31
1 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) Chapter 5 – Seakeeping Theory 5.1 Hydrodynamic Concepts and Potential Theory 5.2 Seakeeping and Maneuvering Kinematics 5.3 The Classical Frequency-Domain Model 5.4 Time-Domain Models including Fluid Memory Effects

Chapter 5 –Seakeeping Theory · 5.1 Hydrodynamic Concepts and Potential Theory Panel Methods (3-D Potential Theory) For potential flows, the integrals over the fluid domain can

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chapter 5 –Seakeeping Theory · 5.1 Hydrodynamic Concepts and Potential Theory Panel Methods (3-D Potential Theory) For potential flows, the integrals over the fluid domain can

1Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Chapter 5 – Seakeeping Theory

5.1HydrodynamicConceptsandPotentialTheory5.2SeakeepingandManeuveringKinematics5.3TheClassicalFrequency-DomainModel5.4Time-DomainModelsincludingFluidMemoryEffects

Page 2: Chapter 5 –Seakeeping Theory · 5.1 Hydrodynamic Concepts and Potential Theory Panel Methods (3-D Potential Theory) For potential flows, the integrals over the fluid domain can

2Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Chapter 5 - Seakeeping TheoryEquationsofMotionSeakeepingtheoryisformulatedinequilibrium(SEAKEEPING)axes{s}butitcanbe

transformedtoBODYaxes{b}byincludingfluidmemoryeffectsrepresentedbyimpulseresponsefunctions.

Thetransformationisisdonewithinalinearframeworksuchthatadditionalnonlinearviscousdampingmustbeaddedinthetime-domainundertheassumptionoflinearsuperposition.

μisanadditionaltermrepresentingthefluidmemoryeffects.

Inertia forces: !MRB !MA" "! ! CRB#!$! ! CA#!r$!r

Damping forces: !#Dp ! DV$!r ! Dn#!r$!r ! "

Restoring forces: !g##$ ! goWind and wave forces: # $wind ! $wave

Propulsion forces: !$

Page 3: Chapter 5 –Seakeeping Theory · 5.1 Hydrodynamic Concepts and Potential Theory Panel Methods (3-D Potential Theory) For potential flows, the integrals over the fluid domain can

3Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

StripTheory(2-DPotentialTheory)Forslenderbodies,themotionofthefluidcanbeformulatedasa2-Dproblem.Anaccurateestimateofthehydrodynamicforcescanbeobtainedbyapplyingstriptheory(Newman,1977;Faltinsen,1990;Journee andMassie,2001).

The2-Dtheorytakesintoaccountthatvariationoftheflowinthecross-directionalplaneismuchlargerthanthevariationinthelongitudinaldirectionoftheship.

Theprincipleofstriptheoryinvolvesdividingthesubmergedpartofthecraftintoafinitenumberofstrips.Hence,2-Dhydrodynamiccoefficientsforaddedmasscanbecomputedforeachstripandthensummedoverthelengthofthebodytoyieldthe3-Dcoefficients.

CommercialCodes:MARINTEK(ShipX-Veres)andAmarcon (OctopusOffice)

5.1 Hydrodynamic Concepts and Potential Theory

Page 4: Chapter 5 –Seakeeping Theory · 5.1 Hydrodynamic Concepts and Potential Theory Panel Methods (3-D Potential Theory) For potential flows, the integrals over the fluid domain can

4Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

ShipX (VERES) by MARINTEK

VERES- VEssel RESponse program isaStripTheoryProgram whichcalculateswave-inducedloadsonandmotionsofmono-hullsandbargesindeeptoveryshallowwater.TheprogramisbasedonthefamouspaperbySalvesen,TuckandFaltinsen (1970).ShipMotionsandSeaLoads.Trans.SNAME.

MARINTEK- theNorwegianMarineTechnologyResearchInstitute- doesresearchanddevelopmentinthemaritimesectorforindustryandthepublicsector.TheInstitutedevelopsandverifiestechnologicalsolutionsfortheshippingandmaritimeequipmentindustriesandforoffshorepetroleumproduction.

