75
DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter 5 – Natural Gas Vehicles and Infrastructure v1 | page 5 - 1 Chapter 5: Natural Gas Vehicles and Infrastructure 5.1. Introduction to Natural Gas Vehicles and Fueling 5-2 5.2. Natural Gas Vehicle Types, Applications, and Deployment Trends 5-2 5.3. CNG Vehicle Economic Attributes 5-4 5.4. Future Natural Gas Fuel Pricing and Supply Scenarios 5-6 5.5. Nationwide Natural Gas Vehicle (NGV) Sales 5-7 5.6. Available Natural Gas Vehicles 5-8 5.7. Diesel to Natural Gas Conversion Strategies 5-10 5.8. Liquefied Natural Gas (LNG) Vehicles 5-12 5.9. CARB Natural Gas Vehicle Grants, Incentives, and Rebates 5-14 5.10. Propane Fuels and Vehicles 5-18 5.11. Attributes of Natural Gas and NGV Fueling Infrastructure 5-20 5.12. Natural Gas Fueling Infrastructure Cost Factors 5-25 5.13. Best Practices in Planning, Permitting, and Readiness for NGV Fueling Station Development 5-26 5.14. NGV Fueling Station Safety and Code Guidelines 5-29 5.15. Overview of Nationwide Natural Gas Fueling Infrastructure 5-31 5.16. California Natural Gas Fueling Infrastructure 5-32 5.17. Monterey Bay Area and Central Coast Natural Gas Fueling Infrastructure 5-34 5.18. California Energy Commission Support for NGV Fueling Infrastructure 5-35 5.19. The Policy Basis for Natural Gas Vehicle and Fueling Infrastructure Development in California 5-37 5.20. Overview of Natural Gas Emissions and GHG Impacts 5-38 5.21. Outlook for Enhanced Emissions Performance of NGVs and New CARB Mitigation Measures 5-41 5.22. The CARB Sustainable Freight Strategy 5-42 5.23. Opportunities for Coordinated Regional Action on NGV and Electric Powered Goods Movement 5-43 5.24. Potential for Biomethane Development to Reduce NGV Emissions 5-45 5.25. Biomethane Development Opportunities on the Monterey Bay 5-48 5.26. NGV Deployment in the Monterey Bay Region 5-51 5.27. Monterey Bay and Central Coast CNG Fleet Adoption 5-52 5.28. NGV Safety and Training for Technicians and First Responders 5-56 5.29. Summary of Key Issues and Tools for Fleet Adoption of NGVs 5-58 5.30. Recommended Actions to Support NGV Assessment and Readiness 5-62 5.31. Summary Discussion of Strategies for Clean Vehicle and Fleet Decision-Making 5-63 5.32. Information Resources on NGVs, Fueling Stations, Funding, and Local Readiness 5-65 Appendix 1 – Natural Gas Vehicle Emissions and Climate Impact Analysis A-1. Establishing a Risk Management Assessment Framework Relative to the Global Warming Potential (GWP) of Methane and Carbon Dioxide 5-67 A-2. Using “Breakeven Leakage Rate” to Guide Natural Gas vs. Diesel Fuel Pathway Choices 5-72 A-3. The Role of Methane Leakage in the Determination of Natural Gas Climate Impacts 5-73 A-4. The Emissions Profile of Emerging Natural Gas Engine Technologies 5-74 A-5. Summary of Diesel vs. Natural Gas Carbon Emissions Using the 100 Year Global Warming Timeframe and the 3% Leakage Rate 5-76 A-6. Prospects for Future Methane Leakage Reduction to Improve Emissions Profile of Natural Gas: 5-78

Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

  • Upload
    dangnga

  • View
    215

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-1

Chapter5:NaturalGasVehiclesandInfrastructure5.1. IntroductiontoNaturalGasVehiclesandFueling 5-25.2. NaturalGasVehicleTypes,Applications,andDeploymentTrends 5-25.3. CNGVehicleEconomicAttributes 5-45.4. FutureNaturalGasFuelPricingandSupplyScenarios 5-65.5. NationwideNaturalGasVehicle(NGV)Sales 5-75.6. AvailableNaturalGasVehicles 5-85.7. DieseltoNaturalGasConversionStrategies 5-105.8. LiquefiedNaturalGas(LNG)Vehicles 5-125.9. CARBNaturalGasVehicleGrants,Incentives,andRebates 5-145.10. PropaneFuelsandVehicles 5-185.11. AttributesofNaturalGasandNGVFuelingInfrastructure 5-205.12. NaturalGasFuelingInfrastructureCostFactors 5-255.13. BestPracticesinPlanning,Permitting,andReadinessforNGVFuelingStationDevelopment 5-265.14. NGVFuelingStationSafetyandCodeGuidelines 5-295.15. OverviewofNationwideNaturalGasFuelingInfrastructure 5-315.16. CaliforniaNaturalGasFuelingInfrastructure 5-325.17. MontereyBayAreaandCentralCoastNaturalGasFuelingInfrastructure 5-34 5.18. CaliforniaEnergyCommissionSupportforNGVFuelingInfrastructure 5-35 5.19. ThePolicyBasisforNaturalGasVehicleandFuelingInfrastructureDevelopmentinCalifornia 5-375.20. OverviewofNaturalGasEmissionsandGHGImpacts 5-385.21. OutlookforEnhancedEmissionsPerformanceofNGVsandNewCARBMitigationMeasures 5-415.22. TheCARBSustainableFreightStrategy 5-425.23. OpportunitiesforCoordinatedRegionalActiononNGVandElectricPoweredGoodsMovement 5-435.24. PotentialforBiomethaneDevelopmenttoReduceNGVEmissions 5-455.25. BiomethaneDevelopmentOpportunitiesontheMontereyBay 5-485.26. NGVDeploymentintheMontereyBayRegion 5-515.27. MontereyBayandCentralCoastCNGFleetAdoption 5-525.28. NGVSafetyandTrainingforTechniciansandFirstResponders 5-565.29. SummaryofKeyIssuesandToolsforFleetAdoptionofNGVs 5-58 5.30. RecommendedActionstoSupportNGVAssessmentandReadiness 5-625.31. SummaryDiscussionofStrategiesforCleanVehicleandFleetDecision-Making 5-635.32. InformationResourcesonNGVs,FuelingStations,Funding,andLocalReadiness 5-65

Appendix1–NaturalGasVehicleEmissionsandClimateImpactAnalysisA-1. EstablishingaRiskManagementAssessmentFrameworkRelativetotheGlobalWarming

Potential(GWP)ofMethaneandCarbonDioxide 5-67A-2. Using“BreakevenLeakageRate”toGuideNaturalGasvs.DieselFuelPathwayChoices 5-72A-3. TheRoleofMethaneLeakageintheDeterminationofNaturalGasClimateImpacts 5-73A-4. TheEmissionsProfileofEmergingNaturalGasEngineTechnologies 5-74A-5. SummaryofDieselvs.NaturalGasCarbonEmissionsUsingthe100YearGlobalWarming

Timeframeandthe3%LeakageRate 5-76A-6. ProspectsforFutureMethaneLeakageReductiontoImproveEmissionsProfileofNaturalGas: 5-78

Page 2: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-2

5.1.IntroductiontoNaturalGasVehicles(NGVs)andFuelingIssues:Petroleum-basedfuelshavelongdominatedU.S.transportation,withoilaccountingforapproximately93percentofdomestictransportationfuelconsumption.Withinthetransportationindustry,mediumandheavydutyvehiclesaloneaccountforapproximately22percentofalloiluse,andasignificantlyhigherproportionofharmfulemissions.Thesearchforpetroleumsubstituteshasalsogainednewurgencyduetotheneedtoreduceforeignoildependenceandmitigatetheriskofsupplydisruption,andtoreduceeconomicexposuretothepricevolatilityoftheoilmarket.Thankstoitsrelativelylowprice,abundantsupply,andpotentialforemissionsreduction,naturalgasisreceivingsignificantattentionasanalternativefuel--especiallyformediumandheavydutyvehicles.Whileelectricityshowsgreatpromisefordisplacingoilinthelight-dutyvehiclesector,untilbatteryenergydensitysignificantlyincreases,heavierdutytrucksposespecialchallengesforelectrification.Moreover,thedevelopmentofexpandedbiomethanefuelpathways–averylow-carbonsubstitutefornaturalgas–holdspromiseforreducingthecarbonintensityofnaturalgasandmitigatingfugitivemethaneleakagefromlandfills.Forallthesereasons,naturalgasmeritsseriousconsiderationasaviablealternativefuelandvehicletechnologyoption.

NaturalgashasbeennotablyinexpensiveandabundantonthedomesticU.S.marketinrecentyearsthankstotherecentboominhydraulicfracturing(“fracking”).Intermsofitsenvironmentalperformance,naturalgascansignificantlyreducetailpipeemissionsofsomecriteriapollutants(especiallyparticulatematter)asmuchas90%belowthatofconventionalpetroleumdiesel.Inaddition,someanalyseshavesuggestedthatnaturalgascouldreducegreenhousegasemissions(whicharechemicallydistinctfromcriteriapollutants)comparedpetroleumsources,dependingonavarietyoffactors--includingthemethaneleakagerateinthenaturalgasfuelsupplychain,therelativeefficiencyofnewnaturalgasenginetechnologies,andtherelativeperformanceofemergingcleandieseltechnologies.However,manyestimatesofnaturalgascarbonimpactsarecurrentlyundergoingrevision,raisingquestionsabouttheperformanceofnaturalgasvs.petroleumfromaclimateperspective.

InlightofthemanycomplexissuesparticulartoNGVs,thischapteroftheAlternativeFuelReadinessPlanwilladdressthesequestions:

§ Whatarelikelytrendsinnaturalgaspricing,vehicleavailability,andvehicleperformanceinthe2016-2025period?

§ Whatarekeybestpracticesinnaturalgasfleetmanagementandfuelinginfrastructuredevelopment?

§ WhatarethemostrecentestimatesandtrendsinNGVemissionsfroma“welltotank”perspective?(Notethatduetothecomplexityofthisdiscussion,someoftherelevantmaterialiscoveredinAppendix1tothisreport.)

5.2.NaturalGasVehicleTypes,Applications,andDeploymentTrends:TherearethreeprincipaltypesofNGVscurrentlydeployedintheUnitedStates.Theseinclude:

§ DedicatedNGVs–operatingon100percentnaturalgas,eitherintheformofCompressedNaturalGas(CNG)orLiquefiedNaturalGas(LNG).

§ Bi-FuelNGVs–operatingoneithergasolineornaturalgas(thebi-fuelvehicletypehastwocompletelyseparatefuelsystems).

§ Dual-FuelNGVs–NGVsthatoperateonnaturalgasbutusedieselfuelforpilotignition

Page 3: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-3

assistance.Thisdesignisprimarilyusedinheavy-dutyvehicles.Despitetherecentabundanceoflow-costdomesticnaturalgassupplies,theUnitedStatesisoneofthelastindustrializedcountriestoembracenaturalgasasatransportationfuel.Worldwide,therearemorethan15.2millionnaturalgasvehicles–butaccordingtoNGVAmerica,therearejustover120,000NGVsofalltypesonU.S.roadstoday,asnotedinthechartbelow,whichincludesallNGVfuelingsystemconfigurations.NearlyallthedeployedNGVsintheU.S.arefueledwithCompressedNaturalGas(CNG)ratherthanLiquefiedNaturalGas(LNG),inpartbecausethepredominantlytruck-basedLNGdistributionsystemismoreexpensivethanpipeline-basedCNGdistribution,andtherearefewLNGequippedvehiclescurrentlyavailableonthemarketplace.NaturalGasVehicleRegistrationsintheUnitedStates

Source:U.S.EnergyInformationAdministration:http://www.eia.gov/renewable/

NaturalGasVehiclesinCalifornia:Asof2015,approximately13,500Class3-8trucksutilizingnaturalgasareregisteredwiththeCaliforniaDepartmentofMotorVehicles,alongwithnearly20,000CNG-fueledlight-dutyvehicles.

Page 4: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-4

DiversityofNGVApplications:CNGandLNGvehiclescanbedeployedtomeetdiversetransportationneeds,fromlightdutysedanstospecialtytrucks,buses,andoff-roadvehicles,asshowninthechartbelow.

DistributionofMedium-andHeavy-DutyNGVsintheU.S.ByApplication:Asshowninthechartbelow,medium-andheavy-dutyNGVsareusedpredominantlyintransitbuses,utilities,refuse,regionalhauling,andmunicipal/governmentapplications,withshuttle,schoolbus,anddeliveryapplicationsrepresentingsmallersegments.

Source: 2014 NGV Production and Sales Report, NGV America

5.3.CNGVehicleEconomicAttributes:Compressednaturalgas(CNG)wasinitiallyintroducedasatransportationfuelduringWorldWarII,whengasolinewasinshortsupply.However,NGVswerenotgenerallycommerciallyavailableuntilthe1980s,whentheywereintroducedprimarilyasatechnologytoreducecriteriaairpollutants–especiallynitrogenoxides(NOx)andparticulatematter

Page 5: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-5

(PM)–andtotakeadvantageofthepricedifferentialbetweennaturalgasanddiesel.NGVsstillenjoysubstantialadvantagesinmeetingcriteriaemissionstandardscomparedtoconventionaldiesel,butthegapwillnarrowsignificantlyascleandieselvehicleregulationstightenin2017andbeyond.(EmissionsdifferencesarediscussedindetailinAppendix1.)

Formostfleetmanagers,costisaprimaryconcernwhenchoosingbetweennaturalgasvs.dieselvehicles.However,relativefuelcostscanfluctuatesignificantly.NGVsoverthe2010-2014periodofferedadifferentialsavingsofasmuchas30%to50%lowerfuelcostthandiesel,aswellaslowermaintenanceandrepaircosts.However,crudeoilpricesin2015reachedan11yearlow,whichdoubledthepaybackperiodforUSnaturalgasvehiclescomparedtodiesel--fromaboutoneyearandeightmonthsinmid-2014toapproximatelythreetofouryearscurrently.1Asoflate2015,thefuelpricespreadbetweendieselandCNGislessthan$1pergallon-equivalentoffuelattheretaillevel.

CurrentretailpricesforCNGgenerallyrangefrom$2-$2.50pergasolinegallonequivalent(GGE)withinCaliforniaandmaybelowerforprivatefleets.Dieselfuelpriceshavebeenquitevolatileinrecentyears,varyingfrom$2.50to$3.50ormore.Althoughmanyanalystsexpectedcrudeoilpricestorise,theyhaveremainednearhistoriclowsasofearly2016.Naturalgascommoditypricesarealsoexpectedtoriseovertime(alongwithdiesel),evenasCNGisexpectedtoremaincheaperatthepumpthandieselorgasoline.Thelikelydifferentialbetweendieselandnaturalgasis,unfortunately,extremelydifficulttopredictassomanyunpredictablevariablesareatwork.

AkeyongoingchallengetoNGVmarketgrowthintheheavy-dutyarenaisthatlargefleetoperatorstypicallyreplacetheirvehicleseverythreetofouryears,leavingarelativelyshorttimetoamortizethehigherinitialcostofNGVvehiclesandgainthelonger-termbenefitfromtheirlowerfuelcosts.Forexample,dieselpricesinApril2014,beforetheoilpriceslump,werenearly$4.00pergallon,whilenaturalgaswas$1.81perdieselgallonequivalent(DGE)–aftertakingintoaccountthe15%lowerfueleconomyforthenaturalgasengine.Thespreadbetweenoilandgaspricesmeantthecostforfuelanddieselexhaustfluid(DEF)foraClass8heavydutytruckrunning100,000milesayearwasaround$58,063,whileitamountedto$30,420forthesamemileagewithnaturalgas.Optingfornaturalgasatthattimeofhigheroilpriceswouldhaveproducedsavingsof$27,643peryear.ConsideringthatClass8naturalgastruckscostabout$43,640moretopurchaseandmaintenancecostsarehigher,itwouldhavetakenaboutoneyearandeightmonthstopaybackthedifferencebetweenanaturalgasenginetruckandadieselenginetruck.

Takingadieselpriceof$2.78agallon,whichistowardsthelowerendofthepricerangeseeninmid-2015,thedieselcostperyearfor100,000milesisonly$40,608.Thisputsthefuelpricedifferencebetweenadieselandnaturalgasvehicleataround$10,188peryear,withapaybackperiodofbetweenfourandfiveyears.Thisisoutsidethetypicalthree-yearreplacementcyclefornewClass8vehicles,andwellbeyondthe~18monthpaybacktimeframesoughtbymanyfleetoperators.

Anotherfactorlimitingnatural-gas-poweredsalesisthearrivalonthemarketofnew,moreefficientdieselengines.Thefirstphaseofafederallymandated6%improvementinfueleconomyby2017tookeffectin2015,pushingheavy-dutytruckmileagecloserto7milespergallonfromabout6.5mpg.Continuousimprovementsindieselfuelefficiencyareexpectedintheforeseeablefuture,whichcouldfurtherreducetheoveralleconomicadvantageofNGVfueling.

1http://ngvtoday.org/2015/02/04/growth-in-north-american-ngv-sales-projected-for-coming-decade/

Page 6: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-6

5.4.FutureNaturalGasPricingandSupplyScenarios:RecentincreasesinbothoilandnaturalgassuppliesintheU.S.andgloballyhaveoccurredduetothefrackingboom.Theconsequentpricedecreaseshavealsonarrowedthespreadbetweendieselandnaturalgas.Futuredemandincreasesfornaturalgasarelikelyintheutilitysectorasmorecoalplantsarephasedout.Asalwayswithfuelpricepredictions,however,thereisnowaytoforeseeallthepotentialeconomicandpoliticalfactorsthatcouldeffectprices.AMiddleEasternconflictthatimpactsoiltransportthroughtheStraitsofHormuz,forexample,coulddramaticallyincreaseoilpricesvirtuallyovernight.Therefore,itisprudenttolookatavarietyofpricingscenariosfornaturalgas.

Accordingtoameta-analysisofrecentindustrystudiesbytheCleanSkiesFoundation–aresearchinstitutefocusedontheadoptionofcleanfuelsandenergyefficiency–the“highcase”forNGVadoptionanticipatesthatthetransportationshareoftotalnaturalgasdemandincreasesfromjust0.2percentin2013to2.3percentin2025.By2025,thehighcaseestimateisthatapproximately2.4millionNGVswillbeonU.S.roads,ofwhich480,000areheavydutytrucks.Thesevehicleswouldconsumeabout711Bcf(billioncubicfeet)ofgasannuallyby2025anddisplaceover180millionbarrelsofoil.TheanalysisconcludesthatthepricerisesattributabletothislevelofincrementalNGVdemandisatmost$0.25/Mcf(millioncubicfeet)by2025.Asillustratedinthechartbelow,thistranslatestoacontinuingsubstantialpriceadvantagefornaturalgasversuspetroleumfuels.

NaturalGasFuelPriceHistory&Outlook:2005-2035

SOURCE:EIAAnnualEnergyOutlook2012HeavyDutyVehicleReferenceCase:TransportationFuelPrices.http://www.cleanskies.org/wp-content/uploads/2013/04/driving-natural-gas-report.pdf

IncrementalNGVvs.DieselPurchaseandOperatingCosts:Theincrementalupfrontcostsfornaturalgasenginesinthetrucksegmentvarysignificantlybyenginesizeandsupplier--buttypicallyareinthelowthousandsforlighter-dutyvehiclesand$40,000ormoreforheavy-dutyClass8vehiclesduetothecostofhigh-pressuretanks.Asaresult,naturalgasenginesaremosteconomicalinvehicleapplicationswherefuelcostsconstituteahighershareofoverallvehiclecosts,andare

Page 7: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-7

especiallyattractiveforheavy-dutytrucksthattraveltensofthousandsofmilesperyear.Thekeyvariablesinthecostefficiencyequationarefuelandmaintenancecosts,annualmileage,andtheownershipperiodofthevehicle.Oncetheincrementalcostdifferenceispaidoff,thetruckownercanbenefitfromsignificantsavingsinfuelcostsovertheusefullifeoftheNGVtruckandengine,whichiscomparabletodieselvehicles.

Onthedieselside,initialpurchasecostsmayincreasefasterthanNGVsinfutureyears,becausetechnologieshavegrownmuchmorecomplexduetorequirementsfortheuseofselectivecatalyticreduction(SCR)andothertechnologiesthatincreaseoperatingcosts.Asalways,consumersandfleetmanagersmustassessproductofferingscarefullyinlightofindividualusecasesandtheavailabilityandcostofrelevantfuelinginfrastructureinordertoarriveatarationaldecisionregardingNGVvs.dieselorotheralternativefuelvehicleadoption.Pleasenotethatmoredetaileddataonfuel,refuelinginfrastructure,andvehiclecostwillbeaddressedlaterinthischapter,alongwithlinkstoonlinetoolsthatcanassistwithTotalCostofOwnership(TCO)calculationsandvehiclecomparisons.

5.5.NationwideNaturalGasVehicleSales:NavigantResearchisprojectingthatsalesofmedium-duty(MD)andheavy-duty(HD)NGVsinNorthAmerica,includingtrucksandbuses,willshowaCompoundedAnnualGrowthRate(CAGR)of3.2percentbetween2014and2024,with18,195unitsbeingsoldin2014,increasingto23,283annuallyin2024.Bycontrast,forlight-duty(LD)vehicles,NavigantprojectsaCAGRof6.1percentbetween2014and2024,withsalesofnaturalgascarsgrowingataCAGRof4.7percentandsalesofnaturalgasLightDutytrucks,mainlypickupsandvans(includingbothdedicatedandbi-fuelvehicles),growingataCAGRof6.3percent.TheprojectionsarecontainedinNavigant’sreport:NaturalGasPassengerCars,LightDutyTrucksandVans,Medium/HeavyDutyTrucksandBuses,andCommercialVehicles:GlobalMarketAnalysisandForecasts.

Source:NaturalGasPassengerCars,LightDutyTrucksandVans,Medium/HeavyDutyTrucksandBuses,andCommercialVehicles:GlobalMarketAnalysisandForecasts,Navigant.2

ThesenumbersremainatinyfractionofoverallnewvehiclesalesintheUnitedStates,whichtopped17millionnewvehiclesalesin2015.Between2013and2014,light-dutynaturalgasvehiclesintheUSexperiencedasharpsalesdecline,inpartduetothelowerdifferentialbetweennaturalgasandgasolineprices,whilegrowthwasstrongestintheheavy-dutysegment.However,overallunitvolumewasdownmorethan6%acrossallNGVsegments.

2http://ngvtoday.org/2015/02/04/growth-in-north-american-ngv-sales-projected-for-coming-decade/

Page 8: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-8

CorporateSustainabilityGoalsDrivingSomeNaturalGasSales:DespitetheongoingchallengesfacingtheNGVmarketintheU.S.,anumberofhigh-profilefleetsremaincommittedtoNaturalGasVehicles.UnitedParcelServicein2015orderedapproximately300NG-poweredheavy-dutytrucks,addingtoafleetof700NGClass8tractorspurchasedin2014.ThetrucksoperateprimarilyinWestCoastandSoutherncorridorswithsufficientnaturalgasstations,someofwhichwerefinancedwithUPSassistance.By2016,about2%ofUPS's100,000vehiclesworld-widewillbepoweredbynaturalgas.

Inaddition,Wal-Mart,Lowes,OfficeDepot,andProcter&GambleareamongagrowingnumberofcompaniesrequestingthattheirtruckingsuppliersusealternativefuelvehiclestocomplywithcorporatepoliciestoreduceCO2emissionsandcriteriapollutioncausedbydieselfuel.ForAT&T’sglobalfleetofmorethan70,300vehicles,thecompanyannouncedplansin2009toinvestupto$565millionaspartofalong-termstrategytodeployapproximately15,100alternative-fuelvehiclesthrough2018.Thisincludesagoaltoreplaceupto8,000servicevehicleswithCNGvehicles.ThecompanyopenedaprivateCNGrefuelingstationinLosAngeleslastyearandisworkingwiththeDepartmentofEnergy,localandregionalCleanCitiescoalitions,andindustrystakeholderstoencouragethedevelopmentofpubliclyavailablerefuelingfacilitiesthroughoutCalifornia.3

Despitesomehigh-profilesuccesses,CNGpurchasesaredwarfedbythesheernumberofnewdiesel-poweredtrucksbeingsold.NorthAmericansalesofdiesel-poweredtrucksareforecasttorise17%to281,620in2015.Twoyearsago,manyforecastersexpectedasmuchas20%oftheheavy-dutytruckssoldannuallyinNorthAmericabytheendofthedecadewouldbenatural-gaspowered,whereasthepercentageofcurrentsalesremaininthesingledigitrange.4

5.6.AvailableNaturalGasVehicles:Majorautomakershavebeensellingdedicatedlight-dutynaturalgasvehiclesinEurope,SouthAmerica,andelsewhereforyears,butAmericanmarketavailabilityhasbeenlimitedduetolackofdemand.IntheU.S.,onlyahandfuloflightdutyvehicleshavebeenavailable,predominantlylargerpickupsandvans.Inthelight-dutysedansegment,theChevroletImpalaandtheHondaCivicGXhavebeentheonlyofferingsrecently,butHondawillendproductionoftheCNGHondaCivicwiththe2016modelyear.Forthe2014-15modelyears,thechartonthenextpageindicatestheCNGlight-dutyvehiclesavailableforpurchasefromOEMs.

3http://www.automotive-fleet.com/article/story/2012/04/great-fleets-share-best-practices.aspx4http://ngvtoday.org/2015/02/04/growth-in-north-american-ngv-sales-projected-for-coming-decade/

Page 9: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-9

2015LightDutyNaturalGasVehicles,IncludingPick-UpsandVans

Source:2015CleanCitiesVehicleBuyer’sGuide,p.15http://www.afdc.energy.gov/uploads/publication/2015_vehicle_buyers_guide.pdfForthemostcurrentinformationonavailablevehicles,itisrecommendedtoconsultthecurrentCleanCitiesVehicleBuyer’sGuideprovidedatthefederalAlternativeFuelDataCenter,aswellasmanufacturerwebsitesforlocaldealerinformation.MediumandHeavyDutyVehicles:ThereareanumberofOEMcertifiednaturalgasenginemodelsbeingusedinavariousmediumandheavy-dutyvehiclemodels.Theengineslistedbelowcanbe

Page 10: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-10

installedbycertifiedconversioncompaniesknownasQualifiedVehicleModifiersorQVMs.5Theseprogramsaretypicallyveryrigorousandqualityishigh.AQVMqualificationregimeisdescribedontheFordMotorswebsiteathttp://www.fleet.ford.com/showroom/limo-livery-and-funeral/qualified-vehicle-modifiers/,andistypicalformajormanufacturerQVMrelationships.

§ CumminsWestportISLG8.9L(250–320hp)§ CumminsWestportISX12G12L(320–400hp)§ FordMotorCompany2.0LL-4§ FordMotorCompany5.4LV-8§ FordMotorCompany6.8LV-10§ GeneralMotors3.0L§ GeneralMotors6.0LV-8§ BAFTechnologies6.8Source:2015CleanCitiesBuyer’sGuidehttp://www.afdc.energy.gov/uploads/publication/2015_vehicle_buyers_guide.pdf

5.7.DieseltoNaturalGasConversionStrategies:Today’sprimaryNGVmarketsarepublictransitbuses(thelargestconsumerofnaturalgasasatransportationfuel),andwastecollectionandtransfervehicles(thefastestgrowingmarketsegment).Manyairportsandothergovernmentfleetshavealsoadoptednaturalgas.Privatefleetstypicallyadoptnaturalgasprimarilyforservicevehiclesthatreturntobasedaily.Althoughtherearearelativelysmallnumberofnaturalgasenginemodels,thesearetypicallyinstalledintoawidevarietyofvehiclebodytypesbyvehiclemanufacturersandretrofitproviders.Forexample,thesameCumminsnaturalgasenginemaybeusedinarefusetruck,abus,orastreetsweeper.

