Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

Embed Size (px)

Citation preview

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    1/42

    - 3.1 -

    Chapter 3

    Problem Solutions

    3.1. (a) xy + xy-+ x-y-= x(y+y

    -) + x

    -y-

    P4b

    = x.1 + x

    -

    y

    -

    P5a= x + x

    -y-

    P2b

    = x + y-

    T7a

    (b) (x-z-+ x-y + x

    -z + xy)

    __________________

    = (x-z + x

    -z-+ yx + yx

    -)

    __________________

    P3a,P3b

    = [x-(z+z

    -) + y(x+x

    -)]

    ________________

    P4b

    = (x-.1 + y.1)

    __________

    P5a

    = (x-+ y)

    ______

    P2b

    = (x-)

    __

    y-

    T9a

    = xy- T5

    (c) (x + y)(x-z-+ z)(y

    -+ xz)

    _______

    = (x + y)(z + z-x-)(y-+ xz)

    _______

    P3a,P3b

    = (x + y)(z + x-)(y-+ xz)

    _______

    T7a

    = (x + y)(z + x-)y(xz)

    ___

    T9a,T5

    = (x + y)(z + x-)y(x

    -+ z-) T9b

    = (x + y)(x-

    + z)(x-+ z-)y P3a,P3b

    = (x + y)(x-

    + zz-)y P4a

    = (x + y)(x-

    + 0)y P5b

    = (x + y)x-y P2a

    = x-y(x + y) P3b

    = x-[y(x + y)] T8b

    = x-[y(y + x)] P3a

    = x-y T6b

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    2/42

    - 3.2 -

    3.1. (continued)

    (d) (xy + yz + xz)

    _____________

    = (xy)

    ___

    (yz)

    ___

    (xz)

    ___

    T9a

    = (x-+ y-)(y-+ z-)(x-

    + z-) T9b

    = (x-+ y-)(x-+ z-)(y-

    + z-) P3b

    = (x- + y-z-)(y- + z-) P4a

    = (x-+ y-z-)y-+ (x

    -+ y

    -z-)z-

    P4b

    = y-(x-+ y-z-) + z

    -(x-+ y

    -z-) P3b

    = y-x-+ y-y-z-+ z-x-+ z-y-z-

    P4b

    = x-y-+ y-y-z-+ x-z-+ y-z-z-

    P3b

    = x-y-+ y-z-+ x-z-+ y-z-

    T4b

    = x-y-

    + y-z-+ y-z-+ x-z-

    P3a

    = x-y-

    + y-z-+ x-z-

    T4a

    (e) xy + yz + x-z = xy + yz.1 + x

    -z P2b

    = xy + yz(x + x-) + x

    -z P5a

    = xy + yzx + yzx-+ x-z P4b

    = xyz + xy + x-zy + x

    -z P3a,P3b

    = xy(z + 1) + x-z(y + 1) P4b

    = xy.1 + x-z.1 T2a

    = xy + x-z P2b

    (f) (x + y)(x-+ z) = (x + y)x

    -+ (x + y)z P4b

    = x-(x + y) + z(x + y) P3b

    = x-x + x

    -y + zx + zy P4b

    = xx-+ x

    -y + zx + zy P3b

    = 0 + x-y + zx + zy P5b

    = x-y + zx + zy P2a

    = x-y + zx + zy.1 P2b

    = x-y + zx + zy(x + x

    -) P5a

    = x-y + zx + zyx + zyx

    -P4b

    = x-yz + x

    -y + xzy + xz P3a,P3b

    = x-y(z + 1) + xz(y + 1) P4b

    = x-y.1 + xz.1 T2a

    = x-y + xz P2b

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    3/42

    - 3.3 -

    3.1. (continued)