Page 5: Chapter 5 –Seakeeping Theory · 5.1 Hydrodynamic Concepts and Potential Theory Panel Methods (3-D Potential Theory) For potential flows, the integrals over the fluid domain can

5Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

ShipX (Veres)

ShipX (VERES) by MARINTEK

Page 6: Chapter 5 –Seakeeping Theory · 5.1 Hydrodynamic Concepts and Potential Theory Panel Methods (3-D Potential Theory) For potential flows, the integrals over the fluid domain can

6Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

OCTOPUS SEAWAY by Amarcon

andAMARCONcooperateinfurtherdevelopmentofSEAWAY

SEAWAY isdevelopedbyProfessorJ.M.J.Journée attheDelftUniviversity ofTechnology

SEAWAY isaStripTheoryProgram tocalculatewave-inducedloadsonandmotionsofmono-hullsandbargesindeeptoveryshallowwater.Whennotaccountingforinteractioneffectsbetweenthehulls,alsocatamaranscanbeanalyzed.Workofveryacknowledgedhydromechanicscientists(suchas Ursell,Tasai,Frank,Keil,Newman,Faltinsen,Ikeda,etc.)hasbeenused,whendevelopingthiscode.

SEAWAY hasextensivelybeenverifiedandvalidatedusingothercomputercodesandexperimentaldata.

TheMaritimeResearchInstituteNetherlands(MARIN)andAMARCONagreetocooperateinfurtherdevelopmentofSEAWAY.MARIN isaninternationallyrecognizedauthorityonhydrodynamics,involvedinfrontierbreakingresearchprogramsforthemaritimeandoffshoreindustriesandnavies.

Page 7: Chapter 5 –Seakeeping Theory · 5.1 Hydrodynamic Concepts and Potential Theory Panel Methods (3-D Potential Theory) For potential flows, the integrals over the fluid domain can

7Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) Copyright © 2005 Marine Cybernetics AS7

Page 8: Chapter 5 –Seakeeping Theory · 5.1 Hydrodynamic Concepts and Potential Theory Panel Methods (3-D Potential Theory) For potential flows, the integrals over the fluid domain can

8Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

5.1 Hydrodynamic Concepts and Potential TheoryPanelMethods(3-DPotentialTheory)Forpotentialflows,theintegralsoverthefluiddomaincanbetransformedtointegralsovertheboundariesofthefluiddomain.Thisallowstheapplicationofpanelorboundaryelementmethodstosolvethe3-Dpotentialtheoryproblem.

Panelmethodsdividethesurfaceoftheshipandthesurroundingwaterintodiscreteelements(panels).Oneachoftheseelements,adistributionofsourcesandsinksisdefinedwhichfulfilltheLaplaceequation.

Commercialcode:WAMIT(www.wamit.com)

-40

-30

-20

-10

0

10

20

30

40 -30

-20

-10

0

10

20

30

-12

-10

-8

-6

-4

-2

0

2

4

Y-axis (m)

3D Visualization of the Wamit file: supply.gdf

X-axis (m)

Z-ax

is (m

)

3D Panelization ofa Supply Vessel

Page 9: Chapter 5 –Seakeeping Theory · 5.1 Hydrodynamic Concepts and Potential Theory Panel Methods (3-D Potential Theory) For potential flows, the integrals over the fluid domain can

9Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

WAMIT

WAMIT® is the most advanced set of tools available for analyzing wave interactions with offshore platforms and other structures or vessels. WAMIT® was developed by Professor Newman and coworkers at MIT in 1987, and it has gained widespread recognition for its ability to analyze the complex structures with a high degree of accuracy and efficiency.

Over the past 20 years WAMIT has been licensed to more than80 industrial and research organizations worldwide.

