54
CHAPTER 5 SECTION 5.4 EXPONENTIAL FUNCTIONS: DIFFERENTIATION AND INTEGRATION

CHAPTER 5 SECTION 5.4 EXPONENTIAL FUNCTIONS: DIFFERENTIATION AND INTEGRATION

Embed Size (px)

Citation preview

CHAPTER 5SECTION 5.4

EXPONENTIAL FUNCTIONS:DIFFERENTIATION AND

INTEGRATION

Definition of the Natural Exponential Function

Recall:

ln log where 2.718ex x e

ln and are inverse functionsxx e

xln e lnx e 1x x lnxe xThis means… and…

Exponential and log functions are interchangeable.

xy a logax y

Start with the base.

Change of Base Theorem

loga x log lnx or

log lna

x

a

10log logx x

Solve.16. 7 xe 7. ln 2 3 5x

3 38. log log 2 1x x

Solve.16. 7 xe 7. ln 2 3 5x

1ln7 ln xe ln7 1 lnx e

ln7 1x ln7 1 x 0.946 x

ln 2 3 5xe e 52 3x e 5 3

2

ex

75.707x

3 38. log log 2 1x x

3log 2 1x x 13 2x x 20 2 3x x

0 3 1x x 3, 1x 3x

We can’t take a log of -1.

Theorem 5.10 Operations with Exponential Functions

Properties of the Natural Exponential Function

Theorem 5.11 Derivative of the Natural Exponential Function

5.4 Exponential Functions

• Example 3: Find dy/dx:

a) y 3ex; b) y x2ex; c) y ex

x3 .

2 2

a) 3 3

3

b) 2

2

x x

x

x x x

x

dy de e

dx dxe

dx e x e e x

dxxe x

5.4 Exponential Functions

• Example 3 (concluded):

c) d

dx

ex

x3

x3 ex ex 3x2

x3 2

x2ex x 3

x6

ex (x 3)

x4

Find each derivative:

4

4

5

5

1( ) 2

2

' = 4 2 2

4 2

2

x

x

x x

x

x

f x x ex e

f x x e e

e

x e

5.4 Exponential Functions• THEOREM 2

• or

• The derivative of e to some power is the product of e • to that power and the derivative of the power.

d

dxe f (x ) e f (x ) f (x)

d

dxeu eu

du

dx

5.4 Exponential Functions• Example 4: Differentiate each of the

following with

• respect to x:a) y e8 x ; b) y e x2 4 x 7; c) y e x2 3 .

a) d

dxe8 x e8 x 8

8e8 x

b) d

dxe x2 4 x 7 e x2 4 x 7 2x 4

5.4 Exponential Functions

• Example 4 (concluded):

c) d

dxe x2 3

d

dxex2 3

1

2

ex2 3

1

2

1

2x2 3

1

2 2x

xe x2 3

x2 3

Find each derivative

74

64 4

4 4

2

7 2 4

28 2

x

x x

x x

y e

dye e

dx

e e

ude

dx Theorem:

122. x

de

dx

3. lnxde x

dx

1. Find the slope of the line tangent to f (x) at x = 3.

2xf x e

ude

dx Theorem:

122. x

de

dx

u due

dx

3. lnxde x

dx

1. Find the slope of the line tangent to f (x) at x = 3.

2' 2xf x e 2xf x e 6' 3 2f e

6

2

e

2 32xe x

2xde

dx

123

2xx e

1lnx xe e x

x

1

lnxe xx

1 1ln

xx

e x

1 lnx

x x

xe

4. Find extrema and inflection points for 2 xy x e

4. Find extrema and inflection points for 2 xy x e

2 2x xdyx e e x

dx

20 2 0xe x x Crit #’s:

Can’t ever work.