    (g) (x + y)(y + z)(x + z) = [(x + y)y + (x + y)z](x + z) P4b

    = [y(x + y) + z(x + y)](x + z) P3b

    = (yx + yy + zx + zy)(x + z) P4b

    = (yx + y + zx + zy)(x + z) T4b

    = (y + yx + yz + zx)(x + z) P3a

    = (y + zx)(x + z) T6a

    = (y + zx)x + (y + zx)z P4b

    = x(y + zx) + z(y + zx) P3b

    = xy + xzx + zy + zzx P4b

    = xy + xxz + yz + xzz P3b

    = xy + xz + yz + xz T4b

    = xy + (xz + xz) + yz P3a

    = xy + xz + yz T4a

    (h) xy-+ yz

    -+ x-z = xy

    -.1 + yz-.1 + x

    -z.1 P2b

    = xy-(z + z

    -) + yz

    -(x + x

    -) + x

    -z(y + y

    -) P5a

    = xy-z + xy

    -z-+ yz

    -x + yz

    -x-+ x-zy + x

    -zy-

    P4b

    = x-yz + x

    -yz-+ y-zx + y

    -zx-+ xz

    -y + xz

    -y-P3a,P3b

    = x-y(z + z

    -) + y

    -z(x + x

    -) + xz

    -(y + y

    -) P4b

    = x-y.1 + y

    -z.1 + xz

    -.1 P5a

    = x-y + y

    -z + xz

    -P2b

    3.2. To prove the cancellation law does not hold, use the method

    of contradiction. According to T7b, x(x-+y)=xy. Assuming

    the cancellation law holds, it follows that x-+y=y for all x

    and y in the Boolean algebra. Since x and y denote any

    elements in the Boolean algebra, let x=y. It then follows

    that y-+y=y. However, from P5a it is known that y must be 1

    in this case and not any arbitrary element in the algebra.

    Thus, by contradiction, the cancellation law does not hold.

    By applying a dual argument starting with T7a, it can be

    shown that x+y=x+z does not imply y=z.

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    4/42

    - 3.4 -

    3.3.

    (a) (b) (c)

    x y z x-z+xy (x

    -+y)(x+z) (x+y+z)

    ______

    x-y-z-

    xy+yz+x-z xy+x

    -z

    0 0 0 o 0 1 1 0 0

    0 0 1 1 1 0 0 1 1

    0 1 0 0 0 0 0 0 0

    0 1 1 1 1 0 0 1 1

    1 0 0 0 0 0 0 0 0

    1 0 1 0 0 0 0 0 0

    1 1 0 1 1 0 0 1 1

    1 1 1 1 1 0 0 1 1

    3.4. Let B={0,1,a} where a0,1. By Postulate P5 of a Boolean

    algebra, the complement of the element a, i.e., a-, must

    exist and satisfy the relationships a+a-=1 and a.a

    -=0. Since

    there are just three elements in B, a-

    must be 0, 1, or a.

    Suppose a-=a, then a+a

    -=a+a=a. However, since a1, Postulate

    P5a is not satisfied. Thus, a

    -

    a. Now suppose a-

    =1. Then

    a.a-=a.1=a. However, since a0, Postulate P5b is not

    satisfied. Finally, suppose a-=0. Then, a+a

    -=a+0=a. Again

    Postulate P5a is not satisfied since a1. Therefore, a-does

    not exist and B cannot be a Boolean algebra.

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    5/42

    - 3.5 -

    3.5. (a)

    x y z x-

    z-

    x-+y x

    -+z-

    (x-+y)(x

    -+z-) yz f

    0 0 0 1 1 1 1 1 0 1

    0 0 1 1 0 1 1 1 0 1

    0 1 0 1 1 1 1 1 0 1

    0 1 1 1 0 1 1 1 1 1

    1 0 0 0 1 0 1 0 0 0

    1 0 1 0 0 0 0 0 0 0

    1 1 0 0 1 1 1 1 0 1

    1 1 1 0 0 1 0 0 1 1

    (b)

    x y z x-

    xy x-z xy+x

    -z (xy+x

    -z)

    ______

    yz f

    0 0 0 1 0 0 0 1 0 1

    0 0 1 1 0 1 1 0 0 0

    0 1 0 1 0 0 0 1 0 1

    0 1 1 1 0 1 1 0 1 1

    1 0 0 0 0 0 0 1 0 1

    1 0 1 0 0 0 0 1 0 1

    1 1 0 0 1 0 1 0 0 0

    1 1 1 0 1 0 1 0 1 1

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    6/42

    - 3.6 -

    3.5. (continued)

    (c)

    x y z x-

    y-

    x+y-

    y+z x-+z (x+y

    -)(y+z) f

    0 0 0 1 1 1 0 1 0 0

    0 0 1 1 1 1 1 1 1 1

    0 1 0 1 0 0 1 1 0 0

    0 1 1 1 0 0 1 1 0 0

    1 0 0 0 1 1 0 0 0 0

    1 0 1 0 1 1 1 1 1 1

    1 1 0 0 0 1 1 0 1 0

    1 1 1 0 0 1 1 1 1 1

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    7/42

    - 3.7 -

    3.5. (continued)