Panelization of semi-submersible using WAMIT user supplied tools

Page 10: Chapter 5 –Seakeeping Theory · 5.1 Hydrodynamic Concepts and Potential Theory Panel Methods (3-D Potential Theory) For potential flows, the integrals over the fluid domain can

10Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

5.1 Hydrodynamic Concepts and Potential TheoryPotentialtheoryprogramstypicallycompute:

• Frequency-dependentaddedmass,A(w)• Potentialdampingcoefficients,B(w)• Restoringterms,C• 1st- and2nd-orderwave-inducedforcesandmotions

(amplitudesandphases)forgivenwavedirectionsandfrequencies• …andmuchmore

OnespecialfeatureofWAMITisthattheprogramsolvesaboundaryvalueproblemforzeroandinfiniteaddedmass.Theseboundaryvaluesareparticularusefulwhencomputingtheretardationfunctionsdescribingthefluidmemoryeffects.

ProcessingofHydrodynamicDatausingMSSHYDRO– www.marinecontrol.orgThetoolboxreadsoutputdatafilesgeneratedbythehydrodynamicprograms:

• ShipX (Veres)byMARINTEKAS• WAMITbyWAMITInc.

andprocessesthedataforuseinMatlab/Simulink.

Page 11: Chapter 5 –Seakeeping Theory · 5.1 Hydrodynamic Concepts and Potential Theory Panel Methods (3-D Potential Theory) For potential flows, the integrals over the fluid domain can

11Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

5.2 Seakeeping and Maneuvering KinematicsSeakeepingTheory(PerturbationCoordinates)TheSEAKEEPINGreferenceframe{s}isnotfixedtothecraft;itisfixedtotheequilibriumstate:

e1 ! !1,0,0,0,0,0"!

! ! !"

L :!

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 !1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

!" ! !#" ! !$

! ! !!1,!2,!3,!4,!5,!6"T #

!! ! ! !U!L!" " e1"

!!# ! !# !UL! # #

Transformationbetween{b}and{s}

!

"

#

!

00#"

#

$!

$"

$#

#

vnsn ! !Ucos!, Usin!, 0"!

!nsn ! !0,0,0"!

"ns ! !0,0,!" "!

# # #

-Intheabsenceofwaveexcitation,{s}coincideswith{b}.- Undertheactionofthewaves,thehullisdisturbedfromitsequilibriumand{s}oscillates,withrespecttoitsequilibriumposition.

!sb ! !!4,!5,!6"! ! !"#,"#,"$"! #

Page 12: Chapter 5 –Seakeeping Theory · 5.1 Hydrodynamic Concepts and Potential Theory Panel Methods (3-D Potential Theory) For potential flows, the integrals over the fluid domain can

12Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

SeakeepingAnalysisTheseakeepingequationsofmotionareconsideredtobeinertial:

5.3 The Classical Frequency-Domain Model

! ! !" ! !!x,!y,!z,!",!#,!$"! #

EquationsofMotion

MRB!" ! #hyd " #hs " #exc #

Cummins(1962)showedthattheradiation-inducedhydrodynamicforcesinanidealfluidcanberelatedtofrequency-dependentaddedmassA(ω) andpotentialdampingB(ω)accordingto:

!hyd ! !Ā"# ! "0

tK$ !t ! !""%!!"d! #

K!t" ! 2! !0

"B!""cos!"t"d" #

Ā ! A!!"

Page 13: Chapter 5 –Seakeeping Theory · 5.1 Hydrodynamic Concepts and Potential Theory Panel Methods (3-D Potential Theory) For potential flows, the integrals over the fluid domain can

13Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

5.3 The Classical Frequency-Domain Model

Ā ! A!!"