TherearenumerousaftermarketengineconversionkitswhicharecertifiedbytheCaliforniaAirResourcesBoardandavailableforawiderangeofvehicleplatformsandclasses.Mostconversionkitsallowforbi-fueling(CNG/gasoline)oreventri-fueling(CNG/gasoline/E85)capability.AswithnewOEMvehicles,paybackperiodsvarybutcanbelessthantwoyears,dependingonannualmilestraveled,currentfuelpricedifferentials,andretrofitcosts.

Retrofitoptionsareexpanding--thanksinparttostateandfederalinvestmentinR&D.MediumandheavydutyenginemanufacturerssuchasCumminsWestport,Volvo,andNavistarhavereceivedCaliforniaEnergyCommissionfundstodevelopnewnaturalgasengineswhicharebeingintegratedintoanumberofheavierdutyvehiclechassis,suchasPeterbiltandKenworth.Productofferingsintheheavy-dutysegmentareexpectedtoincreaseinfutureyearsbasedonstrongeremissionsrequirementsfordiesel(whichwillincreasetheirrelativepurchasepricevs.CNG)--andthereturnoflargerfuelpricedifferentialsbetweendieselandnaturalgas.

Qualifiedsystemretrofitters(QSRs),alsoreferredtoasupfittersorinstallers,caneconomicallyandreliablyconvertmanylight-andmedium-dutyvehiclesfornaturalgasoperation.TobecertifiedasaQSR,manufacturersmustprovideacomprehensivetrainingprogramanddetaileddocumentationtotheirowntechniciansaswellastoQSRtechnicianstoensurethatequipmentandcomponentsareinstalledproperly,andtheQSRmustobtaintherelevantemissionscertificationsandtamperingexemptions.

5http://www.baaqmd.gov/~/media/Files/Strategic%20Incentives/Alt%20Fuels/CNG%20and%20LNG%20Best%20Practices%209-30-14%20FINAL.ashx?la=en

Page 11: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-11

Typically,certifiedinstallerswillonlyperformaCNGconversiononnewornearlynewvehicles.Also,CNGconversionkitsmustmeetorexceedthesameemissionsstandardsthatapplytotheoriginalvehicleorengineaccordingtostringentEnvironmentalProtectionAgency(EPA)and/orCaliforniaAirResourcesBoard(CARB)requirements.Forthisandotherreasons,itisimportantthatconversionsbeperformedbyreputableQSRs.Thetradeassociation,NGVAmerica,offersinformationonlight-,medium-,andheavy-dutyNGVsandenginesavailabledirectlyfromOEMsorviaconversionsystemscertifiedbytheEPAorCARB.TheyalsoprovidemanufacturerandQSRcontactinformationathttp://www.ngvamerica.org/vehicles/vehicle-availability/.

NGVManufacturersandRetrofitProviders

Page 12: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-12

Source:NGVAmericaWebsitehttp://www.ngvamerica.org/vehicles/vehicle-availability/

5.8.LiquefiedNaturalGas(LNG)Vehicles:Liquefiednaturalgas(LNG)istheliquefiedformofnaturalgas,producedbycoolingnaturalgastotemperaturesbelow-260°F.Asafuelsource,itisbothcleanerburningandmoreeconomicalthantraditionalpetroleumfuels,includingdiesel.Theenergycontentofagivenamountofnaturalgasremainsthesameregardlessofwhetheritisintheliquid(LNG)orgaseous(CNG)state.However,LNGhashigherenergydensitythanCNGandthusofferssignificantpotentialinNGVmarketsegmentswherelongdrivingrangeisrequired.However,thepotentialforLNGvehicleshasnotyetbeenfullyrealizedduetothehighinitialcostandlimiteddistributionofLNGinfrastructureandvehicles.BecauseLNGmustbestoredatextremelylowtemperatures,largeinsulatedtanksarerequiredtomaintainthesetemperaturesinstationaryfuelstorageandinvehicles.ThismakesLNGmostappropriateforheavy-dutyvehicles,whichcanaccommodatethevolumeneededforLNGstorage.LNGalsorequiresfairlyconsistentvehicleuseasthefuelslowlyheatsfromthetank’swarmersurroundings,whichcanleadtotankventingandlossoffuel.TypicalLNGfueltankholdtimesareaboutoneweekifthevehicleisnotdriven,althoughventingwillnotoccurifthevehicleisdriveneveryfewdays.OutlookforLNG:LiquefiedNaturalGasorLNGasavehiclefuelhasthepotentialtobesuccessfulinselectvehiclemarketsegmentsbaseduponfavorableeconomicsandstronggovernmentsupportforexpandedinfrastructure.Asnoted,themostpromisingmarketsarelong-haulheavy-dutytrucking,aswellastransitandrefusevehicles,andmarineandrailroadapplications.Currentlytherearefewerthan4,000LNGvehiclesnationwideandfewerthan200LNGstations.TosupportexpansionofLNG,anintegratednetworkofpublicaccessstationsandLNGinfrastructureacrossthecountrywillbeneeded.LNGFeedstocksandFuelingInfrastructure:FeedgasforLNGmaycomefromthenaturalgaswellhead,frompipelines,orfromsourcesofrenewablenaturalgas(landfillsoranaerobicdigestors).LikeCNG,LNGhasawiderangeofenvironmentalprofilesdependingonthesourceofgas(fossilvs.biogasorothersources.)SuccessfulLNGinfrastructureimplementationwillneedtominimizethethreemaincostcomponentsoftheLNGsupplychain:feedgascost,liquefactionandupgradecost,andtransportationcost.Feedgascostislargelydeterminedbymarketforces,althoughgovernmentsupportforbiogaswillbeimportanttocreatescaleinthesustainablegassegment.Liquefactionmaybeperformedatoneofawidevarietyoffacilities,butdistributionofLNGisprimarilyperformedbytankertrucksthatdeliverthefuelfromtheliquefactionfacilitytothevehiclefuelingstation.Aswithotheralternativefuels,sustainableLNGfuelingsystemdevelopmentwillrequirecarefulselectionofstationlocationsandcapacitiesandwidespreaduseofstandardizeddesigns,whiletargetingthemostpromisingmarketsegmentsforLNGpenetration.LNGstationsthatdispenseLCNG(CNGproducedfromLNG)havethebenefitofsupportingbothnaturalgasfueltypes.WithstrategicexpansionofanLNGinfrastructure

Page 13: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-13

networkinspecificregions,successfulpenetrationoftheLNGClass8truckmarketcouldachieveattractiveeconomicsandmuchlargermarketuptake.LNGStationDesign:LNGfuelingstationsgenerallyreceivetheirLNGsupplyfromaliquefactionplantviatankertruckspeciallydesignedtodistributecryogenicfuels.Atthefuelingsite,LNGisoffloadedintothefacility’sstoragesystem.InmostLNGstations,thefuelpassesthroughapumptoanambientairvaporizerthatservesasaheatexchangerwherebythetemperatureoftheLNGisincreased.Thepressureincreasesatthesetemperatures,butthefuelremainsaliquid.Thisprocessiscalledconditioning.Afterconditioning,LNGisstoredinlargecryogenicvesselsthatcanbeconfiguredhorizontallyorvertically,andaretypicallyfoundincapacitiesof15,000or30,000gallons.Whenneeded,LNGisdispensedasaliquidintocryogenictanksonboardthevehicle.LNGfuelingissimilartoCNGfastfuelingintermsoftimeandconvenience,exceptthatusersareadvisedtouseglovestoprotectagainstthecold,andtheyshouldreceiveanorientationtocryogenicfuelhandling.LNGstationsareverycostlyastheymustaddressuniquedesignandfunctionalityrequirements,includingtanktruckoffloading,fuelconditioning,cryogenicfluidstorageandprocessing,vapormanagementandventingminimization,codesandstandardscompliance,andspecialmeteringanddispensingneeds.CostefficienciesarebeingdevelopedthroughnewtechnologythatproducesLNGatwarmertemperatures,whichcouldreducecomponentcostsinthesystem.LNGstationdesigners,someofwhomarealsocryogenicequipmentmanufacturers,havedevelopedstandardizedstationdesigns.However,moststationsinstalledtodatehavebeencustomdesignedtoaccommodateparticularsiterequirements.FurtherprogresstowardinstallingLNGstationsattruckstopsandbuildingmore“greenfield”stationswillenableincreaseduseofstandardizeddesigns.AsimplifiedviewofanLNGstationisprovidedbelow,followedbyamorecomplextechnicaldiagram.SimplifiedLNGStationView

Page 14: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-14

TypicalLNGStationDesignSchematic

Source:NGVAmericawebsite,http://www.ngvamerica.org/stations/lnglcng/OperationalLNGStation

Source:U.S.DepartmentofEnergy,AlternativeFuelsDataCenterLNGFuelTaxParity:OnekeybarriertobroaderuseofLNGpoweredtruckswasremovedin2015whentheU.S.Congresspassedlegislationrequiringthatliquefiednaturalgasbetaxedonadieselgallonequivalent(DGE)basis,puttingitonanequalfooting,energy-wise,withdiesel.Untilthenewchange,fleetsoperatingLNG-poweredtruckswereeffectivelytaxedfortheirfuelatarate70%higherthanthatofdieselfuelbecausethetaxwasbasedonvolumeratherthanenergycontent.ThenewtaxationapproachbringsLNGintoparitywithdiesel,reducingtheexcisetaxonLNGfromapproximately41.3centsperDieselGallonEquivalent(DGE)to24.3centsperDGE.Anaturalgastrucktraveling100,000milesperyearat5milesperDGEtypicallyconsumesabout20,000DGEperyear.Priortothepassageofthenewlaw,theLNGtruckwouldhaveahighwayfueltaxbillofapproximately$8,262.Withthischange,theLNGtruckwillnowpay~$4,860ayearinfueltaxes,asavingsof$3,402peryear.6

6“LNGTaxFixPassedbyUSCongress,”FleetsandFuels,July2015,http://www.fleetsandfuels.com/fuels/ngvs/2015/07/lng-tax-fix-passed-by-u-s-congress/?utm_source=Fleets-Fuels+August+5%2C+2015&utm_campaign=fleetsfuelsnewsbrief&utm_medium=email

Page 15: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-15

5.9.CARBNaturalGasVehicleGrants,Incentives,andRebates:TheCaliforniaEnergyCommissionhasprovidedfundingfornaturalgastruckdeploymentprojects,aswellabuy-downincentivethathistoricallyprovidedsubsidiesforbothnaturalgasandpropanevehicles.However,propaneincentiveswereendedafterthe2014-15investmentplanyear,duetouncertaintyabouttheiremissionsbenefitscombinedwithlimitedvehicleavailability.Availableincentivesformediumandheavy-dutyvehiclesaretemporarilyexhaustedundertheNGVIncentiveProject(NGVIP),butmaybereinstatedlaterin2016.GiventheverylimitednumberofnaturalgaslightdutyOEMvehiclesavailableforsaleintheU.S.(onlytheChevyImpalawillremainin2016),thefocusoftheCECrebateprogramwilllikelyremainonmedium-andheavy-dutyvehicles.Thesearedefinedasvehicleswithagrossvehicleweightrating(GVWR)above10,000lbs.Whilethesevehiclesclassesaccountforonly936,000outofCalifornia’s28.4milliontotalvehicles,or3%,becauseoftheirlowerefficiencyandhighervehiclemilestravelled(VMT)peryear,theyareresponsiblefor30%ofon-roadGHGemissions.7From2009tomid-2015,theCEChassubsidizedthedeploymentofatotalof1,361naturalgasvehicles,summarizedinthetablebelow.Theseincludelargeone-timeawardsundertheAmericanRecoveryandReinvestmentActof2009,aswellastwosolicitations(PON-10-604andPON-11-603)thatofferedfirst-come,first-servedbuy-downincentivesforbothnaturalgascarsandtrucks.Themostrecentbuy-downincentivesolicitation(PON-13-610)hasfurtherrefinedincentivelevelsbasedonthefueldisplacementforeachGrossVehicleWeight(GVW)classperCECdollar.Asnotedabove,asoflate2015,fundshavebeenexhaustedunderthisfirst-come,first-servedsolicitation.However,CECmaintainsawaitlist,asitispossiblethatsomevehiclereservationsmaynotactuallybeutilizedifanapplicantdoesnotfollowthroughontheirpurchase,thusreleasingtheincentiveforthenexteligibleapplicant.InadditiontothePON-13-610funding,theEnergyCommissionisdevelopinganagreementwithUCIrvinetoprovideanincentivedirectlytovehiclepurchasersusingadditionalavailablefundsfrompreviousinvestmentplans.Detailsonanyprogramextensionsarelikelytobeannouncedin2016,andadditionalfundingtoreopentheprogramcouldbeallocatedlaterintheyearorin2017.

CEC Funding for Natural Gas Vehicle Deployment (2009-2015)

Funding Agreement or Solicitation Vehicle Type # of Vehicles

Funding (in millions)

San Bernardino Associated Governments (ARV-09-001)

Heavy-duty trucks 202 $9.3

South Coast Air Quality Management District (ARV-09-002)

Heavy-duty drayage trucks 120 $5.1

Buydown Incentives PON-10-604 and PON-11-603 (Reflects all approved incentives)

Up to 8,500 GVW 245 $0.7

8,501-14,000 GVW 137 $1.1

14,001-26,000 GVW 211 $4.2

26,001 GVW and up 446 $12.9

Up to 8,500 GVW 1,616 $1.6

72015-16InvestmentPlanUpdatefortheAlternativeandRenewableFuelandVehicleTechnologyProgram,CaliforniaEnergyCommission,May2015,p.52.

Page 16: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-16

Buydown Incentives PON-13-610 (In Progress) (Reflects approved reservations only, not claimed or approved incentives)

8,501-16,000 GVW 628 $3.8

16,001-26,000 GVW 314 $1.9

26,001-33,000 GVW 0 $0

33,001 GVW and up 551 $13.8

UC Irvine Agreement (Pending) TBD TBD $10.2

Total 4,470 (+ TBD) $64.6 Source: California Energy Commission, 2015-16 Investment Plan.

RequirementsUndertheCECNaturalGasVehicleIncentiveProject(NGVIP):Asarticulatedinits2015-16InvestmentPlanfortheAlternativeandRenewableFuelandVehicleTechnologyProgram(ARFVTP),theCEC’slong-termgoalforitsnaturalgasincentiveprogramis“toincreaseconsumerfamiliarityandsupplierproductiontoapointwherevariousnaturalgasvehicletypescangrowinthemarketwithoutfurthersubsidy.”Withthisgoalstillsomedistanceinthefuture,theCommissionallocated$10millionforFY2015-2016tosupportongoingNGVdeploymentviatheNaturalGasVehicleIncentiveProject(NGVIP).Priortothisfundingbeingexhausted,incentiveswereavailablethroughtheNGVIPexclusivelyforvehiclesmeetingallofthefollowingrequirements.(ItisexpectedthatintheeventthatNGVIPisre-funded,thesecriteriawillcontinuetoapply.)

§ Vehiclesmustbenew,on-roadnaturalgaslight-,medium-,orheavy-dutyvehicles.§ VehiclesmustbepurchasedonorafterAugust7,2015.§ VehiclesmustmeetallemissionrequirementsoftheCaliforniaAirResourcesBoard(ARB).§ VehiclesmustberegisteredandoperatedonnaturalgasinCalifornia(atleast90percentofthe

time)foratleast3years.§ Vehiclesmustbefullywarranted."Fullywarranted"meansthatallvehiclecomponents,

includingthenaturalgasfuelsystem,arecoveredexclusivelybytheOriginalEquipmentManufacturer(OEM)orcoveredunderseparatewarrantiesbytheOEMandthefuelsystemupfitterthattogetherprovidewarrantyforthecompletevehicle.

§ Eligiblevehiclesmusthaveenginespreppedfornaturalgas.§ TransitbusesarenoteligibleforincentivesundertheNGVIP.§ Theindividualincentiveamountsbygrossvehicleweight(GVW)areasfollows:

Page 17: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-17

AsingleApplicantiseligibleforuptoamaximumof30incentives.ThiscapmaybemodifiedorremovedduringthetermoftheNGVIPbytheCEC.Forthepurposesofthislimit,asingleApplicantisdefinedasanysingleindividualorbusinessentityincludingallsubsidiaries.OnceanApplicantexceedsthismaximumincentivecap,theEnergyCommissionandtheNGVIPAdministratorreservetherighttorejectincentivereimbursementrequestsassociatedwithApplicantsexceedingthecap.Moreinformationisavailableat:https://ngvip.its.uci.edu/docs/ngvip-application-manual-2015-08-03-rev2.pdf

CECSupportforMedium-andHeavy-DutyVehicleTechnologyDemonstrationsandScale-Up:InadditiontothestandardvehiclerebatesandNGVIPprogramdescribedabove,theCEChasprovidedsupportfornaturalgasvehicleswithinitsbroaderalternativefuelmedium-andheavy-dutyvehicletechnologydemonstrationandscale-upprogram.Thisisacompetitive,project-basedprogramavailablebyapplicationonly–notastandardizedrebateprogram.Sincetheprogram’sinception,theEnergyCommissionhasprovided$58.7millionforthebroadportfolioofvariousAFVprojectsdescribedbelow,including$8.3Mforfournaturalgastruckdemonstrationprojects(totalingfivedemonstrationvehicles)showninbluebelow.

Medium-andHeavy-DutyTruckDemonstrationProjectsSupportedbytheCEC(allAFVfueltypes)

Vehicle/TechnologyType #ofProjects #ofUnits CECFunding(inmillions)

Medium-DutyHybrids,PHEVsandBEVs 8 164 $15.8

Heavy-DutyHybrids,PHEVsandBEVs 6 14 $11.3

ElectricBuses 4 17 $6.3

NaturalGasTrucks 4 5 $8.3

FuelCellTrucksandBuses 3 6 $4.5

Vehicle-to-Grid 3 TBD $5.3

Off-RoadHybrids 2 2 $4.5

E85Hybrids 1 1 $2.7

TOTAL 31 209+ $58.7

Source:CaliforniaEnergyCommission,2015-16InvestmentPlan.

Amongthenaturalgastruckprojectsidentifiedabove,theEnergyCommissionpartneredwiththeSouthCoastAirQualityManagementDistricttosupportdevelopmentanddemonstrationofaCumminsWestportnaturalgasenginewithNOxemissionlevelsthatare90percentlowerthan2010engineemissioncertificationstandards.SupportforthesetechnologydemonstrationprogramsaretypicallydevelopedviapartnershipsofOEMs,technologyproviders,AirQualityManagementDistricts,CalSTARTandotherindustrygroups,researchlabs,oruniversities.Suchprojectsaretypicallyfocusedonnewtechnologydevelopmentanddemonstrationratherthanscaleddeploymentinfleetsettings.AdditionalFuelIncentivesforCNG–LocalTaxExemptionandSoCalGasDiscounts:CNG(aswellaselectricity)thatlocalagenciesoroperatorsusetooperatepublictransitservicesisexemptfromapplicableusertaxesthatacountynormallyimposes.(SeetheCaliforniaRevenueandTaxationCode7284.3)TheSouthernCaliforniaGasCompany(SoCalGas)alsooffersnaturalgasatdiscountedratestocustomersfuelingNGVs.KnownasScheduleG-NGVR,theNaturalGasServiceforHomeRefuelingofMotorVehiclesisavailabletoresidentialcustomersonly.CommercialcustomerscanutilizetherateknownasG-NGV,NaturalGasServiceforMotorVehicles.Formoreinformation,seetheSoCalGasNGVswebsite.

Page 18: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-18

5.10.PropaneFuelsandVehicles:Propane,alsoknownasliquidpetroleumgas(LPG),isproducedasabyproductofnaturalgasprocessingandcrudeoilrefining.Mostwidelyusedinruralareasforheatinghomesandpoweringfarmandindustrialequipment,lessthan3%ofpropaneproducedintheU.S.iscurrentlyusedinvehicles.However,propaneisthemostcommonlyusedalternativemotorfuelintheworld,anditspricehashistoricallybeenlowerandmorestablethangasoline.Localpricingcanvarywidelydependingonsupplyanddemand.Propane’senergycontentisapproximately25%lessthangasoline.However,duetoitslowercost,propanestillremainsanattractivechoiceforfleetoperators.Asofearly2016,Californiapropanepricesvariedfrom$1.60to$2.80,withmostpricescloserto$2.00/gallon.Atlowerprices,costsavingscanquicklyoffsetincreasedpurchaseprice.Propane-fueledvehiclesproduceabout10%fewergreenhousegasemissionsthanequivalentconventionalvehicles.Propaneisavailableatmorethan2,600stationsthroughoutthecountry,and~1,500stationsinCalifornia,accordingtotheCaliforniaEnergyCommission.8TheCECallocatedseveralmilliondollarsforavehiclepurchaseincentiveprogramaimedatencouragingpropanevehicleusageinCalifornia.However,thefundingforthisprogramhasbeenexhaustedandtheCEChasnoplanstoreinstatesupportduetoconcernsaboutpropane’senvironmentalattributesrelativetootheralternativefueloptions.PropanevehicleoptionsfromOEMsarequitelimited,asindicatedinthechartbelow.However,enginesandfuelingsystemsarewidelyavailableforupgradingheavy-dutyvehiclessuchasschoolbuses,shuttlebuses,andstreetsweepers.

Source:2015CleanCitiesVehicleGuide,p.11.

8CaliforniaEnergyCommission,DriveCleanwebsite,http://www.energy.ca.gov/drive/technology/propane.html

Page 19: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-19

ConvertingVehiclestoPropane:AccordingtotheU.S.DepartmentofEnergy(DOE)CleanCitiesVehicleGuide,avarietyofoptionsareavailabletoconvertavehicletopropanewithminimalimpactonhorsepower,towingcapacity,orfactorywarranty–iftheconversionisperformedbyanauthorizedtechnician.AllconversionsmustmeetemissionsandsafetystandardsinstitutedbyEPA,theNationalHighwayTrafficSafetyAdministration,CARB,andrelevantstateagencies.Manynewandusedconven-tionallight-dutyvehiclescanbeconvertedtorunonpropane(orCNG)foracostofabout$4,000to$12,000pervehicle.ThetablebelowlistsconversioncompaniesthatoffercertifiedCNGorpropaneconversionsystems.ThelistsofsystemscertifiedbyEPAand/ortheCaliforniaAirResourcesBoard(CARB)areupdatedregularly.VisitEPA’s“AlternativeFuelConversion”page(epa.gov/otaq/consumer/fuels/altfuels/altfuels.htm)andCARB’spageonCertificationofAlternativeFuelRetrofitSystemsatarb.ca.gov/msprog/aftermkt/altfuel/altfuel.Htmforthemostcurrentlistsofcertifiedsystemsforvehiclesofallmodelyears.AdditionalinformationonvehicleconversionsisavailableatthefederalAlternativeFuelDataCenteratafdc.energy.gov/vehicles/conversions.html.

Page 20: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-20

5.11.AttributesofNaturalGasandNGVFuelingInfrastructure:Naturalgasisprimarilycomposedofmethane(88to93percent)butitalsocontainsanumberofothercomponentsinsmallerquantities,includingethane,propane,butane,andinertgases.Initsnaturalstate,naturalgasisnoncorrosive,colorless,andodorless.Naturalgasisalsoanasphyxiantand,insufficientquantities,cancausesuffocation.Naturalgasmayalsocontainwater(measuredinmillionsofpartspercubicfoot)andforeignmaterialsuchasscalefromtransportationpipelines.Sincebothofthesematerialscouldharmengines,dessicantdryersthatremovemoisturearetypicallystandardequipmentinCNGfuelingstations.Filtersmayalsobeaddedtoremoveotherimpurities.Naturalgasishighlycombustibleatlowlevelsofconcentration(4to16percentofvolume)andburnswithablueflame.Becauseitislighterthanair,wheneverthereisareleaseofgasitquicklydissipatesintotheair.BasedontheNationalFireProtectionActSection49,AppendixB(NFPA),naturalgasisclassifiedasextremelyhazardousforflammability,slightlyhazardousforhealth,andnon-hazardousintermsofreactivity.TheamountofanexplosivegasinagivenvolumeofairismeasuredbytheLowerExplosionLimit(LEL)andtheUpperExplosionLimit.Fornaturalgasthelowerexplosionlimitis5%byvolumeandtheupperlimitis15%byvolume.Toavoidconcentrationofnaturalgasabovesafelevels,ventingandpressurereliefdevicesarerequired,aswellasmethanegasdetectionsystems.Asanadditionalsafetymeasure,asubstanceknownasmercaptanisaddedasanodorantinthegasutilitytransmissionpipelinesothatleakscanbedetected.Themercaptancreatesthedistinctive“rottenegg”odorassociatedwithagasleak.Facilitieswherenaturalgasisbeingused(includingvehiclemaintenanceandrepairfacilities)mustmeetstringentbuildingcodestandardsforexplosionproofing,fireproofing,andaircirculation.Naturalgasdoesnotliquefyunderpressurealone,butanyreleasesofpressurizedgasesarequiteloudandcanbeverydangerous.Forexample,apressurizedhosethathasagasreleasecanwhiparoundandcausebodilyinjuryorpropertydamage.Naturalgas-fueledexplosionsandflamescannotbefoughteffectivelywithwater,butmustbeextinguishedwithcarbondioxide,drychemicals,orhalocarbon.(Moreinformationonnaturalgassafetyproceduresandtrainingareprovidedlaterinthischapter.)NaturalGasFuelDistribution:Naturalgasistransportedfromthewelltothegasutilityinundergroundtransmissionpipelinesthatflowat150to450poundspersquareinchgauge(psig).Atthedistributionlevelthepressureisreducedto15to45psig.ThegasdispensedtocustomersismeasuredbythelocalutilityusingaMeterSetAssemblyorMSAwhichservesasthemeterandcashregisterfortheutility.AnemergencygassupplyshutoffisalsoinstalledattheMSAincaseofanearthquakeorothercatastrophicevent.Todeterminewhethertheexistingdistributionsystemwillsupportanewnaturalgasstation,aprospectivestationdevelopermustassesstheinletpressureatthepointofconnectiontothedistributionsystem.HomeNaturalGasFueling:Homenaturalgaspressureisverylowandismeasuredin“inchesonthewatercolumn”whichislessthanonepoundpersquareinch.Thispressurelevelisadequateforcookingandheatingorcoolingandcanalsobeusedforaconsumer-levelvehiclerefuelingappliance.DevicessuchastheBRCorHonda“Phil”homerefuelingproductprovideanovernightfuelingsolution.Commercialstationsrequiremuchhigherinletpressures—typicallyaminimum14.5poundspersquareinch.Poundspersquareinchisalsoknownasa“bar.”HowNaturalGasMovesfromPipelinetoVehicle:NaturalgasmovesthroughmultiplestepsinpreparationanddeliveryfromthepipelinetotheinletonaCNGvehicle.AsdescribedintheCNG

Page 21: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-21

InfrastructureGuidedevelopedbytheAmericanGasAssociation,9fromafuelinginfrastructureperspective,theprocessbeginsatthegasutilityconnectiontotheCNGstationsite.Thegasismeteredatthisconnection,andthenthefollowingstepsaretypicallyrequiredtomakethegas“vehicleready”.InletGas:Themunicipal“inlet”gasconnectionwillrequiresufficientflowrateandpressureforthedesignedapplication.ManyCNGinfrastructureapplicationscanusethestandardlowpressureavailableinmunicipalgaslines,butitisimportanttoknowthepressureavailableatthelineandiftheenvisionedapplicationwillrequirealargerlineormorepressure.Itisrecommendedthatpotentialstationowners/operatorscheckwiththelocalutilityand/orgassuppliertodeterminethe“guaranteed”minimuminletpressureavailableatyourselectedlocation.GasQuality:Thequalityofinletgasprimarilyconcernsmoisturecontent,andscaleorotherforeignmatter that may be contained in the inlet line.Moisture content in natural gas ismeasuredinmillionsofpartspercubicfoot.Inletgaswithhighmoisture contentwillrequire “drying” in order tomake it serviceable for fueling vehicles, and dryersarestandardequipmentinmostfuelingapplications.Further,a filtermayoccasionallybenecessaryifthereisaquantityofpipe scale orforeignmatterinthegasline.Filterscomestandardonmanymodelsofcompressors.GasCompression:Driedandfilteredinletgasiscompressedbyoneormorecompressorsandoftenstoredintanks,ordelivereddirectlytoafueldispenser.Thispressurizedgasisnow“CompressedNaturalGas”readyforvehiclefueling.PriorityDistribution:MovingtheCNGfromthecompressortostoragetanksordirectlytothevehiclerequiresdirectedcontrol,andthisfunctionissuppliedbyacomputerized“prioritypanel.”PrioritypanelsdirecttheflowofCNGfromthecompressortoon-sitestoragetanks.SequentialpanelsdirecttheflowofCNGfromthecompressorortankstofueldispenserunitsand/orvehicles.Basedonthepressuremeasuredinthevehicletank,theprioritypanelswitchesbetweenthelow,medium,andhighpressuretankstoensureacompletefill.GasStorage:FastfillCNGapplicationswillrequirepressurizedgastobestoredinhighpressuretankstoaccommodatemorevehiclesfuelingfaster.CNGstoragetanksoftencomeincascadesofuptothreetanksina“bank”orinspheres.Cascadebanksaremostoftenmaintainedatthreedifferentpressurelevels(high,medium,low)toaccommodatefastervehiclerefueling,andensureaproperfill.Naturalgasstoragetanksarerequiredbylawtobeinstalledaboveground.DispensingCNG:CNGdispenserscomeinmanydifferentsizes,shapes,andvarieties.However, theyallconformtoeitherafastfilloratimefillconfigurationandareavailableindifferenthoseconfigurationsandwithdifferentflowratesandmethodsofmetering.Timefillunitstypicallydispensefuelthroughafixedpressureregulator.Whenthefuelflowreachesaminimumrate,thefuelflowisshutoff.Fastfillunitsmeasurethepressureinthetank,thenasmallamountofpreciselymeasuredfuelisdispensedintothetankandthepressureriseismeasured.Fromthesefigures,thevolumeofthetankiscalculatedandthetankisfilledrapidlytothislevel.Whenthetankisfulltheflowisshutoff.Manydispenserscomewithtemperaturecompensatorsthatensureacompletefillincoldenvironments.