    (d)

    w x y z w-

    y-

    wx wxy y-+z w

    -(y-+z) f

    0 0 0 0 1 1 0 0 1 1 1

    0 0 0 1 1 1 0 0 1 1 1

    0 0 1 0 1 0 0 0 0 0 0

    0 0 1 1 1 0 0 0 1 1 1

    0 1 0 0 1 1 0 0 1 1 1

    0 1 0 1 1 1 0 0 1 1 1

    0 1 1 0 1 0 0 0 0 0 0

    0 1 1 1 1 0 0 0 1 1 1

    1 0 0 0 0 1 0 0 1 0 0

    1 0 0 1 0 1 0 0 1 0 0

    1 0 1 0 0 0 0 0 0 0 0

    1 0 1 1 0 0 0 0 1 0 0

    1 1 0 0 0 1 1 0 1 0 0

    1 1 0 1 0 1 1 0 1 0 0

    1 1 1 0 0 0 1 1 0 0 1

    1 1 1 1 0 0 1 1 1 0 1

    3.6. (a) f(x,y,z) = x-y-z-+ x

    -y-z + x

    -yz + xy

    -z + xyz

    -

    = m0+ m

    1+ m

    3+ m

    5+ m

    6

    = 3m(0,1,3,5,6)

    (b) f(w,x,y,z) = w-x-y-z + w

    -x-yz-+ w-xy-z-+ w

    -xyz-+ w-xyz + wx

    -yz

    + wxy-z- + wxy-z + wxyz

    = m1

    + m2+ m

    4+ m

    6+ m

    7+ m

    11+ m

    12

    + m13

    + m15

    = 3m(1,2,4,6,7,11,12,13,15)

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    8/42

    - 3.8 -

    3.7. (a) f(x,y,z) = 3m(0,2,4,5,7)

    = x-y-z-+ x

    -yz-+ xy

    -z-+ xy

    -z + xyz

    x y z f

    0 0 0 1

    0 0 1 0

    0 1 0 1

    0 1 1 0

    1 0 0 1

    1 0 1 1

    1 1 0 0

    1 1 1 1

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    9/42

    - 3.9 -

    3.7. (continued)

    (b) f(w,x,y,z) = 3m(1,3,7,8,9,14,15)

    = w-x-y-z + w

    -x-yz + w

    -xyz + wx

    -y-z-+ wx

    -y-z

    + wxyz-+ wxyz

    w x y z f

    0 0 0 0 0

    0 0 0 1 1

    0 0 1 0 0

    0 0 1 1 1

    0 1 0 0 0

    0 1 0 1 0

    0 1 1 0 0

    0 1 1 1 1

    1 0 0 0 1

    1 0 0 1 1

    1 0 1 0 0

    1 0 1 1 0

    1 1 0 0 0

    1 1 0 1 0

    1 1 1 0 1

    1 1 1 1 1

    3.8. (a) f(x,y,z) = (x+y-+z)(x

    -+y+z)(x

    -+y-+z-)

    = M2M4M7

    = JM(2,4,7)

    (b) f(w,x,y,z) = (w+x+y+z)(w+x+y-+z-)(w+x

    -+y+z

    -)(w-+x+y+z)

    .(w-+x+y+z

    -)(w-+x+y

    -+z)(w

    -+x-+y-+z)

    = M0M3M5M8M9M10M14

    = JM(0,3,5,8,9,10,14)

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    10/42

    - 3.10 -

    3.9. (a) f(x,y,z) = JM(0,1,2,5,7)

    = (x+y+z)(x+y+z-)(x+y

    -+z)(x

    -+y+z

    -)(x-+y-+z-)

    x y z f

    0 0 0 0

    0 0 1 0

    0 1 0 0

    0 1 1 1

    1 0 0 1

    1 0 1 0

    1 1 0 1

    1 1 1 0

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    11/42

    - 3.11 -

    3.9. (continued)

    (b) f(w,x,y,z) = JM(0,3,6,7,9,10,12,13,15)