Frequency-dependentaddedmassA22(ω)andpotentialdampingB22(ω)insway

Page 14: Chapter 5 –Seakeeping Theory · 5.1 Hydrodynamic Concepts and Potential Theory Panel Methods (3-D Potential Theory) For potential flows, the integrals over the fluid domain can

14Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

CumminsModel

5.3 The Classical Frequency-Domain Model

K!t" ! 2! !0

"B!""cos!"t"d" #

!MRB ! A!!""!" ! "0

tK# !t # !"!$!!"d! ! C! " %exc #

Iflinearrestoringforcesτhs = -Cξ areincludedinthemodel,thisresultsinthetime-domainmodel:

Matrixofretardationfunctionsgivenby

!hyd ! !Ā"# ! "0

tK$ !t ! !""#!!"d! #

Thefluidmemoryeffectscanbereplacedbyastate-spacemodeltoavoidtheintegral

Page 15: Chapter 5 –Seakeeping Theory · 5.1 Hydrodynamic Concepts and Potential Theory Panel Methods (3-D Potential Theory) For potential flows, the integrals over the fluid domain can

15Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

5.3 The Classical Frequency-Domain Model

Longitudinaladdedmasscoefficientsasafunctionoffrequency.

Page 16: Chapter 5 –Seakeeping Theory · 5.1 Hydrodynamic Concepts and Potential Theory Panel Methods (3-D Potential Theory) For potential flows, the integrals over the fluid domain can

16Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

5.3 The Classical Frequency-Domain Model

Lateraladdedmasscoefficientsasafunctionoffrequency.

Page 17: Chapter 5 –Seakeeping Theory · 5.1 Hydrodynamic Concepts and Potential Theory Panel Methods (3-D Potential Theory) For potential flows, the integrals over the fluid domain can

17Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

5.3 The Classical Frequency-Domain Model

Longitudinalpotentialdampingcoefficientsasafunctionoffrequency.ExponentialdecayingviscousdampingisincludedforB11.

Page 18: Chapter 5 –Seakeeping Theory · 5.1 Hydrodynamic Concepts and Potential Theory Panel Methods (3-D Potential Theory) For potential flows, the integrals over the fluid domain can

18Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

5.3 The Classical Frequency-Domain Model

Lateralpotentialdampingcoefficientsasafunctionoffrequency.ExponentialdecayingviscousdampingisincludedforB22 andB66 whileviscousIKEDAdampingisincludedinB44

Page 19: Chapter 5 –Seakeeping Theory · 5.1 Hydrodynamic Concepts and Potential Theory Panel Methods (3-D Potential Theory) For potential flows, the integrals over the fluid domain can

19Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

5.3.1 Potential Coefficients and the Concept of Forced Oscillations

foreachfrequencyω.

Thematrices A(ω),B(ω)andC representsa"hydrodynamicmass-damper-springsystem"whichvarieswiththefrequencyoftheforcedoscillation.

Thismodelisrooteddeeplyintheliteratureofhydrodynamicsandtheabuseofnotationofthisfalsetime-domainmodelhasbeendiscussedeloquentlyintheliterature(incorrectmixtureoftimeandfrequencyinanODE).Consequently,wewilluseCumminstime-domainmodelandtransformthismodeltothefrequencydomain– nomixtureoftimeandfrequency!

Inanexperimentalsetupwitharestrainedscalemodel,itispossibletovarythewaveexcitationfrequencyω andtheamplitudesfi oftheexcitationforce.Hence,bymeasuringthepositionandattitudevectorη,theresponseofthe2nd-orderordersystemcanbefittedtoalinearmodel:

MRB!" ! #hyd " #hs " fcos!!t" #

!MRB ! A"!#$!" ! B"!#!# ! C! " fcos"!t# #

harmonicexcitation

Page 20: Chapter 5 –Seakeeping Theory · 5.1 Hydrodynamic Concepts and Potential Theory Panel Methods (3-D Potential Theory) For potential flows, the integrals over the fluid domain can

20Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

!MRB ! A!!""!" ! "0

tK# !t # !"!$!!"d! ! C! " %exc #

5.3.2 Frequency-Domain SeakeepingModels

Cumminsequationcanbetransformedtothefrequencydomain(Newman,1977;Faltinsen 1990)byassumingthatthevesselcarriesoutharmonicoscillationsin6DOF(seeSection5.4.1)::

ThepotentialcoefficientsA(ω)andB(ω)areusuallycomputedusingaseakeepingprogrambutthefrequencyresponsewillnot beaccurateunlessviscousdampingisincluded.