9CNGInfrastructureGuide,America’sNaturalGasAllianceandtheAmericanGasAssociation,pp.5-6.https://www.aga.org/sites/default/files/sites/default/files/media/cng_infrastructure_guide.pdf

Page 22: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-22

CNGFuelingStationStorageandFillingTechnologies:CNGstationsaredistinctfromgasolineanddieselstationsinsofarastheyincludeuniquecomponentssuchasgasdryersandhighpressurestoragesystemsthatmustconformtorelevantcodesandstandards.Asnotedabove,gasmaybedispenseddirectly(“directfill”)fromthecompressortothevehiclethroughafuelinghose(knownasbufferstorage)orstoredinlargehighpressurevessels(knownascascadestorage).Directfillisabetterchoiceforstationswitharelativelysteadyflowofvehicles,whereasthecascadestorageapproachismoresuitableforstationswithsharppeaksindemand.

Storagevesselsforcascadestoragearetypicallysoldinbanksofthreevessels--eachofwhichtypicallyholdatotalof30,000standardcubicfeet(scf)eachorapproximately240gasolinegallonsequivalent(gge).Athreevesselbankconsistsofhigh,mediumandlowpressurevesselsaswellasthecomputerizedprioritypanelthatdirectsgasfromtheappropriatebanktothedispenserhose.Sincegasmovesinresponsetounequalpressure,thehigherpressuregasinthestoragevesselswillmovetofillthelowerpressurevehicletank.Bufferstorageconsistsofsmallertanksthatprovidefuelforaveryshortperiod(lessthanaminute)whilethecompressorrampsup.

NaturalGasCompressionandVehicleFillingStrategies:Naturalgasvehicletanksaregenerallyfilledat3600psi,butambienttemperature,aswellastheheatofcompressionandpumping,maycausenaturalgastoexpand,reducingthepressureinthevehicletankbelow3600psi.Asaresult,thevehiclemaynotfillcompletely.Inordertorectifythissituation,thegasmaybeinitiallycompressedtoasmuchas5500psitocompensateforheat-relatedexpansion.Analgorithmcontrolsthisprocess--knownastemperaturecompensation--sothatvehiclesreceiveacompletefill.

LiquefiedNaturalGas:Liquefiednaturalgas(LNG)ismethanethatischilledto-270degreesFahrenheit.Thecoldtemperaturescauseotherimpuritiesinthegastodropout--creatingafuelthatisapproximately97percentmethane--resultinginhigherenergydensity.LNGisstored,transported,anddispensedasaliquid.10ThishigherenergydensitymakesLNGapotentialfuelofchoiceforlongdistancevehicles,suchasheavy-dutyClass8tractortrailers.Todate,however,LNGhashadextremelylimiteduptakeintheUnitedStates,withjust~3300vehiclesregisteredasof2010,vs.~113,000CNGvehicles.

LNGintheU.S.hasbeenproducedinlargecentralizedplantsandthentruckedlongdistancestofuelingstationswhereitmustbestoredatverycoldtemperaturesandusedwithinafewdaystoavoidevaporation.TheuseoflongdistancetruckingtodeliverLNGreducestheemissionsbenefitsofthefuelandcanleadtoweather-relateddeliveryproblems.Newdevelopmentsaremakingvarioussizesofon-siteliquefactionplantsmorepractical,althoughtheseproductsareintheearlystagesofmarketintroduction.LNGisalsomoredifficulttoodorizethanCNGandmustbeodorizedonsiteasasafetyprecaution.BecauseofthecomplextechnologyandcosthurdlesfacingtheLNGdistributionsystem,projectedgrowthintheLNG-fueledvehiclesegmentisexpectedtobeverylimitedoverthe2015-2025period.(AdditionalinformationonLNGvehiclesandusecasesisprovidedlaterinthischapter.)

RenewableNaturalGasandBioMethane:Conventionalnaturalgasisnotconsideredtobearenewablefuel.However,biomethaneorrenewablenaturalgascanbeproducedfromorganicmaterialfoundindairies,landfills,andwastewatertreatmentfacilities,leadingtoGHGemissionreductionsofupto85%comparedtoconventionalnaturalgas.(Furtherdiscussionofbiomethaneproductionopportunitiesisprovidedlaterinthischapter.)

10Duetoitscryogenicstate,LNGeasilyevaporates--anditcanalsobegasifiedtocreatewhatisknownasL/CNG(LNGthathasbeenconvertedbacktoCNGforfuelingofCNGvehicles).However,theextracostoftransportingLNGintankertrucksmakesconversionofLNGtoCNGeconomicallyinefficientcomparedtothedirectuseofCNGdistributedbyexistinggaspipelines.

Page 23: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-23

TheNaturalGasFuelingExperience:RefuelingofNaturalGasVehiclescanbeeasierandsaferthanwithgasolineordiesel–ittakesaboutthesameamountoftime,butliquidspillsandstainsdonotoccurasCNGfuelisinagaseousstate.Inthecaseofbi-fuelcars(shownbelow),theCNGfuelinletmaybepairedwiththeliquidfuelinlet,whileindedicatedCNGvehicles,thereisnooptionforliquidfueling.

OEMbi-fuelcarsoftenhavethenaturalgasfuelinletpairedwiththeliquidfuelinlet.

Source:NGVGlobalwebsite.http://www.iangv.org/refuelling_ngvs/

ThefuelingprocessdiffersonlyslightlyforCNG,LNG,orablendofhydrogenandCNG(HCNG).Inallcases,therefuelingnozzleclicksontothereceptacleonthevehicleandtheuserisreadytofill.Whenthecylinderisfull,thedispenserautomaticallyshutsoffandtheuserisreadytodisconnectagain.WithLNG,itisusuallynecessarytowearglovesduetotheextremecoldtemperaturesofthefuel(theuserdoesnotcomeintocontactwiththefuelbuttheequipmentusuallyconductsthecold).Optionsforrefuelingincludepublicstation,depotbasedandhomerefueling.Theprincipaldifferencebetweeneachoptionisthevolumeandspeedatwhichthefuelisdispensedandthemeansofpayingforthefuel.PublicRefueling:PublicCNGstationsoperatemuchlikegasolineordieselstations.Thedriverpullsupatadispenser,switchestheengineoffandthenconnectsthenozzletothereceptacle.However,somenozzleshaveanisolatorfitted,whichpreventstheenginefrombeingswitchedonwhileconnectedtothedispenser.Insomeconvertedvehicles,therefuelingreceptaclemaybelocatedunderthehoodorinthetrunk.InmostOEMvehicles,thereceptacleislocatedwherethegasolineordieselinletis.Refuelingusuallytakesthesameamountoftimeasagasolineordieselvehicle,thoughifdemandisparticularlyhigh,aresultingpressuredropmayslightlyextendthetimetorefuel.PublicCNGrefuelingstationsareusuallysuppliedeitherbypipednaturalgas,orbytrucksknownas“tubetrailers.”Astationsuppliedbyatubetrailerispartofwhatisknownasa“mother-daughter”system,inwhichthefueliscompressedatthemotherstationanddeliveredviatubetrailertothedaughterstation.Mother-daughtersystemsaretypicallyusedwhenpipednaturalgasisnotavailable.DepotBasedRefueling:AdepotbasedCNGstationusuallyservesalimitedfleet,thoughfacilitiesareoftensharedwithfleetsorprivatevehicleownersthatarenotrelatedtothedepot.Depotbasedrefuelingmaydeployeithera“fast-fill”ora“time-fill”(akaslow-fill)system.Afast-fillCNGsystemwillrefuelavehicleinapproximatelyfiveminutesorless.Atime-fillsystemfillsthevehicleoveraperiodofhours,oftenovernight,dependingonthespecificsystempressurelevelandvehicletanksize.Time-fillsystemsareusuallyusedforvehiclesthathaveregularextendedperiodsofnon-operation–suchasrefuseandutilitytrucks,couriervans,privatevehicles,schoolbuses,andotherfixedroutevehicles.

Page 24: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-24

AprivateTime-Fill(akaslow-fill)refuelingdepotcanfillmultiplevehicles

concurrentlyviasinglepostswithmultipledispensers.Source:NGVGlobal.

CNGStationConfigurations:Intotal,therearefourpredominantconfigurationsofCNGstations:

§ CascadeFast-Fill§ BufferFast-Fill§ Time-Fill§ Combination-Fill,whichcombinestwoofthethreeconfigurations

Asnotedabove,fast-fillstationstypicallyrefuelvehiclesinapproximatelythesametimeasagasolinestationunlessconcurrentdemandisunusuallyhigh.Bycontrast,Time-Fill(akaslow-fill)stationsrefuelvehiclesinamatterofhours–typicallyovernight.TheadvantageofTime-Fillissignificantlyreducedupfrontsystemcosttoestablishafueldepot(costvariationsaredetailedbelow).CascadeFast-Fillstationsprimarilyfillfromstoragetanksandaretypicallyusedforretailapplicationsorvehiclesthatrequirerefuelingatvaryingtimes.Unlikegasstationswhichkeepthousandsofgallonsinundergroundstorage,CNGstationsoftenhavethree-packsofabovegroundstoragevesselsinwhich240to300gallonsofcompressedgasarestoredafterdeliveryfromapipelineortruck(inthoselocationswherepipelineinfrastructureisnotavailable).Vehiclesarefilledeitherfromthestoragevesselsordirectlyfromthecompressor,dependingonthecompressorequipmentmanufacturer.Typically,thecompressorwillrefillthestorageduringoff-peakperiodswhiletherearenovehiclesfueling.LargerfleetsandmostpublicCNGstationsutilizethecascadefast-fillconfigurationbelow.

Source:U.S.DepartmentofEnergy,AlternativeFuelsDataCenter,http://www.afdc.energy.gov/

Page 25: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-25

Time-Fillvs.Fast-FillStationConfigurations:MostTime-FillstationsuseSingleHoseFuelingPostsasinthediagrambelow.Asneedschange,Time-FillstationscanbemodifiedtobecomeFast-FillstationswiththeadditionofasmallamountofstorageandFast-Filldispensingequipment.Time-fillstationsareconsiderablysimplerinconstruction,andincludejustthecomponentsillustratedbelow.

5.12.NaturalGasFuelingInfrastructureCostFactors:ThecostassociatedwithconstructingaCNGrefuelingstationcanvarysignificantbasedonlandcosts,size,andapplicationandrangesfrom$675,000to$1,000,000ormore(notcountingland),dependingoncapacityandthroughput.ThetablebelowprovidesestimatesofequipmentandinstallationcostsforoneTime-FillandtwoFast-Fillstations,andillustratesseveralscenariosforthenumberandtypeofvehiclesthatcanberefueledatthestation.Sincelandcostsvarywidely,theyareexcluded.ItisrecommendedthatFast-Fillstationsincorporateredundanciesintheirdesign,thereforethetablealsoshowsaFast-Fillstationwithtwocompressors.Itisimportanttonotethatthecostsassociatedwithcombination-fillstationswillincorporatethecostsofbothfastandtime-fillstations.

Source:AmericanGasAssociationCNGInfrastructureGuide.https://www.aga.org/sites/default/files/sites/default/files/media/cng_infrastructure_guide.pdf

Page 26: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-26

CostBreakoutforComponents:ThefollowingcostrangesarerepresentativeofrecentlowandhighcostsofconstructingaCNGfuelingstationandaresuggestedasageneralguideline.Eachspecificsitewillhaveitsuniquerequirementsandassociatedcosts.Notethatinternalprojectmanagementcostsandlandcostsarenotincluded.

Component EstimatedCosts,$GasSupplyLine 20,000-150,000CompressorPackage 200,000-400,000NoiseAbatement 0-40,000GasDryer 50,000-80,000Storage(3or6ASME) 100,000-200,000Dispenser(1or200M-hose) 60,000-120,000CardReaderInterface 20000-30,000Engineering 25,000-75,000Construction 300,000—600,000Contingencies 10—150,000EstimatedTotal(Excludes,landcost) 805,000–1,845,000Source:AmericanGasAssociationCNGInfrastructureGuide.

CostComponentsofFuel:Thecostoffuelincludesmultiplecomponents,ofwhichthenaturalgasitselfisjustoneelement.Notethatthereisnoprofitmarginbuiltintothiscalculation,thusreflectingaprivatedepotprice,notapubliccommercialstationprice.

NaturalGasFuelPricingElements low highNaturalgas(gallon) $ 0.64 $ 0.91GasCommodity $ 0.52 Transportationtolocaldistributioncompanies(LDCs)viainterstatepipelinestoLDC's"citygate"

$ 0.04

$ 0.04

Local gas company service fee to transport gas tocustomermeter

State/localreceipts/usetaxesand/orspecialassessments

Electricityforcompression $ 0.09 $ 0.30Maintenance/repair $ 0.15 $ 0.30CapitalAmortization $ 0.35 $ 0.50Federalmotorfuelsexcisetax $ 0.18 $ 0.18Statemotorfuelexcisetax $ 0.08 $ 0.30Taxablefuelsales $ - $ 0.10Total $ 2.05 $ 2.63Notes:assumesnograntsorotherbuydownsofequipmentcostandnoprofitmargin.

Page 27: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-27

5.13.BestPracticesinPlanning,Permitting,andReadinessforNGVFuelingStationDevelopmentCNGfuelingstationdesignsvarywidelyandareconstructedinavarietyofformfactors,withminimalstandardization.Todeterminenecessarycapacityandflowrates,CNGstationdesignersmustconsideraparticularfleetapplicationand/orlocalconsumerdemand,aswellastechnicalfactorsrelatedtotheexistingpressureinthepipelinegasdistributionsystem(ifany)ataparticularlocation.AdditionalCNGstationsitingfactorsincludeproximitytofleetvehiclesorconcentrationsofprivateCNGvehicles,andlocalzoningandpermittingrequirements.NotethattheguidanceforCNGstationsissubstantiallysimilartotheguidanceforhydrogenstationdevelopment--asitdrawsontheGovernor’sOfficeofPlanningandResearchprotocolsforH2stationdevelopment.11TheseguidelinesalsoreflectinformationintheCNGInfrastructureGuideproducedbytheAmericanNaturalGasAssociationandtheCaliforniaStatewideAlternativeFuelandFleetsProjectguidancedocument:PermittingCNGandLNGStations:BestPracticesGuideforHostSitesandLocalPermittingAuthoritiespreparedbyCleanFuelConnection,Inc.Allguidancedocumentsagree:itiscriticaltostartthepermittingprocessearly—atleastninemonthsbeforetheanticipatedconstructiondate!Priortobeginningthepermittingandconstructionprocess,stationdevelopersareadvisedtotakeallrelevantstepstoensurethattheprojectisfeasible--andtoselectequipmentandinstallationvendorsbasedonabiddingprocessthatwillsurfaceavailableoptionsandpriceranges.Onceselected,theequipmentvendorandinstallationcontractorwillhelpaddresspermitting,construction/installation,andstartup/commissioningprocesses.

StepA.Startthepermittingandvendor/installerselectionprocessearly:Priortobeginningthepermittingandconstructionprocess,projectdeveloperswilllikelywanttoensurethattheprojectisfeasible.Developersareadvisedtoselectexperiencedequipmentandinstallation vendorsthatcaninturnhelpassessanddemonstratefeasibility--andtrouble-shootpermittingprocesses. Mostdevelopersorownerswillestablishabiddingprocess toassessavailableoptionsandprices.Onceselected,theequipmentvendorandinstallation contractorwillhelpnavigatepermittingandinstallationandotherstartupprocesses.

StepB.SetupaninitialmeetingbetweentheenduserapplicantandthePlanningorCommunityDevelopmentDepartment:Theagendashouldincludetheseitems:

§ Zoningclassificationofproposedstationtodetermineifitisapermitteduse§ Anyapprovalsrequiredtoallowthestationasapermitteduse–e.g.ageneralplan

amendment, variance,oraconditionalusepermit§ Basedonthezoningregulations,determinewhatsetbacksarerequiredfromthepropertyline§ Defineanyspecialclearancesrequiredforexplosionproofing§ Definethelevelofenvironmentalreview,ifany,requiredundertheCaliforniaEnvironmental

QualityAct (CEQA)§ Identifyanynoiseorodorissuesbasedontheneighboringproperties.NotethattheCNG

stationnoisestandardis85dBa(OSHAlimitwithouthearingprotection);andthiscanbereducedto70dBaatthepropertylinewithenclosuresoranoisereductionpackage

§ ReviewthescopeofCNGstationproject§ Identify anyadditionaltrafficorcirculationissuescreatedbythestation

11CaliforniaGovernor’sOfficeofPlanningandResearch,H2Readiness:BestPracticesforHydrogenStationsinEarlyAdopterCommunities,April2014.http://cafcp.org/sites/files/H2-Best-Practices_Final-Single-Page.pdf

Page 28: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-28

§ Defineapprovalprocessesandtimelines.Approvalsforconstructionpermitswilltypicallyberequired fromthesedepartments:

o Planningo BuildingandSafetyo PublicWorkso FireDepartmento Traffico Landscaping,architectural, ordesignreview

§ Identifythenumberofsetsofplansandcalculationstobesubmitted§ Identifyfeeschedules§ Confirmthattheend-userhascontactedthelocalgas utilitytoobtaininletpressureandany

otherutilityrequirementsfornaturalgasdeliverytothe site§ Considervisitingsimilarsitesormeetwiththelocalgasutilityrepresentativeforan

orientation. ( Alistofresourcesforadditionalinformationisattheendofthisguide)§ Onceitisdeterminedthattheprojectisfeasibleandtherearenomajorobstaclessuchas

zoningrestrictions,theprospectivestationownercanproceedtopermitting(seebelow)

StepC. Prepareandsubmitpermittingpackageto theCity;placeequipmentorder:Inadditiontoanyspecificlocalrequirements,thepackageshouldinclude:

§ SingleLineelectricaldiagram

§ CivilDrawingsandSpecificationsstamped byaRegisteredEngineer:§ Aplotplanshowingthe surroundingareaandstreetsaswellasthe placementofthestationon

theproperty§ FoundationsandStructures§ MechanicalDrawingsandSpecifications stampedbyaRegisteredEngineer:§ PipingandInstrumentationDiagram(P&ID)includingpiping,tubing,vesselsand mechanical

equipment§ ElectricalDrawingsandSpecifications§ Electricaldistributionsystem,panelschedules,groundingandloadcalculations§ Safetysignpackage§ GradingPlan§ Preliminaryschedule§ Submittalofthepermitpackagewillbefollowedbyaseriesofreviewsbyvariouscity

departments(Fire,Buildingand PlanningorCommunityDevelopment)withpossiblecommentsandcorrectionsateachstepuntilasetofplansisapprovedbythecity.

StepD.Construction,inspection,andCommissioning

§ ConductinteriminspectionsduringconstructionprocessinaccordancewithallrelevantCNGstandardsdocuments(Seebelowforlistofrelevantstandards)

§ Completefinalelectricalhookupsandutilitywork§ Installutilitymetering

StepE.Finalinspectionbylocaljurisdictionandsignoff

Page 29: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-29

TypicalProjectSchedule:ThefollowingCNGstationprojectmanagementspreadsheetprovidesanoverviewofkeytasksanddevelopmenttimeframes.

Source:CNGInfrastructureGuide,America’sNaturalGasAllianceandtheAmericanGasAssociation.p.44NGVStationSiting,Zoning,andPermitting:LandisasignificantcostcomponentinbuildingaCNGstationina“greenfield”scenario.Requirementsforlandbeginatapproximately1⁄2acreofpropertyforalightdutystation,andincreasewithlargerapplications.Ifcivildesignworkisneededfornewconstruction,ageotechnicalsiteevaluationwilllikelyberequired.Thisevaluationwillprovidecriticalsoilcompositioninformationnecessaryforconcretefoundationsandelectricalgroundingsystems.Considerationsmustbegiventoroadaccess(publicorprivate)andutilityconnections.Easyaccesstomajortrunkhighwaysisdesirable.Wherelandcostsareprohibitiveforanewstand-alonestation,manydevelopersseekoutpartnershipswithaconveniencestore.ManyexistinggasstationswillnothavesufficientlandavailableforthenecessarystorageandequipmentassociatedwithaCNGstation.

Localbuildingcodesandregulationsarealsoofcriticalimportance.SinceCNGandLNGarerelativelynewfuels,theymaynotbespecificallycalledoutinzoningregulations.CNGandLNGstationsareusuallypermittedwherevergasolinefuelingstationsareallowed,typicallyinindustrialandcommercialzones.However,basedonNationalFireProtectionAssociationcodesandstandards(NFPA52),CNGstationshavespecificrequirementsduetothenatureofthefuel,including:

§

§ Setbackof15feetfromaresidentialpropertyline§ ClassIDivisionIratingforallcomponentswithina5footradiusofthecompressorordispenser§

Insomecases,residentialfuelingispermitted.TheCityofChinohaseventakenthestepofrequiringnewhomeconstructiontoincludeplumbingforapossiblehomenaturalgasfuelingappliance.Ifafuelingstationisnotapermitteduseatthedesiredlocation,thesiteownercanappealtothelocalPlanningCommissionforavariance.Ofcourse,thiswilladdtimeandcosttotheapprovalprocess.

Inadditiontozoningregulations,localgovernmentsmayhavetheirownmunicipalcodesthatimpactconstructionofaCNGstation,including:

Page 30: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-30

§ CityFireCodes§ LocalBuildingOrdinances§ LocalNoise/Lighting/Trafficordinances§ Anylocalrequirementsthataremorerestrictivethanthenationalcodes§

Prospectivestationownersshouldfamiliarizethemselveswithlocaldesignandconstructionrequirementstoavoidcostlydelays.

UtilityService:AnadequatenaturalgassupplyaccessibletotheproposedCNGstationlocationiscritical.CNGstationdevelopersshouldcontactthelocalgasdistributioncompanyearlyinthesiteselectionprocess.Aninadequategassupplyandpressureorexcessivedistancetothegassupplycouldmakethestationinfeasible.Inaddition,highcapacityelectricalservicewillberequiredatmostCNGfuelinginstallationstoruntheequipmentnecessarytoprepare,store,anddispenseCNGtowaitingvehicles.Contactthelocalutilityprovidertoconfirmadequatepowerisavailableorcanbeprovided.StationDesignandCapacity:Thefollowingkeyparametersmustbeassessedbythestationdeveloperandkeyconsultantsandcontractorstospecifythestationequipmentandoperatingparameters:

§ Inletpressure:thepoundspersquareinch(psi)availableattheutilitymeter§ Flow:theamountofcompressednaturalgasthatcanbedispensedovertime(asmeasuredby

standardcubicfeetperminuteorscfm).Theflowcanalsobecommunicatedingasolinegallonequivalent(gge)unitsperminute.Approximately125scfmequalsonegasolinegallonequivalentand135scfmequalsonedieselgallonequivalent–withthenumbervaryingslightlydependingonthedefinitionofstandardconditions.Notethatgascompositionalsovariesslightlyfromlocationtolocation,thustheamountofenergy(BTU)ineachgasolinegallonequivalentofnaturalgaswillalsovary.UsingBTUsastheunitofmeasure(ratherthancubicfeet)eliminatesthisdiscrepancy.

§ Dutycycle:thespecificsoftheindividualapplicationwilldeterminewhatkindofCNGcompressorisneeded.Smallercompressorsproduceanywherefromafractionofaggeperhourtoabout2ggeperminute.Ontheotherendofthespectrum,highhorsepowercompressorscanproduceasmuchas12to15gasolinegallonsperminuteormore.

5.14.NGVFuelingStationSafetyandCodeGuidelines:Asnotedinthestep-by-stepguidanceabove,itisextremelyimportanttocontactthelocalFireMarshallandBuildingInspectortogaintheirguidancethroughthepermittingprocess–andtoensurethestationisdesignedandconstructedinaccordancewithallapplicablelocal,state,andfederallaws,rules,regulations,codesandstandards.