    = (w+x+y+z)(w+x+y-+z-)(w+x

    -+y-+z)(w+x

    -+y-+z-)

    .(w-+x+y+z

    -)(w-+x+y

    -+z)(w

    -+x-+y+z)

    .(w-+x-+y+z-)(w-+x-+y-+z-)

    w x y z f

    0 0 0 0 0

    0 0 0 1 1

    0 0 1 0 1

    0 0 1 1 0

    0 1 0 0 1

    0 1 0 1 1

    0 1 1 0 0

    0 1 1 1 0

    1 0 0 0 1

    1 0 0 1 0

    1 0 1 0 0

    1 0 1 1 1

    1 1 0 0 0

    1 1 0 1 0

    1 1 1 0 1

    1 1 1 1 0

    3.10. (a) [(w+x+y)(w-+xz)+y

    -z-]

    _________________

    = [(w+x+y)(w-+xz)]

    ______________

    (y-z-)

    ___

    = [(w+x+y)

    ______

    +(w-+xz)

    _____

    ](y+z)

    = [w

    -

    x

    -

    y

    -

    +w(xz)

    ___

    ](y+z)= [w

    -x-y-+w(x

    -+z-)](y+z)

    (b) [x-(w-y-+xyz

    -)]

    __________

    = x + (w-y-+xyz

    -)

    _______

    = x + (w-y-)

    ___

    (xyz-)

    ____

    = x + (w+y)(x-+y-+z)

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    12/42

    - 3.12 -

    3.10. (continued)

    (c) {wy-[(wy

    -)

    ___

    +xz-]}

    ____________

    = w-+ y + [(wy

    -)

    ___

    +xz-]

    ________

    = w-+ y + (wy

    -)(xz

    -)

    ___

    = w

    -

    + y + wy

    -

    (x

    -

    +z)

    (d) {wx+z[(w+x-+y-)

    ______

    +(x+y)

    ____

    ]}

    ____________________

    = (wx)

    ___

    {z[(w+x-+y-)

    ______

    +(x+y)

    ____

    ]}

    _________________

    = (w-+x-){z-+[(w+x

    -+y-)

    ______

    +(x+y)

    ____

    ]

    ______________

    }

    = (w-+x-)[z-+(w+x

    -+y-)(x+y)]

    3.11. (a) f = x[w-.1.yz

    -+z(1.y

    -+w.1

    -)] + x

    -[w-.0.yz

    -+z(0.y

    -+w.0

    -)]

    = x(w-yz-+y-z) + x

    -(wz)

    (b) f = [z+w-xy.0-+0.(xy-+wx-)][z-+w-xy.1-+1.(xy-+wx-)]

    = (z+w-xy)(z

    -+xy-+wx-)

    3.12. (a) yz + x-y-z + xyz

    -= 1.yz + x

    -y-z + xyz

    -

    = (x+x-)yz + x

    -y-z + xyz

    -

    = xyz + x-yz + x

    -y-z + xyz

    -

    = xy(z+z-) + x

    -z(y+y

    -)

    = xy + x-z

    (b) x-y-z-

    + x-y-z + x

    -yz-+ xy

    -z-+ xy

    -z + xyz

    -

    = y-(x-z-+x-z+xz

    -+xz) + yz

    -(x-+x)

    = y-[x-(z-+z)+x(z

    -+z)] + yz

    -

    = y-(x-+x) + yz

    -

    = y-+ yz

    -

    = y-+ z-

    (c) xy-+ xz + x

    -z-+ xyz

    -+ x-y-z = x(y

    -+z+yz

    -) + x

    -(z-+y-z)

    = x(y-+z+y) + x

    -(z-+y-)

    = x + x-(y-+z-)

    = x + y-+ z-

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    13/42

    - 3.13 -

    3.12. (continued)

    (d) (x+yz)

    _____

    + y-z = x

    -(y-+z-) + y

    -z

    = x-y-+ x-z-+ y-z

    = x-y-(z+z

    -) + x

    -z-+ y-z

    = x-y-z + x-y-z- + x-z- + y-z

    = x-z-(y-+1) + y

    -z(x-+1)

    = x-z-

    + y-z

    (e) w-x-y-z + wx

    -y-z + xz + xyz

    -= x-y-z(w-+w) + x(z+yz

    -)

    = x-y-z + x(z+y)