TheoptionalviscousdampingmatrixBV(ω) canbeusedtomodelviscousdampingsuchasskinfriction,surgeresistanceandviscousrolldamping(forinstanceIKEDArolldamping).

Page 21: Chapter 5 –Seakeeping Theory · 5.1 Hydrodynamic Concepts and Potential Theory Panel Methods (3-D Potential Theory) For potential flows, the integrals over the fluid domain can

21Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

BV!!" !

"1e!#!"NITTC!A1" 0 0 0 0 0

0 "2e!#! 0 0 0 0

0 0 0 0 0 0

0 0 0 "IKEDA!!" 0 0

0 0 0 0 0 0

0 0 0 0 0 "6e!#!

#

5.3.2 Frequency-Domain SeakeepingModels

B total!!" ! B!!" " BV!!" #

u ! Asin!!t" #

y ! c1x " c2x|x|"c3x33 #

N!A" ! c1 " 8A3! c2 " 3A2

4 c3 # y ! N!A"u #

X ! !X |u|u|u|u" NITTC!A1"u #

Viscousfrequency-dependentdamping:

Quadraticdampingisapproximatedusingdescribingfunctions(similartotheequivalentlinearizationmethod):

!ie!"#

QuadraticITTCdrag:

Viscousskinfriction:

Page 22: Chapter 5 –Seakeeping Theory · 5.1 Hydrodynamic Concepts and Potential Theory Panel Methods (3-D Potential Theory) For potential flows, the integrals over the fluid domain can

22Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

5.4 Time-Domain Models including Fluid Memory Effects

Unifiedmaneuveringandseakeeping model(nonlinearviscousdamping/maneuveringcoefficients

areaddedmanually)

Linearseakeeping equationsinBODYcoordinates(fluidmemoryeffectsareapproximatedasstate-spacemodels)

TransformfromSEAKEEPINGtoBODYcoordinates(linearizedkinematictransformation)

CumminsequationinSEAKEEPINGcoordinates(lineartheorywhichincludesfluidmemoryeffects)

Page 23: Chapter 5 –Seakeeping Theory · 5.1 Hydrodynamic Concepts and Potential Theory Panel Methods (3-D Potential Theory) For potential flows, the integrals over the fluid domain can

23Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

!MRB ! A"!#$!" ! B total"!#!# ! "0

tK"t # !#!#"!#d! ! C! " $wind ! $wave ! "$ #

Fromanumericalpointofviewisitbettertointegratethedifference:

ThiscanbedonbyrewritingCumminsequationas:

5.4.1 Cummins Equation in SEAKEEPING Coordinates

!MRB ! Ā"!" ! !"#

tK# !t " !"!$!!"d! ! C# ! " %wind ! %wave ! "% #

Ā ! A!!" #

K! !t" ! 2! !0

"B total!""cos!"t"d" #

Cummins(1962)Equation

TheOgilvie(1964)Transformationgives

K!t" ! 2! !0

"#B total!"" # B total!""$ cos!"t"d" #

Page 24: Chapter 5 –Seakeeping Theory · 5.1 Hydrodynamic Concepts and Potential Theory Panel Methods (3-D Potential Theory) For potential flows, the integrals over the fluid domain can

24Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Itispossibletotransformthetime-domainrepresentationofCumminsequationfrom{s}to{b}usingthekinematicrelationships:

Thisgives:

Thesteady-statecontrolforceτ neededtoobtaintheforwardspeedU whenτwind =τwave=0 andδη =0 is:

Hence,

5.4.2 Linear Time-Domain SeakeepingEquations in BODY Coordinates!MRB ! A"!#$!" ! B total"!#!# ! "

0

tK"t # !#!#"!#d! ! C! " $wind ! $wave ! "$ #

!MRB ! A"!#$!!" !UL!$ ! B total"!#!! !U"L!# " e1#$ ! #0

tK"t " "#!!""#d" ! C!# " $wind ! $wave ! "$ " $%# #

!! ! ! !U!L!" " e1"

!!# ! !# !UL! # #

!" ! B total!!"Ue1 #

! ! !"

