in17.95

in5.617  

 A

 I k    x x

  in.87.5 xk 

2.1453.472 plate,section beam,       x x x   I  I  I 

4

in618 x I 

Page 14: Chapter 2 - Properties of Steel Areas

7/26/2019 Chapter 2 - Properties of Steel Areas

http://slidepdf.com/reader/full/chapter-2-properties-of-steel-areas 14/16

Determine the centroid, moment of inertia, section

modulus and radius of gyration of the shaded area

with respect to the y axis.

Page 15: Chapter 2 - Properties of Steel Areas

7/26/2019 Chapter 2 - Properties of Steel Areas

http://slidepdf.com/reader/full/chapter-2-properties-of-steel-areas 15/16

9 - 15

SOLUTION:

• Compute the moments of inertia of the bounding

rectangle and half-circle with respect to the x axis.

Rectangle:

  46

313

31 mm102.138120240     bh I  x

Half-circle:moment of inertia with respect to  AA’,

  464

814

81 mm1076.2590     r  I   A A

23

2

2

12

2

1

mm1072.12

90

mm81.8a-120 b

mm2.383

904

3

4

  

  

r  A

r a

moment of inertia with respect to  x’,

46

362

mm1020.7

1072.121076.25

    Aa I  I   A A x

moment of inertia with respect to x,

46

2362

mm103.92

8.811072.121020.7

    Ab I  I   x x

Page 16: Chapter 2 - Properties of Steel Areas

7/26/2019 Chapter 2 - Properties of Steel Areas

http://slidepdf.com/reader/full/chapter-2-properties-of-steel-areas 16/16

9 - 16

• The moment of inertia of the shaded area is obtained by

subtracting the moment of inertia of the half-circle fromthe moment of inertia of the rectangle.

46mm109.45    x I 

 x I      46mm102.138       46mm103.92