    = x-y-z + xz + xy

    = (x-y-+x)z + xy

    = (y-+x)z + xy

    = y-z + xz + xy

    = y-z + xz(y+y

    -) + xy

    = y-z + xyz + xy

    -z + xy

    = y-z(1+x) + xy(z+1)

    = y-z + xy

    (f) w-x-yz + wxy + w

    -y-+ xy

    -+ x-y-= w-x-yz + wxy + y

    -(w-+x+x

    -)

    = w-x-yz + wxy + y

    -

    = (w-x-z+wx)y + y

    -

    = w-x-z + wx + y

    -

    (g) (w+x+y-+z)(w+x+y

    -+z-)(w+x

    -+y-+z)(w+x

    -+y-+z-)(w

    -+x-+y-+z)(w

    -+x-+y-+z-)

    = (w+x+y-+zz

    -)(w+x

    -+y-+zz-)(w-+x-+y-+zz-)

    = (w+x+y-)(w+x

    -+y-)(w-+x-+y-)

    = (w+x+y-)(ww

    -+x-+y-)

    = (w+x+y-)(x

    -+y-)

    = y-+ x-(w+x)

    = y- + wx- + xx-

    = y-+ wx

    -

    (h) (x+z)(w+x)(y-+z)(w+y

    -) = (x+wz)(y

    -+wz)

    = wz + xy-

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    14/42

    - 3.14 -

    3.13. xi.f(x

    1,x2,...,x

    i,...,x

    n)

    = xi[xi.f(x

    1,x2,...,1,...,x

    n)+x-i.f(x

    1,x2,...,0,...,x

    n)]

    = xi.f(x

    1,x2,...,1,...,x

    n)+x

    ix-i.f(x

    1,x2,...,0,...,x

    n)

    = xi.f(x

    1,x2,...,1,...,x

    n)

    Equation (b) follows from the duality principle.

    3.14. (a) f(x,y,z) = x-(y-+z) + z

    -

    = x-y-+ x

    -z + z

    -

    = x-y-(z+z

    -) + x

    -z(y+y

    -) + z

    -(x+x

    -)(y+y

    -)

    = x-y-z + x

    -y-z-+ x-yz + xyz

    -+ xy

    -z-+ x-yz-

    (b) f(x,y,z) = (x+y-)(x+z)

    = x + y

    -

    z

    = x(y+y-)(z+z

    -) + (x+x

    -)y-z

    = xyz + xyz-+ xy

    -z + xy

    -z-+ x

    -y-z

    3.15. (a) f(x,y,z) = (y+z-)(xy

    -+z)

    = (y+z-)(x+z)(y

    -+z)

    = (xx-+y+z

    -)(yy

    -+x+z)(xx

    -+y-+z)

    = (x+y+z-)(x

    -+y+z

    -)(x+y+z)(x+y

    -+z)(x

    -+y-+z)

    (b) f(x,y,z) = x + x-z-(y+z)

    = (x+x-)(x+z

    -)(x+y+z)

    = (x+z-)(x+y+z)

    = (x+z-+yy-)(x+y+z)

    = (x+y+z-)(x+y

    -+z-)(x+y+z)

    3.16. (a) f-(x,y,z) = 3m(1,3,4,6,7) = JM(0,2,5)

    (b) f-(x,y,z) = 3m(1,2,5,7) = JM(0,3,4,6)

    (c) f-(w,x,y,z) = 3m(0,2,3,5,9,10,11,13,15)

    = JM(1,4,6,7,8,12,14)

    (d) f-(w,x,y,z) = 3m(3,7,8,10,12,13)

    = JM(0,1,2,4,5,6,9,11,14,15)

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    15/42

    - 3.15 -

    3.17. (a) f(x,y,z) = 3m(1,3,5)

    f-(x,y,z) = JM(1,3,5)

    f=(x,y,z) = f(x,y,z) =JM(0,2,4,6,7)

    (b) f(x,y,z) = JM(3,4)

    f-(x,y,z) = 3m(3,4)

    f=(x,y,z) = f(x,y,z) = 3m(0,1,2,5,6,7)

    (c) f(w,x,y,z) = 3m(0,1,2,3,7,9,11,12,15)

    f-(w,x,y,z) = 3m(4,5,6,8,10,13,14)

    f=(w,x,y,z) = f(w,x,y,z) = JM(4,5,6,8,10,13,14)