!" ! !#

!MRB ! A"!#$!!" !UL!$ ! B total"!#!! ! UL!#$ ! "0

tK"t # "#!!""#d" ! C!# " $wind ! $wave ! $ #

Page 25: Chapter 5 –Seakeeping Theory · 5.1 Hydrodynamic Concepts and Potential Theory Panel Methods (3-D Potential Theory) For potential flows, the integrals over the fluid domain can

25Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Whencomputingthedampingandretardationfunctions,itiscommontoneglecttheinfluenceofδη ontheforwardspeedsuchthat:

Finally,letusereplaceν bytherelativevelocityνr toincludeoceancurrentsanddefine:M =MRB+MA suchthat:

where

5.4.2 Linear Time-Domain SeakeepingEquations in BODY Coordinates!MRB ! A"!#$!!" !UL!$ ! B total"!#!! ! UL!#$ ! "

0

tK"t # "#!!""#d" ! C!# " $wind ! $wave ! $ #

!! ! v !U!L!" " e1" ! v "Ue1 #

M!" ! CRB! ! ! CA!!r ! D!r ! "0

tK!t # !"#!!!"#Ue1$d! ! G# " $wind ! $wave ! $ #

MA ! A!!"CA" ! UA!!"LCRB" ! UMRBLD ! B total!!"

G ! C

LinearCoriolis andcentripetalforcesduetoarotationof{b}about{s}

Page 26: Chapter 5 –Seakeeping Theory · 5.1 Hydrodynamic Concepts and Potential Theory Panel Methods (3-D Potential Theory) For potential flows, the integrals over the fluid domain can

26Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

5.4.2 Linear Time-Domain SeakeepingEquations in BODY Coordinates

! :! !0

tK!t " !"#"!!""Ue1$

""d! #

FluidMemoryEffectsTheintegralinthefollowingequationrepresentsthefluidmemoryeffects:

! ! H!s"#" !Ue1$ #

!x " Arx # B r!!" " Crx

#

Approximatedbyastate-spacemodel

K!t" ! 2! !0

"#B!"" # B!""$ cos!"t"d" #

Impulseresponsefunction

0 5 10 15 20 25-1

-0.5

0

0.5

1

1.5

2

2.5x 107

time (s)

K22(t)

M!" ! CRB! ! ! CA!!r ! D!r ! "0

tK!t # !"#!!!"#Ue1$d! ! G# " $wind ! $wave ! $ #

Page 27: Chapter 5 –Seakeeping Theory · 5.1 Hydrodynamic Concepts and Potential Theory Panel Methods (3-D Potential Theory) For potential flows, the integrals over the fluid domain can

27Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

5.4.3 Nonlinear Unified Seakeeping and Maneuvering Model with Fluid Memory EffectsLinearSeakeeping Equations(BODYcoordinates)

UnifiedNonlinearSeakeeping andManeuveringModel

• Usenonlinearkinematics• ReplacelinearCoriolis andcentripetalforceswiththeirnonlinearcounterparts• Includemaneuveringcoefficientsinanonlineardampingmatrix(linearsuperposition)

!" ! J"!!"#M#" r # CRB!#"# # CA!#r"#r # D!#r"#r # $ # G! ! %wind # %wave # %

# #

M!" ! CRB! ! ! CA!!r ! D!r ! # ! G$ " %wind ! %wave ! % # Copyright © Bjarne Stenberg/NTNU

Copyright © The US Navy

Page 28: Chapter 5 –Seakeeping Theory · 5.1 Hydrodynamic Concepts and Potential Theory Panel Methods (3-D Potential Theory) For potential flows, the integrals over the fluid domain can

28Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

5.5 Case Study: Identification of Fluid Memory EffectsThefluidmemoryeffectscanbeapproximatedusingfrequency-domainidentification.ThemaintoolforthisistheMSSFDItoolbox(PerezandFossen2009)- www.marinecontrol.org

Whenusingthefrequency-domainapproach,thepropertythatthemapping:hasrelativedegreeoneisexploited.Hence,thefluidmemoryeffectsμ canbeapproximatedbyamatrixH(s)containingrelativedegreeonetransferfunctions:

!! ! " #

! ! H!s"!" #

H!s" ! Cr!sI ! Ar"!1B r #

!x " Arx # B r!!" " Crx

#

hij!s" ! prsr"pr!1sr!1"..."p0sn"qn!1sn!1"..."q0

r ! n ! 1, n " 2

State-spacemodel:

Page 29: Chapter 5 –Seakeeping Theory · 5.1 Hydrodynamic Concepts and Potential Theory Panel Methods (3-D Potential Theory) For potential flows, the integrals over the fluid domain can

29Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

5.5.1 Frequency-Domain Identification using the MSS FDI ToolboxConsidertheFPSOdatasetintheMSStoolbox(FDItool)andassumesthattheinfiniteaddedmassmatrixisunknown.Hence,wecanestimatethefluidtransferfunctionh33(s)byusingthefollowingMatlab code:

load fpsoDof = [3,3]; %Use coupling 3-3 heave-heaveNf = length(vessel.freqs);W = vessel.freqs(1:Nf-1)';Ainf = vessel.A(Dof(1),Dof(2),Nf); % Ainf computed by WAMIT

A = reshape(vessel.A(Dof(1),Dof(2),1:Nf-1),1,length(W))';B = reshape(vessel.B(Dof(1),Dof(2),1:Nf-1),1,length(W))';

FDIopt.OrdMax = 20;FDIopt.AinfFlag = 0;FDIopt.Method = 2;FDIopt.Iterations = 20;FDIopt.PlotFlag = 0;FDIopt.LogLin = 1;FDIopt.wsFactor = 0.1;FDIopt.wminFactor = 0.1;FDIopt.wmaxFactor = 5;

[KradNum,KradDen,Ainf] = FDIRadMod(W,A,0,B,FDIopt,Dof)

Page 30: Chapter 5 –Seakeeping Theory · 5.1 Hydrodynamic Concepts and Potential Theory Panel Methods (3-D Potential Theory) For potential flows, the integrals over the fluid domain can

30Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

5.5.1 Frequency-Domain Identification using the MSS FDI Toolbox

FPSOidentificationresultsforh₃₃(s)withoutusingtheinfiniteaddedmassA₃₃(∞).Theleft-hand-sideplotsshowthecomplexcoefficientanditsestimatewhileaddedmassanddampingareplottedontheright-hand-side.

Page 31: Chapter 5 –Seakeeping Theory · 5.1 Hydrodynamic Concepts and Potential Theory Panel Methods (3-D Potential Theory) For potential flows, the integrals over the fluid domain can

31Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

5.5.1 Frequency-Domain Identification using the MSS FDI Toolbox

h33!s" !1.672e007 s3 " 2.286e007 s2 " 2.06e006 s

s4 " 1.233 s3 " 0.7295 s2 " 0.1955 s " 0.01639

Ar !

!1.2335 !0.7295 !0.1955 !0.01641 0 0 00 1 0 00 0 1 0

B r !

1000

Cr ! 1.672e007 2.286e007 2.06e006 0

Dr ! 0

! ! H!s"#" !Ue1$ #

!x " Arx # B r!!" " Crx

#