GiventheflammablenatureofCNGandLNG,safetyisofparamountconcern.Stationsneedtomeetallapplicablefederal,state,andlocalcodesandrequirements.However,allcodesaresubjecttointerpretationbylocalauthoritieshavingjurisdiction(AHJs)whomaketheultimatedecisiononcompliance.TheprimarycodegoverningcompressednaturalgasandliquefiednaturalgasstationsisissuedbytheNationalFireProtectionAssociation(designatedNFPA52),andisdescribedasfollows.

NFPA52provisionscoverthedesign,installation,operation,andmaintenanceofCNGandLNGfuelsystemsonallvehicletypes--plustheirrespectivecompression,storage,anddispensingsystems.Mostjurisdictionshaveadoptedthiscode,althoughsomemaybeusingolderversions.Additionalrelevantcodesareincludedinthechartbelow:

Page 31: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-31

CodeOrganization KeyFunction

ANSIAmericanNationalStandardsInstitute

FacilitatesdevelopmentofcodesandstandardsthatgoverntheuseofCNGandmanufacturingofCNGfuelingcomponents,includingnozzles,receptacles,dispensers,hoses,breakawaydevices,valves,andrelatedcomponents

ASMEAmericanSocietyofMechanicalEngineers

BoilerandPressureVesselCodeSection8oftheANSI/ASMEB31.3ChemicalPlantandConventionalFuelRefiningPipingCoderegulateshigh-pressureCNGstoragevesselsandpiping.Section8isthemanufacturingstandardforpressurevesselsinCNGstation,whilesectionB31.3establishesspecificationsforpipingthroughoutthestation.Keycodeelementsinclude:§ Section523.DesignandConstructionofCNGTanks§ Section524DesignandConstructionofCompressedNaturalGasCylinders§ Section530ApprovalofDevices§ Section531LocationofStoragetanksandRegulatingEquipment§ Section532InstallationofAboveGroundStorageTanks§ Section536PipingStandards§ Section541SafetyReliefValves

ASNTAmericanSocietyforNondestructiveTesting

TestsCNGstationcomponentsforsafety.

NEMANationalElectricalManufacturers’Association

Establishesstandardsforelectricalcomponentmanufacturing.

NFPANationalFireProtectionAssociation

• NFPA52,NFPA70,andNFPA30Acodesandstandardsregulatetheuseofnaturalgasasavehiclefuel,includingstationsandvehicles;definestheboundariesofthehazardousareasinsidethefuelingstation;andgovernstheuseofmultiplefuelsinonelocation.

NFPA70/NEC DefinestheelectricalclassificationofthehazardousareaswithinaCNGstation

OSHAFederalandState

RegulatesoccupationalsafetyandhealthintheworkenvironmentCAL-OSHATitle8Article7UnfiredPressureVesselCodeforsafetyforpressureVessels(CNGstoragecontainers)

SAE-SocietyofAutomotiveEngineers

SAEJ1616establishesrecommendedpracticesforfuelqualityandwatercontent

UBCUniformBuildingCode(localjurisdiction)

RegulatesstructuresthatcontainCNGfuelingequipment.§ SeismicZone4—forfootings,foundingandsoilfordryer,compressorand

storagevessels§ UBCmustmeetwindrequirementsupto70milesperhourfordryer,

compressorandstoragevesselsUFC-UniformFireCode Somelocalitiesusethiscode;oftencontainsNFPA52withinit

UPC-UniformPlumbingCode GovernstheplumbingcomponentsofCNGstations

NISTNationalInstituteforStandards&Testing

EstablishestheunitofmeasurementforcustodytransferofCNGfromtheretailertothecustomer

Page 32: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-32

ULUnderwritersLab

Testscomponentsandpublisheslistsregardingcompliance

Source:PermittingCNGandLNGStations:BestPracticesGuideforHostSitesandLocalPermittingAuthorities.PreparedbyCleanFuelConnection,Inc.

CNGStationCertificationbyaNationalRecognizedTestLaboratory:IntheprocessofpermittingandapprovingCNGstations,localbuildingofficialswillneedtoconsultaNationallyRecognizedTestLaboratory(NRTL).AlthoughthemostwidelyrecognizedNRTLisUnderwriters’Laboratory(UL),thereareatleastadozenNRTLsthatmaybeacceptedbylocaljurisdictions.CNGstationsarenotULlistedasacomprehensiveunit,rathertheindividualelectricalcomponentsareULlisted.ThisreflectstherealitythatCNGstationsareindividuallydesignedaccordingtospecificcustomerapplicationsandsiteconditions,suchthatnotwostationsareexactlyalike.ResponsibilityforCNGcomponenttestingandcertificationisdistributedperthetableabove,suchthatnooneagencyisequippedtocertifyallnaturalgasequipmentcomponents.Somelocaljurisdictionswillrequirefieldcertificationofinstalledsystems.Inthiscaseanapprovedtestlabwillvisitthesitetoconfirmthatallcomponentsandtheirassemblymeettheapplicantlistingstandards.Otheragenciesacceptwrittenreportsoftestingandlistingofcomponentsbyindependentlaboratories.

5.15.OverviewofNationwideNaturalGasFuelingInfrastructure:Thereareapproximately1,300publicandprivateCNGstationslocatedintheUnitedStates--vs.over120,000retailgasstations.AccordingtotheCaliforniaNaturalGasVehicleCoalition(whosedataiscitedbytheCaliforniaEnergyCommission),CalifornialeadstheUnitedStatesinthenumberofCNGandLNGfuelingstations,withmorethan500combined(publicorprivate)CNGstationsandroughly45LNGstations.12AccordingtotheU.S.DOE’sAlternativeFuelDataCenter,ofthistotal,thereareabout140publicCNGstationsand14publicLNGstationsinthestate.Consumersinmostareascanalsopurchaseaslow-fillsystemforat-home,overnightfueling,althoughnodataisreadilyavailableonslow-fillresidentialdeployment.Nationally,approximatelyhalfofallCNGstationsareforprivatefleetuse.Thus,theratioofCNGtogasolinestationsonanationalbasisisapproximately1CNGstationtoevery100retailgasolinestations--countingbothpublicandprivatestations,or1toevery200countingjustpublicstations.

Duringtheearly1990sthecountry’sCNGrefuelinginfrastructureexperiencedaperiodofgrowth,largelydrivenbythealternativefuelvehiclemandatesoftheEnergyPolicyAct,whichalsoboostedbiofuelproduction,asdiscussedinChapter4ofthisPlan.Followingapeakin1997,nationalCNGrefuelinginfrastructuredeclinedforapproximatelyadecade,whiletrendingupwardsagainsince2006.CNGstationsarealsointheearlystagesofdevelopmentinCanada,whichcurrentlyreports56stationswithpublicaccess.TofueltheprojectedmoderateNGVsalesgrowth,theenergyconsultingfirmNavigantexpectstherewillbeabout2,100to2,200NGVfuelingstationsopenintheU.S.andCanadacombinedin2024,upfromabout1,500today.Globally,salesofNGVsareprojectedtogrowfrom2.3millionunitsannuallyin2014to3.9millionunitsin2024,whichshouldbringadditionalmodelstoNorthAmerica.13

NationalNGVStrategy:Thefirstmajornationalstrategytoboostnaturalgasuseinthetransportationsectorwasdevelopedbyanindustry-ledeffortknownastheNGVCoalition--whichpublishedthefirst122015-16InvestmentPlanUpdatefortheAlternativeandRenewableFuelandVehicleTechnologyProgram,CaliforniaEnergyCommission,May2015,p.49.http://www.energy.ca.gov/2014publications/CEC-600-2014-009/CEC-600-2014-009-CMF.pdf13http://ngvtoday.org/2015/02/04/growth-in-north-american-ngv-sales-projected-for-coming-decade/

Page 33: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-33

NaturalGasVehicle(NGV)IndustrialStrategyin1995.ThiscoalitionhelpedincreasethedemandfornaturalgasinthetransportationsectorbyfocusingonincreasingawarenessandadoptionofNGVsbytransitagencies,deliveryandrefuseservices,andothermedium-andheavy-dutytruckfleetswithhighfuelusage.Between1997and2009,annualdemandfornaturalgasfuelsgrewbythreefoldto3.2billioncubicfeet,or27.7milliongasolinegallonequivalent(GGE).TheNGVStrategydocumentestimatesthattheU.S.willrequirebetween12,000and24,000CNGstations--equivalentto10to20percentoftraditionalliquidfueloutlets--tomakeCNGcompetitiveintermsofpublicaccessforallvehiclesegments.

GrowthinNGVStations:RecentgrowthinCNGandLNGfuelingstationshasbeensomewhatuneven,withadipbetween1998and2008,butanoverallupwardtrendisongoingsince2009,illustratedinthechartbelow.

Source:USDepartmentofEnergy,AlternativeFuelsDataCenter(AFDC).http://analysis.fc-gi.com/natural-gas-vehicles/cng-vehicle-rise-spurs-filling-station-projects5.16.CaliforniaNaturalGasFuelingInfrastructure:AsinthecaseofotherAlternativeFuelVehicles(AFVs),theoverallNGVdeploymentoutlookiscloudedinpartbythe“chickenoregg”dilemmathatinadequatefuelinginfrastructureislimitingconsumerconfidenceinNGVs,whilethelimitedquantityofNGVsaleslimitstheeconomicinventiveforfuelsupplierstoprovidemoreretailfuelingoutlets.IntheCaliforniacontext,thechartbelowfromtheDOEAlternativeFuelDataCenterreportsthatthereare192CNGstationsand61LNGstationsintheplanningphaseinCalifornia.TheAFDCdatadoesnotbreakoutplannedstationsbywhethertheywillbepublicorprivateaccess.However,ifnationalaverageshold,approximately50%ofthesecouldbepubliclyaccessible.Plannedstationsarestationsthathavebeeneither:1)publiclyannounced;2)areinpermitting;or3)areunderconstruction.Thelistalsoincludesstationswhereinstallationoffuelinginfrastructurehasbeencompletedbutthestationshaveyettobegindispensingfuel.NotethatinthecaseofLNGstations,installationoffuelinginfrastructurehas

Page 34: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-34

beencompletedatmanyoftheLNGstationsreportedasplannedintheAFDCdatabase,butthesestationshavenotyetbegundispensingLNGpendingsufficientdemandfromcustomerstojustifyopening.

Source:NGVToday,July2015.http://ngvtoday.org/2015/07/23/number-of-planned-cng-and-lng-stations-8/5.17.MontereyBayAreaandCentralCoastNaturalGasFuelingInfrastructure:CNGfuelinginfrastructureintheMontereyandCentralCoastregionsisrelativelymodestcomparedtoeithertheBayAreaandtheSouthCoast,wherethereisamuchlargerconcentrationofCNGfleetvehicles,particularlyinpublicagencies.MontereyCountyhastwoCNGstations,oneinSantaCruz,theotherinSalinas(perthemapbelow).TherearenoLiquefiedNaturalGasstationsineithercounty,andthereisoneLiquefiedPetroleumGas(Propane)stationintheRoyalOaksareaofSantaCruzCounty.

CNGStationsintheMontereyBayArea

Source:AlternativeFuelDataCenterFuelLocatorwebsite.http://www.afdc.energy.gov/locator/stations

Page 35: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-35

CentralCoastCNGStations:TheCentralCoastcurrentlyhassixCNGStationsinoperationaccordingtotheDOEAFDCwebsite(seemapbelow),locatedinPasoRobles,SantaMaria,SanLuisObispo,SantaBarbara,Oxnard,andThousandOaks.

CNGStationsintheCentralCoast

Source:AlternativeFuelDataCenterFuelLocatorwebsite.http://www.afdc.energy.gov/locator/stationsThereareeightLiquefiedPetroleumGas(Propane)fuelinglocationsintheCentralCoast,withseveralforprivatefleetuseonly(includingtheU-HaulcentersinSantaBarbara,Ventura,andOxnard.)LPGlocationsareinPasoRobles,SanLuisObispo,SantaMaria(twolocations),SantaBarbara,Ventura,Oxnard,andSantaPaula.5.18.CaliforniaEnergyCommissionSupportforNGVFuelingInfrastructure:Asnotedabove,theCEChasprovidedsupportforbothnaturalgasvehiclepurchasesaswellasnaturalgasfuelinginfrastructure.However,the$5millioninsupportfornaturalgasfuelinginfrastructurein2015-16ismodestwhencomparedtovehicleincentivesandCECsupportforAFVfuelinginfrastructureforhydrogenandelectricvehicles,andbiofuels.ThechartbelowindicatesrelativeCECinvestmentsinAFVinfrastructure.

CECFY2015-2016FundingforAlternativeFuelInfrastructure

ElectricCharging $17Million Increasedfrom$15millioninFY2014-2015

HydrogenFueling $20Million § NofundingallocationchangerelativetoFY2014-2015

NaturalGasFueling $5Million § Increasedfrom$1.5millioninFY2014-2015totargetdisadvantagedcommunitiesandapplications(suchasschoolbusesandmunicipalfleets)whereZEVsarenotyetasavailableorpractical.

TOTAL § $42Million

Notably,theemphasisonvehiclesratherthanfuelinginfrastructurehasbeensupportedbymanynaturalgasstakeholderorganizations,whichbelievethatincreasedvehicledeploymentisthebetter

Page 36: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-36

strategytodriveoverallNGVecosystemgrowthvs.adominantemphasisonexpandedfueling.Withinrecentfuelinginfrastructuresolicitations,theCEChasprioritizedpublicagenciesandschooldistrictsinparticular.TheseagenciesarestrongcandidatesforNGVadoptionduetotheirfleetvehicledutycycles,buttheyoftendonothaveaccesstothecapitalforfuelinginfrastructureinvestment.

Inthemostrecentsolicitationforproposals,CECinfrastructurefundingapplicantswerepermittedtorequestupto$300,000forstationsdispensingCNGand$600,000forstationsdispensingLNG(duetothehighercostsofsuchstations).Asthesenumbersindicate,theCECiswillingtoprovidesubstantialportionofdevelopmentcostsdependingontheexistingstationinfrastructure,compressorsize,storagesize,anddispensingcapabilities.AccordingtoCECdata,totalcostsfortheseprojectsrangedfrom$500,000forsmallerCNG-onlystationstoseveralmilliondollarsforlargecombinedLNG-CNGfuelingstations.

SincethebeginningofAB118programfunding,theEnergyCommissionhasprovidedatotalof$17.5millionfor62naturalgasfuelingstations,manyofwhichhavebeenawardedtopublicentities.Inthemostrecentsolicitation(PON-12-605),ofthe18successfulapplicants,6wereschooldistricts,5weremunicipalities,and4weremunicipalsolidwasteentities.Thisemphasisonpublicentitieshasbeenre-affirmedforthe2015-16InvestmentPlan.

CECNaturalGasFuelingInfrastructureAwards(PON-12-605)

ApplicantTypeProjectsAwardedAmong

QualifyingProposals CECFunding(inmillions)

SchoolDistrict 6outof6 $1.8

Municipality 4outof4 $1.2

FuelVendor 2outof2 $0.4

MunicipalSolidWaste 5outof7 $2.0

Utility 1outof3 $0.3

Transit 0outof1 -

Towing 0outof1 -

AirDistrict/JointPowerAuthority 0outof2 -

TOTAL 18outof26 $5.7

Source:CaliforniaEnergyCommission,2015-16InvestmentPlan

TheEnergyCommissionhasalsosupportedprojectstoimprovethecost-effectivenessandefficiencyofCNGfuelingstations.In2014,theCommissionreleaseditsPublicInterestEnergyResearchNaturalGasprogramsolicitationPON-14-502,whichofferedawardsofupto$400,000forenhancingstationperformance.Moreinformationisavailableathttp://www.energy.ca.gov/contracts/PON-14-502/.

ArangeofadditionalstrategiesforenhancingbothvehicleandfuelingsystemperformanceandenvironmentalattributesaredescribedintheCommission’sNaturalGasVehicleResearchRoadmap–whichdescribesthestrategicresearch,development,demonstration,anddeploymentactionsneededtoenhancetheviabilityoftheNGVmarketinCalifornia.Inadditiontosupportingfuelinginfrastructuretechnology,theCECalsoseekstopromoteincreasedproductionofbiomethanetoachievealowercarbonintensityfornaturalgasfuels,andtopromoteotheradvancedvehicletechnologies(suchaslow-NOxenginesorhybrid-drivetechnology)tofurtherloweremissions.SupportforbiomethanedevelopmentisderivedfromadifferentprogrambudgetwithintheCECandwillbediscussedinmore

Page 37: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-37

detailinthenaturalgasfuelproductionpathwayssectionofthisreport.

CECPrioritiesforFutureDevelopmentandDeploymentofEnhancedNaturalGasTechnology:KeyprioritiesidentifiedintheCEC’sNaturalGasVehicleResearchRoadmapincludethefollowing:

§ EnhancedR&Dforadvancednaturalgasenginesacrossabroaderrangeofenginesizes,suitableformoreapplications.Theresultsofresearchinvestmentstodatehaveyieldednaturalgasenginesonthemarketthatcompetewellwithdieselenginesintheheavy-dutysector.Additionalfundingisneededtobroadentheselectionofenginesizes.

§ Increasedsupportforfielddemonstrationwithfleetstoacceleratemarketpenetrationandtobetterunderstandfleetdecision-making.

§ Low-NOxEngines:Californiafaceschallengingrequirementsforreducingcriteriaairpollutantsby2023and2032.Furtherdevelopmentoflow-NOxengines,bothforNGVsandconventionalvehicles,isneededtoachievethesegoalswherezero-emissiontechnologiesarenotfeasible.

FuturesolicitationsarelikelytoprovideNGVstakeholderswithopportunitiestoaddresstheseprioritiesthroughcollaborativedevelopmentanddeploymentprojectsthatbringtogetherindustrypartners,publicagencies,fleets,andresearchinstitutions.

5.19.ThePolicyBasisforNaturalGasVehicleandFuelingInfrastructureDevelopmentinCalifornia:NaturalgasvehicleandfuelpromotioninCaliforniahasbeensupportedatthepolicylevelbyseveralkeyelementsofstatelegislationandexecutiveorders,someofwhichapplytootheralternativefuelsaswell.AssemblyBill(AB)1007(Pavley,Chapter371,Statutesof2005)directstheCaliforniaEnergyCommissionandtheCaliforniaAirResourcesBoardto“developandadoptastateplantoincreasetheuseofalternativetransportationfuels”--whicharedefinedtoincludenaturalgas.InparalleltoAB1007,theLow-CarbonFuelStandard(LCFS)--initiatedunderExecutiveOrderS-1-07--callsforareductionofatleast10%inthecarbonintensityofCalifornia’stransportationfuelsby2020.AB118(Núñez)establishedtheAlternativeandRenewableFuelandVehicleTechnologyProgramtoprovidethenecessaryresourcestoimplementtheStateAlternativeFuelsPlan.AB118specificallyrequiresthatalternativevehicleandfueltechnologydeploymentandcommercializationshouldemphasizesupportforfuelsthat“leadtosustainablefeedstocks.”ThepolicyanalysisanddebateaboutdefinitionsoffeedstocksustainabilityinrelationshiptoCNGanddiesel(andotherfuelpathways)areongoingandwillinfluencefundinggoingforward.

In2013,inresponsetothegrowingsupplyanddemandfornaturalgas,theCaliforniaLegislaturepassedAssemblyBill1257(Bocanegra,Statutesof2013,Chapter749),alsoreferredtoastheNaturalGasAct.ThislawtaskstheEnergyCommissionwithdevelopingareportto“identifystrategiestomaximizethebenefitsobtainedfromnaturalgas,includingbiomethane...helpingthestaterealizetheenvironmentalcostsandbenefitsaffordedbynaturalgas.”ThefirstofthesereportswasreleasedinOctober2015andwillbeupdatedeveryfouryearsthereafter.ThereportreaffirmscurrentstatepolicyonNaturalGasVehicles,citingopportunitiesforimprovedcriteriapollutantsbutlimitedopportunityforGHGbenefitswithfossilbasedNaturalGas.However,thereportdrawsattentiontoemergingopportunitiesforincreasingbiomethaneproduction,andcitestheneedforadditionalresearchto:

§ SupporttheARB’sLow-CarbonFuelStandardIntensityValue§ Expandnaturalgasandbiomethanefuelinginfrastructure§ Understandmethaneleakagefrominfrastructure§ DevelopanddemonstratefunctionalityoflargeNGengines

Page 38: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-38

§ BetterquantifytheimpactsofNGV’sontheenvironment.

TheCEC2016-17InvestmentPlandescribesapotential“compliancescenario”forachievingthe2020goalofreducingGHGemissionsby10percent–whichwouldinvolveasubstantialincreaseintheproductionofbiomethane–aswellasasubstantialincreaseinthesaleofNGVs(orretrofittednaturalgasengines).Thecompliancescenariowouldrequireincreasingtheutilizationofnaturalgasintransportationto600million-1,200millionDieselGallonsEquivalent(DGE),with250million-500millionDGEofthiscomingfrombiomethane.Bycontrast,currentdemandfornaturalgasinthetransportationsectoriscloserto100millionDGEperyear.14However,thenaturalgasstrategyoftheCaliforniaAirResourceBoardandtheCECmaybemodifiedbasedonreviseddatadevelopedinthetransitionfromtheairemissionsanalysismodelknownasCA-GREET1.8b,toCA-GREET2.0–whichhasestablishednewcarbonintensityvaluesforbothnaturalgasandotherfueltypes.(CA-GREETistheacronymforCaliforniaGreenhouseGases,RegulatedEmissions,andEnergyUseinTransportation.ThismodelwasoriginallydevelopedbytheArgonneNationalLaboratories,andprovidesastandardreferenceforcarbonintensityacrossthefull“welltowheels”fuelcycle.)TheongoingshiftsinscientificunderstandingandregulatoryagencydeterminationsofNaturalGasenvironmentalimpactsarediscussedindepthinAppendix1.5.20.OverviewofNaturalGasEmissionsandGHGImpacts:Significantanalysisisongoingbygovernmentagenciesandotherscientificauthoritiesontheenvironmentalattributesofnaturalgasasatransportationfuel.Theseassessmentsaretypicallydevelopedaspartofbroaderanalysesoftheentirenaturalgasfuelsupplychain–andinacontextinwhichotherfuelpathwaysarelikewiseassessedonawell-to-wheelsbasis.ForCaliforniastakeholders,themostimportantmodelforunderstandingemissionsimpactsacrossallfueltypesisCA-GREETmodel,whichwasformallyadoptedinitsversion2formbyCARBinSeptember2015.KnownasCA-GREET2.0–thismodelprovidestheCarbonIntensity(CI)valuesusedtoestablishrequirementsandcreditvaluesundertheLowCarbonFuelStandard(LCFS),andguidesCaliforniapolicymakersinestablishingtransportation,energy,andclimateregulations,programs,andfunding.

ItshouldbeemphasizedthattheCA-GREETassessmentsofcarbonintensityarebynomeansstatic.Asillustratedinthetablebelow,significantvariationsinassessmentsoffuelimpactsareevidentbetweentheCA-GREET1.8bmodelandCA-GREET2.0.Thesechangesmaycontinueandevenaccelerateinfutureyearsbasedontheresultsofimportantresearchandpolicyactionsintwokeyareas:

§ ongoingassessmentofthemethaneleakagerateacrossthenaturalgasfuelsupplychain(andtheimpactofongoingeffortstoreduceleakagerates

§ thetimeframeusedforanalysisoftheGlobalWarmingPotentialofmethaneimpacts,whichvaryinintensityacrossthedecayperiodofmethaneintheatmosphere.

Thetimeframeusedforanalysisofglobalwarmingimpact–typicallyeither20yearsor100years–hasaverystrongimpactonassessmentsoffossil-basednaturalgas,andthuscanstronglyinfluencethepolicyactionsdeemedappropriaterelativetonaturalgasfuelandvehicledevelopment.AbriefoverviewofcurrentinformationonmethaneleakageratesandGlobalWarmingPotentialwillfollowtheGREETchartbelow.AdditionalinformationonthiskeyissueisprovidedinAppendix1toinformpolicymakersandthepubliconnewscientificfindingsandassessmenttrendsthatarelikelytoimpactfuturepolicychoicesrelativetonaturalgas.

142015-16InvestmentPlanUpdatefortheAlternativeandRenewableFuelandVehicleTechnologyProgram,CEC,May2015,p.57.

Page 39: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-39

Low-Carbon Fuel Standard Carbon Intensity Values per the CA-GREET Model15

Fuel Source CA-GREET 1.8b 96

(Grams CO2-equivalent per megajoule, adjusted to baseline-

fuel equivalent using EER)

CA-GREET 2.0 (Grams CO2-equivalent per

megajoule, adjusted to baseline- fuel equivalent using EER)

Ultra-Low-Sulfur Diesel 98 102

California Reformulated Gasoline 99 98

North American Natural Gas (CNG) 76 87

North American Natural Gas (LNG) 80 94

Landfill Gas (CNG) 13 20

WWTP Sludge (CNG) 15 9 or 34

Biomethane Derived From High- Solids Anaerobic Digestion of Food and Green Wastes (CNG)

-14 -25

Source: California ARB. Note that the units in the table are adjusted to megajoule (MJ) of baseline fuel, by dividing the alternative fuel CI by its Energy Economy Ratio (EER). The EER for diesel and gasoline is 1. The EER for CNG and LNG used in a spark ignition engine is 0.9. See the CA-GREET website of CARB at http://www.arb.ca.gov/fuels/lcfs/ca-greet/ca-greet.htm SummaryoftheImpactofMethaneLeakageRatesonClimateImpactAssessmentofNaturalGas:Fossilfuelbasednaturalgasiscomprisedofapproximately87%methane,withsomevariationsdependingonthesource.Andmethaneisahighlypotentgreenhousegas.However,akeyfactorindeterminingtheoverallclimateimpactofmethane,intermsofitsratedCarbonIntensity(CI)value,isnotonlytomeasurenaturalgasuse,butalsotodeterminethemethaneleakageratesintheentirenaturalgasfuelsupplychainthatshouldproperlybeassignedtoNaturalGasfromanassessmentperspective.Thissupplychainincludespre-production,production,processing,anddelivery.Allstakeholdersagreethatsomemethaneleakageoccursthroughoutthesystem,andthatdatalimitationsonmethaneleakageisacauseforcautionregardingcurrentmodelsforassessingtheCarbonIntensity(CI)ofnaturalgas,andthusitsroleintheglobalwarmingcrisis.Accordingly,theEPA’sofficiallydefinedleakagerate(andthustheCarbonIntensityvalueofNaturalGas)isnowundergoingpotentiallysignificantrevisionbytheEPAandotherscientificresearchersandinstitutions.

ThecurrentlyutilizedmethaneemissionsvaluesusedintheGREETmodelareobtaineddirectlyfromtheUSEnvironmentalProtectionAgency’s(EPA)GreenhouseGasInventory(GHGI),whichprovideanationalaveragemethaneleakageacrossthefuelsupplychain.However,manyscientistsandresearchinstitutionshavestronglycritiquedtheEPAmethod.ThishasledtoanewinitiativewithinEPAtoreassesstheexistingmethodologybehindtheleakageratecalculation--andtorecommendnewpoliciestomitigatemethaneleakage.Inbrief,criticismsofthecurrentmethaneleakageassessmentmethodologyincludethesefactors:

§ DataonleakageratesisderivedentirelyfromvoluntaryparticipantsintheEPA’sGasStarcomplianceprogram.IndependentassessmentbytheEnvironmentalDefenseFundandothersdemonstratethatthesemarketactorshavebetterrecordsonmethaneleakagethanothers

15CARBnotesinits2015AB1251FinalReportthatthistableisintendedtoillustratetheexpectedordinalrankingofvariousfuelCIs.UndertheadoptedLCFSregulation(adoptedSeptember25,2015,andpendingapproval),alternativefuelproviderswillsubmitdataspecifictoeachoperationandsupplychaintodeterminetheiractualCI,whichmayvaryslightlydependingonthefuelpathway.