    (d) f(w,x,y,z) = JM(0,2,5,6,7,8,9,11,12)

    f-(w,x,y,z) = JM(1,3,4,10,13,14,15)

    f=(w,x,y,z) = f(w,x,y,z) = 3m(1,3,4,10,13,14,15)

    3.18. (a) f = v(wx-z+y)(w+z) + w

    -

    (b) f = [(w+x)(v-+y+z)+w

    -][(w+x)(v

    -+y+z)+v]

    (c) f = [(w+x-)(w-+y)]

    ___________

    z + (w-+y)z

    -

    3.19. (a)

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    16/42

    - 3.16 -

    3.19. (continued)

    (b)

    (c)

    3.20. (a) f = xy-z + (xy-z+w)

    ______

    + wy-

    = A + (A+w)

    ____

    + wy-

    where A=xy-z

    = A + (0+w)

    ____

    + wy-

    by T3.12b

    = A + w-+ wy

    -

    = xy-z + w

    -+ wy

    -

    = xy-z + w

    -+ y-

    = w-+ y-(xz+1)

    = w-+ y-

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    17/42

    - 3.17 -

    3.20. (continued)

    (b) f = [(w-xy-z)

    _____

    z+x-z-]w-+ wyz

    = [(w+x-+y+z

    -)z+x

    -z-]w-+ wyz

    = (wz+x-z+yz+x

    -z-)w-+ wyz

    = w-x-z + w-yz + w-x-z- + wyz

    = w-x-(z+z

    -) + yz(w

    -+w)

    = w-x-+ yz

    3.21. (a) f = w[(x+y)z+x-z-]

    (b)

    3.22. (a) f(w,x,y,z) = 3m(2,3,6,10,15) + dc(0,1,5,9,11,13,14)

    = JM(4,7,8,12) + dc(0,1,5,9,11,13,14)

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    18/42

    - 3.18 -

    3.22. (continued)

    (b)

    w x y z f f-

    0 0 0 0 - -

    0 0 0 1 - -

    0 0 1 0 1 0

    0 0 1 1 1 0

    0 1 0 0 0 1

    0 1 0 1 - -

    0 1 1 0 1 0

    0 1 1 1 0 1

    1 0 0 0 0 1

    1 0 0 1 - -

    1 0 1 0 1 0

    1 0 1 1 - -

    1 1 0 0 0 1

    1 1 0 1 - -

    1 1 1 0 - -

    1 1 1 1 1 0

    (c) f-(w,x,y,z) = 3m(4,7,8,12) + dc(0,1,5,9,11,13,14)

    = JM(2,3,6,10,15) + dc(0,1,5,9,11,13,14)

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    19/42

    - 3.19 -

    3.23. (a) Using perfect induction:

    x y z nand(y,z) nand[x,nand(y,z)] nand(x,y) nand[nand(x,y),z]

    0 0 0 1 1 1 1

    0 0 1 1 1 1 0

    0 1 0 1 1 1 1

    0 1 1 0 1 1 0

    1 0 0 1 0 1 1

    1 0 1 1 0 1 0

    1 1 0 1 0 0 1

    1 1 1 0 1 0 1

    Since the columns for nand[x,nand(y,z)] and

    nand[nand(x,y),z] are dissimilar, the nand-operation is

    not associative.

    (b) Using perfect induction:

    x y z nor(y,z) nor[x,nor(y,z)] nor(x,y) nor[nor(x,y),z]

    0 0 0 1 0 1 0

    0 0 1 0 1 1 0

    0 1 0 0 1 0 1

    0 1 1 0 1 0 0

    1 0 0 1 0 0 1

    1 0 1 0 0 0 0

    1 1 0 0 0 0 1

    1 1 1 0 0 0 0

    Since the columns for nor[x,nor(y,z)] and

    nor[nor(x,y),z] are dissimilar, the nor-operation is

    not associative.