0,2x

2 2xe x x

2

22

2 2 2x xd ye x e x x

dx

22 2 2xe x x x

2 4 2xe x x Crit #’s:

20 4 2 0xe x x none

24 4 4 1 2

2 1x

4 8

2x

4 2 2

2x

2 2x

2 1.4x

.6,3.4x

Intervals: ,0 0,.6 .6,2

Test values: 1 12 1

f ’(test pt) f(x) dec inc inc

rel min rel max

0x 2x 0,0 2

42,e

f ’’(test pt) f(x) up up down

2,3.4 3.4,3 5

dec dec

down up

2 2xdye x x

dx

22

24 2xd y

e x xdx

2xe x x

Inf pt Inf pt

.6x 3.4x 0.586,0.191 3.414,0.384

2 xy x e

5.4 Exponential Functions

•Example 7: Graph with x ≥ 0. Analyze the graph using calculus.

•First, we find some values, plot the points, and sketch

•the graph.

h(x) 1 e 2 x

• Example 4 (continued):• a) Derivatives. Since

• b) Critical values. Since the derivative

for all real numbers x. Thus, the

• derivative exists for all real numbers, and the equation

• h(x) = 0 has no solution. There are no critical values.

h(x) 1 e 2 x ,

h (x) 2e 2 x

and

h (x) 4e 2 x .

h (x) 2e 2 x 0

e 2 x 1

e2 x 0,

•Example 4 (continued):•c) Increasing. Since the derivative for all real numbers x, we know that h is increasing over the entire real number line.

•d) Inflection Points. Since we know that the equation h(x) = 0 has no solution. Thus there are no points of inflection.

h (x) 2e 2 x 0

2( ) 4 0xh x e

5.4 Exponential Functions

• Example 4 (concluded):• e) Concavity. Since

for all real numbers x, h’ is decreasing and the graph is concave down over the entire real number line.

2( ) 4 0xh x e

• Example 4 (continued):

Theorem 5.12 Integration Rules for Exponential Functions

ue du Theorem:

2

1. xxe dx

2. 1x xe e dx

3.x x

x x

e edx

e e

ue du Theorem:

2

1. xxe dx

ue C

2. 1x xe e dx

2u x2du xdx

1 xu e xdu e dx

1

2ue du

1

2ue C

21

2xe C

u dx 3

22

3u C

322

13

xe C

3.x x

x x

e edx

e e

x xu e e

x xdu e e dx

1du

u ln x xe e C

1ln x

xe C

e

2 1ln

x

x

eC

e

2ln 1 lnx xe e C 2ln 1xe x C

u u u ud due e e du e C

dx dx

1

x

0

e 1 dx x 10e x | e 1 0 1 e

ln22x

0

e dxu 2x

1du dx

2

2ln2u

0

1e du

2

u 2ln2

0

1e |

2

11 1 3

2 2 84

u u u ud due e e du e C

dx dx

31

2 x x

0

3x 1 e dx

3

2

u x x

du 3x 1 dx

2u

0

e du2u

0e | 2e 1

ln22x

0

e dxu 2x

1du dx

2

2ln2u

0

1e du

2

u 2ln2

0

1e |

2

11 1 3

2 2 84

x u

x u u ud a d a du 1

a lna a lna a du a Cdx dx dx

Note : a 0lna

12x

0

3 dxu 2x

1du dx

2

2u

0

1du

23 u 2

0

13 |

2ln3 1

9 12ln3

8

ln9

0x

1

4 ln2dx

u x

du dx

0u

1

ln2 d4 u u 01

ln24 |

ln4

1

1 42

3

2

x u

x u u ud a d a du 1

a lna a lna a du a Cdx dx dx

Note : a 0lna

22

x

1

x2 dx2u x

1du xdx

2

2u

1

1du

22 u 2

1

12 |

2ln2 1

ln2

/ 3sec x

0

sec x tanx2 dx

u sec x

du sec x tanxdx

2u

1

2 du u 21

12 |

ln2 2

ln2

AP QUESTION

Why is x = -1/2 the only critical number???????

AP QUESTION