Page 40: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-40

excludedfromtheinventory.Onlysixfirms(outof30inthevoluntaryprogramandhundredsinthemarketplace)actuallyallowedEPAonsitetomakevalidatedmeasurements.

§ DataonmethaneleaksfromthreemillionabandonedoilandgaswellsisnotincludedintheEPAanalysis.

§ DatafromvehicleandrefuelingstationleakagearealsoabsentintheEPAinventory.§ Anauthoritativemeta-analysisof20yearsofstudiespublishedinScienceinFebruary2014

indicatesthattherealleakagerateiscloserto3%-nearlytripletheEPAestimate.Thissignificantlyshiftsmethanecalculationstobesubstantiallylessfavorabletosubstitutingnaturalgasforpetroleumdiesel.16

Giventhepossibilityofadoublingortriplingofthescientificallyvalidatedmethaneleakagerate,anditsimpactonnaturalgasutilization,policymakers,industrystakeholders,andcitizensshouldbeawareoftheunderlyingissuesdrivingthisre-assessment.Inadditiontothemethaneleakageratecontroversy,thereisanequallyimportantdebateabouttheappropriatetimeframethatshouldbeusedtoassesstheglobalwarmingpotential(GWP)ofmethane.

TheImportanceofAssessmentTimeframesforDeterminingMethane’sImpactonGlobalWarming:A100yearanalytictimeframehascustomarilybeenusedinmanyanalyticmodelstoassesstheGlobalWarmingPotential(GWP)ofmethaneandothergreenhousegases,andthis100yeartimeframeislikewiseusedfortheGREETanalysis.However,manyscientistsandpolicymakersmakeacompellingcasethatmethaneandotherGHGsshouldbeevaluatedfortheirimpactwithina20yeartimeframeratherthanthecurrentlyused100yeartimeframe.Thisisduetothecatalyticrolethatmethaneisexpectedtoplayintheimminenttriggeringofclimatic“tippingpoints”withinthetwentyyear2015-2035timeframe.Whilemethaneaccountsforonly14percentofemissionsworldwideasmeasuredbyvolume,methanetrapsfarmoreheatmoleculeformoleculethancarbondioxide.Specifically,thelatestGlobalWarmingPotentialdataacceptedbytheUNIntergovernmentalPanelonClimateChange(UNIPCC)indicatesthatanymethanemoleculereleasedtodayismorethan100timesmoreheat-trappingthanamoleculeofcarbondioxidewhenassessedonafiveyearbasis,approximately86timesmorepotentthancarbondioxidewhen“amortized”overa20yeartimeframe,and34timesmorepotentinthe100yeartimeframe.Tothisdate,EPAandCARBhaveusedthe100yearGlobalWarmingPotentialtimeframefortheiranalysisofnaturalgasimpacts,butthe20yeartimeframeformethaneyieldssignificantlydifferentvaluesfornaturalgasrelatedclimateimpactscomparedwithotherfuels.Therearecompellingreasonsforpayingmoreattentiontoclimateimpactsinthenear-term,accordingtomanyscientistsandresearchinstitutions(notablyincludingJamesHansen,theformerChiefNASAClimateScientist,whoiscreditedwithbringingglobalwarmingdangerstotheattentionofpolicy-makersinthe1980’s.)Thereasonistherapidlyaccumulatingevidence--presentedbytheUNIntergovernmentalPanelonClimateChangeandotherauthoritativeagencies--thattheearthisincriticaldangerofenteringtherunawaystageofclimatechangewithinthenexttwentyyears,leadingto5degreescentigradeormoreofwarmingthiscentury.Thislevelofwarmingwouldradicallydestabilizeanddegradethenaturalsystemsonwhichhumanlifedepends--leadingtosuchimpactsasgreaterthansixfeetofsealevelrisethis

16A.R.Brandt,et.al,METHANELEAKSFROMNORTHAMERICANNATURALGASSYSTEMS;Science14February2014:Vol.343no.6172pp.733-735http://www.sciencemag.org/content/343/6172/733.summary?sid=aa20376c-626b-42af-9f93-2475e7990ac4andMarkGolden,“America’sNaturalGasSystemisLeakyandinNeedofaFix,”inStanfordReport,Feb.2014,http://news.stanford.edu/news/2014/february/methane-leaky-gas-021314.html

Page 41: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-41

century,acceleratedreleaseofsub-Arcticmethane,extremedroughtsandstorms,andfoodinsecurity.17Asaresultofthisemergingscienceregardingthenear-termdangersofexceedingclimatic“tippingpoints,”andthedisproportionateroleofmethaneinclimatedestabilization,thereisastrongrationaletoshiftfroma100yearto20yeartimeframesasthedominantunitofanalysisfortheGlobalWarmingPotentialofallGHGs,includingmethane.

Tofacilitateabroaderpolicyassessmentthatincludesboth20-yearand100-yearimpacts,Appendix1ofthisdocumentincludesadditionalinformationonGlobalWarmingPotentialtimeframesandmethaneleakagerates–andtheimpactofemergingdataonpolicychoicesfornaturalgasapplications.ThisappendixhasbeeninformedinpartbyanimportantnewreportfromtheUCDavisInstituteforTransportationStudies-SustainableTransportationEnergyPathwaysProgram(NextSTEPS).ThisUCDavisreportincludesfurthermeta-analysisofthemethaneissuethattriggeredtherecentEPAandCARBre-assessmentofGreenhouseGasInventoryfactorsandtheCA-GREETmodel,respectively.Entitled“TheCarbonIntensityofNGVC8Trucks,”thisreportwasreleasedinMarch2015byProfessorRosaDominguez-Faus,Ph.D.,whohasproducedotherauthoritativereportsonnaturalgasandalternativefuelchoicesforstateagencies.

InadditiontoprovidingmoredetailonGWPandmethane,theUCDavisReport(alongwithothermaterialsinAppendix1)discussesthedevelopmentofanappropriateriskmanagementapproachforevaluatingairemissionsandclimateimpactsconsistentwithotherriskmanagementnormsinthepublicsector,asusedininfrastructureplanning,forexample.PolicymakersandinterestedcitizensareencouragedtomakeuseoftheseresourcesintheAppendixtofullyunderstandnaturalgastransportationoptionsinthebroadercontextoftheclimatecrisisandrelatedriskmanagementimperatives. 5.21.OutlookforEnhancedEmissionsPerformanceofNGVsandNewCARBMitigationMeasures:EmergingdataandstatementsfromtheCalifornaiARBsuggestthatnaturalgasvehiclespoweredbyfossilfuels(asopposedtobiomethane)maynothaveaclearadvantagefromaclimateperspective.However,theycanreducecriteriapollutionemissionsrelativetoexistingdieselvehicles.Thatsaid,therelativevirtuesofnaturalgasanddieselarenotatallstatic,asbothNGVanddieseltechnology(aswellasrelevantlow-carbonbiofuelpathwaysforbothvehicletypes)areevolvingveryrapidly.StricterregulatorystandardsarealsopushingbothNGVsanddieselmanufacturerstowardsignificantreductionsinharmfulemissions.InDecember2013,forexample,theARBadoptedanoptionalreducedNOxemissionstandardforheavy-dutyvehiclesthatincentivizesenginemanufacturerstofurtherreduceemissions.SuchstandardsincludeNOxlevelsthatare50,75,and90percentlowerthanthecurrent0.20gramsperbrakehorsepower-houremissionstandard.Thisvoluntarystandardmayhelppositionnaturalgasenginesasaprimaryinitialtechnologyformeetingthemoreaggressive75percentand90percentNOxreductiontargetsexpectedtobedeployedinthefuture.

Dependingontheabilityofnaturalgasenginemanufacturerstodemonstratesuchreductions,andthecommercialavailabilityofproductsinrelevantapplications,theCECindicatesthatemergingNGVtechnologycouldsupportscaleddeploymentofnaturalgastrucksinthe2016-17timeframeandbeyond.Scaleddeploymentofverylow-carbonNGVtruckscouldinturnmitigatecriteriaair17Numerousstudiesaddressthepossibilitythatkeytippingpointsinclimatechangeareimminentoralreadyreached,withimportantpolicyconsequencesforassessingglobalwarmingpotentialtimeframes.ArepresentativeoverviewofthisliteratureistheSeptember2013reportbyDavidSprattentitled“IsClimateChangeAlreadyDangerous?”availableathttp://www.climatecodered.org/p/is-climate-change-already-dangerous.html

Page 42: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-42

pollutantsinareasmostimpactedbycurrentdieseltechnologies.Whiletherearenotyetvehiclescurrentlyavailablecommerciallyatscalewiththeseemissionsattributes(asofearly2016),anannouncednear-zeroNOxnaturalgasengineproducedbyCumminsWestportfeaturessubstantiallyreducedmethaneemissions,aswellasreducedcriteriapollutants.Asprofiledbelow,thisenginecouldgreatlystrengthenthecasefornaturalgasasacompetitortodieselrelativetobotheconomicandenvironmentalcriteria.

EmergingNaturalGasEnginesWithNear-ZeroNOxandReducedMethane:InitsIntegratedEnergyPolicyReport,theCECindicatedthat“inSeptember2015,CumminsWestportInnovations[CWI]certifieditsfirstnear-zeroenginesforbuses,wastehaulers,andmedium-dutytrucks.Thisenginewillreduceoxidesofnitrogen(NOx)emissionsbymorethan90percentfromthecurrentstandardandwillplayanimportantroleinimprovingairqualityforCalifornians.”18

ThisunusuallyprominentannouncementbytheCEChighlightsthefactthatthisengineisthefirstmid-rangeengineinNorthAmericatoreceiveemissioncertificationsfromboththeEPAandCARBthatmeetthe0.02g/bhp-hr(gramsperbrake-horsepowerperhour)NearZeroNOxEmissionsstandardsformedium-dutytruck,urbanbus,schoolbus,andrefuseapplications.Theexhaustemissionsofthisengine,knownastheCumminsWestportISLGNZ,willbe90%lowerthanthecurrentEPANOxlimitof0.2g/bhp-hrandalsomeetthe2017EPAgreenhousegasemissionrequirements.TheISLGNZenginemeetstheARBcertificationwellinadvanceofthe2023CaliforniaNearZeroNOxschedule.ARBhasdefinedthecertifiedNearZeroemissionlevelasequivalenttoa100%batterytruckusingelectricityfromamoderncombinedcyclenaturalgaspowerplant(althoughabattery-electrictruckusingthegreenerpowerfromCalifornia’sgridmixwillinturnbesuperiortoeventhisrelativelycleanNGV.)

Inadditiontothe90%reductioninNOx,theISLGNZengineutilizesClosedCrankcaseVentilation(CCV)toreduceenginerelatedmethaneemissionsby70%.Further,thesenear-zerocarbonnaturalgasenginesdonotrequireactiveafter-treatmentsuchasaDieselParticulateFilter(DPF)orSelectiveCatalyticReduction(SCR).SupportforthedevelopmentoftheCumminsWestportenginewasprovidedjointlybytheSouthCoastAirQualityManagementDistrict(SCAQMD),SoCalGasandtheCEC.ProductionoftheISLGNZisexpectedtobegininApril2016.Theenginewillbemadeavailableasa“firstfit”enginewithtransitandrefuseOEMs,andasanenginereplacementforexistingISLGvehicles.PerformanceandefficiencywillmatchthecurrentISLG,withengineratingsfrom250-320horsepower,and660-1,000lb-fttorqueavailable.Maintenanceprocedures,serviceintervals,andwarrantytermsarethesameasthecurrentISLG.19Itishighlyrecommendedthatfleetmanagersbecomefurtheracquaintedwiththisenginetechnologytodetermineifitcanplayaroleinreducingemissionsandenhancingoperatingeconomiesinlocalfleets.

5.22.TheCARBSustainableFreightStrategy:TheCaliforniaAirResourcesBoardhasindicatedthatachievingthestate’s80%carbonreductiongoalswillrequireadramatictransformationacrossthetransportationsysteminCalifornia,andthatdevelopingbothzero-emissionandnear-zeroemissionvehiclesandcleanerfuelpathwaysinthemediumandheavy-dutyvehiclesegmentwillbeessential.TheARBhaslaidouttheirpreliminaryapproachinaplanningdocumentknownastheSustainableFreightStrategy--withagoalofdramaticallyreducingemissionsacrossthestate’sgoodsmovementsystem,includingtruck,rail,andmarinecomponents.Manyoftheelementsofthisstrategy,nowbeginningthe

18AB1251NaturalGasActReport:StrategiestoMaximizetheBenefitsObtainedfromNaturalGasasanEnergySource,CaliforniaEnergyCommission,p.4.19“ISLGNearZeroNaturalGasEngineCertifiedtoNearZero-FirstMidRangeengineinNorthAmericatoreduceNOxemissionsby90%fromEPA2010~”,CumminsWestportInc.PressRelease--October5,2015,http://www.cumminswestport.com/press-releases/2015/isl-g-near-zero-natural-gas-engine-certified-to-near-zero

Page 43: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-43

earlydeploymentstageatCARB,targetincreasedutilizationofnaturalgasvehiclesandcleaner(biomethane)pathwaysaswellasnewemissionsreductionstrategiesfordieseltrucking.Therangeofmeasuresisdescribedbelow,withNGVrelevantstatepolicymeasureshighlightedinblue,andmeasureswithpotentialforregionalactionhighlightedingreen.

CARBSustainableFreightInitiatives–NGVrelevantactionshighlightedinblue

Actions PolicyDevelopment

PolicyImplementation

TrucksAction1:Developandproposestrategiestoensuredurabilityandin-useperformance.Suchstrategiesmayinclude:§ ReducedexhaustopacitylimitsforPMfilter-equippedtrucks.§ Newcertificationandwarrantyrequirementsforlowin-useemissions.§ Strengthenexistingemissionwarrantyinformationreportingandenablecorrectiveactionbasedonhighwarrantyrepairrates.

§ ClarificationontheState’sauthoritytoinspectheavy-dutywarrantyrepairfacilitiestoensureproperemissionwarrantyrepairsarebeingconducted.

2015-2017 2017+

TrucksAction2:Developandproposeincreasingflexibilityformanufacturerstocertifyadvancedinnovativetruckengineandvehiclesystemsinheavy-dutyapplications.Enablesacceleratedintroductionofnewtechnologiestomarket.

2015

2016

Trucks Action 3: Develop and propose new, stringent CaliforniaPhase 2 GHG requirements to reduce emissions from trucks andtrailers,andprovidefuelsavings.

2016-2017

2018+

TrucksAction4:PetitionU.S.EPAtodeveloplowerNOxstandardsfornewheavy-dutytruckenginesforrulemakingin2018.

2015 --

TrucksAction5:(ifU.S.EPAdoesnotcompleteTrucksAction4):Developand propose California specific standards for new heavy-duty truckenginestoprovidebenefitsabovenationalstandards.

2018

2023+

Allsectors/freighthubs:Collectdata(suchasfacilitylocation,equipment,activity,andproximitytosensitivereceptors)fromseaports,airports,railyards,warehouseanddistributioncenters,truckstops,etc.toidentifyandsupportproposaloffacility-basedapproachand/orsector-specificactionstoreduceemissionsandhealthrisk,aswellasefficiencyimprovements.

2015

2015-2016

DeliveryVans/SmallTrucks:Developproposaltoacceleratepenetrationofzeroemissiontrucksinlastmilefreightdeliveryapplications,withpotentialincentivesupport.

2017

2020

LargeSpark-IgnitionEquipment(forklifts,etc):Developproposaltoestablishpurchaserequirementstosupportbroadscaledeploymentofzeroemissionsequipment.

2016-2018

2020

Page 44: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-44

TransitBuses:Developproposaltodeploycommerciallyavailablezeroemissionbusesintransit,andotherapplications,beginningwithincentivesforpilotprogramsandexpandingpurchaserequirements,asappropriate,tofurthersupportmarketdevelopmentofzeroemissiontechnologiesintheheavy-dutysectorwithpotentialincentivesupport.

2016

2018

AirportShuttles:Developproposaltodeployzeroemissionairportshuttlestofurthersupportmarketdevelopmentofzeroemissiontechnologiesintheheavy-dutysector,withpotentialincentivesupport.

2017-2018

2020

TransportRefrigerationUnits:Developandproposearegulatoryrequirementtoprohibittheuseoffossil-fueledtransportrefrigerationunitsforcoldstorageinphases,withincentivesupportforinfrastructure.

2016

2020+

Incentiveprograms:Developmodificationstoexistingincentiveprogramstoincreasetheemphasisonandsupportforzeroandnear-zeroequipmentusedinfreightoperations,includingintroductionoftruckenginescertifiedtooptionallow-NOxstandards.

2015-2016

2016-2020

5.23.OpportunitiesforCoordinatedRegionalActiononNGVandLow-CarbonGoodsMovement:MostoftheactionslistedintheCARBSustainableFreightStrategyrequirestatepolicyinterventionornewstateinvestments.However,theproposaltodevelop“facility-basedapproaches”tolow-emissionsandzero-emissionsfreightmovementsuggeststhepotentialforlocalcities,counties,airqualitydistricts,andfreightindustrystakeholderstotakeactionatthelocalandregionallevel.ThedevelopmentofanappropriatelyconstitutedregionalSustainableFreightWorkingGroupwillhelpprepareforandattractanticipatedstateinvestmentinplanningandimplementingtheCARBvisionforlow-carbongoodsmovement.

ThroughtheSustainableFreightWorkingGroup,localandregionalpublicagenciesandfreightstakeholderswouldcooperatefirsttoobtainessentialplanningfunds,andthentocollaborativelydevelopasystematicapproachtoimplementlow-emissionsgoodsmovementstrategies.Thesestrategieswouldlikelyinclude(butnotbelimitedto),developmentoffreighthandlingfacilitiesinsupportoflow-carboninter-regionaltravel,aswellas“greenlastmail”deliverystrategies.Together,theseandothercomplementaryinitiativescouldmaximizetheuseofnear-zerocarbonCNGorlower-carbonLNGClass8vehiclesforlong-distance,heavy-dutytrucking,aswellaszero-emissionsMedium-dutyBattery-ElectricTrucks(BETs)for“lastmile”deliveryroutes(typicallywithinthe100milerangeofcurrentMediumDutye-trucks).Thesestrategieswouldlikelyalsoengagestakeholdersin:

§ Greenfleetprocurementstrategies§ MappinganddeploymentofNGVandelectricfuelinginfrastructurefortrucks§ Innovativestrategiesforcentralizing“greenlastmile”deliverytoreducecongestion.

BoththeMontereyBayArea(viaAMBAG)andtheSouthCoastregion(viatheGatewayCitiesCOG,amongotherstakeholders)providedpreliminaryconceptproposalstoCARBinApril2015toinitiateplanningeffortstodeveloplow-emissionsfreightdepots.20TheproposalfromtheAssociationofMontereyBayAreaGovernments(AMBAG)focusedontheSalinasValleyIntermodalFreightImplementationPlanandtheFreightEnterpriseZoneGuidelinesProject.TheGatewayCitiesCOG/LosAngelesTransportationAuthority(Metro)proposalforaLosAngeles/GatewayFreightTechnology

20Seethe“SustainableFreightPilotProjectIdeas”websiteattheCaliforniaAirResourcesBoardathttp://www.arb.ca.gov/gmp/sfti/pilotprojectsub.htm.RelevantprojectsincludetheSalinasValley

Page 45: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-45

ProgramhasmanyelementsthatarepotentiallyrelevanttoafuturefreightcorridorlinkingtheBayAreaandLosAngelesthroughMontereyandtheCentralCoast.Inaddition,therearemanyadditionalprojectsunderwaythatcouldprovideamodelforacceleratedcorridorplanningintheMontereytoLosAngelesarea.Forexample,atthethePortofLosAngeles,CalSTARTandotherstakeholdersarejointlyplanningtoloweremissionsontheI-710corridorbetweenthePortofLongBeachanddowntownLosAngeles.Ananalysisoftheseeffortsastheyrelatetolow-andzero-emissionstrucksisprovidedintheI-710ProjectZero-EmissionTruckCommercializationStudyFinalReport21--a2013CalSTARTreporttotheGatewayCitiesCOG.Thisdocumentalsoprovidesusefulbackgroundontheprojectedtimelinesfordeploymentandintegrationofemergingzero-emissionsfreightvehiclesandsystemsthatcouldalsobedeployedonthe101betweenSanFranciscoandLosAngeles.

IntheMontereyandCentralCoastcontext,aseriesofintegratedtrucktransferorinter-modal(rail/truckorrail/truck/marine)facilitiescouldprovidenaturalgasandelectricrefuelinginfrastructureandtrans-shipmentfacilitiestoenablecargointheregiontobedeliveredvialower-emissionsCNGandelectrictrucks--andpotentiallyviaincreasedrailutilization.AninitialeffortofthiskindintheCentralCoastregioncouldcreateacontinuouslow-emissionssustainablefreightcorridorfromSanJosetothePortofLongBeachthroughcooperationwithAMBAGandtheSouthernCaliforniaAssociationofGovernments(SCAG),relevantAirDistrictsandregional/localtransportationauthorities,andindustryandnon-governmentalstakeholders.

ItisanticipatedthatCARBwillcreateacompetitiveRFPprocesstofundsustainablefreightplanningandimplementationproposalsin2016-17.Toprepareforsuchaprocess,oneoftheRecommendedActionsarisingfromthecurrentMontereyAFVReadinessplanningprocessistoinvitekeystakeholderstoconsiderdevelopmentoffundingforaMonterey(orcombinedCentralCoast/Monterey)sustainablegoodsmovementplan.AdditionaldiscussionofthepotentialforaregionalsustainablefreightinitiativeisfoundintheRecommendedActionssectionattheendofthisChapter.5.24.PotentialforBiomethaneDevelopmenttoReduceNGVEmissionsImpacts:AccordingtothemostrecentCARBscopingplanformeetingAB32goals,naturalgasfromtraditionalfossilfuelsourcescannotrepresentasignificantshareofenergyuseby2050ifthestateistomeetitslong-termGHGtargets(80%below1990levelsby2050.)By2050,traditionalusesofoilandnaturalgas,includingtransportationfuels,waterandspaceheating,andindustrialboilersandprocessheating,willneedtobemostly,ifnotfully,decarbonized.However,decarbonizedgaseousfuelscouldhavealonger-termfutureinCaliforniaifbiomethaneproductioncanbescaledup.

BiomethanepossessesthelowestcarbonintensityvaluesestablishedbytheLowCarbonFuelStandard(LCFS)ona“source-to-tank”basis(alsocalled“well-to-tank”.)Notethatthesource-to-tankmethodologydoesNOTincludecombustionimpactsfromfuelburninginthevehicle,typicallyknownas“well-to-wheels.”(Well-to-wheelsimpactscandifferbasedonvehicleandenginetype,whereassource-to-tankdataenablesvalidcomparisonsamongfuelpathwayspriortoutilizationinthevehicle.)Onasource-to-tankbasis,biomethanefromanaerobicdigestionoffoodandgreenwastecanachieveanegativeCO2erating,duetoavoidedmethaneemissionfromorganicmattercomparedtoemissionsimpactswhen

21I-710ProjectZero-EmissionTruckCommercializationStudyFinalReportfortheGatewayCitiesCouncilofGovernmentsandtheLosAngelesCountyMetropolitanTransportationAuthority,CalSTART,2013.http://www.calstart.org/Libraries/I-710_Project/I-710_Project_Zero-Emission_Truck_Commercialization_Study_Final_Report.sflb.ashx

Page 46: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-46

disposedofinlandfills.Thefollowingtablefromthelatest“Tier2”CARBLowCarbonFuelStandardRegulatoryOrder,providescomparativedataonnaturalgasvs.otherfuelsources.22

Carbon Intensities of Natural Gas vs. Other Fuels on a “Source to Tank” Basis

Fuel Pathway Identifier

Pathway Description Carbon Intensity (gCO2 e/MJ)

Direct Emissions

Land Use or Indirect Effect

Total

CARBOB*

CBOB001

CARBOB - based on the average crude oil supplied to California refineries and average refinery efficiencies

99.78 0 99.78

Diesel* ULSD001 ULSD - based on the average crude oil supplied to California refineries and average California refinery efficiencies

102.01 0 102.01

Com-pressed Natural Gas

CNG005 Biomethane produced from the high-solids (greater than 15 percent total solids) anaerobic digestion of food & green wastes; compressed in CA

-22.93 0 -22.93

CNG020

Biomethane produced from the mesophillic anaerobic digestion of wastewater sludge at a California publicly owned treatment works; on- site, high speed vehicle fueling or injection of fuel into a pipeline for off-site fueling; export to the grid of surplus cogenerated electricity.

7.75 0 7.75

CNG021

Biomethane produced from the mesophillic anaerobic digestion of wastewater sludge at a California publicly owned treatment works; on- site, high speed vehicle fueling or injection of fuel into a pipeline for off-site fueling.

30.92 0 30.92

Electricity ELC002 California grid electricity 105.16 0 105.16

Hydrogen

HYGN001 Compressed H2 from central reforming of NG (includes liquefaction and re-gasification steps) 151.01 0 151.01

HYGN002 Liquid H2 from central reforming of NG 143.51 0 143.51

HYGN003 Compressed H2 from central reforming of NG (no liquefaction and re-gasification steps) 105.65 0 105.65

HYGN004 Compressed H2 from on-site reforming of NG 105.13 0 105.13

HYGN005 Compressed H2 from on-site reforming with renewable feedstocks 88.33 0 88.33

Source:CaliforniaAirResourcesBoard,Low-CarbonFuelStandardFinalRegulatoryOrder2015,Table6:Tier2LookupTableforGasolineandDieselandFuelsthatSubstituteforGasolineandDiesel,p.67,http://www.arb.ca.gov/regact/2015/lcfs2015/lcfsfinalregorder.pdf*CARBOBdesignatesthestandardunitofmeasureforCalifornia“standard”gasoline:theCaliforniaReformulatedGasolineBlendstocksforOxygenateBlending.ThenumbersaboveareadjustedbyEnergyEfficiencyRatio(EER)forgasoline(CARBOB)ordiesel(ULSD)substitute.

Statepolicymakersarenowassessingthelonger-termpotentialforutilizingbiomethaneasaprincipalformofdecarbonizedpipelinegas(alongwithbiogas,hydrogen,andrenewablesyntheticgas)--whichcouldinturnbedistributedthroughexistingpipelinenetworks.Astudyreleasedin2015bytheenvironmentalconsultingfirmEnergy+EnvironmentalEconomics(E3),DecarbonizingPipelineGasto

22Low-CarbonFuelStandardFinalRegulatoryOrder2015,Table6:Tier2LookupTableforGasolineandDieselandFuelsthatSubstituteforGasolineandDiesel,CaliforniaAirResourcesBoard,p.67.http://www.arb.ca.gov/regact/2015/lcfs2015/lcfsfinalregorder.pdf

Page 47: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-47

HelpMeetCalifornia’s2050GreenhouseGasReductionGoal,examinesthepotentialforgrowthofdecarbonizedpipelinegasfuels.Theterm“decarbonizedgas”referstogaseousfuelswithanet-zero,orverylow,GHGimpact--includingbiogas,hydrogen,andrenewablesyntheticgasesproducedwithlowGHGemissions.“Pipelinegas”referstoanygaseousfueltransportedthroughnaturalgasdistributionpipelines.

TheE3studyassessestwoalternativetechnologyscenariosformeetingthestate’sgoalofreducingGHGto80percentbelow1990levelsby2050.Intheelectrificationscenario,allenergyenduses,totheextentfeasible,areelectrifiedandpoweredbyrenewableelectricity.Inthemixedscenario,bothelectricityanddecarbonizedgasplaykeyrolesby2050.BothscenariosmeetCalifornia’s2020and2050GHGgoals,accountingforconstraintsonenergyresources,conversionefficiency,deliverysystems,andend-usetechnologyadoption.Bycontrast,areferencescenarioreflectslimitedadoptionofalternativefuelsinbothtransportationandelectricitysupplybeyondthepresent(2015)basecase,andclearlydoesnotmeetthe2050GHGtarget.

Source:DecarbonizingPipelineGastoHelpMeetCalifornia’s2050GreenhouseGasReductionGoal,Energy+EnvironmentalEconomics(E3).https://ethree.com/documents/E3_Decarbonizing_Pipeline_01-27-2015.pdfThestudyconcludesthat:1)atechnologypathwayfordecarbonizedgascouldmeetthestate’sGHGreductiongoalsandmaybeeasiertoimplementinsomesectors(notablyheavy-dutytrucking)thanahighelectrificationstrategy;and2)thetotalcostsofthedecarbonizedgasandelectrificationpathwaysarecomparable.Thestudyalsoindicatesthatdecarbonizedgasescancomplementalow-carbonelectrificationstrategyby.

§ Addressingsectorsthataredifficulttoelectrify,suchasprocessheating,heavydutyvehicles,cooking,andexistingspaceandwaterheating.

§ Providinggasusingelectricitywhenrenewablesaregeneratingpower,andthenstoringthegasinthepipelinedistributionnetworkuntilitisneeded

§ Enablingcontinueduseofthestate’sexistinggaspipelinedistributionnetwork,eliminatingtheneedfornewenergydeliveryinfrastructuretomeet2050GHGtargets,suchasdedicatedhydrogenpipelinesoradditionalelectrictransmissionanddistributioncapacity.

Ofcourse,therearemajorhurdlestoovercometobringdecarbonizedgasintoproduction,distribution,anduseatlargecommercialscale.TheE3studymakesitclearthat,unliketheelectrificationpathway,wherekeytechnologiesarealreadyavailable,asignificantlevelofnewR&Deffortwouldbeneededtomakedecarbonizedgasarealityatcommercialscale.Forexample,thelow-carbongaspathway

Page 48: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-48

presumesthatcarbonsequestrationinthecontextofnaturalgasproductioncanbemadeeconomicallyandtechnicallyviableatlargescale,butthishasnotyetbeendemonstrated.Biomethanepathways,whilepromising,willalsorequireamuchlargerinfrastructureforefficient(andlow-carbon)collectionoforganicwaste,andsoforth.Tofullydevelopthestate’scapacityforlow-carbonnaturalgasproduction,E3identifiesaneedforthefollowingkeyresearch,development,anddemonstration(RD&D)initiatives.

PriorityR&DNeedstoAccelerateLow-CarbonNaturalGasFuelPathwayDevelopment

Source:DecarbonizingPipelineGastoHelpMeetCalifornia’s2050GreenhouseGasReductionGoal,Energy+EnvironmentalEconomics(E3).https://ethree.com/documents/E3_Decarbonizing_Pipeline_01-27-2015.pdf

5.25.BiomethaneDevelopmentOpportunities

BackgroundonBiomethaneProduction:Biomethaneisaverylow-carbonoption(potentiallynegativecarbon)forfuelingnaturalgasvehiclesandforotherusessuchasheatingandpowergeneration.Chemically,biomethaneandfossilnaturalgasareveryclose.Biomethaneproducedfromlandfillgasinitiallyconsistsof55-65%methane,30-35%carbondioxide,andtheremainingbalancebeinghydrogen,nitrogen,andvariousimpurities.Itsheatingvalueisapproximately600BTUpercubicfoot.Bycontrast,naturalgascontainsabout87%methane,withaheatingvalueofapproximately1000BTUpercubicfoot.However,filteringbiomethane(knownas“scrubbing”)removesthecarbondioxideandotherimpurities,raisesBTU,andenablesbiomethanetobeusedinterchangeably(orasanadmixture)withfossilnaturalgas.Productionofbiomethanecanoccurthroughprocessingoforganicmatterinlandfillsorbiogasplants.Bothmethodsutilizeanaerobicdigestion,whichisperformedbytheanaerobicmicrobesthatthriveintheabsenceofoxygen.Thesemicrobesalsoproducecarbondioxidealongwithmethane,thusrequiringscrubbing.

Page 49: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-49

Althoughbiogasplantsproducecarbondioxideandothergreenhousegases,theyaregenerallyconsideredtobenearlycarbon-neutral(orbetter)becausetheycan--dependingoncollectionandprocessingmethods--reducetheamountofmethaneandothergreenhousegasesthatwouldhavebeenreleasedintotheatmosphereiftheorganicmatterwaslefttodecomposenaturally.Asthechartbelowindicates,landfillsaloneareresponsiblefor18%ofmethaneproductionintheU.S.,andarearelativelyeasytargetforreductions(comparedtobovineentericfermentation,forexample.)Thatsaid,somelocalitiesdonotviewbiomethane,heat,orelectricityproductionfromlandfillgasasthemostenvironmentallybeneficialapproachtogreenwaste.

TheCityofSanFranciscoDepartmentofEnvironment,forexample,hasdeterminedthatotherformsofgreenwastereusecanbemorebeneficial.Forexample,separatecollectionoffatsandoilscanbeusedinbiodieselproductionwhileothergreenwastecanbeusedindevelopingcompostforsoilamendments“tuned”formaximumcarbonsequestrationinagriculturalandrangelandapplicationsorurbanforestry.Suchstrategiescouldinprincipleprovideequalorsuperiorcarbonbenefit.However,biogasdevelopmentisgreatlysuperiortouncheckedlandfillemissions.Thebasicprocessofanaerobicdigestioniswell-understood(seethediagrambelow),andtheeconomicscanbeattractivewhereverlandfillcapacityisscarce.

Source:EPAWebsite:OverviewofGreehouseGases:MethaneEmissions,http://www3.epa.gov/climatechange/ghgemissions/gases/ch4.html

BiogasProductionThroughAnaerobicDigestion

Page 50: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-50

Biogasproductionthroughanerobicdigestionworksbycombiningorganicwasteinafeedstockmixedwithwater,introducingbacteriatofuelthehydrolysisprocess,andthenremovingwater,carbondioxide,andimpurities.

Source:CaliforniaEnergyCommissionwebsite,PresentationbyThomasDamberger,GoldenStateEnergy.http://energy.gov/sites/prod/files/2014/03/f10/renewable_hydrogen_workshop_nov16_damberger.pdf

CountyofSantaBarbaraTajiguasResourceRecoveryProject:TheSantaBarbaraCountyDepartmentofPublicWorks,incollaborationwiththecitiesofSantaBarbara,Goleta,SolvangandBuellton,hasbeenleadinganearlydecade-longefforttodevelopaResourceRecoveryProjectthatwillprocessmunicipalsolidwastecurrentlydisposedattheCountyownedandoperatedTajiguasLandfill.Thisprojectincludesfacilitiesthatwillextractrecyclablesmistakenlysenttothelandfillandanaerobicallydigestorganicmaterialcurrentlyburiedatthelandfill.Theprojectisplannedtoconvertbiogasdirectlytoheatforhomesintheareaandforelectricitysalesbacktothegrid--ratherthantousethebiomethanetopowervehicles.However,theprojectisnoteworthyforitscarbonbenefit,itsindirectlinktotransportation(giventhatthelocalgridpowerselectriccars),andasareplicableprojectthatcouldinthefutureprovideamodelforbiomethaneproductiontofuellow-carbonNGVs.Theprojectisalsopurposedtoincreaserecyclingratesabove80%andprovidearangeofotherbenefitsdescribedbelow.23

TheTajiguasResourceRecoveryProjectisacollaborationoftheSantaBarbaraCountyDepartmentofPublicWorks,andthecitiesofSantaBarbara,Goleta,SolvangandBuellton.

23CountyofSantaBarbaraTajiguasResourceRecoveryProjectwebsite,http://resourcerecoveryproject.com

Page 51: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-51

ThelengthyTajiguasprojectdevelopmentperiod,whichbeganin2007,hasincludedtwofeasibilitystudies,arequestforproposals,aproposalreviewprocess,andacomprehensivepublicoutreacheffortinvolvingover80presentationstostakeholdersoverthepastfiveyears.ThewinneroftheRFPprocess,whichattractedfourbidders,isateamofentrepreneursknownasMustangRenewablePowerVentures,basedinSanLuisObispoCounty.ThefinalprojectdesignconsistsofanAnaerobicDigestionFacility(ADF)thatwillconvertallorganicsrecoveredfromthewastestreamintodigestateandbiogas.Thedigestatewillbeaerobicallycuredintoacompostproducttobemarketedasasoilamendmentorusedforreclamationprojects,whilethebiogaswillbeconvertedatapowerplantintoelectricityusedtoruntheplantandsellbacktothegrid.AccordingtoEPAformulacalculationstheprojectwillreducethelocalGHGimpactby133,382MTCO2E(MetricTonsCarbonDioxideEquivalent)ayear,equaltoremoving26,153averagepassengervehiclesontheroadannuallyandgenerates1megawatt(net)ofrenewableenergy/year.Thisisaformidableprojectthatatteststothepotentialofbiomethaneproductionpathways.5.26.NGVDeploymentintheMontereyRegion[NGVFleetSurveyDatatobeEnteredHerefromEcologyActionsurveys]

Page 52: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-52

CumulativeregistrationsofNGVvehiclesintheMontereyregioncanbecomparedagainstcumulativestateregistrationsofNGVsasof2013throughthefollowingchart.

NGVRegistrationsinCalifornia(2013data)

Source:EnergyCommissionstaffanalysisof2013DepartmentofMotorVehiclesvehicleregistrationdatabase,citedinStrategiestoMaximizetheBenefitsObtainedFromNaturalGasasanEnergySource.CaliforniaEnergyCommission.pp.41-42.

5.27.MontereyCNGFleetAdoption:CNGfleetadoptionintheMontereyBayareahasbeenconcentratedinbusfleetsandrefusehaulersandrecyclingproviders.Inparticular,refusehaulersareworkingoninnovativeprojectstouserenewablenaturalgasfromlandfills.Avarietyofmini-casestudiesareprovidedbelowtosuggesttherangeofCNGinitiativesundertakeninrecentyearsandtoencourageadditionalassessmentofNGVandaltfuelvehiclepotentialbyotherfleets.

WasteManagement:WasteManagement'sCarmel-Marinafleetusesnaturalgastopower25ofitsgarbagetrucks,withplanstopowerall45truckswithnaturalgasinthenext10years.WasteManagementrunsthelargestheavydutyfleetinAmerica,andnowhas4,100vehiclesrunningonnaturalgas,andoperates73naturalgasfuelingstationsacrossNorthAmerica.Thecompanyhascommittedtohavingover90%ofnewtruckpurchasesbeingnaturalgasvehicles.24TheCarmel-MarinafleetisfilledfromtanksinCastrovillewithnaturalgasrecoveredatWasteManagement'sAltamontLandfillinLivermore,CA.SinceNovember2009,thelandfillhasbeengeneratingasmuchas13,000gallonsofbiofueladay,powering300WasteManagementvehiclesinCalifornia.Thegasiscryogenicallyreducedtoliquidatextremelycoldtemperatures,thenbroughttoCastrovilleandtransferredtothestoragetank.OncepumpedintotheCastrovillestoragetank,theliquidnaturalgasispassedthroughevaporatorstoconvertitintocompressednaturalgas,andstoredin5-inch-thicksteelsphericaltanks.TwodispensersattheWasteManagementyardcanfillatruckinsixminutes,comparedwithabout10minutestofuelasimilar-sizedieseltruck.AccordingtoCarmel-

24WasteManagement’swebsite,http://investors.wm.com/phoenix.zhtml?c=119743&p=irol-recentnewsArticle&ID=2062708

8,000

6,000

4,000

2,000

Car Van MHDV

Page 53: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-53

MarinadistrictmanagerFelipeMelchor,the25trucksinoperationbyCarmel-MarinaCorp.reducegreenhousegasemissionsintheCarmel-MarinaCorp.serviceareabyatleast2,100metrictonseachyear.25

Therenewablenaturalgaswillsoonbeevenmorelocal.MontereyRegionalWasteManagementDistrictisworkingwithTrilliumCNGtobuildanewcompressednaturalgasstationtofuelthedistrict’sCNGrefusetrucksattheMontereyRegionalEnvironmentalParkinMarina,Calif.Bymid-2016,theDistrictwillextrudethemethanegasproducedattheMontereyPeninsulaLandfill,anearbysanitaryfacility,andconverttherecoverednaturalgasintoCNGtopowertheirfleet.Truckswillbeginandendthedayatthesite,accordingtoTimFlanagan,thedistrict’sassistantgeneralmanager.26

AWasteManagementCNGtrashhaulerbeingfilledataCNGstationSource:http://www.sustainablebrands.com/news_and_views/clean_tech/jennifer-elks/new-waste-management-facility-turning-even-more-landfill-gasSantaCruzMetro:SantaCruzMetroisthelargestpublictransportationproviderinSantaCruzCounty,providingfixed-routebusandparatransitservicesthroughoutthecounty.Thefleetof90busesiscurrently75%CNG,andSantaCruzMetroplanstoincreasethisnumbertoa100%CNGfleetastheysoonwillretiretheremaining1998dieselbuses.27Ridershipin2015wasapproximately5.5millionandcovers35routes,includingcommuterbuslinkstoSiliconValley.Metrohasbeenapproachedtoconsiderbiofuelsandotheralternatives,butiscommittedtomaintainingaCNGstrategy,havingexperiencedpositiveresultsonbotheconomicandoperationalmetrics.Bycontrast,MontereySalinasTransithasoperated17CNGbusesbutareintheprocessofreplacingthembecauseofhighermaintenancecosts.28

25TheMontereyHerald,July14,2011,http://www.montereyherald.com/20110714/castroville-natural-gas-holding-tank-inaugurated26TrilliumCNG’swebsite,http://blog.trilliumcng.com/2015/02/16/trillium-cng-inks-deal-monterey-regional-waste-management-district-calif/27AmericanPublicTransportationWebsite,http://www.apta.com/mediacenter/pressreleases/2015/Pages/150416_Earth-Day.aspx28http://www.mrwmd.org/archives/2008%20Board%20Meeting/July/MRWMDJul08_13_Ltr_Regarding_Alternative_Fuels.pdf

Page 54: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-54

SantaCruzMetroCleanAirBusSource:http://images.metro-magazine.com/post/M-SantaCruz.jpgSanBenitoHighSchoolDistrict:SanBenitoHighSchoolDistrictoperatesfourCNGschoolbusesandaCNGfastfillfuelingstation.Thisstationisopentootherlocalfleets,suchastheAromas-SanJuanUnifiedSchoolDistrictandtheLocalTransportationAuthority,whichbothrunsmallCNGfleets.SanBenitoHighSchool’sCNGschoolbusesandfuelingstationwerepartiallysubsidizedthroughagrantfromtheMontereyBayUnitedAirPollutionControlDistrict.SBHShasfourCNGbusespaidforbygrantsfromtheAirDistrict.Thebusescostapproximately$130,000each–$30,000morethandieselbuses,accordingtoDavidFairchild,airqualityplannerwiththeAPCD.UniversityofCalifornia,SantaCruz:UCSChasaCNGfillingstationwhichisutilizedby8CNGvehiclesoncampus.UCSChasmadethechoicetofocusonCNGforheavy-dutyvehiclereplacements.TwoCNGrefusetrucksusethemajorityoftheCNGoncampus,andthusCNGconsumptionhasdoubledinrecentyears.FutureheavydutyvehiclereplacementswillbeCNGaswell.

UCSC’sCNGfillingstationserves8CNGvehicles,includingtwoheavydutywastehaulersSource:http://fleets.ucsc.edu/services/fuel-site.html

Page 55: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-55

5.28.NGVSafetyandTrainingforTechniciansandFirstResponders:Naturalgashassignificantlydifferentpropertiesandcharacteristicsthangasolineordieselfuels,andnaturalgasfuel-specifictrainingisessentialforbothtechniciansandsafetypersonnel.OnCNGvehicles,portionsofthefuelsystemoperateatextremelyhighpressures(3,600psi),whileLNGvehiclesusecryogenic(-260degreesFahrenheit)fuelsystems.Bothtypesoffuelsystemsareverysafewhenhandledappropriately,yettheyrequireuniquecomponentsandspecialsafetyproceduresforalllevelsofmaintenance,diagnostics,repair,andemergencyresponse.ThissectionofthePlanwillreviewrecommendedtrainingresources.

SeveraltrainingoptionsforfirstrespondersandtechnicansexistthroughtheNationalAlternativeFuelsTrainingConsortium(NAFTC),andtrainingfortechniciansisavailableboththroughNAFTC,andtheNaturalGasVehicleInstitute(NGVi),aswellasthroughmanyCaliforniaCommunityCollegesandCleanCitiesCoalitions.Mostcoursesareavailableinbothin-personandonlineformats.Shorterformatcoursesaretypicallyfourhours,whiletwo-dayin-depthtrainingsandtrain-the-trainercurriculaarealsoavailable.

TheNAFTCoffersmultiplecoursestailoredtoeachfueltype,withseparateofferingsfortechnicians,firefighters,emergencymedicalservices,andlawenforcement.ThefoundationalcourseforanytypeofFirstResponderisentitled:FirstResponderSafetyTraining:GaseousFuelsandGaseousFuelVehicles,andisavailableonlineathttp://naftc.wvu.edu/course_workshop_information/first_responders/first-responder-safety-training-cclp#gas.Inthiscourse,FirstResponders(orothersafety-relatedstaff)aretrainedonproceduresforsafelyaddressingincidentsinvolvingCNG,LNG,propane,andhydrogenvehicles.Anyonecanattendtheseclassesasaparticipant,howeveronlyafirstresponderwithatrainingbackgroundcanparticipateintrain-the-trainerlevelcourses.Thefoundationalcourseenablesparticipantsto:

§ Listthekeyproperties,characteristics,andfunctionsofgaseousfuels§ Explaintheoperationofgaseousfuelvehicles§ Recognizegaseousfuelvehiclecomponents§ Identifytherisksandhazardscommontogaseousfuelstorage§ Explainthemajorcomponentsofgaseousfuelvehiclefuelingsystems§ Describegaseousfuelvehiclefuelingstationsafetysystems§ Identifytherisksinvolvewiththetransportandhandlingofgaseousfuels§ Listpersonalprotectiveequipmentnecessaryforfirstresponderswhenrespondingtoagaseous

fuelvehicleincident§ Listthestepsrequiredtosecureagaseousfuelvehicle§ Listthestepsforrescuingoccupantsfromadamagedgaseousfuelvehicle§ Demonstrateproperfireresponsetogaseousfuelfire§ Demonstrateproperresponsetoagaseousfuelleak

SeparatecoursesarealsoavailablethatcoversimilarmaterialwithgreaterspecificityfromtheperspectiveofindividualFirstResponderjobtypes.Thesecoursesinclude:

§ FirefighterAlternativeFuelVehicleSafetyTraining§ EmergencyMedicalServicesAlternativeFuelVehicleSafetyTraining§ LawEnforcementAlternativeFuelVehicleSafetyTraining§ FirstResponderSafetyTraining:GaseousFuelsandGaseousFuelVehicles§

TechniciantrainingisalsoavailablefromNATCinmultipleAFVcategoriesincluding:§ IntroductiontoNaturalGasVehicles

Page 56: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-56

§ IntroductiontoPropaneVehicles§ LiquefiedNaturalGasVehicles§ PropaneAutogasVehicleTechnicianTraining§ Light-DutyNaturalGasVehicles§ Heavy-DutyGaseousFuelApplications§ CompressedNaturalGasVehicleFuelSystemInspector§ CompressedNaturalGasVehicleConversion

CaliforniaCommunityCollegeNAFTCContacts:OfficialNATCregionaltrainingcentersclosesttoMontereyareatElCaminoCollegeandFresnoCityCollege.AtElCamino,thecontactisEldonDavidson–[email protected],thecontactisMartinKamimoto–martin.kamimoto@fresnocitycollege.edu.IntegratedNGVTechnicalandSafetyTraining:InadditiontoNATC,theNaturalGasVehicleInstituteoffersasevenmoduletechnicaltrainingcoursethatintegratestechnicalwithsafetytraining.Thecoursemodulesaddress:ThePropertiesandCharacteristicsofNaturalGas;FunctionofCNGFuelSystemComponentsandSafetyProcedures;CNGFuelingStationEquipmentandOperation;CNGDepressurizingandDefueling;LNGFuelandVehicles;andLNGFuelingandDefueling.Themodulescanbetakenseparately.Thiscourseisviewedasappropriatefor:

§ Technicianswhowillperformbasicpreventativemaintenanceonnaturalgasvehicles(oilchanges,tirerotations,etc.)

§ TechnicianswhowillperformmandatedCNGfuelsysteminspections§ TechnicianswhowillperformNGVdiagnosticsandrepairprocedures§ AllemployeesinvolvedinNGVfleetoperations§ Fleetordealerservicemanagersandsupervisors§ Corporate/agencysafetymanagers§ Riskmanagementstaff

Courseobjectivesareto:§ Describethepropertiesandcharacteristicsofnaturalgas.§ Identifythedifferencesbetweennaturalgasandotherliquidfuels.§ Identifyallmajorlow-andhigh-pressureCNGfuelsystemcomponents;describetheiroperation

andsafetyprecautions.§ Describethedifferencesbetweendedicated,bi-fuelandduel-fuelNGVs.§ Identifyandemploysafetypracticeswhenworkingwithnaturalgaspoweredvehicles.§ BefamiliarwithCNGfuelingstationequipment,safetydevices,operationandfueling

procedures§ IdentifyCNGandLNGdepressurizinganddefuelingmethodsandtherelatedsafetyprecautions

Availableininstructorledore-learningformats,theNaturalGasVehicleInstitute’sLevel1courseisdesignedfortechniciansandsupportteamsperformingroutinemaintenance,inspection,diagnosticsandrepairofnaturalgasvehicles.ItisalsoaprerequisitefortechnicianswhowilltakeNGVi’sCNGFuelSystemInspectorTrainingorNGVHeavy-DutyMaintenanceandDiagnosticsTraining.MoreinformationontheNaturalGasVehicleInstituteisavailableat:http://www.ngvi.com/index.html

5.29.SummaryofKeyStrategiesandToolsforAssessingFleetAdoptionofNGVs:ThisChapteroftheAFVPlanhasprovidedalargebodyofmaterialrelevanttoFleetManagerstohelpassesstheeconomics

Page 57: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-57

andenvironmentalattributesofNGVs,aswellastheiroperationalcharacteristics.Atthisjuncture,itmaybeusefulto“boildown”thisinformationintoafewkeyquestionstoguidetheprocessofassessingthepossibleroleofNGVsinlocalfleetapplications.

§ TypesofVehicles–NeworRetrofit,Bi-FuelorNGV:AkeyinitialquestioniswhethertopurchasenewOEM-producedCNGvehicles,purchasenewgasolineordieselvehiclesandhavethemconvertedtoCNGbyathird-partyupfitter,orretrofitexistingvehiclescurrentlyoperatinginthefleet.Thenumberandvarietyoffactory-andconversion-readyCNGvehiclesavailablefromOEMsisincreasing.SomeoftheNGVsbuiltbytheOEMsincludepopularmodelssuchastheChevroletSilveradoHD,GMCSierraHD,Ram2500,andtheChevroletImpala.FleetcustomerscanalsoordermanyFordvehicles,includingtheF-150,withanoptionalgaseousenginepreppackage(withhardenedenginecomponents),makingitreadyforconversiontoCNGbyaFordQualifiedVehicleModifier(QVM).Manyvehiclesarealsoavailableinbi-fuelorNGVonlyconfigurations.AgoodresourceforassessingthemeritsofeachcanbefoundinGreenFleetMagazineat:http://www.greenfleetmagazine.com/channel/natural-gas/article/story/2014/12/deciding-whether-bi-fuel-or-ngv-is-the-best-for-your-fleet.aspx

§ FuelingSystemOptionsandConfigurationsontheVehicle:Beyondfindingtherightvehiclemodelforafleet’sspecificneeds,therearekeyoperationalcriteriatobeconsideredwhendecidingtoshifttoNGVs,potentiallyimpactingbothrangeandspaceutilization.Forexample,theChevroletExpressCNGcargovanofferscustomersthechoiceofathree-orfour-tankconfiguration.Thethree-tankversionoffersafuelingcapacityof15.8GGE,whilethefourhas23.1GGE.Thatmeansanextra100milesofrangewiththefour-tankoption;however,becauseoftheweightoftheextratank,300poundsofpayloadaretradedoff.IntheChevroletExpressdedicatedCNGvan,thetanksarefittedaroundtheframeunderthevehiclebody.Anoptionalfourthtankisplacedinthecargoarea.Fleetmanagersmayfaceasimilartrade-offifconsideringCNGpick-uptrucks.Ram,Chevrolet,andGMCplacetheCNGtankinthetruckbed.InthecaseoftheRam2500CrewCab,thisutilizes3feetofthe8-footbed.Forsomefleets,thatspaceispreciousandthelossofitcanbeanon-starter.Automakersandupfittersareworkingtoreducethesekindsoftrade-offs.WhilemanyNGVsusesteelCNGtanks(knownasTypeI),growingnumbersareusing(equallysafe)tanksmadeoflightermaterialssuchasfiberglass-wrappedaluminum(TypeIIandTypeIII)orcarbonfiberandothercomposites(TypeIV).ThesetypesoftankscostmorethanTypeItanks,buttheyalsoreducethepayloadvs.fuelingrangetrade-offduetotheirlighterweight.

§ MatchingDutyCyclestoFuelInfrastructure:Tofurtherdrilldownonthequestionofvehicle

type,afleetmanagerconsideringCNGlight,mediumorheavydutyvehiclesshouldaskthefollowingquestionstodeterminewhattypeofinfrastructureisneededandavailable.

§ Whatarethedailydistancestravelled?§ Whatisthetypicaldutycycle—onewayorroundtrip?§ Arethereexistingpublicaccessfuelingstationssuitableforthedutycycle?§ Canthevehiclesbefilledovernightordotheyneedtobefast-filled?§ Publicvs.privateaccesstoafleetfueldepot—willtherebepublicaccesstothestation?§ Whataretheeconomicsofbuildingastationvs.usingpublicinfrastructure?§ ArethereupcominggrantopportunitiesforsupportingNGVprocurementorfueling

infrastructure?(LocalCleanCitiesCoalitionsandAirPollutionControlDistrictsmaybe

Page 58: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-58

abletohelpidentifyemergingopportunities)§ Canyourorganizationpartnerwithanotherpublicagency,fleetoperator,orservice

providertosharethecostsofnewfuelinginfrastructure?

§ FuelCostCalculationsandPaybackPeriods:Allfleetoperatorsmustmeetbottomlinefinancialperformanceexpectations.Whileitischallengingtopredictfuturefuelprices,someassumptionsmustbemadetodriveanROIcalculation.Toassistwiththisprocess,theDOE’sAlternativeFuelDataCenterhascostcalculatorsthatcangeneratesimpleback-of-the-envelopeestimatesofhowmuchafleetcansave.Seewww.afdc.energy.gov/vehicles/natural_gas.htmlformoreinformation.Additionaltoolsarelistedbelow.Also,fleetmanagementcompaniescanhelpcalculateacompany’sspecificcostsofownershipmorepreciselywithmodelsincorporatingmanymoreoperationalvariables.Searchesonfleetmanagementcompanieswillprovidenumerousoptions.

§ KickingtheTiresatLeadingConferences:Thereisnosubstitutefordirectinteractionwithvehicles,thecompaniesthatstandbehindthem,andone’speersintheindustry.LeadingconferencesincludetheAlternativeCleanTransportation-ACTEXPO(inLongBeach),NAFA(theNationalAssociationofFleetAdministrators),theFleetTechnologyExpo,theGreenTruckSummit,theWorkTruckShow,theGovernmentFleetExpo&Conference,ALTCARExpo&Conference,theNorthAmericanNGVAssociation,andothers.

§ UseTheseEssentialToolsforEconomicandEnvironmentalCost/BenefitAnalysis:The

followingtoolsareinvaluableformakingadetailedandcustomizedassessmentofbotheconomicandenvironmentalcostsandbenefitsofincorporatingNGVs(andotherAFVs)intothefleet,onafulllife-cyclebasis.Thesetoolsareconsideredindustry-standard,andassessmentsgeneratedwiththemwillbehelpfulinseekinggrantfundingforalternativefuelvehiclesandinfrastructure.

§ VICE2.0:VehicleandInfrastructureCash-FlowEvaluationModel

TheVICEmodelversion2.0isthesecondgenerationofthefinancialmodeldevelopedbytheNationalRenewableEnergyLaboratoryforfleetmanagerstoassessthefinancialsoundnessofconvertingtheirfleetstorunoncompressednaturalgas(CNG).

§ DNGIFuelSavingsCalculatorTheNaturalGasFuelSavingsCalculator,producedbyTheDriveNaturalGasInitiative,acollaborationbetweennaturalgasutilitiesandproducers,helpswiththepreliminaryanalysisofthetotalcostsassociatedwithconvertingafleet.

§ ArgonneAFLEETTool,AFLEETToolInstructionsforenvironmental/economiccost-benefitanalysisTheDepartmentofEnergy’sCleanCitiesProgramhasenlistedtheexpertiseofArgonnedevelopatooltoexamineboththeenvironmentalandeconomiccostsandbenefitsofalternativefuelandadvancedvehicles.ArgonnehasdevelopedtheAlternativeFuelLife-CycleEnvironmentalandEconomicTransportation(AFLEET)ToolforCleanCitiesstakeholderstoestimatepetroleumuse,greenhousegasemissions,airpollutantemissions,andcostofownershipoflightdutyandheavydutyvehiclesusingsimplespreadsheetinputs.Formoreinformation,visittheArgonneAFLEETToolwebsitehere.

Page 59: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-59

5.30.RecommendedActionstoSupportNGVAssessmentandReadiness:Thefollowingrecommendationsdefinehigh-levelactionsthatfleetmanagers,AFVstakeholders,andpolicy-makerscantaketoassessthepotentialroleofnaturalgasvehiclesandlow-carbonnaturalgasfuelpathwaysinadvancingeconomicandenvironmentalgoals.(NotethattherecommendationnumberingcorrespondstotheoverallAFVPlanrecommendationsfirstappearingintheintroductiontothisPlan.)

ACTIONS LEADERSHIP

2.4.1.AssesspotentialofCNGvehiclestomeetfleetenvironmentalandeconomicgoals–takingintoaccountthemostrecentandauthoritativeresearchonGHGandairqualityimpacts.(SeeRecommendation#2.1.1.Developgoalsforpublicfleetspoweredbysustainablealternativefuels)

FleetManagers

2.4.2.DetermineneedforadditionallocalCNGfuelinginfrastructure(ifany)tomeetplannedCNGfleetneeds.

FleetManagers

2.4.2.1.IfadditionalCNGfuelinginfrastructureisneeded,convenekeystakeholdersandtheMontereyBayAFVCounciltocoordinatefundingforplanninganddevelopmentofCNGfuelingsites.

FleetManagersAFVCoordinatingCouncil

2.4.3.Convenestakeholderstoassessinterestindevelopmentanddistributionofbiomethaneand(ifappropriate)todevelopplanningfunds.TheAFVCouncilcanconveneinterestedpartiestodetermineifsufficientinterestexiststoseekplanningfundsforbiomethanefuelpathwaydevelopment.

AFVCoordinatingCouncilandNGVstakeholders

2.4.4Convenestakeholderstoassessinterestindevelopinglow-carbonfreightdeliverysystemsintheCentralCoastandMontereyBayAreaand(ifappropriate)todevelopplanningfunds.Ifinterestexists,planningfundscouldbesoughttoassessdiversestrategies,includinginter-modalfreightconsolidationfacilities,expandeduseofLNG-fueledClass8heavy-dutytrucks,“greenlastmile”deliverysystems(e.g.,allelectrictrucks),andotherstrategies.

AFVCoordinatingCouncilsofboththeCentralCoastandMontereyBayAssociationofMontereyBayAreaGovernmentsMontereyUnifiedAPCDandCentralCoastAPCDs

2.4.5.ConveneUCSantaCruzandalliedstakeholderstoassessinterestindevelopingCECfundsforintegratingalternativefuelvehicleandZeroNetEnergystrategies,potentiallyincludingCNGandotheraltfuelpathways.Ifinterestexists,theAFVCouncil,UCSCleaders,andotherkeystakeholderscouldcoordinatedevelopmentofplanningandimplementationfunds.

AFVCoordinatingCouncilUCSCSustainabilityandAltFuelLeaders

Page 60: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-60

5.31.SummaryDiscussionofStrategiesforCleanVehicleandFleetDecision-Making:TheenvironmentalperformanceofNGVsrelativetoothervehicles–especiallydieseltrucks–iscomplexandhighlydynamic.ThedynamicelementsincluderapidlyevolvingNGVenginetechnologyandnewbiomethanefuelpathwayswithdramaticallyimprovedenvironmentalattributes.Moreover,NGVsarenotcompetingagainstothervehiclesandfuelsthatareinastaticposition.Dieselandgasolinepoweredvehiclesarepoisedtomakesignificantstridesinairemissionswithbothnewenginetechnologiescomingon-lineandexpandeduseofpromisingbiofuels.Electricvehiclerangeandperformanceislikewiseimprovingwithpromiseforfuturemedium-andheavy-dutyapplications.Inthisrapidlychangingenvironment,itisrecommendedthatfleetmanagersandotherleadersincorporatethefollowinganalyticstrategiesintotheirvehicleassessmentanddecision-makingapproach.

1. Utilizethebestavailabledataonfuelandvehiclecombinationstomatchaspecificoperatingneedwiththecleanestavailabletechnology.§ Everyvehicleexistswithinanecosystemthatincludesoursharednaturalenvironment,the

fuelpathwayecosystem(includingfeedstocks,production,andfueldeliverysystems),andtheoperatingenvironment(includinguniquedutycyclesandeconomicimperatives.)Insomecases,thecleanestvehicleavailablewillnotbepracticalbecauseofinsurmountablechallengesinthefuelecosystemortheoperatingenvironmentatanygivenpointintime.Ratherthanrestwithhigher-levelgeneralizationsaboutfuelandvehicleperformance,delveintothedetailofyourownspecificusecasesandseekoutthebestavailableinformationtomatchaspecificoperatingneedwiththecleanestavailabletechnology.

§ Virtuallyallvehicletypes–includingNGVs–canoperateonalowcarbonbasisgiventherightcombinationofhigh-efficiencyengine,lightweightandaerodynamicvehicledesign,bestoperatingpractices(e.g.idlereduction),andlow-carbonfuel.Byapproachingfleetmanagementandtransportationpolicyfromawhole-systemsperspective,transportationdecision-makerscanoptimizethevehicleandfuelpathwaychoicetodramaticallyreduceenvironmentalharmandadvancehigh-performanceorganizationalgoals.

2. Regularlyre-assessthestateoftechnologydevelopmentandtheeconomicandenvironmentalperformanceattributesofallmajorAlternativeFuelVehicletypes.§ Transportationtechnology,policy,andpracticeisevolvingatthefastestpaceinhistory,

withbreakthroughsoccurringeveryyearinvehicledesign,fuelpathways,andoperatingstrategies.Newapproachestoconnectivityandtelematics,vehiclesharing,andautonomousdrivingwillfurtherrevolutionizethefleetmanagementandtransportationlandscapeinthecomingdecade.Toensurethatdecision-makingreflectscurrentinformationinallkeydomains,engagecolleaguestoparticipateinleadingconferences,subscribetoauthoritativeinformationresources,andconsultwithleadingexpertsinrelevantprofessionalassociations.

3. Developaclearunderstandingoftheglobalwarmingcrisisandthelinkbetweenairemissionsandhealth–andmakedecisionsaccordingly.§ Virtuallyallqualifiedscientificexpertsandleadingresearchinstitutionsagreethatdecisions

madeinthenext5-10yearsonclimate-relatedpoliciesandgreenhousegasemissionswilldeterminewhetherglobalwarmingentersthe“runaway”stage–withlikelycatastrophicconsequencesforalllifeonearth.Becauseofthesystemicnatureofthechallenge,alldecision-makingontransportation,energy,andemissionsissuesisbothlocalandglobalin

Page 61: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-61

impact,andeverydecisionhasimportanceinshiftingcurrenttrendlinestowarddramaticallyreducedemissionsor“businessasusual.”

§ ThestateofCaliforniamadeascience-baseddecisionthateconomy-wideemissionscanandmustbecutbyatleast80%below1990levelsby2050atthelatest.ThemostrecentsciencebeingpresentedtotheUNIntergovernmentalPanelonClimateChangeandinauthoritativejournalsindicatesthatthelevelofemissionsreductionsneededandthetimetableforachievingthemislikelymuchtighterthanevenCalifornia’sAB32targetssuggest.Moreover,inordertoachievethestate’s2050targets,CARBScopingPlanindicatesthatnearly100%ofvehiclesdeployedby2030mustbezeroornear-zeroemissionsifwearetomeetthe2050goals.Giventhe12+yeartimelaginfleetturnover,thereisnotimetowastetoachievethisbenchmark.

§ Finally,researchbytheAmericanLungAssociationandothersdemonstratesthatmorethan7,000Californiansaredyingprematurelyeachyearfromairpollution,while5millionaresufferingfromrespiratorydisease(including1millionchildren.)29Ifwewishtoimprovethehealthofourchildrenandcommunities--andsustainalivableclimateforthegenerationstocome--itwillbeessentialtodeploythecleanest-availabletechnologies,whichreducethegreatestamountoftoxicairemissions,atthemostrapidpossiblepace,andinthemostcost-efficientmanner.

29“BreathingEasierinCalifornia,”FactSheetdevelopedbytheCaliforniaLungAssociation,2015,accessedathttp://www.lung.org/local-content/california/documents/california-delivers-public.pdf

Page 62: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-62

5.32.InformationResourcesonNGVs,FuelingStations,Funding,andLocalReadinessVehicleInformationAFDCVehicleBuyer’sGuideforConsumersFeaturesinformationaboutnaturalgasvehiclesandconnectsuserstoadatabaseofcurrentmodelyearcarsandtrucksavailabletoleaseorpurchase.GSAFleetAuctionSiteGSAFleetoperatesover23,000AFVs.EachyearGSAFleetsells2,000to4,000usedAFVsastheyarereplacedbynewvehicles.AlltheinformationyouneedtopurchaseAFVvehiclesatapublicauctionisavailableonthissite.YoucanlearnaboutAFVs,viewvehiclesexpectedtobeavailablein2012,lookforspecificvehiclesforsalenow,andsearchforauctionlocationsinyourarea.NGVFuelingStationLocatorsFuelStationLocator(CNG),FuelStationLocator(LNG)TheAlternativeFuelsDataCentercontainsrefuelingstationsforvariousalternativefuels,includingCNGandLNG,throughoutthecountry.FleetCalculatorsVICE2.0:VehicleandInfrastructureCash-FlowEvaluationModelTheVICEmodelversion2.0isthesecondgenerationofthefinancialmodeldevelopedbytheNationalRenewableEnergyLaboratoryforfleetmanagerstoassessthefinancialsoundnessofconvertingtheirfleetstorunoncompressednaturalgas(CNG).DNGIFuelSavingsCalculatorTheNaturalGasFuelSavingsCalculator,producedbyTheDriveNaturalGasInitiative,acollaborationbetweennaturalgasutilitiesandproducers,helpswiththepreliminaryanalysisofthetotalcostsassociatedwithconvertingafleet.ArgonneAFLEETTool,AFLEETToolInstructionsTheDepartmentofEnergy’sCleanCitiesProgramhasenlistedtheexpertiseofArgonnedevelopatooltoexamineboththeenvironmentalandeconomiccostsandbenefitsofalternativefuelandadvancedvehicles.ArgonnehasdevelopedtheAlternativeFuelLife-CycleEnvironmentalandEconomicTransportation(AFLEET)ToolforCleanCitiesstakeholderstoestimatepetroleumuse,greenhousegasemissions,airpollutantemissions,andcostofownershipoflightdutyandheavydutyvehiclesusingsimplespreadsheetinputs.Formoreinformation,visittheArgonneAFLEETToolwebsitehere.CylinderInspectionCNGCylinderInspectorsThisregistrydatabasewillprovidethename,listingofcurrentcertifications,andcontactinformationforindividualswhohavepassedanexamfortheCSAStandardsPersonnelCertificationprograms.CNGCylinderInspectorTrainingCleanVehicleEducationFoundationlistsorganizationsthatofferCNGcylinderinspectiontrainingfortheCSAcertificationtest.FederalGovernmentInformationNationalRenewableEnergyLaboratoryTransportationResearchBoardDepartmentofEnergy’sOfficeofAlternativeFuelsDepartmentofEnergy’sAlternativeFuelsDataCenter

Page 63: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-63

DepartmentofEnergy’sFuelEconomyInformationOtherAlternativeFuelSitesCleanCitiesCleanVehicleEducationFoundationNationalAlternativeFuelsTrainingProgramConsortiumPublicationsandNewsServicesCleanCityNewsTheofficialquarterlypublicationoftheCleanCitiesProgramandtheAlternativeFuelsDataCenter,providinginformationaboutCleanCities’sprojects,designations,andconferencesaswellasup-to-dateinformationaboutdevelopmentsinthealternativefuelsindustry.TheFuelsFixThequarterlyezinefromtheCleanCitiesCoordinatorsintheSoutheast.Fleets&Fuels AbiweeklynewsletterhighlightingAFVnewsandinfo.TheNGVForumNGVAmerica’snationalnewsanddialogueserviceforthenaturalgasvehicleindustry.NGTNewsNext-GenTransportationisanalternativefuelsnewssite.NGVGlobalInternationalnewsserviceofNGVGlobal,theInternationalAssociationforNaturalGasVehicles.ResearchandDevelopmentGasTechnologyInstituteNavigantResearch,AlternativeFuelVehiclesU.S.LNGFuelProductionPlantsThisregularlyupdatedinformationserviceofNGVAmericaandZeusIntelligenceprovidesinformationonU.S.LNGfacilitieswiththecapabilitytooffloadLNGintotrailersfortruckdelivery.CaliforniaNGV-RelatedInformationCaliforniaAirResourcesBoard(CARB)CaliforniaEnergyCommission’sAFVSiteCaliforniaNaturalGasVehicleCoalition CaliforniaNGVPartnershipInternationalNGVAssociationsNGVGlobal,InternationalAssociationforNaturalGasVehiclesEnvironmentalWebSitesAddressingNGVIssuesEnergyVisionEnvironmentalDefenseNaturalResourcesDefenseCouncilUnionofConcernedScientistsTheWorldBankGroup

Page 64: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-64

Appendix1–NaturalGasVehicleEmissionsandClimateImpactAnalysisA-1.EstablishingaRiskManagementAssessmentFrameworkRelativetotheGlobalWarmingPotential(GWP)ofMethaneandCarbonDioxide:TheconceptofGlobalWarmingPotential(GWPhasbeendevelopedtoenablecomparisonoftheabilityofeachgreenhousegastotrapheatintheatmosphererelativetotheperformanceofthelargestanthropogenicgreenhousegas,whichiscarbondioxide(CO2)overaspecifiedtimehorizon.Toenablethiscomparison,greenhouseemissionsaretypicallycalculatedintermsofhowmuchCO2equivalent(orCO2e)wouldberequiredtoproduceasimilarwarmingeffectoventhechosentimehorizon.Thus,GWPsarebasedontheheat-absorbingabilityofeachgasrelativetothatofcarbondioxide(CO2),aswellasthedecayrateofeachgas(theamountremovedfromtheatmosphereoveragivennumberofyears).Thus,GWPsareusedtodefinetheimpactgreenhousegaseswillhaveonglobalwarmingoverdifferenttimehorizons.Toenablestandardizedinternationalreportingregimes,thesetimehorizonsaregenerallyreportedas20years,100years,and500years.Formostgreenhousegases,theGWPdeclinesasthetimehorizonincreases.Thisisbecausethegreenhousegasisgraduallyremovedfromtheatmospherethroughnaturalmechanisms,anditsinfluenceonthegreenhouseeffectdeclines.30AssigningaGWPvalueenablespolicymakerstocomparetheimpactsofemissionsandreductionsofdifferentgasesusingacommonanalyticframework.TheCO2equivalentvalueusedforcomparisonsamongGHGsisdevelopedbymultiplyingtheamountofgasbyitsassociatedglobalwarmingpotential(GWP).ThedeterminationofaglobalstandardforGlobalWarmingPotentialisdevelopedprimarilythroughthemechanismsoftheUNIntergovernmentalPanelonClimateChange(IPCC)viaitsperiodicAssessmentReports,whichdelineatetherequiredinventoryreportingframeworkundertheUnitedNationsFrameworkConventiononClimateChange(UNFCCC).ThemostrecentupdatesontheGlobalWarmingPotentialofvariousgreenhousegaseswasprovidedin2013-14viatheFifthAssessmentReport(AR5).EachoftheseAssessmentReportsarepainstakinglypreparedoverafiveyearperiodbythousandsofscientistsworkinginthecollaborativeinternationalUNFCCCframework.Theseglobalwarmingpotential(GWPs)arethengraduallyadoptedbynationalregulators(suchastheU.S.EPA)andbyorganizationsthatfacilitatevoluntaryindustryreportingefforts.Methaneisasignificantcontributortothegreenhouseeffectandhasbeennewlydetermined(viatheUN’sFifthAssessmentReport)tohaveaGWPof86overtwentyyears,whencountingtheinfluenceofcarboncyclefeedbacks--oraGWPof84withoutaddressingcarboncyclefeedbacks.31Overa100yeartimeframe,theGlobalWarmingPotentialofmethaneis34whenincludingcarboncyclefeedbacks,and28whenexcludingthefeedbacks.(ItisanticipatedthatmostreportingregimesWILLincorporatethemoreconservativeapproachthatincludesthecarboncyclefeedbacks,whichwerenewlyintroducedintoUNFCCCprotocolsviatheFifthAssessmentReport.)Asnotedabove,thisGWPfactormeansmethaneisapproximately86timesmoreheat-absorptivethancarbondioxideperunitofweightwhenconsideredinatwentyyeartimeframe,and34timesmoreheat-trappingina100yeartimeframe.Forthe20yeartimeframe,theGWPfactorhasbeenrevisedupwardfromapreviouslyassignedGWPfactorof25,representinga40%+increaseinthepotencyassignedtomethane.Thisreflectsnewscientificresearchthatmoreaccuratelycapturestheactualchemicalbehaviorofmethaneintheatmosphere.Whilethisnumbermayberevisedinthefuturebasedon

30SomeGHGs–suchasthechlorofluorocarbons(CFCs)however,havelongatmosphericlifetimes,andtheir100-yearGWPmaybegreaterthantheir20yearGWP.TheseGHGsarebeyondthescopeofthisPlan.31

Page 65: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-65

ongoingresearch,itisunlikelytobesosubstantiallyreassessedagainsoon.WhilemethaneisthusamuchmorepotentgreenhousegasthanCO2perunitofmass,whenassessedonastaticbasis,thereisover200timesmoreCO2intheatmospherebyvolumetricdensity.Currently,globalCO2levelsareover380ppm(partspermillion)whilemethanelevelsare1.75ppm.Hence,onasnapshotbasis,theaggregateamountofwarmingcontributedbymethane(shownbyitschemicaldesignationCH4inthechartbelow)iscalculatedatjust28%ofthewarmingCO2contributes.(Thischartprovidesaquicksnapshotofalltheinfluencesonglobalwarmingasexpressedviathe“radiativeforcing”orheat-trappingimpactofeachgreenhousegas,withtemperatureimpactsincentigradeshownontheverticalaxis.)

SOURCE:https://www.skepticalscience.com/methane-and-global-warming.htm

Astrongcaseforutilizingthe20-yearvs.the100yearGlobalWarmingPotentialtimeframetoevaluateclimateimpactshasbeenmadebymanyscientistsandpolicyanalystswhonotethat,perthewarningsoftheUNIPCCandotherscientificbodies,wemaybeonlyafewyearsawayfromcrossing“pointsofnoreturn”forkeyclimateimpacts.TheseimpactsincludetheirreversiblelossofenoughiceonGreenlandandAntarcticatoraisesealevels40feetormore,ofwhichsixtotenfeetormoreisconsideredpossibleduringthiscenturybasedona“businessasusual”emissionsscenarioandahighlevelofclimatesensitivity,accordingtorecentresearchandtestimonybyJamesHansen,formerNASAChiefClimateScientist.Anevenmoreserioustippingpointontheimmediatehorizonislarge-scalereleaseoffrozenmethanetrappedinbubblesunderneaththeArcticoceanandinterrestrialpermafrost.Asuddenlarge-scaleincreaseinnaturalmethaneemissionscouldresultinadramatic“temperaturepulse”thatwouldsendglobalwarmingimpactsintoazoneofseriousandimmediatedangerforhumansustainability.32Recentstudiesestimatethatnotlessthan1,400gigatonsofcarbonispresentlylockedupasmethaneandmethanehydratesundertheArcticoceanandtundra(whichrepresentsapproximatelydoublethe

32“ArcticMethaneRelease”inWikipedia,https://en.wikipedia.org/wiki/Arctic_methane_release

Page 66: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-66

700gigatonsofCO2ecurrenthuman-causedoranthropogenicatmosphericaccumulations.Bywayofcomparison,humansarecurrentlyemittingabout36gigatonsofCO2eperyearasof2013-14,withincreasesof3%+/yearcompoundedoverrecentyears).Moreover,5-10%ofthisareaissubjecttopuncturingbyunfrozenlayersofgroundorwaterwithinthepermafrostthatareknownastaliks.Theyconcludethat"releaseofupto50gigatonsofpredictedamountofhydratestorage[is]highlypossibleforabruptreleaseatanytime".33Asuddenreleaseofmethaneatthisscalewouldincreasethemethanecontentoftheplanet'satmospherebyafactoroftwelve.34Recallthatagigatonofmethanewouldbe84timesmorepotentinitsglobalwarmingpotentialovertwentyyearsthantheequivalentinCO2e,and100timesmorepotentinthefiveyeartimeframe.In2008,theUnitedStatesDepartmentofEnergyNationalLaboratorysystemidentifiedpotentialmethaneclathratedestabilizationintheArcticasoneofthemostseriousscenariosforabruptclimatechange,asnotedinaU.S.ClimateChangeScienceProgramreportinlateDecember2008.35ScientificconsortiasuchastheArcticMethaneEmergencyGrouppresentanupdated(andevenmorealarming)viewofthedataonsuddenmethanereleasesthantheconservativeprojectionscharacteristicoftheIPCC.ThesewarranttheattentionofpolicymakersandthegeneralpublicinlightofconsistentunderestimatesofwarmingtrajectoriesinpastIPCCreports.36Ofparticularnoteistheworkoftheadvisorygroup,ClimateCodeRed,whichpublishedin2015anewsummaryofglobal“climatemath”thattakesintoaccountabroaderrangeofnaturalclimatefeedbackloopsandmorerecentdatathatwerenotincludedinthe2013-14AssessmentReport5(AR5)oftheUN’sInternationalPanelonClimateChange(IPCC).37

WhenassessingmethaneorotherGHGimpacts,thechoiceoftimehorizonshouldbeinformedbyclimatesensitivitythresholds.AttheCopenhagenandParismeetingsoftheUNFCCC,theimportanceofthethresholdof1.5degrees–2degreescentigradeofpotentially“allowable”globalwarmingwasformallyacknowledgedbytheworldcommunityasthepointbeyondwhichrunawayclimatechangewillposeunacceptableriskstothehumanfuture.Theaggregateadditionalcarbon“budget”formaintainingtheclimatesystembelowthe1.5degreeto2degreeC.thresholdhasbeenvariouslyestimatedatzerogigatons(formaintainingtheearth’saveragetemperatureincreasebelow1.5degreesC.)to565gigatons(formaintainingthetwodegreesC.threshold).AtpresentratesofCO2eemissions(~36gigatonsannually)eventhemoregenerous565gigatonlimitwillbereachedby2028.38Afterthat,theearthwillneedtobenetcarbonneutral(ornegative)intermsofhuman-causedemissionstomaintainalivableclimateforfuturegenerations.Whetherinternationalpolicymakersadoptthe1.5degreescentrigradetargetorthe2degreescentrigradetargetisyettobedetermined.Thusfar,withjustover400ppmofCO2eintheatmosphere,theaveragetemperatureoftheplanethasbeenraisedapproximately0.8degreesCelsius,whichhascausedsubstantiallymoredamagethanmostscientistsexpectedjustafewyearsago.Onethirdof

33“ArcticMethaneRelease”inWikipedia,https://en.wikipedia.org/wiki/Arctic_methane_release34N.Shakhova,I.Semiletov,A.Salyuk,D.Kosmach(2008),AnomaliesofmethaneintheatmosphereovertheEastSiberianshelf:Isthereanysignofmethaneleakagefromshallowshelfhydrates?,EGUGeneralAssembly2008,GeophysicalResearchAbstracts,10,EGU2008-A-0152635CCSP,2008:AbruptClimateChange.AreportbytheU.S.ClimateChangeScienceProgramandtheSubcommitteeonGlobalChangeResearch(Clark,P.U.,A.J.Weaver(coordinatingleadauthors),E.Brook,E.R.Cook,T.L.Delworth,andK.Steffen(chapterleadauthors)).U.S.GeologicalSurvey,Reston,VA.SeealsoSusanQ.Stranahan(30Oct2008)."MeltingArcticOceanRaisesThreatof'MethaneTimeBomb'".YaleEnvironment360.YaleSchoolofForestryandEnvironmentalStudies.May2009.36SeereportsoftheArcticMethaneEmergencyGroupathttp://ameg.me37SeeDavidSpratt,“Recount:It’stimeto‘DotheMath’Again,”Breakthrough,http://www.climatecodered.org/2015/04/its-time-to-do-math-again.html38BillMcKibben,“GlobalWarming’sTerrifyingNewMath,”RollingStone,July2012,http://www.rollingstone.com/politics/news/global-warmings-terrifying-new-math-20120719

Page 67: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-67

summerseaiceintheArctichasdisappeared,theoceansare30percentmoreacidic,andtheatmosphereovertheoceansisfivepercentwetter,whichisproducingdevastatingfloodsinsomepartsoftheworld.ChangesinthejetstreamduetowarmerairandwaterovertheArctichascreatedblockingpatternsthatarebelievedresponsibleformuchofthepersistentdroughtinthewesternU.S.andmanyotherareasoftheglobe–threateningglobalfoodsecurity.Giventheseimpacts,manyleadingscientistsbelievetwodegreesistoolenientatarget,andthatanysubstantialriskofexceeding1.5degreesoftotalwarmingmustbeavoided.Thatsaid,achievinglessthana10%riskofexceedingeventhehigher2degreetarget,forexample,willrequirenearzeronewnetemissionsforindustrialeconomies,beginningalmostimmediatelyand“lockingdown”by2028.Achievingzeronetnewemissionswouldalsorequireimmediatecarbonsequestrationefforts(e.g.,viaincreaseduseofbiocharandrevisedagriculturalpractice,carbonabsorbingalgae,andnewstrategiessuchasgeoengineering–iffeasible--toreflectmoreofthelightandheatenteringtheatmosphere.)ThiswouldalsorequiredramaticretoolingofenergysystemsandradicalenergyefficienciesontheorderoftheeconomicmobilizationinWorldWarII.DeterminingaRiskManagementApproachtoGHGImpacts:Inthefaceofstarkevidenceofthedireimpactsofarunawayclimate,combinedwiththeuncertaintiesthatexistaround“upperlimits”--policymakingintheclimatedomainhasbeenincreasinglyframedinriskmanagementterms.Carbonbudgetsareparticularlyamenabletoriskmanagementanalysis.Simplyput,themorefossilfuelemissionsareallowedinthecarbonbudget,thehighertheriskofexceeding1.5.-2°Cofwarming,andenduringtheattendantclimatedestabilization.Thesmallerthebudget,thelowertheriskoffailure.Assomeanalystshavepointedout,carbonbudgetmathcanalsobeanalogizedtohumanbloodalcoholimpacts:themorealcoholinthesystem,themorelikelyacrash.IntheIPCC’smostrecentassessment,thecarbonbudgetfor2°Cisconsideredtobe1420gigatonsofCO2fora66%riskofexceedingthetarget,but1000gigatonsofCO2fora33%riskofexceedingthetarget.In2009,theclimateactivistorganization350.orgbeganutilizingthenumberof565gigatonsbasedonanalysisofthe40climatemodelsusedintheIPCCmodelingtoarriveatanumberwithan80%likelihoodofsuccess.(Ofcourse,asBillMcKibbennoted,thatisequivalenttotheoddsoflosingatRussianroulettewithasix-shooter–notaveryrobustriskmanagementapproach,butfarbetterthana66%changeoffailure!)Moreover,variousauthoritativereports–notablythe2012ReportfortheWorldBankbythePotsdamInstituteforClimateImpactResearchandClimateAnalytics--predictsthatcurrentemissionstrendline(absentdramaticnewmeasures)putusontrackforatemperatureincreasebetween4˙and6˙Cby2100.39Whataretherisksofthecurrentemissionspathway?Themostwidelycitedandauthoritativereportonthissubjectisgenerallyregardedasthe2007SternReviewontheEconomicsofClimateChange--a700-pagereportreleasedfortheBritishgovernmentbyeconomistSirNicholasSternandateamofscientistsconvenedbytheTreasuryMinistryoftheUnitedKingdom.SternischairoftheGranthamResearchInstituteonClimateChangeandtheEnvironmentattheLondonSchoolofEconomicsandalsochairoftheCentreforClimateChangeEconomicsandPolicy(CCCEP).Inthisreport,Sternwarnedthat:"Theannualflowofemissionsisaccelerating,asfast-growingeconomiesinvestinhighcarboninfrastructureandasdemandforenergyandtransportincreasesaroundtheworld.Thelevelof550ppmCO2ecouldbereachedasearlyas2035.Atthislevelthereisatleasta77%chance-andperhapsuptoa99%chance,dependingontheclimatemodelused-ofaglobalaveragetemperatureriseexceeding2˙Cbytheendofthecentury,givingatleasta50%riskofexceeding5˙Cglobalaveragetemperaturechange

39WorldBankGroup.2014.“TurnDowntheHeat:ConfrontingtheNewClimateNormal.”Washington,DC:WorldBank.https://openknowledge.worldbank.org/handle/10986/20595

Page 68: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-68

duringthefollowingdecades.Thiswouldtakehumansintounknownterritory.”40AccordingtotheSternreportandotherscientificresearch,the“unknownterritory”includes:

§ persistentdrought§ globalfoodinsecurity§ multi-metersealevelriserequiringevacuationorrebuildingofcoastalcities§ asubstantialincreaseinwildfires§ extremeweatherphenomenaincludingfloodsandhurricanes.§ theSternReviewindicatesthatthislevelofemissionswouldcost20%ormoreofglobalGDP

Bycontrast,itisestimatedthattheall-outeffortneededtopreventrunawayclimatechangewouldrequireaninvestmentof2%ofannualglobalGDP,effectiveimmediately.TheImportanceofMethaneMitigation:Tofurtherunderstandtheimportanceofmethane,itisnecessarytobreakdowntheIPCCs“representativeconcentrationpathways”(RCPs)forcarbondioxidevs.methanebytimeperiod.NASA’sformerChiefClimateScientist,JamesHansennotedina2007paper.(Notethat“non-C02forcings”referencedbelowincludemethaneemissionsandblackcarbonasthemostimportant.)Non-CO2climateforcingsareimportant,despitethefactthatCO2isthelargesthuman-madeclimateforcing.Indeed,expecteddifficultiesinslowingthegrowthrateofCO2andeventuallystabilizingatmosphericCO2amountmakethenon-CO2forcingsallthemoreimportant.Itnowappearsthatonlyifreductionofthenon-CO2forcingsisachieved,andCO2growthisslowed,willitbepossibletokeepglobaltemperaturewithinorneartherangeofthewarmestinterglacialperiods.Themostimportant‘non-CO2forcings’forshorttermclimateinfluencearemethaneandblackcarbon(fineparticulatecarbon).Despitethefacttheyaren’tnearlyasimportantascarbondioxideinthelongruntheirmitigationholdssignificantshorttermpotentialaswellaspromiseofhealthandagriculturalbenefits.41Ina2012studyonmitigationpathwaysentitledSimultaneouslyMitigatingNear-TermClimateChangeandImprovingHumanHealthandFoodSecuritymitigationstrategiesaddressingcarbonandmethanecouldpotentiallyslowwarmingoverthecomingdecades,whencombinedwithCO2mitigationapproachesasnotedinthegraphbelow,whichcorrelatesemissionswiththeirglobalwarmingpotentialoverrelevantnear-termtimescales.

40BillMcKibben,“GlobalWarming’sTerrifyingNewMath,”RollingStone,July2012,http://www.rollingstone.com/politics/news/global-warmings-terrifying-new-math-20120719

Page 69: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-69

Becausemethanehasalargereductionpotentialandcost-effectivemitigationtechnologiesareavailablenow,manyclimatepolicystrategistsarebeginningtofocusonmethane,blackcarbon,andotherhighest-globalwarmingpotentialGHGstoproducethegreatestCO2equivalentreductionspossibleinthenear-term(thenext20years)Thisstrategyrequiresreducingrelianceonnaturalgasasaprimaryenergyandtransportationfeedstockwherevercleaneralternativesareavailable(includingrenewablebiofuelsaswellasrenewableelectricity);andutilizingallavailabletechnologiestominimizeexistingmethaneleakagefromthefuelsupplychain,andfromagricultural,livestock,andlandfillsources.42Insummary,giventheimminentcrossingofkeyclimatictippingpoints,andthepotentialofmethane-relatedpoliciestosubstantiallyexacerbateormitigateglobalwarming,itisrecommendedthatpolicymakersandotherstakeholdersutilizethe20-yearGlobalWarmingPotentialtimeframeforassessingthepotentialshifttonaturalgasfromotherfuelsources.A-2.Using“BreakevenLeakageRate”toGuideNaturalGasvs.DieselFuelPathwayChoices:Giventheimportanceofmethaneleakageinestablishinganaccurateglobalwarmingimpactassessmentofnaturalgas,intheUCDavisreportandotheranalyses,scientistsareusingaframeworkcalledthebreakevenleakagerate(BLR)toguidefuelpathwaydevelopmentpolicies.Thisisdefinedas“themaximumacceptableupstreammethaneleakagerateatwhichthecombinedwarmingeffectsofCH4(methane)andCO2fromnaturalgasbalanceoutthecombinedeffectsofCO2andCH4ofthefuelsitsubstitutes.”43Toprovidepolicy-makerswithamorenuancedunderstandingoftheissue,theUCDavisreportprovidesaccesstothefullmodelanditssensitivitiesanduncertainties,ratherthan

42“MethaneEmissionsinContext,”fromShrinkThatFootprint,accessedJuly2015,http://shrinkthatfootprint.com/methane-emissions-in-context.43RosaDominguez-Faus,Ph.D.,“TheCarbonIntensityofNGVC8Trucks,”UCInstituteforTransportationStudies,March2015,p.6.

Page 70: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-70

establishingasingledeterminantoftheappropriateleakagerate.EstablishingasinglenumberwillbetheresponsibilityofEPAandCARB,basedonanalysisthatisstillongoingasofearly2016andwillremainthesubjectofcontinuousrefinementforsometimetocome.However,byreferencingtheauthoritativemeta-analysisofleakageratesperformedtodate,theUCDavisreporthelpsframeaconservativeapproachforpolicy-makerstoguidenear-termplanning,andinformstakeholderinputtothepolicyprocess.Asnotedabove,theUCDavisanalysisutilizesthe2014versionofArgonne’sGREET1modeltocalculatethewarmingimpactofnaturalgasinvarioustransportationapplications.Thekeyunitintheanalysisisthecarbonintensity(CI)ofnaturalgasdefinedasgramsofCO2equivalentemittedpermiledriven(gCO2e/mi).TheGREET1modelusesthelatestIPCCfiguresforthe20-yearGlobalWarmingPotentialofmethane(86–meaningthatmethaneis86timesmorepotentpergramthanCO2overa20yeartimeframe),whileitusesthe100yearGWPfigureof30.(Notethatifexpectedcarboncyclefeedbacksareincludedinthiscalculation,the100yearGWPincreasesto34).ToreviewtheGWP“math”--inthetwentyyeartimeframe,onegramofmethaneemittedtodaywouldhavecreatedtheequivalentwarmingof86gramsofCO2emittedtoday--butin100yearsitwillhavetheeffectofonly30gramsofCO2emittedtoday.TheUCDavisresearchersnotethattheircalculationsusingthenationalGREET-1standarddifferveryslightlyfromtheCA-GREETstandardusedtoassessfuelcarbonintensity--duetothechoiceofthefunctionalunitusedfortheanalysis.TheCARBanalysisusingCA-GREETtoassessfuelsfortheLCFSistargetedtofuelproducers–andthustheLCFSlookuptablesshowthecarbonintensitiesoffuelsexpressedasgramsofcarbondioxideequivalentperMegaJoule(gCO2e/MJ)ofenergy.IntheUCDavisstudyandintheGREET-1model,thecarbonintensityofNGVsisexpressedasgramsofcarbondioxideequivalentspermiledriven(gCO2e/mile)--thusincorporatingrelativevehicleefficienciesinthemetric.AccordingtothestudyauthorswhentheLCFSvaluesaretranslatedtogCO2e/mile,theCA-GREETvaluesareclosetothevaluespresentedintheUCDavisstudy.44WewillreturntothisA-3.TheRoleofMethaneLeakageintheDeterminationofNaturalGasClimateImpacts:Newresearchintomethaneleakageratesistakingplaceatmultiplelevelsofgovernment,researchuniversities,andintheprivateandNGOsector.However,thisresearchwillnotlikelyresultinafixedmethaneleakageratethatwillpersistforyearsatthesamelevel–astherearealsoongoingeffortstomitigatefugitivemethaneemissionsandthusreducethemethaneleakagerateovertime.SomeoftheseeffortsarecoordinatedbytheEnvironmentalDefenseFund,whichhaslinkeduniversities,naturalgasproducers,andutilitiestocollaborativelyassesstheextentofmethaneleakagesthroughoutthenaturalgassupplychain.45StudiesonthenewbaselineleakageratearebeginningtobereleasedandwillinformongoingrevisionsofCARBcarbonintensityvaluesidentifiedfortheLCFS.Inaddition,newinitiativestomitigatetheleakagerate–includingtheEPA’svoluntaryNaturalGasStarProducerprogram--arebeingupgradedasnew(mandatory)regulationsareinthedevelopmentphasebytheEPA.Giventhatitmaybeaconsiderableperiodoftimebeforemethodologicalissuesaboutmethaneleakageratesarefullyresolved,localpolicymakersneedtobegenerallyawareofmethaneassessmentissues,asnewdatacouldinvalidatepreviouslyheldassumptionsabouttherelativeimpactsofnaturalgasanddieselfuels. AccordingtotheEPA’s2014GreenhouseGasInventory,thenaturalgassystemleakedabout1.12%44RosaDominguez-Faus,Ph.D.,“TheCarbonIntensityofNGVC8Trucks,”UCInstituteforTransportationStudies,March2015,p.20.45EnvironmentalDefenseFund,“WhatWillItTaketoGetSustainedBenefitsFromNaturalGas?”http://www.edf.org/methaneleakage.

Page 71: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-71

system-wideasanationalaverage--fromwhich0.2%resultsfrompre-production(i.e.,drillingandfracking),0.4%resultfromproduction,0.2%fromprocessingofgas,and0.7%fromtransmissionanddistribution.46Bycontrast(asnotedinChapter5oftheAFVReadinessPlan)anauthoritativemeta-analysisof20yearsofscientificliterature,publishedin2014inthepeer-reviewedjournalSciencebyBrandtetal.,concludestheactualleakagerateismostlikelybetween1.85-2.95%.47Reasonsforthesubstantialdiscrepancybetweenthe2014EPAinventoryandothernon-EPAinventoriesincludethefollowing:

§ EPAhasexcludedleaksfromthethreemillionabandonedoilandgaswellsintheUnitedStates.Further,theinventoryofabandonedwellsisgrowingrapidlyduetothefrackingboom,inwhichfrackingoperatorsaredrillingincreasingnumbersofwellsperunitofgasextractedduetothefactthatthemostproductivelocationsaretypicallydrilledfirst.48

§ EPAincludesinitsdatasetonlycompaniesparticipatinginthevoluntaryGasSTARbestpracticeproductionprogram.AnanalysisbyEnvironmentalDefenseFunddemonstratedthatthisexclusionisskewingdatabecauseasmallnumberof“badoperators”whodonotparticipateinthisprogramareresponsibleforalargeshareofmethaneleaks.49

§ BoththeEPAandthemeta-analysisinScienceexcludeleaksfromrefuelingstationsorvehicles,whicharecertaintobenon-zero.

Inlightofthefactorsidentifiedabove,policy-makersfavoringaprecautionaryapproachwouldlikelychoosethehighervalueof~3%asanappropriate“breakevenleakagerate”atwhichnaturalgaspoweredvehiclesareenvironmentallypreferabletodiesel.Ofcourse,anysuchwell-to-wheelscalculationperformedatafleetlevel(wherespecificvehicleandfueltypesareknown)alsoneedstotakeintoaccountthedifferentialemissionsratesofdifferentdieselenginesaswellasanyknownvariationinthefuelsupplychange,suchaspotentialutilizationofbiogas.A-4.TheEmissionsProfileofEmergingNaturalGasEngineTechnologies:Asisthecasewithallvehicletechnologies,naturalgasenginedevelopmentisinahighlydynamicstate.Tosummarize,therearethreeimportanttechnologiestoconsiderwhenassessingcleanerdieseltechnologies:compressionignition(Ci)engines,sparkignition(Si)engines,andHigh-PerformanceDieselIgnition(HPDI)engines.Asthenamesindicate,spark-ignitionenginesareinternalcombustionenginesinwhichthecombustionprocessoftheair-fuelmixtureisignitedbyasparkfromasparkplug.Incompression-ignitionengines,theheatgeneratedfromcompressiontogetherwiththeinjectionoffuelissufficienttoinitiatethecombustionprocess,withoutneedinganyexternalspark.TheHighPerformanceDieselIgnitiontechnologycombinesadieselignitionstagewithanaturalgasengine,utilizingthesamedieselthermodynamiccycleusedbydieselfuel.Sparkignitionenginesarecurrentlystandardintheindustry.However,bothCompressionIgnitionandHighPerformanceDieselIgnitionenginesareinadvanceddevelopmentandareexpectedtodeliversignificantefficiencyimprovements.AccordingtotheUCDavisstudyonNGVtruckemissions,thesetechnologiesproducethefollowing46RosaDominguez-Faus,Ph.D.,“TheCarbonIntensityofNGVC8Trucks,”UCInstituteforTransportationStudies,March2015,p.9.47BrandtARetal.(2014)“MethaneLeaksfromNorthAmericanNaturalGasSystems.”Science343.48Mostimportantly,anaccurateassessmentoftheimpactofabandonedwellswillencourageappropriateregulationtoreducetheiremissionsandpreservetheintegrityofnaturalgasasa“cleanerfuel”thancoal,forexample,asitpertainstoelectricgenerationorotherapplications.ArecentanalysisbytheWorldResourcesInstitutesuggeststhat40-60%ofleakscanbepreventableprofitablywithcurrenttechnology,whichcouldhelpbringtheleakageratebackdowntothelevelcurrentlyreportedbyEPA.However,arelativelyelaborateregulatoryandinspectionregimewouldbeneededtoachievethisresult,withuniformdeploymentacrossstatesthatnowregulatenaturalgasinaveryunevenpattern.Formorediscussionofthisissue,seetheICFreport,“EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGasIndustries.”March2014.http://www.edf.org/sites/default/files/methane_cost_curve_report.pdf49EnvironmentalDefenseFund,HarnessingthePotentialofNaturalGas:AddressingMethaneEmissions,http://csis.org/multimedia/video-harnessing-potential-natural-gas-addressing-methane-emissions

Page 72: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-72

efficienciesandemissions.

§ Sparkignition(Si)enginescanrunonLNGorCNG.Basedonthe100yearglobalwarmingtimeframe(whichunderstatesnear-termimpacts),andascenarioof3%methaneleakage,anSienginewouldproduce13%morecarbonemissionsthandieselwhenrunningonLNG,and23%morewhenrunningonCNG.

§ Compressionignition(Ci)enginesareabout10-15%moreefficientthanSparkignition(Si)engines.However,theCimodelsatthistimearemoreexpensive--andproductionbyajointventurebetweenCumminsandWestportiscurrentlysuspendedduetolackofcustomerinterestandthehighcosttoofficiallycertifyenvironmentalcompliance.Itisanticipatedthatcompressionignitionengineproductionwillrestartincomingyears,particularlyifthepricedifferentialbetweennaturalgasanddieselfuelincreases.

§ HighefficiencyHPDIorHighPerformanceDieselIgnition:ThistechnologyiscurrentlybeingdevelopedbyWestportincollaborationwithCumminsandtheChineseenginesupplierWeichai.ThetechnologyisbeingdevelopedprimarilyfordeploymentinClass8(C8)naturalgastrucksandcanrunonCNGorLNG,althoughfueleconomyandemissionperformancewillbesuperioronLNG.Withthe100yeartimeframeand3%leakagescenario,anHPDInaturalgasenginewouldproduce2%morecarbonemissionsthanadieseltruck.However,HPDIenvironmentalperformanceonkeycriteriapollutants,includingParticulateMatter(PM),isalsosuperiortobothsparkignitionandcompressionignitiontechnologies.

AccordingtoWestport,theHPDIDieselcycleisinherentlymoreefficientthantheso-calledOttothermodynamiccycleusedbysparkignited(SI)gasolineandnaturalgasengines.inSIgasolineandnaturalgasengines,airandfuelarepre-mixedbeforeenteringthecombustionchamber,whichcancauseengineknocktooccurunlessalowercompressionratioisused,resultinginlowerenergyefficiencyandhigheremissions.Toenhanceefficiencyandemissionsperformance,theWestportHPDIusesnaturalgasastheprimaryfuelalongwithasmallamountofdieselasanignitionsource.Thetwofuelsarenotpre-mixedwiththeintakeairbeforetheyenterthecombustionchamber--sothereisnoriskofengineknockandthereforenoneedtolowerthecompressionratioandpeaktorqueoutput.Comparedtodieselfuel,thisdirectlyinjectednaturalgasburnswithaloweradiabaticflametemperatureandhasalowpropensitytotheformationofcarbonparticlesandthereforeoffersinherentnitrousoxide(NOx)andparticulatematter(PM)emissionsbenefits.50

A-5.SummaryofDieselvs.NaturalGasCarbonEmissionsUsingthe100YearGlobalWarmingTimeframeandthe3%LeakageRate:TheUCDavisreportprovidespolicymakerswitharangeofanalysesofdieselvs.naturalgasengines,usingboththe100yearand20yearglobalwarmingtimeframe.However,theUCDavisanalysis(withoutexplanation)excludesthecombinationofa3%leakagerateanda20yearGWPtimeframe.Thisisunfortunate,giventhatthisisareasonable“precautionary”analyticframeworkandconsistentwithevolvingsciencenowbeingintegratedintoboththeIPCCclimateforecastsandEPAnaturalgasregulation.However,itisnoteworthythatwhenapplyingeitherthelessconservative100yeartimeframeincombinationwiththemoreconservative3%leakagerateorthemore20yearGWPtimeframeandtheEPA’scurrent1.12%leakagerate,naturalgastrucks–evenwiththebest-performingHPDIengines--becomeclearlydisadvantageous

50Formoreinformation,seetheWestportwebsiteathttp://www.westport.com/is/core-technologies/hpdi-2

Page 73: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-73

withrespecttodieseltrucksrelativetocarbonemissionsalone(seepanel5below).Ofcourse,naturalgasvehiclesdohaveimportantlocalemissionsbenefitsrelativetocriteriapollutants,notablytheParticulateMatterthatisespeciallysignificantintermsofpublichealthimpactsforchildren,theelderly,andthosewithrespiratorychallenges.Further,theHPDI–equippedNGVtruckisnearlytheequalofdieselfromaCO2eperspective(butonlyonthe100yeartimeframe),whilebeingclearlysuperiorincriterialemissionsperformance.Thevariouscolumnsbelowshowtheimpactofleakageratesvaryingfrom0%to10%usingthe100yearGWPframework,andshowtheresultsina20yearGWPanalysisusingjustthe1.12%leakageratefactor.

Source:“TheCarbonIntensityofNGVC8Trucks,”UCInstituteforTransportationStudies,March2015,p.14.Acronyms:Si=Sparkignition;Ci=CompressionIgnition.Intheirsummary,UCDavisresearchersconcludethatnaturalgascanachievelowercarbonintensitythandieselundercurrentleakageassumptionsof1.12%onlyifa100yearGlobalWarmingPotentialtimeframeisassumed–andonlythroughtheuseofthehighefficiencyenginessuchastheHPDI(whichisexpectedtobeavailablelaterin2016)butnotwithlessefficientSiengines.However,applyingtheleakagerateof3%orhigher(assuggestedbytherecentmeta-analysispublishedinScience)wouldmakealltypesofnaturalgasenginesundesirablefromaclimatestabilityperspective,evenwiththe100yearGWP.Usingthe20yearGWP,naturalgasisevenmoreproblematic.Intheeventthata0%leakagerateisachievedacrosstheentirenaturalgasfuelsupplychain,thentrucksutilizingLNGfuelandcompressionignitiontechnologywouldyielda4%advantageoverthedieselbaselineunderthe100yearassessment.However,itisnotlikelytobetechnicallyoreconomicallyfeasibletoachievea0%leakagerategiventhechallengesoflocating,sealing,andmaintainingthemorethanthreemillionabandonedoilandgaswellsintheU.S.alone.

Page 74: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-74

Establishingthe“BreakevenPoint”forNaturalGasVehicleEmissionsUnderVaryingMethaneLeakageRatesandDynamicallyChangingEngineTechnologies:Itshouldbeemphasizedthatnothinginthenaturalgasvehicleecosystemisstatic–methaneleakageratesatvariouspointsontheproductionandsupplychainwillalmostcertainlychange,vehicleengineefficiencieswillchange,andtheemissionsprofileofdieselandotheralternativefuelswillchange.Toservetheanalyticprocessunderthesedynamicconditions,UCDavisresearchersprovideachartshowingtheeffectofgreaterorlessermethaneleakageacrossthefuelsupplychain.Thisanalysispinpointsthe“maximumacceptable”upstreammethaneleakagerateatwhichthecombinedwarmingeffectsofmethaneandCO2fromnaturalgasasatransportfuelareequaltothecombinedeffectsofCO2andmethaneofthefuelsitsubstitutes,inthiscase,diesel.Inthe100yeartimeframeconsideredhere,leakageratebelow2.8%justifyaswitchtonaturalgaspoweredheavy-dutytrucksonlyiftheyuseHPDItechnologyandLNGstorage.ThefeedstockpathwayofLNGproducesloweremissionsandlowersensitivitytoleakageasitbypassesthelocalnaturalgaspipelinedistributionsystem.

Source:“TheCarbonIntensityofNGVC8Trucks,”UCInstituteforTransportationStudies,March2015,p.16.

Page 75: Chapter 5: Natural Gas Vehicles and Infrastructurembeva.org/wp-content/uploads/2015/06/Chapter-5-Natural-Gas-.pdf · DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-75

A-6.ProspectsforFutureMethaneLeakageReductiontoImprovetheEmissionsProfileofNaturalGas:AccordingtotheUCDavisanalysis,naturalgascanachievelowercarbonintensitythandieselundercurrentleakageassumptionsof1.12%witha100yearGWPthroughtheuseofthehighefficiencyenginessuchastheHPDIbutnotwithlessefficientSiengines.WhenusingHPDIengines,naturalgaswillbebeneficialaslongasleakagerateremainsunder3%(thoughnotwiththe20yearGWPtimeframe.)UntilHPDItechnologycanbewidelyadopted,naturalgasproductionanddistributionmethaneleakagemustbecompletelyeliminatedfromthefuelsupplychain(orbiomethanesourcesmustbeused)fortoday’sfleetofSiNGVtruckstohavelowercarbonintensitythanstandarddieseltrucks.Avarietyoftechnologieswithshortpaybackperiodscouldachievesignificantfugitivemethanereductionsatdifferentstagesofthenaturalgassupplychain,asdemonstratedundertheEPANaturalGasSTARprogram.However,untilalloperatorsarerequiredtoimplementbestavailabletechnologytoreducemethaneleakage,thetheoreticalopportunityforimprovementsarenotlikelytoberealized.Further,theleakageassociatedwithabandonedwellsmayrequireakindofSuperfundprogramformethane,whichhasyettobedeveloped.Inlightoftheabovefactors,localpolicymakersareadvisedtomaintainaclosewatchondevelopmentsinthemethaneleakageissue,andtoseekoutauthoritative,peer-reviewed,andindependentanalysestosupplementstateandfederaldatasourceswhenassessingtheenvironmentalbenefitofshiftingfromdieseltonaturalgasfuelsandvehicles.