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    20/42

    - 3.20 -

    3.24. (a) f = {[(u-v-)

    ___

    (wx)

    ___

    y]

    __________

    z}

    _____________

    = (u+v)(w-+x-)y + z

    -

    (b) f = {[x(xy)

    ___

    ]

    ______

    [y(xy)

    ___

    ]

    ______

    }

    _______________

    = x(x-+y-) + y(x-+y-)

    = xy-+ x-y

    (c) f = {[(x-+y+z

    -)

    ______

    +w-+z]

    ____________

    +[(w+x-)

    ____

    +y]

    ________

    }

    ________________________

    = (xy-z+w-+z)(w

    -x+y)

    = (w-+z)(w

    -x+y)

    (d) f = {[(v+w)

    ____

    +(x-+y)

    ____

    ]

    ____________

    +[(x-+y)

    ____

    +z]

    ________

    }

    ________________________

    = (v-w-+xy-)(xy-+z)

    (e) f = {[(u-+v-)

    ____

    +(w+x)

    ____

    +y-]z}

    _________________

    = (u-+v-)(w+x)y + z

    -

    3.25. (a)

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    21/42

    - 3.21 -

    3.25. (continued)

    (b)

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    22/42

    - 3.22 -

    3.25. (continued)

    (c)

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    23/42

    - 3.23 -

    3.25. (continued)

    (d)

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    24/42

    - 3.24 -

    3.26. (a)

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    25/42

    - 3.25 -

    3.26. (continued)

    (b)

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    26/42

    - 3.26 -

    3.26. (continued)

    (c)

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    27/42

    - 3.27 -

    3.26. (continued)

    (d)

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    28/42

    - 3.28 -

    3.27. (a)

    (b)

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    29/42

    - 3.29 -

    3.27. (continued)

    (c)

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    30/42

    - 3.30 -

    3.27. (continued)

    (d)

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    31/42

    - 3.31 -

    3.28. (a)

    (b)

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    32/42

    - 3.32 -

    3.28. (continued)

    (c)

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    33/42

    - 3.33 -

    3.28. (continued)

    (d)

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    34/42

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    35/42

    - 3.35 -

    3.29. (continued)

    (b) Nor realization

    f = [(w-+x)y+u

    -+v](w+z)y

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    36/42

    - 3.36 -

    3.30. (x+y)r(x+z) = (x+y)

    ____

    (x+z) + (x+y)(x+z)

    ____

    = x-y-(x+z) + (x+y)x

    -z-

    = x-y-z + x

    -yz-

    = x-(y-z+yz

    -)

    = x-(yrz)

    Alternatively, perfect induction could be used.

    3.31. Using perfect induction

    x y z yz xryz xry xrz (xry)(xrz)

    0 0 0 0 0 0 0 0

    0 0 1 0 0 0 1 0

    0 1 0 0 0 1 0 0

    0 1 1 1 1 1 1 1

    1 0 0 0 1 1 1 1

    1 0 1 0 1 1 0 0

    1 1 0 0 1 0 1 0

    1 1 1 1 0 0 0 0

    Since the columns for xryz and (xry)(xrz) are dissimilar,

    the exclusive-or-operation is not distributive over theand-operation.

    3.32. (a) xu1 = x-.1-+ x.1

    = x-.0 + x

    = x

    (b) xu0 = x-.0-+ x.0

    = x-.1

    = x-

    (c) xux = x-x-+ xx

    = x-+ x

    = 1

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    37/42

    - 3.37 -

    3.32. (continued)

    (d) xux-= x

    -x + xx

    -

    = 0 + 0

    = 0

    (e) x-uy- = xy + x-y-

    = xuy

    (f) x-uy = xy

    -+ x-y

    = xry

    = (xuy)

    ____

    (g) (x+y)u(x+z) = (x+y)

    ____

    (x+z)

    ____

    + (x+y)(x+z)

    = x-y-x-z-+ x + yz

    = x-y-z- + x + yz

    = y-z-+ x + yz

    = x + (yuz)

    (h) xuyu(x+y) = xu[yu(x+y)]

    = xu[y-(x+y)

    ____

    +y(x+y)]

    = xu(y-x-+xy+y)

    = xu(x-y-+y)

    = xu(x-+y)

    = x-(x-+y)

    ____+ x(x

    -+y)

    = x-xy-

    + xx-+ xy

    = xy

    3.33. From the definition of the dual of a function, xry should

    first be complemented by DeMorgan's law and then each of

    the variables in the complemented expression should be

    complemented. Applying DeMorgan's law gives

    (xry)____

    =(x-y+xy

    -)

    ______=(x+y

    -)(x-+y). Complementing each variable in

    (x+y-)(x-+y) gives (x

    -+y)(x+y

    -). Therefore,

    (xry)dual

    = (x-+y)(x+y

    -)

    = (xry)

    ____

    = xuy

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    38/42

    - 3.38 -

    3.34. (a)

    According to statement 1, bn-1

    should be connected to

    gn-1

    . According to statement 2, for n-1$k$1,

    bk-1

    =f(bk,gk-1

    ). This function is given by the truth

    table

    bk

    gk-1

    bk-1

    0 0 0

    0 1 1

    1 0 1

    1 1 0

    which is described by bk-1

    =bkrgk-1

    . Thus, each of the

    outputs bk-1

    for n-1$k$1 is the exclusive-or of the

    next higher order binary digit (bk) and the present

    order Gray bit (gk-1

    ). The corresponding logic diagram

    is

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    39/42

    - 3.39 -

    3.34. (continued)

    (b) From part (a) we have

    bn-1

    = gn-1

    bk-1

    = bkrgk-1

    for n-1$k$1

    We now need expressions for gn-1 and gk-1 for n-1$k$1.

    Clearly, gn-1

    =bn-1

    . For the remaining expression,

    consider property (x) in Table 3.16. Letting X=gk-1

    ,

    Y=bk, and Z=b

    k-1, b

    k-1=bkrgk-1

    has the form XrY=Z.

    Thus, X=YrZ or gk-1

    =bkrbk-1

    for n-1$k$1. A logic

    diagram for an n-bit binary-to-Gray converter is:

    3.35. Position: 7 6 5 4 3 2 1

    Code group format: b4

    b3

    b2

    p3

    b1

    p2

    p1

    c*1

    = 0 if even parity over inputs b4, b

    2, b

    1, and p

    1

    c*1

    = 1 if odd parity over inputs b4, b

    2, b

    1, and p

    1

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    40/42

    - 3.40 -

    3.35. (continued)

    Truth table for c*1:

    b4

    b2

    b1

    p1

    c*1

    0 0 0 0 0

    0 0 0 1 1

    0 0 1 0 1

    0 0 1 1 0

    0 1 0 0 1

    0 1 0 1 0

    0 1 1 0 0

    0 1 1 1 1

    1 0 0 0 1

    1 0 0 1 0

    1 0 1 0 0

    1 0 1 1 1

    1 1 0 0 0

    1 1 0 1 1

    1 1 1 0 1

    1 1 1 1 0

    c*1

    = b-4b-2b-1p1+ b-4b-2b1p-1+ b-4b2b-1p-1+ b

    -4b2b1p1+ b

    4b-2b-1p-1

    + b4b-2b1p1

    + b4b2b-1p1+ b

    4b2b1p-1

    = b-4b-2(b-1p1+b1p-1) + b

    -4b2(b-1p-1+b1p1) + b

    4b-2(b-2p-1+b1p1)

    + b4b2(b-1p1+b

    1p-1)

    = b-4b-2(b1rp1) + b

    -4b2(b1rp1)

    ______

    + b4b-2(b1rp1)

    ______

    + b4b2(b1rp1)

    = (b1rp1)(b-4b-2+b4b2) + (b1rp1)

    ______

    (b-4b2+b4b-2)

    = (b1rp1)(b

    4rb2)

    ______

    + (b1rp1)

    ______

    (b4rb2)

    Let b1rp1=X and b

    4rb2=Y, then c*

    1= XY

    -+ X-Y = XrY

    Therefore, c*1= (b

    1rp1) r (b

    4rb2)

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    41/42

    - 3.41 -

    3.35. (continued)

    Using a similar procedure,

    c*2

    = (b1rp2) r (b

    4rb3)

    c*3

    = (b2rp3) r (b

    4rb3)

    Each c*ican be realized with a network of the form:

    To correct an appropriate bit, it is first necessary to

    detect each of the seven combinations of c*3c*2c*1which can

    be done with seven and-gates. To invert a bit if in error,

    an exclusive-or-gate can be used. For example, to detect

    c*3c*2c*1=011 and correct the corresponding bit, b

    1, in

    position 3, the following network can be used:

    B1=b1if the output of the and-gate is 0 and B

    1=b-1if the

    output of the and-gate is 1.

  • 8/14/2019 Chapter 3 Problem Solutions -y 3.1. (a) Xy + Xy

    42/42

    3.35. (continued)

    Logic Diagram: