56
GEF 1100 – Klimasystemet Chapter 6: The equations of fluid motion 1 GEF1100–Autumn 2014 16.09.2014 Prof. Dr. Kirstin Krüger (MetOs, UiO since October 2013)

Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

1

GEF1100ndashAutumn 2014 16092014

Prof Dr Kirstin Kruumlger (MetOs UiO since October 2013)

Research interests

bull Stratospheric ozone bull Dynamics of the stratosphere bull Influence of volcanic eruptions on climate earth system bull Stratosphere-ocean interactions

Who am I

Prof Dr Kirstin Kruumlger

kkruegergeouiono

climate modelling

observations

ship expeditions

Volcanic excursion

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

3 Addition not in book

Motivation 1 Motivation

Marshall and Plumb (2008)

4

- Derivation of the general equation of motion - Different horizontal wind forms - General circulation of atmosphere ocean

Equations of fluid motions

bull Hydrodynamics focuses on moving liquids and gases

bull Hydrodynamics and thermodynamics are the foundations of meteorology and oceanography

bull Equations of motion for the atmosphere and ocean are constituted by macroscopic conservation laws for substances impulses and internal energy (hydrodynamics and thermodynamics)

The characteristics of very small volume elements are looked at (eg overall mass average speed)

rarr Phenomenological derivation of hydrodynamics based on the conservation of momentum mass and energy

5 hydro (greek) water

2 Basics

Differentiation following the motion - Lagrange and Euler perspectives

T(Xt) T(Xt+1)

χ=Xt Lagrange

Euler

T(x2t2) u(x2t2) T(x1t1) u(x1t1)

Parcel of air trajectory

Fixed box in space

Lagrange perspective The control volume is an air or seawater parcel that always consists of the same particles and which moves along with the wind or the current Euler perspective The control volume is anchored stationary within the coordinate system eg a cube through which the air or the seawater flows through

6

2 Basics

Differentiation following the motion - Lagrange ndash Euler derivatives

7

2 Basics

Example wind blows over hill cloud forms at the ridge of the lee wave steady state assumption eq cloud does not change in time Lagrangian derivative (after Lagrange 1736-1813)

120597120597119862119862120597120597119905119905 fixed particle ne 0

Eulerian derivative (after Euler 1707-1783)

120597120597119862119862120597120597119905119905 fixed point in space = 0

C = C(xyzt) quantity ie cloud amount 120597120597120597120597119905119905

partial derivatives other variables are kept fixed during the differentiation

Leonhard Euler (CH)

Joseph-Louis Lagrange (I)

Differentiation following the motion mathematically

8

2 Basics

For arbitrary small variations

120575120575119862119862 = 120597120597119862119862120597120597119905119905

120575120575119905119905 + 120597120597119862119862120597120597119909119909

120575120575119909119909 + 120597120597119862119862120597120597119910119910

120575120575119910119910 + 120597120597119862119862120597120597119911119911

120575120575119911119911

120575120575119862119862 119891119891119891119891119909119909119891119891119891119891 119901119901119901119901119901119901119905119905119891119891119901119901119901119901119891119891 =

120597120597119862119862120597120597119905119905

+ 119906119906120597120597119862119862120597120597119909119909

+ 119907119907 120597120597119862119862120597120597119910119910

+ w 120597120597119862119862120597120597119911119911

120575120575119905119905

In limit of small variations

120597120597119862119862120597120597119905119905 119891119891119891119891119909119909119891119891119891119891 119901119901119901119901119901119901119905119905119891119891119901119901119901119901119891119891 =

120597120597119862119862120597120597119905119905

+ 119906119906 120597120597119862119862120597120597119909119909

+ 119907119907 120597120597119862119862120597120597119910119910

+ w 120597120597119862119862120597120597119911119911

= 119863119863119862119862119863119863119905119905

119863119863

119863119863119905119905 119863119863

119863119863119905119905= 120597120597

120597120597119905119905+ 119906119906 120597120597

120597120597119909119909+ 119907119907 120597120597

120597120597119910119910 + w 120597120597

120597120597119911119911 equiv 120597120597

120597120597119905119905 + 119958119958 ∙ 120513120513

δ Greek small delta infinitesimal small size

Insert 120575120575119909119909 = u120575120575119905119905 120575120575119910119910 = v120575120575119905119905 120575120575119911119911 = w120575120575119905119905

Differentiation following the motion mathematically

9

2 Basics

Lagrangian or total derivative (after Lagrange 1736-1813)

119863119863119863119863119905119905 fixed particle equiv 120597120597

120597120597119905119905+ 119906119906 120597120597

120597120597119909119909+ 119907119907 120597120597

120597120597119910119910 + w 120597120597

120597120597119911119911

equiv 120597120597120597120597119905119905

+ 119958119958 ∙ 120513120513 (6-1)

ldquoTime rate of change of some characteristic of a particular element of fluid which in general is changing its positionrdquo Eulerian derivative (after Euler 1707-1783)

120597120597120597120597119905119905 fixed point

ldquoTime rate of change of some characteristic at a fixed point in space but with constantly changing fluid element because the fluid is movingrdquo

119958119958 = (uvw) velocity vector 120513120513 equiv 120597120597

120597120597119909119909 120597120597

120597120597119910119910 120597120597

120597120597119911119911 gradient operator

called ldquonablardquo

Nomenclature summary

bull δ Greek small delta infinitesimal small size eg δV= small air volume bull partial derivative of a quantity with respect to a coordinate eg x bull total differential derivative of a quantity with respect to all dependent coordinates bull Lagrangian (or total) derivative

10

xpartpart

dxd

2 Basics

Trajectories started 850 hPa - top between 2604-29041986 - bottom between 3004-05051986

Example nuclear reactor accident Chernobyl on 26041986 0130 am Trajectories (=flight path) are used for the prediction of air movement

11

2 Basics

Kraus (2004)

Differentiation following the motion - Lagrangian perspective

Think about examples in your everyday life for Eulerrsquos and Lagrangersquos differentiation Give three examples

Lagrange and Euler differentiation

12

2 Basics

22 Basics - Mathematical add on

- Vector operations - Nabla operator

13

22 Basics - Mathematical add on September 16 2014

Modified slides from Clemens Simmer University Bonn

Vector operations - Multiplication with a scalar a -

=

====

z

y

x

z

y

x

ii

avavav

vvv

aavavavva

bull With a scalar multiplication the vector stays a vector

bull Each element of a vector is multiplied individually with a scalar a

bull The vector extends (or shortens) itself by the factor a bull Convention With the multiplication scalar ndash vector we

donrsquot use a point (like with scalar ndash scalar)

22 Mathematical add on

14

Vector operations - Scalar product -

iii

iiiizzyyxx

z

y

x

z

y

x

vfvfvffvfvfvfff

vvv

vffv sum =equiv=++=

sdot

=sdot=sdot

bull The scalar product of two vectors is a scalar bull It is multiplied component-wise then added bull Convention The scalar product is marked by a multiplication sign (middot) bull It is at a maximum with parallel vectors and disappears when the

vectors are perpendicular to each other

f

α

v

αcosfvfv

=sdot

22 Mathematical add on

15

Vector operations ndash vector product

bcacbabac

babababababa

babakbabajbabaibbbaaakji

axbbac

xyyx

zxxz

yzzy

xyyxzxxzyzzy

zyx

zyx

perpandperp=times=

minusminusminus

=

minus+minusminusminus==minus=times=

sin

)()()(

α

a b

bull The vector product of two vectors is again a vector bull Convention The vector product or cross product is marked by an ldquoxrdquo bull If is turned to on the fastest route possible the vector (from the vector product) points in the direction in which a right-hand screw would move (right hand rule) bull With parallel vectors it disappears and it reaches its maximum when the

two vectors are at right angles to each other

16

22 Mathematical add on

Graphically - Pooling of the spatial gradients towards the spatial coordinate axes rarr vector

- Gradient points towards the largest increase of the quantity

- Amount is the magnitude of the derivative pointing towards the largest increase

Nabla operator ndash spatial gradient

with

Operator -Nabla

equivpart=nabla=nabla

nabla

partpartpartpartpartpart

z

y

x

i

17

bull Nabla is a (vector) operator that works to the right

bull It only results in a value if it stands left to an arithmetic expression bull If it stands to the right of an arithmetic expression it keeps its operator function (and ldquowaitsrdquo for application)

22 Mathematical add on

TTgradT

z

y

x

zTyTxT

=

=equivnabla

partpartpartpartpartpart

partpartpartpartpartpart

zw

yv

xu

wvu

udivu

z

y

x

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpart

minuspartpart

partpart

minuspartpart

partpart

minuspartpart

==

times

equivequivtimesnabla part

partpartpart

partpart

partpartpartpartpartpart

yu

xv

xw

zu

zv

yw

wvu

kji

wvu

urotu zyx

z

y

x

Vector product ldquoxrdquo vector

Scalar product ldquordquo scalar

Product with a Scalar vector

Nabla operator 22 Mathematical add on

18

Nabla operator ndash algorithms

=nablanenabla=

=

partpartpartpartpartpart

partpartpartpartpartpart

partpartpartpartpartpart

z

y

x

z

y

x

zTyTxT

TTT

TTT

zw

yv

xu

wvu

u

zw

yv

xu

wvu

udivu

z

y

x

z

y

x

partpart

+partpart

+partpart

=

sdot

=nablasdot

ne

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpartpartpartpartpart

22 Mathematical add on

Note Nabla is a (vector) operator ie the sequence must not be changed here

19

State variables for atmosphere and ocean

u Wind = (uvw) in ms T Temperature in degC or K p Pressure in Nm2 = 1 Pa (1 hPa = 102 Pa = 1 mbar) Specifically for the atmosphere q Specific humidity in kg water vapourkg moist air Specifically for the ocean S Salinity in kg saltkg seawater (often the salt content is expressed in practical salinity unit psu = kg salt1000 kg seawater) 20

2 Basics

I Laws of motion for a fluid parcel in x-y-z- directions (applying Newtons 1 and 2 law)

II Conservation of mass

III Law of thermodynamics (including motion) rarr5 equations for the evolution of the fluid (5 unknowns)

21

3 Equations of motion - nonrotating fluid 3 Equations of motion - nonrotating fluid

Momentum conservation The conservation of momentum is represented by

Newtonrsquos first law (ldquoLex primardquo) (momentum = mass middot velocity)

momentum = const at absence of forces

Momentum sentence (ldquoLex secundardquo) temporal change in momentum = Force (mass middot acceleration = Force)

22

Fu=

dtdM t time M mass u velocity vector F Force vector

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Forces on a fluid parcel

23

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119958119958119863119863119905119905

= F (Eq 6-2)

120588120588 density (120575120575119909119909 120575120575119910119910 120575120575119911119911) fluid parcel with infinitesimal dimensions 120575120575119872119872 mass of the parcel 120575120575119872119872 = 120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119958119958 parcel velocity F net force

119863119863119958119958119863119863119905119905

= 120597120597119958119958120597120597119905119905

+ u 120597120597119958119958120597120597119909119909

+v 120597120597119958119958120597120597119910119910

+w 120597120597119958119958120597120597119911119911

= 120597120597119958119958120597120597119905119905

+ (119958119958 ∙ 120571120571) 119958119958

Gravitational force

24

Fgravity= g 120575120575119872119872

Fgravity= minusg 120588120588119963119963 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-3)

Fgravity Gravitational force M mass g gravity acceleration g = const 120588120588 density 119963119963 unit vector in upward direction

Marshall and Plumb (2008)

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Pressure gradient force

25

Fpressure= 119865119865119909119909 119865119865119910119910 119865119865119911119911

=minus 120597120597119901119901120597120597119909119909

120597120597119901119901120597120597119910119910

120597120597119901119901120597120597119911119911

120575120575119909119909 120575120575119910119910 120575120575119911119911

=minus 120571120571119901119901 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-4)

F(A) = p ∙ 119860119860 = 119901119901 (x minus 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911

F(B) = p ∙ 119861119861 = minus119901119901 (x + 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911 Fx = F(A) + F(B)

Apply Taylor expansion (A21) at midpoint of parcel and neglect small terms (see book)

119901119901 pressure

Friction force

26

3 Equations of motion - nonrotating fluid

- Friction force operates on the earthrsquos surface

- the greater the surface roughness the higher the friction force

- the greater the wind velocity the higher the friction force

- friction force takes effect in vertical distances of ~ 100 m up to 1000 m (rarr atmospheric boundary layer Chapter 7)

Ffriction = 120588120588 ℱ 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-5)

ℱ frictional force per unit mass 120588120588 density

Equations of motion bull All three forces together in Eq 6-2 gives

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119854119854119863119863119905119905

= F119901119901119901119901119891119891119901119901119901119901119906119906119901119901119891119891 + F119892119892119901119901119901119901119907119907119891119891119905119905119910119910 + F119891119891119901119901119891119891119901119901119905119905119891119891119891119891119891119891

bull Re-arranging leads to equation of motion for fluid parcels

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = ℱ (Equation 6-6)

27

3 Equations of motion - nonrotating fluid

120588120588 density u velocity vector F Force vector ℱ frictional force per unit mass p pressure g gravity acceleration 119963119963 unit vector in z-direction

Equations of motion ndash component form

(Eq 6-6) in Cartesian coordinates

bull 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

bull 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

bull 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

28

3 Equations of motion - nonrotating fluid

119906119906 zonal velocity 119907119907meridional velocity w vertical velocity 120588120588 density ℱ frictional force per unit mass p pressure g gravity acceleration

Hydrostatic balance

If friction ℱ119911119911 and vertical acceleration 119863119863119908119908119863119863119905119905

are negligible we derive from the vertical eq of motion (6-7c) the hydrostatic balance (Ch3 Eq3-3)

120597120597119901119901120597120597119911119911

= - 120588120588g (Eq 6-8)

Note This approximation holds for large-scale atmospheric and oceanic circulation with weak vertical motions

29

3 Equations of motion - nonrotating fluid

Balance between vertical pressure gradient and gravitational force

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

30

GEF1100ndashAutumn 2014 18092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

31 Addition not in book

Conserved quantity A quantity of which the derivative equals zero

Conservation of mass for liquids is also called continuity equation

Conservation of mass ndash continuity equation

32

4 Conservation of mass

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 2: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Research interests

bull Stratospheric ozone bull Dynamics of the stratosphere bull Influence of volcanic eruptions on climate earth system bull Stratosphere-ocean interactions

Who am I

Prof Dr Kirstin Kruumlger

kkruegergeouiono

climate modelling

observations

ship expeditions

Volcanic excursion

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

3 Addition not in book

Motivation 1 Motivation

Marshall and Plumb (2008)

4

- Derivation of the general equation of motion - Different horizontal wind forms - General circulation of atmosphere ocean

Equations of fluid motions

bull Hydrodynamics focuses on moving liquids and gases

bull Hydrodynamics and thermodynamics are the foundations of meteorology and oceanography

bull Equations of motion for the atmosphere and ocean are constituted by macroscopic conservation laws for substances impulses and internal energy (hydrodynamics and thermodynamics)

The characteristics of very small volume elements are looked at (eg overall mass average speed)

rarr Phenomenological derivation of hydrodynamics based on the conservation of momentum mass and energy

5 hydro (greek) water

2 Basics

Differentiation following the motion - Lagrange and Euler perspectives

T(Xt) T(Xt+1)

χ=Xt Lagrange

Euler

T(x2t2) u(x2t2) T(x1t1) u(x1t1)

Parcel of air trajectory

Fixed box in space

Lagrange perspective The control volume is an air or seawater parcel that always consists of the same particles and which moves along with the wind or the current Euler perspective The control volume is anchored stationary within the coordinate system eg a cube through which the air or the seawater flows through

6

2 Basics

Differentiation following the motion - Lagrange ndash Euler derivatives

7

2 Basics

Example wind blows over hill cloud forms at the ridge of the lee wave steady state assumption eq cloud does not change in time Lagrangian derivative (after Lagrange 1736-1813)

120597120597119862119862120597120597119905119905 fixed particle ne 0

Eulerian derivative (after Euler 1707-1783)

120597120597119862119862120597120597119905119905 fixed point in space = 0

C = C(xyzt) quantity ie cloud amount 120597120597120597120597119905119905

partial derivatives other variables are kept fixed during the differentiation

Leonhard Euler (CH)

Joseph-Louis Lagrange (I)

Differentiation following the motion mathematically

8

2 Basics

For arbitrary small variations

120575120575119862119862 = 120597120597119862119862120597120597119905119905

120575120575119905119905 + 120597120597119862119862120597120597119909119909

120575120575119909119909 + 120597120597119862119862120597120597119910119910

120575120575119910119910 + 120597120597119862119862120597120597119911119911

120575120575119911119911

120575120575119862119862 119891119891119891119891119909119909119891119891119891119891 119901119901119901119901119901119901119905119905119891119891119901119901119901119901119891119891 =

120597120597119862119862120597120597119905119905

+ 119906119906120597120597119862119862120597120597119909119909

+ 119907119907 120597120597119862119862120597120597119910119910

+ w 120597120597119862119862120597120597119911119911

120575120575119905119905

In limit of small variations

120597120597119862119862120597120597119905119905 119891119891119891119891119909119909119891119891119891119891 119901119901119901119901119901119901119905119905119891119891119901119901119901119901119891119891 =

120597120597119862119862120597120597119905119905

+ 119906119906 120597120597119862119862120597120597119909119909

+ 119907119907 120597120597119862119862120597120597119910119910

+ w 120597120597119862119862120597120597119911119911

= 119863119863119862119862119863119863119905119905

119863119863

119863119863119905119905 119863119863

119863119863119905119905= 120597120597

120597120597119905119905+ 119906119906 120597120597

120597120597119909119909+ 119907119907 120597120597

120597120597119910119910 + w 120597120597

120597120597119911119911 equiv 120597120597

120597120597119905119905 + 119958119958 ∙ 120513120513

δ Greek small delta infinitesimal small size

Insert 120575120575119909119909 = u120575120575119905119905 120575120575119910119910 = v120575120575119905119905 120575120575119911119911 = w120575120575119905119905

Differentiation following the motion mathematically

9

2 Basics

Lagrangian or total derivative (after Lagrange 1736-1813)

119863119863119863119863119905119905 fixed particle equiv 120597120597

120597120597119905119905+ 119906119906 120597120597

120597120597119909119909+ 119907119907 120597120597

120597120597119910119910 + w 120597120597

120597120597119911119911

equiv 120597120597120597120597119905119905

+ 119958119958 ∙ 120513120513 (6-1)

ldquoTime rate of change of some characteristic of a particular element of fluid which in general is changing its positionrdquo Eulerian derivative (after Euler 1707-1783)

120597120597120597120597119905119905 fixed point

ldquoTime rate of change of some characteristic at a fixed point in space but with constantly changing fluid element because the fluid is movingrdquo

119958119958 = (uvw) velocity vector 120513120513 equiv 120597120597

120597120597119909119909 120597120597

120597120597119910119910 120597120597

120597120597119911119911 gradient operator

called ldquonablardquo

Nomenclature summary

bull δ Greek small delta infinitesimal small size eg δV= small air volume bull partial derivative of a quantity with respect to a coordinate eg x bull total differential derivative of a quantity with respect to all dependent coordinates bull Lagrangian (or total) derivative

10

xpartpart

dxd

2 Basics

Trajectories started 850 hPa - top between 2604-29041986 - bottom between 3004-05051986

Example nuclear reactor accident Chernobyl on 26041986 0130 am Trajectories (=flight path) are used for the prediction of air movement

11

2 Basics

Kraus (2004)

Differentiation following the motion - Lagrangian perspective

Think about examples in your everyday life for Eulerrsquos and Lagrangersquos differentiation Give three examples

Lagrange and Euler differentiation

12

2 Basics

22 Basics - Mathematical add on

- Vector operations - Nabla operator

13

22 Basics - Mathematical add on September 16 2014

Modified slides from Clemens Simmer University Bonn

Vector operations - Multiplication with a scalar a -

=

====

z

y

x

z

y

x

ii

avavav

vvv

aavavavva

bull With a scalar multiplication the vector stays a vector

bull Each element of a vector is multiplied individually with a scalar a

bull The vector extends (or shortens) itself by the factor a bull Convention With the multiplication scalar ndash vector we

donrsquot use a point (like with scalar ndash scalar)

22 Mathematical add on

14

Vector operations - Scalar product -

iii

iiiizzyyxx

z

y

x

z

y

x

vfvfvffvfvfvfff

vvv

vffv sum =equiv=++=

sdot

=sdot=sdot

bull The scalar product of two vectors is a scalar bull It is multiplied component-wise then added bull Convention The scalar product is marked by a multiplication sign (middot) bull It is at a maximum with parallel vectors and disappears when the

vectors are perpendicular to each other

f

α

v

αcosfvfv

=sdot

22 Mathematical add on

15

Vector operations ndash vector product

bcacbabac

babababababa

babakbabajbabaibbbaaakji

axbbac

xyyx

zxxz

yzzy

xyyxzxxzyzzy

zyx

zyx

perpandperp=times=

minusminusminus

=

minus+minusminusminus==minus=times=

sin

)()()(

α

a b

bull The vector product of two vectors is again a vector bull Convention The vector product or cross product is marked by an ldquoxrdquo bull If is turned to on the fastest route possible the vector (from the vector product) points in the direction in which a right-hand screw would move (right hand rule) bull With parallel vectors it disappears and it reaches its maximum when the

two vectors are at right angles to each other

16

22 Mathematical add on

Graphically - Pooling of the spatial gradients towards the spatial coordinate axes rarr vector

- Gradient points towards the largest increase of the quantity

- Amount is the magnitude of the derivative pointing towards the largest increase

Nabla operator ndash spatial gradient

with

Operator -Nabla

equivpart=nabla=nabla

nabla

partpartpartpartpartpart

z

y

x

i

17

bull Nabla is a (vector) operator that works to the right

bull It only results in a value if it stands left to an arithmetic expression bull If it stands to the right of an arithmetic expression it keeps its operator function (and ldquowaitsrdquo for application)

22 Mathematical add on

TTgradT

z

y

x

zTyTxT

=

=equivnabla

partpartpartpartpartpart

partpartpartpartpartpart

zw

yv

xu

wvu

udivu

z

y

x

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpart

minuspartpart

partpart

minuspartpart

partpart

minuspartpart

==

times

equivequivtimesnabla part

partpartpart

partpart

partpartpartpartpartpart

yu

xv

xw

zu

zv

yw

wvu

kji

wvu

urotu zyx

z

y

x

Vector product ldquoxrdquo vector

Scalar product ldquordquo scalar

Product with a Scalar vector

Nabla operator 22 Mathematical add on

18

Nabla operator ndash algorithms

=nablanenabla=

=

partpartpartpartpartpart

partpartpartpartpartpart

partpartpartpartpartpart

z

y

x

z

y

x

zTyTxT

TTT

TTT

zw

yv

xu

wvu

u

zw

yv

xu

wvu

udivu

z

y

x

z

y

x

partpart

+partpart

+partpart

=

sdot

=nablasdot

ne

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpartpartpartpartpart

22 Mathematical add on

Note Nabla is a (vector) operator ie the sequence must not be changed here

19

State variables for atmosphere and ocean

u Wind = (uvw) in ms T Temperature in degC or K p Pressure in Nm2 = 1 Pa (1 hPa = 102 Pa = 1 mbar) Specifically for the atmosphere q Specific humidity in kg water vapourkg moist air Specifically for the ocean S Salinity in kg saltkg seawater (often the salt content is expressed in practical salinity unit psu = kg salt1000 kg seawater) 20

2 Basics

I Laws of motion for a fluid parcel in x-y-z- directions (applying Newtons 1 and 2 law)

II Conservation of mass

III Law of thermodynamics (including motion) rarr5 equations for the evolution of the fluid (5 unknowns)

21

3 Equations of motion - nonrotating fluid 3 Equations of motion - nonrotating fluid

Momentum conservation The conservation of momentum is represented by

Newtonrsquos first law (ldquoLex primardquo) (momentum = mass middot velocity)

momentum = const at absence of forces

Momentum sentence (ldquoLex secundardquo) temporal change in momentum = Force (mass middot acceleration = Force)

22

Fu=

dtdM t time M mass u velocity vector F Force vector

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Forces on a fluid parcel

23

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119958119958119863119863119905119905

= F (Eq 6-2)

120588120588 density (120575120575119909119909 120575120575119910119910 120575120575119911119911) fluid parcel with infinitesimal dimensions 120575120575119872119872 mass of the parcel 120575120575119872119872 = 120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119958119958 parcel velocity F net force

119863119863119958119958119863119863119905119905

= 120597120597119958119958120597120597119905119905

+ u 120597120597119958119958120597120597119909119909

+v 120597120597119958119958120597120597119910119910

+w 120597120597119958119958120597120597119911119911

= 120597120597119958119958120597120597119905119905

+ (119958119958 ∙ 120571120571) 119958119958

Gravitational force

24

Fgravity= g 120575120575119872119872

Fgravity= minusg 120588120588119963119963 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-3)

Fgravity Gravitational force M mass g gravity acceleration g = const 120588120588 density 119963119963 unit vector in upward direction

Marshall and Plumb (2008)

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Pressure gradient force

25

Fpressure= 119865119865119909119909 119865119865119910119910 119865119865119911119911

=minus 120597120597119901119901120597120597119909119909

120597120597119901119901120597120597119910119910

120597120597119901119901120597120597119911119911

120575120575119909119909 120575120575119910119910 120575120575119911119911

=minus 120571120571119901119901 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-4)

F(A) = p ∙ 119860119860 = 119901119901 (x minus 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911

F(B) = p ∙ 119861119861 = minus119901119901 (x + 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911 Fx = F(A) + F(B)

Apply Taylor expansion (A21) at midpoint of parcel and neglect small terms (see book)

119901119901 pressure

Friction force

26

3 Equations of motion - nonrotating fluid

- Friction force operates on the earthrsquos surface

- the greater the surface roughness the higher the friction force

- the greater the wind velocity the higher the friction force

- friction force takes effect in vertical distances of ~ 100 m up to 1000 m (rarr atmospheric boundary layer Chapter 7)

Ffriction = 120588120588 ℱ 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-5)

ℱ frictional force per unit mass 120588120588 density

Equations of motion bull All three forces together in Eq 6-2 gives

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119854119854119863119863119905119905

= F119901119901119901119901119891119891119901119901119901119901119906119906119901119901119891119891 + F119892119892119901119901119901119901119907119907119891119891119905119905119910119910 + F119891119891119901119901119891119891119901119901119905119905119891119891119891119891119891119891

bull Re-arranging leads to equation of motion for fluid parcels

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = ℱ (Equation 6-6)

27

3 Equations of motion - nonrotating fluid

120588120588 density u velocity vector F Force vector ℱ frictional force per unit mass p pressure g gravity acceleration 119963119963 unit vector in z-direction

Equations of motion ndash component form

(Eq 6-6) in Cartesian coordinates

bull 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

bull 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

bull 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

28

3 Equations of motion - nonrotating fluid

119906119906 zonal velocity 119907119907meridional velocity w vertical velocity 120588120588 density ℱ frictional force per unit mass p pressure g gravity acceleration

Hydrostatic balance

If friction ℱ119911119911 and vertical acceleration 119863119863119908119908119863119863119905119905

are negligible we derive from the vertical eq of motion (6-7c) the hydrostatic balance (Ch3 Eq3-3)

120597120597119901119901120597120597119911119911

= - 120588120588g (Eq 6-8)

Note This approximation holds for large-scale atmospheric and oceanic circulation with weak vertical motions

29

3 Equations of motion - nonrotating fluid

Balance between vertical pressure gradient and gravitational force

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

30

GEF1100ndashAutumn 2014 18092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

31 Addition not in book

Conserved quantity A quantity of which the derivative equals zero

Conservation of mass for liquids is also called continuity equation

Conservation of mass ndash continuity equation

32

4 Conservation of mass

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 3: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

3 Addition not in book

Motivation 1 Motivation

Marshall and Plumb (2008)

4

- Derivation of the general equation of motion - Different horizontal wind forms - General circulation of atmosphere ocean

Equations of fluid motions

bull Hydrodynamics focuses on moving liquids and gases

bull Hydrodynamics and thermodynamics are the foundations of meteorology and oceanography

bull Equations of motion for the atmosphere and ocean are constituted by macroscopic conservation laws for substances impulses and internal energy (hydrodynamics and thermodynamics)

The characteristics of very small volume elements are looked at (eg overall mass average speed)

rarr Phenomenological derivation of hydrodynamics based on the conservation of momentum mass and energy

5 hydro (greek) water

2 Basics

Differentiation following the motion - Lagrange and Euler perspectives

T(Xt) T(Xt+1)

χ=Xt Lagrange

Euler

T(x2t2) u(x2t2) T(x1t1) u(x1t1)

Parcel of air trajectory

Fixed box in space

Lagrange perspective The control volume is an air or seawater parcel that always consists of the same particles and which moves along with the wind or the current Euler perspective The control volume is anchored stationary within the coordinate system eg a cube through which the air or the seawater flows through

6

2 Basics

Differentiation following the motion - Lagrange ndash Euler derivatives

7

2 Basics

Example wind blows over hill cloud forms at the ridge of the lee wave steady state assumption eq cloud does not change in time Lagrangian derivative (after Lagrange 1736-1813)

120597120597119862119862120597120597119905119905 fixed particle ne 0

Eulerian derivative (after Euler 1707-1783)

120597120597119862119862120597120597119905119905 fixed point in space = 0

C = C(xyzt) quantity ie cloud amount 120597120597120597120597119905119905

partial derivatives other variables are kept fixed during the differentiation

Leonhard Euler (CH)

Joseph-Louis Lagrange (I)

Differentiation following the motion mathematically

8

2 Basics

For arbitrary small variations

120575120575119862119862 = 120597120597119862119862120597120597119905119905

120575120575119905119905 + 120597120597119862119862120597120597119909119909

120575120575119909119909 + 120597120597119862119862120597120597119910119910

120575120575119910119910 + 120597120597119862119862120597120597119911119911

120575120575119911119911

120575120575119862119862 119891119891119891119891119909119909119891119891119891119891 119901119901119901119901119901119901119905119905119891119891119901119901119901119901119891119891 =

120597120597119862119862120597120597119905119905

+ 119906119906120597120597119862119862120597120597119909119909

+ 119907119907 120597120597119862119862120597120597119910119910

+ w 120597120597119862119862120597120597119911119911

120575120575119905119905

In limit of small variations

120597120597119862119862120597120597119905119905 119891119891119891119891119909119909119891119891119891119891 119901119901119901119901119901119901119905119905119891119891119901119901119901119901119891119891 =

120597120597119862119862120597120597119905119905

+ 119906119906 120597120597119862119862120597120597119909119909

+ 119907119907 120597120597119862119862120597120597119910119910

+ w 120597120597119862119862120597120597119911119911

= 119863119863119862119862119863119863119905119905

119863119863

119863119863119905119905 119863119863

119863119863119905119905= 120597120597

120597120597119905119905+ 119906119906 120597120597

120597120597119909119909+ 119907119907 120597120597

120597120597119910119910 + w 120597120597

120597120597119911119911 equiv 120597120597

120597120597119905119905 + 119958119958 ∙ 120513120513

δ Greek small delta infinitesimal small size

Insert 120575120575119909119909 = u120575120575119905119905 120575120575119910119910 = v120575120575119905119905 120575120575119911119911 = w120575120575119905119905

Differentiation following the motion mathematically

9

2 Basics

Lagrangian or total derivative (after Lagrange 1736-1813)

119863119863119863119863119905119905 fixed particle equiv 120597120597

120597120597119905119905+ 119906119906 120597120597

120597120597119909119909+ 119907119907 120597120597

120597120597119910119910 + w 120597120597

120597120597119911119911

equiv 120597120597120597120597119905119905

+ 119958119958 ∙ 120513120513 (6-1)

ldquoTime rate of change of some characteristic of a particular element of fluid which in general is changing its positionrdquo Eulerian derivative (after Euler 1707-1783)

120597120597120597120597119905119905 fixed point

ldquoTime rate of change of some characteristic at a fixed point in space but with constantly changing fluid element because the fluid is movingrdquo

119958119958 = (uvw) velocity vector 120513120513 equiv 120597120597

120597120597119909119909 120597120597

120597120597119910119910 120597120597

120597120597119911119911 gradient operator

called ldquonablardquo

Nomenclature summary

bull δ Greek small delta infinitesimal small size eg δV= small air volume bull partial derivative of a quantity with respect to a coordinate eg x bull total differential derivative of a quantity with respect to all dependent coordinates bull Lagrangian (or total) derivative

10

xpartpart

dxd

2 Basics

Trajectories started 850 hPa - top between 2604-29041986 - bottom between 3004-05051986

Example nuclear reactor accident Chernobyl on 26041986 0130 am Trajectories (=flight path) are used for the prediction of air movement

11

2 Basics

Kraus (2004)

Differentiation following the motion - Lagrangian perspective

Think about examples in your everyday life for Eulerrsquos and Lagrangersquos differentiation Give three examples

Lagrange and Euler differentiation

12

2 Basics

22 Basics - Mathematical add on

- Vector operations - Nabla operator

13

22 Basics - Mathematical add on September 16 2014

Modified slides from Clemens Simmer University Bonn

Vector operations - Multiplication with a scalar a -

=

====

z

y

x

z

y

x

ii

avavav

vvv

aavavavva

bull With a scalar multiplication the vector stays a vector

bull Each element of a vector is multiplied individually with a scalar a

bull The vector extends (or shortens) itself by the factor a bull Convention With the multiplication scalar ndash vector we

donrsquot use a point (like with scalar ndash scalar)

22 Mathematical add on

14

Vector operations - Scalar product -

iii

iiiizzyyxx

z

y

x

z

y

x

vfvfvffvfvfvfff

vvv

vffv sum =equiv=++=

sdot

=sdot=sdot

bull The scalar product of two vectors is a scalar bull It is multiplied component-wise then added bull Convention The scalar product is marked by a multiplication sign (middot) bull It is at a maximum with parallel vectors and disappears when the

vectors are perpendicular to each other

f

α

v

αcosfvfv

=sdot

22 Mathematical add on

15

Vector operations ndash vector product

bcacbabac

babababababa

babakbabajbabaibbbaaakji

axbbac

xyyx

zxxz

yzzy

xyyxzxxzyzzy

zyx

zyx

perpandperp=times=

minusminusminus

=

minus+minusminusminus==minus=times=

sin

)()()(

α

a b

bull The vector product of two vectors is again a vector bull Convention The vector product or cross product is marked by an ldquoxrdquo bull If is turned to on the fastest route possible the vector (from the vector product) points in the direction in which a right-hand screw would move (right hand rule) bull With parallel vectors it disappears and it reaches its maximum when the

two vectors are at right angles to each other

16

22 Mathematical add on

Graphically - Pooling of the spatial gradients towards the spatial coordinate axes rarr vector

- Gradient points towards the largest increase of the quantity

- Amount is the magnitude of the derivative pointing towards the largest increase

Nabla operator ndash spatial gradient

with

Operator -Nabla

equivpart=nabla=nabla

nabla

partpartpartpartpartpart

z

y

x

i

17

bull Nabla is a (vector) operator that works to the right

bull It only results in a value if it stands left to an arithmetic expression bull If it stands to the right of an arithmetic expression it keeps its operator function (and ldquowaitsrdquo for application)

22 Mathematical add on

TTgradT

z

y

x

zTyTxT

=

=equivnabla

partpartpartpartpartpart

partpartpartpartpartpart

zw

yv

xu

wvu

udivu

z

y

x

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpart

minuspartpart

partpart

minuspartpart

partpart

minuspartpart

==

times

equivequivtimesnabla part

partpartpart

partpart

partpartpartpartpartpart

yu

xv

xw

zu

zv

yw

wvu

kji

wvu

urotu zyx

z

y

x

Vector product ldquoxrdquo vector

Scalar product ldquordquo scalar

Product with a Scalar vector

Nabla operator 22 Mathematical add on

18

Nabla operator ndash algorithms

=nablanenabla=

=

partpartpartpartpartpart

partpartpartpartpartpart

partpartpartpartpartpart

z

y

x

z

y

x

zTyTxT

TTT

TTT

zw

yv

xu

wvu

u

zw

yv

xu

wvu

udivu

z

y

x

z

y

x

partpart

+partpart

+partpart

=

sdot

=nablasdot

ne

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpartpartpartpartpart

22 Mathematical add on

Note Nabla is a (vector) operator ie the sequence must not be changed here

19

State variables for atmosphere and ocean

u Wind = (uvw) in ms T Temperature in degC or K p Pressure in Nm2 = 1 Pa (1 hPa = 102 Pa = 1 mbar) Specifically for the atmosphere q Specific humidity in kg water vapourkg moist air Specifically for the ocean S Salinity in kg saltkg seawater (often the salt content is expressed in practical salinity unit psu = kg salt1000 kg seawater) 20

2 Basics

I Laws of motion for a fluid parcel in x-y-z- directions (applying Newtons 1 and 2 law)

II Conservation of mass

III Law of thermodynamics (including motion) rarr5 equations for the evolution of the fluid (5 unknowns)

21

3 Equations of motion - nonrotating fluid 3 Equations of motion - nonrotating fluid

Momentum conservation The conservation of momentum is represented by

Newtonrsquos first law (ldquoLex primardquo) (momentum = mass middot velocity)

momentum = const at absence of forces

Momentum sentence (ldquoLex secundardquo) temporal change in momentum = Force (mass middot acceleration = Force)

22

Fu=

dtdM t time M mass u velocity vector F Force vector

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Forces on a fluid parcel

23

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119958119958119863119863119905119905

= F (Eq 6-2)

120588120588 density (120575120575119909119909 120575120575119910119910 120575120575119911119911) fluid parcel with infinitesimal dimensions 120575120575119872119872 mass of the parcel 120575120575119872119872 = 120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119958119958 parcel velocity F net force

119863119863119958119958119863119863119905119905

= 120597120597119958119958120597120597119905119905

+ u 120597120597119958119958120597120597119909119909

+v 120597120597119958119958120597120597119910119910

+w 120597120597119958119958120597120597119911119911

= 120597120597119958119958120597120597119905119905

+ (119958119958 ∙ 120571120571) 119958119958

Gravitational force

24

Fgravity= g 120575120575119872119872

Fgravity= minusg 120588120588119963119963 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-3)

Fgravity Gravitational force M mass g gravity acceleration g = const 120588120588 density 119963119963 unit vector in upward direction

Marshall and Plumb (2008)

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Pressure gradient force

25

Fpressure= 119865119865119909119909 119865119865119910119910 119865119865119911119911

=minus 120597120597119901119901120597120597119909119909

120597120597119901119901120597120597119910119910

120597120597119901119901120597120597119911119911

120575120575119909119909 120575120575119910119910 120575120575119911119911

=minus 120571120571119901119901 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-4)

F(A) = p ∙ 119860119860 = 119901119901 (x minus 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911

F(B) = p ∙ 119861119861 = minus119901119901 (x + 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911 Fx = F(A) + F(B)

Apply Taylor expansion (A21) at midpoint of parcel and neglect small terms (see book)

119901119901 pressure

Friction force

26

3 Equations of motion - nonrotating fluid

- Friction force operates on the earthrsquos surface

- the greater the surface roughness the higher the friction force

- the greater the wind velocity the higher the friction force

- friction force takes effect in vertical distances of ~ 100 m up to 1000 m (rarr atmospheric boundary layer Chapter 7)

Ffriction = 120588120588 ℱ 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-5)

ℱ frictional force per unit mass 120588120588 density

Equations of motion bull All three forces together in Eq 6-2 gives

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119854119854119863119863119905119905

= F119901119901119901119901119891119891119901119901119901119901119906119906119901119901119891119891 + F119892119892119901119901119901119901119907119907119891119891119905119905119910119910 + F119891119891119901119901119891119891119901119901119905119905119891119891119891119891119891119891

bull Re-arranging leads to equation of motion for fluid parcels

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = ℱ (Equation 6-6)

27

3 Equations of motion - nonrotating fluid

120588120588 density u velocity vector F Force vector ℱ frictional force per unit mass p pressure g gravity acceleration 119963119963 unit vector in z-direction

Equations of motion ndash component form

(Eq 6-6) in Cartesian coordinates

bull 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

bull 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

bull 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

28

3 Equations of motion - nonrotating fluid

119906119906 zonal velocity 119907119907meridional velocity w vertical velocity 120588120588 density ℱ frictional force per unit mass p pressure g gravity acceleration

Hydrostatic balance

If friction ℱ119911119911 and vertical acceleration 119863119863119908119908119863119863119905119905

are negligible we derive from the vertical eq of motion (6-7c) the hydrostatic balance (Ch3 Eq3-3)

120597120597119901119901120597120597119911119911

= - 120588120588g (Eq 6-8)

Note This approximation holds for large-scale atmospheric and oceanic circulation with weak vertical motions

29

3 Equations of motion - nonrotating fluid

Balance between vertical pressure gradient and gravitational force

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

30

GEF1100ndashAutumn 2014 18092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

31 Addition not in book

Conserved quantity A quantity of which the derivative equals zero

Conservation of mass for liquids is also called continuity equation

Conservation of mass ndash continuity equation

32

4 Conservation of mass

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 4: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Motivation 1 Motivation

Marshall and Plumb (2008)

4

- Derivation of the general equation of motion - Different horizontal wind forms - General circulation of atmosphere ocean

Equations of fluid motions

bull Hydrodynamics focuses on moving liquids and gases

bull Hydrodynamics and thermodynamics are the foundations of meteorology and oceanography

bull Equations of motion for the atmosphere and ocean are constituted by macroscopic conservation laws for substances impulses and internal energy (hydrodynamics and thermodynamics)

The characteristics of very small volume elements are looked at (eg overall mass average speed)

rarr Phenomenological derivation of hydrodynamics based on the conservation of momentum mass and energy

5 hydro (greek) water

2 Basics

Differentiation following the motion - Lagrange and Euler perspectives

T(Xt) T(Xt+1)

χ=Xt Lagrange

Euler

T(x2t2) u(x2t2) T(x1t1) u(x1t1)

Parcel of air trajectory

Fixed box in space

Lagrange perspective The control volume is an air or seawater parcel that always consists of the same particles and which moves along with the wind or the current Euler perspective The control volume is anchored stationary within the coordinate system eg a cube through which the air or the seawater flows through

6

2 Basics

Differentiation following the motion - Lagrange ndash Euler derivatives

7

2 Basics

Example wind blows over hill cloud forms at the ridge of the lee wave steady state assumption eq cloud does not change in time Lagrangian derivative (after Lagrange 1736-1813)

120597120597119862119862120597120597119905119905 fixed particle ne 0

Eulerian derivative (after Euler 1707-1783)

120597120597119862119862120597120597119905119905 fixed point in space = 0

C = C(xyzt) quantity ie cloud amount 120597120597120597120597119905119905

partial derivatives other variables are kept fixed during the differentiation

Leonhard Euler (CH)

Joseph-Louis Lagrange (I)

Differentiation following the motion mathematically

8

2 Basics

For arbitrary small variations

120575120575119862119862 = 120597120597119862119862120597120597119905119905

120575120575119905119905 + 120597120597119862119862120597120597119909119909

120575120575119909119909 + 120597120597119862119862120597120597119910119910

120575120575119910119910 + 120597120597119862119862120597120597119911119911

120575120575119911119911

120575120575119862119862 119891119891119891119891119909119909119891119891119891119891 119901119901119901119901119901119901119905119905119891119891119901119901119901119901119891119891 =

120597120597119862119862120597120597119905119905

+ 119906119906120597120597119862119862120597120597119909119909

+ 119907119907 120597120597119862119862120597120597119910119910

+ w 120597120597119862119862120597120597119911119911

120575120575119905119905

In limit of small variations

120597120597119862119862120597120597119905119905 119891119891119891119891119909119909119891119891119891119891 119901119901119901119901119901119901119905119905119891119891119901119901119901119901119891119891 =

120597120597119862119862120597120597119905119905

+ 119906119906 120597120597119862119862120597120597119909119909

+ 119907119907 120597120597119862119862120597120597119910119910

+ w 120597120597119862119862120597120597119911119911

= 119863119863119862119862119863119863119905119905

119863119863

119863119863119905119905 119863119863

119863119863119905119905= 120597120597

120597120597119905119905+ 119906119906 120597120597

120597120597119909119909+ 119907119907 120597120597

120597120597119910119910 + w 120597120597

120597120597119911119911 equiv 120597120597

120597120597119905119905 + 119958119958 ∙ 120513120513

δ Greek small delta infinitesimal small size

Insert 120575120575119909119909 = u120575120575119905119905 120575120575119910119910 = v120575120575119905119905 120575120575119911119911 = w120575120575119905119905

Differentiation following the motion mathematically

9

2 Basics

Lagrangian or total derivative (after Lagrange 1736-1813)

119863119863119863119863119905119905 fixed particle equiv 120597120597

120597120597119905119905+ 119906119906 120597120597

120597120597119909119909+ 119907119907 120597120597

120597120597119910119910 + w 120597120597

120597120597119911119911

equiv 120597120597120597120597119905119905

+ 119958119958 ∙ 120513120513 (6-1)

ldquoTime rate of change of some characteristic of a particular element of fluid which in general is changing its positionrdquo Eulerian derivative (after Euler 1707-1783)

120597120597120597120597119905119905 fixed point

ldquoTime rate of change of some characteristic at a fixed point in space but with constantly changing fluid element because the fluid is movingrdquo

119958119958 = (uvw) velocity vector 120513120513 equiv 120597120597

120597120597119909119909 120597120597

120597120597119910119910 120597120597

120597120597119911119911 gradient operator

called ldquonablardquo

Nomenclature summary

bull δ Greek small delta infinitesimal small size eg δV= small air volume bull partial derivative of a quantity with respect to a coordinate eg x bull total differential derivative of a quantity with respect to all dependent coordinates bull Lagrangian (or total) derivative

10

xpartpart

dxd

2 Basics

Trajectories started 850 hPa - top between 2604-29041986 - bottom between 3004-05051986

Example nuclear reactor accident Chernobyl on 26041986 0130 am Trajectories (=flight path) are used for the prediction of air movement

11

2 Basics

Kraus (2004)

Differentiation following the motion - Lagrangian perspective

Think about examples in your everyday life for Eulerrsquos and Lagrangersquos differentiation Give three examples

Lagrange and Euler differentiation

12

2 Basics

22 Basics - Mathematical add on

- Vector operations - Nabla operator

13

22 Basics - Mathematical add on September 16 2014

Modified slides from Clemens Simmer University Bonn

Vector operations - Multiplication with a scalar a -

=

====

z

y

x

z

y

x

ii

avavav

vvv

aavavavva

bull With a scalar multiplication the vector stays a vector

bull Each element of a vector is multiplied individually with a scalar a

bull The vector extends (or shortens) itself by the factor a bull Convention With the multiplication scalar ndash vector we

donrsquot use a point (like with scalar ndash scalar)

22 Mathematical add on

14

Vector operations - Scalar product -

iii

iiiizzyyxx

z

y

x

z

y

x

vfvfvffvfvfvfff

vvv

vffv sum =equiv=++=

sdot

=sdot=sdot

bull The scalar product of two vectors is a scalar bull It is multiplied component-wise then added bull Convention The scalar product is marked by a multiplication sign (middot) bull It is at a maximum with parallel vectors and disappears when the

vectors are perpendicular to each other

f

α

v

αcosfvfv

=sdot

22 Mathematical add on

15

Vector operations ndash vector product

bcacbabac

babababababa

babakbabajbabaibbbaaakji

axbbac

xyyx

zxxz

yzzy

xyyxzxxzyzzy

zyx

zyx

perpandperp=times=

minusminusminus

=

minus+minusminusminus==minus=times=

sin

)()()(

α

a b

bull The vector product of two vectors is again a vector bull Convention The vector product or cross product is marked by an ldquoxrdquo bull If is turned to on the fastest route possible the vector (from the vector product) points in the direction in which a right-hand screw would move (right hand rule) bull With parallel vectors it disappears and it reaches its maximum when the

two vectors are at right angles to each other

16

22 Mathematical add on

Graphically - Pooling of the spatial gradients towards the spatial coordinate axes rarr vector

- Gradient points towards the largest increase of the quantity

- Amount is the magnitude of the derivative pointing towards the largest increase

Nabla operator ndash spatial gradient

with

Operator -Nabla

equivpart=nabla=nabla

nabla

partpartpartpartpartpart

z

y

x

i

17

bull Nabla is a (vector) operator that works to the right

bull It only results in a value if it stands left to an arithmetic expression bull If it stands to the right of an arithmetic expression it keeps its operator function (and ldquowaitsrdquo for application)

22 Mathematical add on

TTgradT

z

y

x

zTyTxT

=

=equivnabla

partpartpartpartpartpart

partpartpartpartpartpart

zw

yv

xu

wvu

udivu

z

y

x

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpart

minuspartpart

partpart

minuspartpart

partpart

minuspartpart

==

times

equivequivtimesnabla part

partpartpart

partpart

partpartpartpartpartpart

yu

xv

xw

zu

zv

yw

wvu

kji

wvu

urotu zyx

z

y

x

Vector product ldquoxrdquo vector

Scalar product ldquordquo scalar

Product with a Scalar vector

Nabla operator 22 Mathematical add on

18

Nabla operator ndash algorithms

=nablanenabla=

=

partpartpartpartpartpart

partpartpartpartpartpart

partpartpartpartpartpart

z

y

x

z

y

x

zTyTxT

TTT

TTT

zw

yv

xu

wvu

u

zw

yv

xu

wvu

udivu

z

y

x

z

y

x

partpart

+partpart

+partpart

=

sdot

=nablasdot

ne

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpartpartpartpartpart

22 Mathematical add on

Note Nabla is a (vector) operator ie the sequence must not be changed here

19

State variables for atmosphere and ocean

u Wind = (uvw) in ms T Temperature in degC or K p Pressure in Nm2 = 1 Pa (1 hPa = 102 Pa = 1 mbar) Specifically for the atmosphere q Specific humidity in kg water vapourkg moist air Specifically for the ocean S Salinity in kg saltkg seawater (often the salt content is expressed in practical salinity unit psu = kg salt1000 kg seawater) 20

2 Basics

I Laws of motion for a fluid parcel in x-y-z- directions (applying Newtons 1 and 2 law)

II Conservation of mass

III Law of thermodynamics (including motion) rarr5 equations for the evolution of the fluid (5 unknowns)

21

3 Equations of motion - nonrotating fluid 3 Equations of motion - nonrotating fluid

Momentum conservation The conservation of momentum is represented by

Newtonrsquos first law (ldquoLex primardquo) (momentum = mass middot velocity)

momentum = const at absence of forces

Momentum sentence (ldquoLex secundardquo) temporal change in momentum = Force (mass middot acceleration = Force)

22

Fu=

dtdM t time M mass u velocity vector F Force vector

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Forces on a fluid parcel

23

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119958119958119863119863119905119905

= F (Eq 6-2)

120588120588 density (120575120575119909119909 120575120575119910119910 120575120575119911119911) fluid parcel with infinitesimal dimensions 120575120575119872119872 mass of the parcel 120575120575119872119872 = 120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119958119958 parcel velocity F net force

119863119863119958119958119863119863119905119905

= 120597120597119958119958120597120597119905119905

+ u 120597120597119958119958120597120597119909119909

+v 120597120597119958119958120597120597119910119910

+w 120597120597119958119958120597120597119911119911

= 120597120597119958119958120597120597119905119905

+ (119958119958 ∙ 120571120571) 119958119958

Gravitational force

24

Fgravity= g 120575120575119872119872

Fgravity= minusg 120588120588119963119963 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-3)

Fgravity Gravitational force M mass g gravity acceleration g = const 120588120588 density 119963119963 unit vector in upward direction

Marshall and Plumb (2008)

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Pressure gradient force

25

Fpressure= 119865119865119909119909 119865119865119910119910 119865119865119911119911

=minus 120597120597119901119901120597120597119909119909

120597120597119901119901120597120597119910119910

120597120597119901119901120597120597119911119911

120575120575119909119909 120575120575119910119910 120575120575119911119911

=minus 120571120571119901119901 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-4)

F(A) = p ∙ 119860119860 = 119901119901 (x minus 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911

F(B) = p ∙ 119861119861 = minus119901119901 (x + 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911 Fx = F(A) + F(B)

Apply Taylor expansion (A21) at midpoint of parcel and neglect small terms (see book)

119901119901 pressure

Friction force

26

3 Equations of motion - nonrotating fluid

- Friction force operates on the earthrsquos surface

- the greater the surface roughness the higher the friction force

- the greater the wind velocity the higher the friction force

- friction force takes effect in vertical distances of ~ 100 m up to 1000 m (rarr atmospheric boundary layer Chapter 7)

Ffriction = 120588120588 ℱ 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-5)

ℱ frictional force per unit mass 120588120588 density

Equations of motion bull All three forces together in Eq 6-2 gives

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119854119854119863119863119905119905

= F119901119901119901119901119891119891119901119901119901119901119906119906119901119901119891119891 + F119892119892119901119901119901119901119907119907119891119891119905119905119910119910 + F119891119891119901119901119891119891119901119901119905119905119891119891119891119891119891119891

bull Re-arranging leads to equation of motion for fluid parcels

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = ℱ (Equation 6-6)

27

3 Equations of motion - nonrotating fluid

120588120588 density u velocity vector F Force vector ℱ frictional force per unit mass p pressure g gravity acceleration 119963119963 unit vector in z-direction

Equations of motion ndash component form

(Eq 6-6) in Cartesian coordinates

bull 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

bull 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

bull 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

28

3 Equations of motion - nonrotating fluid

119906119906 zonal velocity 119907119907meridional velocity w vertical velocity 120588120588 density ℱ frictional force per unit mass p pressure g gravity acceleration

Hydrostatic balance

If friction ℱ119911119911 and vertical acceleration 119863119863119908119908119863119863119905119905

are negligible we derive from the vertical eq of motion (6-7c) the hydrostatic balance (Ch3 Eq3-3)

120597120597119901119901120597120597119911119911

= - 120588120588g (Eq 6-8)

Note This approximation holds for large-scale atmospheric and oceanic circulation with weak vertical motions

29

3 Equations of motion - nonrotating fluid

Balance between vertical pressure gradient and gravitational force

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

30

GEF1100ndashAutumn 2014 18092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

31 Addition not in book

Conserved quantity A quantity of which the derivative equals zero

Conservation of mass for liquids is also called continuity equation

Conservation of mass ndash continuity equation

32

4 Conservation of mass

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 5: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Equations of fluid motions

bull Hydrodynamics focuses on moving liquids and gases

bull Hydrodynamics and thermodynamics are the foundations of meteorology and oceanography

bull Equations of motion for the atmosphere and ocean are constituted by macroscopic conservation laws for substances impulses and internal energy (hydrodynamics and thermodynamics)

The characteristics of very small volume elements are looked at (eg overall mass average speed)

rarr Phenomenological derivation of hydrodynamics based on the conservation of momentum mass and energy

5 hydro (greek) water

2 Basics

Differentiation following the motion - Lagrange and Euler perspectives

T(Xt) T(Xt+1)

χ=Xt Lagrange

Euler

T(x2t2) u(x2t2) T(x1t1) u(x1t1)

Parcel of air trajectory

Fixed box in space

Lagrange perspective The control volume is an air or seawater parcel that always consists of the same particles and which moves along with the wind or the current Euler perspective The control volume is anchored stationary within the coordinate system eg a cube through which the air or the seawater flows through

6

2 Basics

Differentiation following the motion - Lagrange ndash Euler derivatives

7

2 Basics

Example wind blows over hill cloud forms at the ridge of the lee wave steady state assumption eq cloud does not change in time Lagrangian derivative (after Lagrange 1736-1813)

120597120597119862119862120597120597119905119905 fixed particle ne 0

Eulerian derivative (after Euler 1707-1783)

120597120597119862119862120597120597119905119905 fixed point in space = 0

C = C(xyzt) quantity ie cloud amount 120597120597120597120597119905119905

partial derivatives other variables are kept fixed during the differentiation

Leonhard Euler (CH)

Joseph-Louis Lagrange (I)

Differentiation following the motion mathematically

8

2 Basics

For arbitrary small variations

120575120575119862119862 = 120597120597119862119862120597120597119905119905

120575120575119905119905 + 120597120597119862119862120597120597119909119909

120575120575119909119909 + 120597120597119862119862120597120597119910119910

120575120575119910119910 + 120597120597119862119862120597120597119911119911

120575120575119911119911

120575120575119862119862 119891119891119891119891119909119909119891119891119891119891 119901119901119901119901119901119901119905119905119891119891119901119901119901119901119891119891 =

120597120597119862119862120597120597119905119905

+ 119906119906120597120597119862119862120597120597119909119909

+ 119907119907 120597120597119862119862120597120597119910119910

+ w 120597120597119862119862120597120597119911119911

120575120575119905119905

In limit of small variations

120597120597119862119862120597120597119905119905 119891119891119891119891119909119909119891119891119891119891 119901119901119901119901119901119901119905119905119891119891119901119901119901119901119891119891 =

120597120597119862119862120597120597119905119905

+ 119906119906 120597120597119862119862120597120597119909119909

+ 119907119907 120597120597119862119862120597120597119910119910

+ w 120597120597119862119862120597120597119911119911

= 119863119863119862119862119863119863119905119905

119863119863

119863119863119905119905 119863119863

119863119863119905119905= 120597120597

120597120597119905119905+ 119906119906 120597120597

120597120597119909119909+ 119907119907 120597120597

120597120597119910119910 + w 120597120597

120597120597119911119911 equiv 120597120597

120597120597119905119905 + 119958119958 ∙ 120513120513

δ Greek small delta infinitesimal small size

Insert 120575120575119909119909 = u120575120575119905119905 120575120575119910119910 = v120575120575119905119905 120575120575119911119911 = w120575120575119905119905

Differentiation following the motion mathematically

9

2 Basics

Lagrangian or total derivative (after Lagrange 1736-1813)

119863119863119863119863119905119905 fixed particle equiv 120597120597

120597120597119905119905+ 119906119906 120597120597

120597120597119909119909+ 119907119907 120597120597

120597120597119910119910 + w 120597120597

120597120597119911119911

equiv 120597120597120597120597119905119905

+ 119958119958 ∙ 120513120513 (6-1)

ldquoTime rate of change of some characteristic of a particular element of fluid which in general is changing its positionrdquo Eulerian derivative (after Euler 1707-1783)

120597120597120597120597119905119905 fixed point

ldquoTime rate of change of some characteristic at a fixed point in space but with constantly changing fluid element because the fluid is movingrdquo

119958119958 = (uvw) velocity vector 120513120513 equiv 120597120597

120597120597119909119909 120597120597

120597120597119910119910 120597120597

120597120597119911119911 gradient operator

called ldquonablardquo

Nomenclature summary

bull δ Greek small delta infinitesimal small size eg δV= small air volume bull partial derivative of a quantity with respect to a coordinate eg x bull total differential derivative of a quantity with respect to all dependent coordinates bull Lagrangian (or total) derivative

10

xpartpart

dxd

2 Basics

Trajectories started 850 hPa - top between 2604-29041986 - bottom between 3004-05051986

Example nuclear reactor accident Chernobyl on 26041986 0130 am Trajectories (=flight path) are used for the prediction of air movement

11

2 Basics

Kraus (2004)

Differentiation following the motion - Lagrangian perspective

Think about examples in your everyday life for Eulerrsquos and Lagrangersquos differentiation Give three examples

Lagrange and Euler differentiation

12

2 Basics

22 Basics - Mathematical add on

- Vector operations - Nabla operator

13

22 Basics - Mathematical add on September 16 2014

Modified slides from Clemens Simmer University Bonn

Vector operations - Multiplication with a scalar a -

=

====

z

y

x

z

y

x

ii

avavav

vvv

aavavavva

bull With a scalar multiplication the vector stays a vector

bull Each element of a vector is multiplied individually with a scalar a

bull The vector extends (or shortens) itself by the factor a bull Convention With the multiplication scalar ndash vector we

donrsquot use a point (like with scalar ndash scalar)

22 Mathematical add on

14

Vector operations - Scalar product -

iii

iiiizzyyxx

z

y

x

z

y

x

vfvfvffvfvfvfff

vvv

vffv sum =equiv=++=

sdot

=sdot=sdot

bull The scalar product of two vectors is a scalar bull It is multiplied component-wise then added bull Convention The scalar product is marked by a multiplication sign (middot) bull It is at a maximum with parallel vectors and disappears when the

vectors are perpendicular to each other

f

α

v

αcosfvfv

=sdot

22 Mathematical add on

15

Vector operations ndash vector product

bcacbabac

babababababa

babakbabajbabaibbbaaakji

axbbac

xyyx

zxxz

yzzy

xyyxzxxzyzzy

zyx

zyx

perpandperp=times=

minusminusminus

=

minus+minusminusminus==minus=times=

sin

)()()(

α

a b

bull The vector product of two vectors is again a vector bull Convention The vector product or cross product is marked by an ldquoxrdquo bull If is turned to on the fastest route possible the vector (from the vector product) points in the direction in which a right-hand screw would move (right hand rule) bull With parallel vectors it disappears and it reaches its maximum when the

two vectors are at right angles to each other

16

22 Mathematical add on

Graphically - Pooling of the spatial gradients towards the spatial coordinate axes rarr vector

- Gradient points towards the largest increase of the quantity

- Amount is the magnitude of the derivative pointing towards the largest increase

Nabla operator ndash spatial gradient

with

Operator -Nabla

equivpart=nabla=nabla

nabla

partpartpartpartpartpart

z

y

x

i

17

bull Nabla is a (vector) operator that works to the right

bull It only results in a value if it stands left to an arithmetic expression bull If it stands to the right of an arithmetic expression it keeps its operator function (and ldquowaitsrdquo for application)

22 Mathematical add on

TTgradT

z

y

x

zTyTxT

=

=equivnabla

partpartpartpartpartpart

partpartpartpartpartpart

zw

yv

xu

wvu

udivu

z

y

x

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpart

minuspartpart

partpart

minuspartpart

partpart

minuspartpart

==

times

equivequivtimesnabla part

partpartpart

partpart

partpartpartpartpartpart

yu

xv

xw

zu

zv

yw

wvu

kji

wvu

urotu zyx

z

y

x

Vector product ldquoxrdquo vector

Scalar product ldquordquo scalar

Product with a Scalar vector

Nabla operator 22 Mathematical add on

18

Nabla operator ndash algorithms

=nablanenabla=

=

partpartpartpartpartpart

partpartpartpartpartpart

partpartpartpartpartpart

z

y

x

z

y

x

zTyTxT

TTT

TTT

zw

yv

xu

wvu

u

zw

yv

xu

wvu

udivu

z

y

x

z

y

x

partpart

+partpart

+partpart

=

sdot

=nablasdot

ne

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpartpartpartpartpart

22 Mathematical add on

Note Nabla is a (vector) operator ie the sequence must not be changed here

19

State variables for atmosphere and ocean

u Wind = (uvw) in ms T Temperature in degC or K p Pressure in Nm2 = 1 Pa (1 hPa = 102 Pa = 1 mbar) Specifically for the atmosphere q Specific humidity in kg water vapourkg moist air Specifically for the ocean S Salinity in kg saltkg seawater (often the salt content is expressed in practical salinity unit psu = kg salt1000 kg seawater) 20

2 Basics

I Laws of motion for a fluid parcel in x-y-z- directions (applying Newtons 1 and 2 law)

II Conservation of mass

III Law of thermodynamics (including motion) rarr5 equations for the evolution of the fluid (5 unknowns)

21

3 Equations of motion - nonrotating fluid 3 Equations of motion - nonrotating fluid

Momentum conservation The conservation of momentum is represented by

Newtonrsquos first law (ldquoLex primardquo) (momentum = mass middot velocity)

momentum = const at absence of forces

Momentum sentence (ldquoLex secundardquo) temporal change in momentum = Force (mass middot acceleration = Force)

22

Fu=

dtdM t time M mass u velocity vector F Force vector

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Forces on a fluid parcel

23

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119958119958119863119863119905119905

= F (Eq 6-2)

120588120588 density (120575120575119909119909 120575120575119910119910 120575120575119911119911) fluid parcel with infinitesimal dimensions 120575120575119872119872 mass of the parcel 120575120575119872119872 = 120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119958119958 parcel velocity F net force

119863119863119958119958119863119863119905119905

= 120597120597119958119958120597120597119905119905

+ u 120597120597119958119958120597120597119909119909

+v 120597120597119958119958120597120597119910119910

+w 120597120597119958119958120597120597119911119911

= 120597120597119958119958120597120597119905119905

+ (119958119958 ∙ 120571120571) 119958119958

Gravitational force

24

Fgravity= g 120575120575119872119872

Fgravity= minusg 120588120588119963119963 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-3)

Fgravity Gravitational force M mass g gravity acceleration g = const 120588120588 density 119963119963 unit vector in upward direction

Marshall and Plumb (2008)

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Pressure gradient force

25

Fpressure= 119865119865119909119909 119865119865119910119910 119865119865119911119911

=minus 120597120597119901119901120597120597119909119909

120597120597119901119901120597120597119910119910

120597120597119901119901120597120597119911119911

120575120575119909119909 120575120575119910119910 120575120575119911119911

=minus 120571120571119901119901 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-4)

F(A) = p ∙ 119860119860 = 119901119901 (x minus 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911

F(B) = p ∙ 119861119861 = minus119901119901 (x + 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911 Fx = F(A) + F(B)

Apply Taylor expansion (A21) at midpoint of parcel and neglect small terms (see book)

119901119901 pressure

Friction force

26

3 Equations of motion - nonrotating fluid

- Friction force operates on the earthrsquos surface

- the greater the surface roughness the higher the friction force

- the greater the wind velocity the higher the friction force

- friction force takes effect in vertical distances of ~ 100 m up to 1000 m (rarr atmospheric boundary layer Chapter 7)

Ffriction = 120588120588 ℱ 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-5)

ℱ frictional force per unit mass 120588120588 density

Equations of motion bull All three forces together in Eq 6-2 gives

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119854119854119863119863119905119905

= F119901119901119901119901119891119891119901119901119901119901119906119906119901119901119891119891 + F119892119892119901119901119901119901119907119907119891119891119905119905119910119910 + F119891119891119901119901119891119891119901119901119905119905119891119891119891119891119891119891

bull Re-arranging leads to equation of motion for fluid parcels

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = ℱ (Equation 6-6)

27

3 Equations of motion - nonrotating fluid

120588120588 density u velocity vector F Force vector ℱ frictional force per unit mass p pressure g gravity acceleration 119963119963 unit vector in z-direction

Equations of motion ndash component form

(Eq 6-6) in Cartesian coordinates

bull 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

bull 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

bull 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

28

3 Equations of motion - nonrotating fluid

119906119906 zonal velocity 119907119907meridional velocity w vertical velocity 120588120588 density ℱ frictional force per unit mass p pressure g gravity acceleration

Hydrostatic balance

If friction ℱ119911119911 and vertical acceleration 119863119863119908119908119863119863119905119905

are negligible we derive from the vertical eq of motion (6-7c) the hydrostatic balance (Ch3 Eq3-3)

120597120597119901119901120597120597119911119911

= - 120588120588g (Eq 6-8)

Note This approximation holds for large-scale atmospheric and oceanic circulation with weak vertical motions

29

3 Equations of motion - nonrotating fluid

Balance between vertical pressure gradient and gravitational force

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

30

GEF1100ndashAutumn 2014 18092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

31 Addition not in book

Conserved quantity A quantity of which the derivative equals zero

Conservation of mass for liquids is also called continuity equation

Conservation of mass ndash continuity equation

32

4 Conservation of mass

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 6: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Differentiation following the motion - Lagrange and Euler perspectives

T(Xt) T(Xt+1)

χ=Xt Lagrange

Euler

T(x2t2) u(x2t2) T(x1t1) u(x1t1)

Parcel of air trajectory

Fixed box in space

Lagrange perspective The control volume is an air or seawater parcel that always consists of the same particles and which moves along with the wind or the current Euler perspective The control volume is anchored stationary within the coordinate system eg a cube through which the air or the seawater flows through

6

2 Basics

Differentiation following the motion - Lagrange ndash Euler derivatives

7

2 Basics

Example wind blows over hill cloud forms at the ridge of the lee wave steady state assumption eq cloud does not change in time Lagrangian derivative (after Lagrange 1736-1813)

120597120597119862119862120597120597119905119905 fixed particle ne 0

Eulerian derivative (after Euler 1707-1783)

120597120597119862119862120597120597119905119905 fixed point in space = 0

C = C(xyzt) quantity ie cloud amount 120597120597120597120597119905119905

partial derivatives other variables are kept fixed during the differentiation

Leonhard Euler (CH)

Joseph-Louis Lagrange (I)

Differentiation following the motion mathematically

8

2 Basics

For arbitrary small variations

120575120575119862119862 = 120597120597119862119862120597120597119905119905

120575120575119905119905 + 120597120597119862119862120597120597119909119909

120575120575119909119909 + 120597120597119862119862120597120597119910119910

120575120575119910119910 + 120597120597119862119862120597120597119911119911

120575120575119911119911

120575120575119862119862 119891119891119891119891119909119909119891119891119891119891 119901119901119901119901119901119901119905119905119891119891119901119901119901119901119891119891 =

120597120597119862119862120597120597119905119905

+ 119906119906120597120597119862119862120597120597119909119909

+ 119907119907 120597120597119862119862120597120597119910119910

+ w 120597120597119862119862120597120597119911119911

120575120575119905119905

In limit of small variations

120597120597119862119862120597120597119905119905 119891119891119891119891119909119909119891119891119891119891 119901119901119901119901119901119901119905119905119891119891119901119901119901119901119891119891 =

120597120597119862119862120597120597119905119905

+ 119906119906 120597120597119862119862120597120597119909119909

+ 119907119907 120597120597119862119862120597120597119910119910

+ w 120597120597119862119862120597120597119911119911

= 119863119863119862119862119863119863119905119905

119863119863

119863119863119905119905 119863119863

119863119863119905119905= 120597120597

120597120597119905119905+ 119906119906 120597120597

120597120597119909119909+ 119907119907 120597120597

120597120597119910119910 + w 120597120597

120597120597119911119911 equiv 120597120597

120597120597119905119905 + 119958119958 ∙ 120513120513

δ Greek small delta infinitesimal small size

Insert 120575120575119909119909 = u120575120575119905119905 120575120575119910119910 = v120575120575119905119905 120575120575119911119911 = w120575120575119905119905

Differentiation following the motion mathematically

9

2 Basics

Lagrangian or total derivative (after Lagrange 1736-1813)

119863119863119863119863119905119905 fixed particle equiv 120597120597

120597120597119905119905+ 119906119906 120597120597

120597120597119909119909+ 119907119907 120597120597

120597120597119910119910 + w 120597120597

120597120597119911119911

equiv 120597120597120597120597119905119905

+ 119958119958 ∙ 120513120513 (6-1)

ldquoTime rate of change of some characteristic of a particular element of fluid which in general is changing its positionrdquo Eulerian derivative (after Euler 1707-1783)

120597120597120597120597119905119905 fixed point

ldquoTime rate of change of some characteristic at a fixed point in space but with constantly changing fluid element because the fluid is movingrdquo

119958119958 = (uvw) velocity vector 120513120513 equiv 120597120597

120597120597119909119909 120597120597

120597120597119910119910 120597120597

120597120597119911119911 gradient operator

called ldquonablardquo

Nomenclature summary

bull δ Greek small delta infinitesimal small size eg δV= small air volume bull partial derivative of a quantity with respect to a coordinate eg x bull total differential derivative of a quantity with respect to all dependent coordinates bull Lagrangian (or total) derivative

10

xpartpart

dxd

2 Basics

Trajectories started 850 hPa - top between 2604-29041986 - bottom between 3004-05051986

Example nuclear reactor accident Chernobyl on 26041986 0130 am Trajectories (=flight path) are used for the prediction of air movement

11

2 Basics

Kraus (2004)

Differentiation following the motion - Lagrangian perspective

Think about examples in your everyday life for Eulerrsquos and Lagrangersquos differentiation Give three examples

Lagrange and Euler differentiation

12

2 Basics

22 Basics - Mathematical add on

- Vector operations - Nabla operator

13

22 Basics - Mathematical add on September 16 2014

Modified slides from Clemens Simmer University Bonn

Vector operations - Multiplication with a scalar a -

=

====

z

y

x

z

y

x

ii

avavav

vvv

aavavavva

bull With a scalar multiplication the vector stays a vector

bull Each element of a vector is multiplied individually with a scalar a

bull The vector extends (or shortens) itself by the factor a bull Convention With the multiplication scalar ndash vector we

donrsquot use a point (like with scalar ndash scalar)

22 Mathematical add on

14

Vector operations - Scalar product -

iii

iiiizzyyxx

z

y

x

z

y

x

vfvfvffvfvfvfff

vvv

vffv sum =equiv=++=

sdot

=sdot=sdot

bull The scalar product of two vectors is a scalar bull It is multiplied component-wise then added bull Convention The scalar product is marked by a multiplication sign (middot) bull It is at a maximum with parallel vectors and disappears when the

vectors are perpendicular to each other

f

α

v

αcosfvfv

=sdot

22 Mathematical add on

15

Vector operations ndash vector product

bcacbabac

babababababa

babakbabajbabaibbbaaakji

axbbac

xyyx

zxxz

yzzy

xyyxzxxzyzzy

zyx

zyx

perpandperp=times=

minusminusminus

=

minus+minusminusminus==minus=times=

sin

)()()(

α

a b

bull The vector product of two vectors is again a vector bull Convention The vector product or cross product is marked by an ldquoxrdquo bull If is turned to on the fastest route possible the vector (from the vector product) points in the direction in which a right-hand screw would move (right hand rule) bull With parallel vectors it disappears and it reaches its maximum when the

two vectors are at right angles to each other

16

22 Mathematical add on

Graphically - Pooling of the spatial gradients towards the spatial coordinate axes rarr vector

- Gradient points towards the largest increase of the quantity

- Amount is the magnitude of the derivative pointing towards the largest increase

Nabla operator ndash spatial gradient

with

Operator -Nabla

equivpart=nabla=nabla

nabla

partpartpartpartpartpart

z

y

x

i

17

bull Nabla is a (vector) operator that works to the right

bull It only results in a value if it stands left to an arithmetic expression bull If it stands to the right of an arithmetic expression it keeps its operator function (and ldquowaitsrdquo for application)

22 Mathematical add on

TTgradT

z

y

x

zTyTxT

=

=equivnabla

partpartpartpartpartpart

partpartpartpartpartpart

zw

yv

xu

wvu

udivu

z

y

x

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpart

minuspartpart

partpart

minuspartpart

partpart

minuspartpart

==

times

equivequivtimesnabla part

partpartpart

partpart

partpartpartpartpartpart

yu

xv

xw

zu

zv

yw

wvu

kji

wvu

urotu zyx

z

y

x

Vector product ldquoxrdquo vector

Scalar product ldquordquo scalar

Product with a Scalar vector

Nabla operator 22 Mathematical add on

18

Nabla operator ndash algorithms

=nablanenabla=

=

partpartpartpartpartpart

partpartpartpartpartpart

partpartpartpartpartpart

z

y

x

z

y

x

zTyTxT

TTT

TTT

zw

yv

xu

wvu

u

zw

yv

xu

wvu

udivu

z

y

x

z

y

x

partpart

+partpart

+partpart

=

sdot

=nablasdot

ne

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpartpartpartpartpart

22 Mathematical add on

Note Nabla is a (vector) operator ie the sequence must not be changed here

19

State variables for atmosphere and ocean

u Wind = (uvw) in ms T Temperature in degC or K p Pressure in Nm2 = 1 Pa (1 hPa = 102 Pa = 1 mbar) Specifically for the atmosphere q Specific humidity in kg water vapourkg moist air Specifically for the ocean S Salinity in kg saltkg seawater (often the salt content is expressed in practical salinity unit psu = kg salt1000 kg seawater) 20

2 Basics

I Laws of motion for a fluid parcel in x-y-z- directions (applying Newtons 1 and 2 law)

II Conservation of mass

III Law of thermodynamics (including motion) rarr5 equations for the evolution of the fluid (5 unknowns)

21

3 Equations of motion - nonrotating fluid 3 Equations of motion - nonrotating fluid

Momentum conservation The conservation of momentum is represented by

Newtonrsquos first law (ldquoLex primardquo) (momentum = mass middot velocity)

momentum = const at absence of forces

Momentum sentence (ldquoLex secundardquo) temporal change in momentum = Force (mass middot acceleration = Force)

22

Fu=

dtdM t time M mass u velocity vector F Force vector

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Forces on a fluid parcel

23

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119958119958119863119863119905119905

= F (Eq 6-2)

120588120588 density (120575120575119909119909 120575120575119910119910 120575120575119911119911) fluid parcel with infinitesimal dimensions 120575120575119872119872 mass of the parcel 120575120575119872119872 = 120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119958119958 parcel velocity F net force

119863119863119958119958119863119863119905119905

= 120597120597119958119958120597120597119905119905

+ u 120597120597119958119958120597120597119909119909

+v 120597120597119958119958120597120597119910119910

+w 120597120597119958119958120597120597119911119911

= 120597120597119958119958120597120597119905119905

+ (119958119958 ∙ 120571120571) 119958119958

Gravitational force

24

Fgravity= g 120575120575119872119872

Fgravity= minusg 120588120588119963119963 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-3)

Fgravity Gravitational force M mass g gravity acceleration g = const 120588120588 density 119963119963 unit vector in upward direction

Marshall and Plumb (2008)

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Pressure gradient force

25

Fpressure= 119865119865119909119909 119865119865119910119910 119865119865119911119911

=minus 120597120597119901119901120597120597119909119909

120597120597119901119901120597120597119910119910

120597120597119901119901120597120597119911119911

120575120575119909119909 120575120575119910119910 120575120575119911119911

=minus 120571120571119901119901 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-4)

F(A) = p ∙ 119860119860 = 119901119901 (x minus 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911

F(B) = p ∙ 119861119861 = minus119901119901 (x + 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911 Fx = F(A) + F(B)

Apply Taylor expansion (A21) at midpoint of parcel and neglect small terms (see book)

119901119901 pressure

Friction force

26

3 Equations of motion - nonrotating fluid

- Friction force operates on the earthrsquos surface

- the greater the surface roughness the higher the friction force

- the greater the wind velocity the higher the friction force

- friction force takes effect in vertical distances of ~ 100 m up to 1000 m (rarr atmospheric boundary layer Chapter 7)

Ffriction = 120588120588 ℱ 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-5)

ℱ frictional force per unit mass 120588120588 density

Equations of motion bull All three forces together in Eq 6-2 gives

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119854119854119863119863119905119905

= F119901119901119901119901119891119891119901119901119901119901119906119906119901119901119891119891 + F119892119892119901119901119901119901119907119907119891119891119905119905119910119910 + F119891119891119901119901119891119891119901119901119905119905119891119891119891119891119891119891

bull Re-arranging leads to equation of motion for fluid parcels

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = ℱ (Equation 6-6)

27

3 Equations of motion - nonrotating fluid

120588120588 density u velocity vector F Force vector ℱ frictional force per unit mass p pressure g gravity acceleration 119963119963 unit vector in z-direction

Equations of motion ndash component form

(Eq 6-6) in Cartesian coordinates

bull 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

bull 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

bull 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

28

3 Equations of motion - nonrotating fluid

119906119906 zonal velocity 119907119907meridional velocity w vertical velocity 120588120588 density ℱ frictional force per unit mass p pressure g gravity acceleration

Hydrostatic balance

If friction ℱ119911119911 and vertical acceleration 119863119863119908119908119863119863119905119905

are negligible we derive from the vertical eq of motion (6-7c) the hydrostatic balance (Ch3 Eq3-3)

120597120597119901119901120597120597119911119911

= - 120588120588g (Eq 6-8)

Note This approximation holds for large-scale atmospheric and oceanic circulation with weak vertical motions

29

3 Equations of motion - nonrotating fluid

Balance between vertical pressure gradient and gravitational force

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

30

GEF1100ndashAutumn 2014 18092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

31 Addition not in book

Conserved quantity A quantity of which the derivative equals zero

Conservation of mass for liquids is also called continuity equation

Conservation of mass ndash continuity equation

32

4 Conservation of mass

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 7: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Differentiation following the motion - Lagrange ndash Euler derivatives

7

2 Basics

Example wind blows over hill cloud forms at the ridge of the lee wave steady state assumption eq cloud does not change in time Lagrangian derivative (after Lagrange 1736-1813)

120597120597119862119862120597120597119905119905 fixed particle ne 0

Eulerian derivative (after Euler 1707-1783)

120597120597119862119862120597120597119905119905 fixed point in space = 0

C = C(xyzt) quantity ie cloud amount 120597120597120597120597119905119905

partial derivatives other variables are kept fixed during the differentiation

Leonhard Euler (CH)

Joseph-Louis Lagrange (I)

Differentiation following the motion mathematically

8

2 Basics

For arbitrary small variations

120575120575119862119862 = 120597120597119862119862120597120597119905119905

120575120575119905119905 + 120597120597119862119862120597120597119909119909

120575120575119909119909 + 120597120597119862119862120597120597119910119910

120575120575119910119910 + 120597120597119862119862120597120597119911119911

120575120575119911119911

120575120575119862119862 119891119891119891119891119909119909119891119891119891119891 119901119901119901119901119901119901119905119905119891119891119901119901119901119901119891119891 =

120597120597119862119862120597120597119905119905

+ 119906119906120597120597119862119862120597120597119909119909

+ 119907119907 120597120597119862119862120597120597119910119910

+ w 120597120597119862119862120597120597119911119911

120575120575119905119905

In limit of small variations

120597120597119862119862120597120597119905119905 119891119891119891119891119909119909119891119891119891119891 119901119901119901119901119901119901119905119905119891119891119901119901119901119901119891119891 =

120597120597119862119862120597120597119905119905

+ 119906119906 120597120597119862119862120597120597119909119909

+ 119907119907 120597120597119862119862120597120597119910119910

+ w 120597120597119862119862120597120597119911119911

= 119863119863119862119862119863119863119905119905

119863119863

119863119863119905119905 119863119863

119863119863119905119905= 120597120597

120597120597119905119905+ 119906119906 120597120597

120597120597119909119909+ 119907119907 120597120597

120597120597119910119910 + w 120597120597

120597120597119911119911 equiv 120597120597

120597120597119905119905 + 119958119958 ∙ 120513120513

δ Greek small delta infinitesimal small size

Insert 120575120575119909119909 = u120575120575119905119905 120575120575119910119910 = v120575120575119905119905 120575120575119911119911 = w120575120575119905119905

Differentiation following the motion mathematically

9

2 Basics

Lagrangian or total derivative (after Lagrange 1736-1813)

119863119863119863119863119905119905 fixed particle equiv 120597120597

120597120597119905119905+ 119906119906 120597120597

120597120597119909119909+ 119907119907 120597120597

120597120597119910119910 + w 120597120597

120597120597119911119911

equiv 120597120597120597120597119905119905

+ 119958119958 ∙ 120513120513 (6-1)

ldquoTime rate of change of some characteristic of a particular element of fluid which in general is changing its positionrdquo Eulerian derivative (after Euler 1707-1783)

120597120597120597120597119905119905 fixed point

ldquoTime rate of change of some characteristic at a fixed point in space but with constantly changing fluid element because the fluid is movingrdquo

119958119958 = (uvw) velocity vector 120513120513 equiv 120597120597

120597120597119909119909 120597120597

120597120597119910119910 120597120597

120597120597119911119911 gradient operator

called ldquonablardquo

Nomenclature summary

bull δ Greek small delta infinitesimal small size eg δV= small air volume bull partial derivative of a quantity with respect to a coordinate eg x bull total differential derivative of a quantity with respect to all dependent coordinates bull Lagrangian (or total) derivative

10

xpartpart

dxd

2 Basics

Trajectories started 850 hPa - top between 2604-29041986 - bottom between 3004-05051986

Example nuclear reactor accident Chernobyl on 26041986 0130 am Trajectories (=flight path) are used for the prediction of air movement

11

2 Basics

Kraus (2004)

Differentiation following the motion - Lagrangian perspective

Think about examples in your everyday life for Eulerrsquos and Lagrangersquos differentiation Give three examples

Lagrange and Euler differentiation

12

2 Basics

22 Basics - Mathematical add on

- Vector operations - Nabla operator

13

22 Basics - Mathematical add on September 16 2014

Modified slides from Clemens Simmer University Bonn

Vector operations - Multiplication with a scalar a -

=

====

z

y

x

z

y

x

ii

avavav

vvv

aavavavva

bull With a scalar multiplication the vector stays a vector

bull Each element of a vector is multiplied individually with a scalar a

bull The vector extends (or shortens) itself by the factor a bull Convention With the multiplication scalar ndash vector we

donrsquot use a point (like with scalar ndash scalar)

22 Mathematical add on

14

Vector operations - Scalar product -

iii

iiiizzyyxx

z

y

x

z

y

x

vfvfvffvfvfvfff

vvv

vffv sum =equiv=++=

sdot

=sdot=sdot

bull The scalar product of two vectors is a scalar bull It is multiplied component-wise then added bull Convention The scalar product is marked by a multiplication sign (middot) bull It is at a maximum with parallel vectors and disappears when the

vectors are perpendicular to each other

f

α

v

αcosfvfv

=sdot

22 Mathematical add on

15

Vector operations ndash vector product

bcacbabac

babababababa

babakbabajbabaibbbaaakji

axbbac

xyyx

zxxz

yzzy

xyyxzxxzyzzy

zyx

zyx

perpandperp=times=

minusminusminus

=

minus+minusminusminus==minus=times=

sin

)()()(

α

a b

bull The vector product of two vectors is again a vector bull Convention The vector product or cross product is marked by an ldquoxrdquo bull If is turned to on the fastest route possible the vector (from the vector product) points in the direction in which a right-hand screw would move (right hand rule) bull With parallel vectors it disappears and it reaches its maximum when the

two vectors are at right angles to each other

16

22 Mathematical add on

Graphically - Pooling of the spatial gradients towards the spatial coordinate axes rarr vector

- Gradient points towards the largest increase of the quantity

- Amount is the magnitude of the derivative pointing towards the largest increase

Nabla operator ndash spatial gradient

with

Operator -Nabla

equivpart=nabla=nabla

nabla

partpartpartpartpartpart

z

y

x

i

17

bull Nabla is a (vector) operator that works to the right

bull It only results in a value if it stands left to an arithmetic expression bull If it stands to the right of an arithmetic expression it keeps its operator function (and ldquowaitsrdquo for application)

22 Mathematical add on

TTgradT

z

y

x

zTyTxT

=

=equivnabla

partpartpartpartpartpart

partpartpartpartpartpart

zw

yv

xu

wvu

udivu

z

y

x

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpart

minuspartpart

partpart

minuspartpart

partpart

minuspartpart

==

times

equivequivtimesnabla part

partpartpart

partpart

partpartpartpartpartpart

yu

xv

xw

zu

zv

yw

wvu

kji

wvu

urotu zyx

z

y

x

Vector product ldquoxrdquo vector

Scalar product ldquordquo scalar

Product with a Scalar vector

Nabla operator 22 Mathematical add on

18

Nabla operator ndash algorithms

=nablanenabla=

=

partpartpartpartpartpart

partpartpartpartpartpart

partpartpartpartpartpart

z

y

x

z

y

x

zTyTxT

TTT

TTT

zw

yv

xu

wvu

u

zw

yv

xu

wvu

udivu

z

y

x

z

y

x

partpart

+partpart

+partpart

=

sdot

=nablasdot

ne

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpartpartpartpartpart

22 Mathematical add on

Note Nabla is a (vector) operator ie the sequence must not be changed here

19

State variables for atmosphere and ocean

u Wind = (uvw) in ms T Temperature in degC or K p Pressure in Nm2 = 1 Pa (1 hPa = 102 Pa = 1 mbar) Specifically for the atmosphere q Specific humidity in kg water vapourkg moist air Specifically for the ocean S Salinity in kg saltkg seawater (often the salt content is expressed in practical salinity unit psu = kg salt1000 kg seawater) 20

2 Basics

I Laws of motion for a fluid parcel in x-y-z- directions (applying Newtons 1 and 2 law)

II Conservation of mass

III Law of thermodynamics (including motion) rarr5 equations for the evolution of the fluid (5 unknowns)

21

3 Equations of motion - nonrotating fluid 3 Equations of motion - nonrotating fluid

Momentum conservation The conservation of momentum is represented by

Newtonrsquos first law (ldquoLex primardquo) (momentum = mass middot velocity)

momentum = const at absence of forces

Momentum sentence (ldquoLex secundardquo) temporal change in momentum = Force (mass middot acceleration = Force)

22

Fu=

dtdM t time M mass u velocity vector F Force vector

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Forces on a fluid parcel

23

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119958119958119863119863119905119905

= F (Eq 6-2)

120588120588 density (120575120575119909119909 120575120575119910119910 120575120575119911119911) fluid parcel with infinitesimal dimensions 120575120575119872119872 mass of the parcel 120575120575119872119872 = 120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119958119958 parcel velocity F net force

119863119863119958119958119863119863119905119905

= 120597120597119958119958120597120597119905119905

+ u 120597120597119958119958120597120597119909119909

+v 120597120597119958119958120597120597119910119910

+w 120597120597119958119958120597120597119911119911

= 120597120597119958119958120597120597119905119905

+ (119958119958 ∙ 120571120571) 119958119958

Gravitational force

24

Fgravity= g 120575120575119872119872

Fgravity= minusg 120588120588119963119963 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-3)

Fgravity Gravitational force M mass g gravity acceleration g = const 120588120588 density 119963119963 unit vector in upward direction

Marshall and Plumb (2008)

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Pressure gradient force

25

Fpressure= 119865119865119909119909 119865119865119910119910 119865119865119911119911

=minus 120597120597119901119901120597120597119909119909

120597120597119901119901120597120597119910119910

120597120597119901119901120597120597119911119911

120575120575119909119909 120575120575119910119910 120575120575119911119911

=minus 120571120571119901119901 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-4)

F(A) = p ∙ 119860119860 = 119901119901 (x minus 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911

F(B) = p ∙ 119861119861 = minus119901119901 (x + 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911 Fx = F(A) + F(B)

Apply Taylor expansion (A21) at midpoint of parcel and neglect small terms (see book)

119901119901 pressure

Friction force

26

3 Equations of motion - nonrotating fluid

- Friction force operates on the earthrsquos surface

- the greater the surface roughness the higher the friction force

- the greater the wind velocity the higher the friction force

- friction force takes effect in vertical distances of ~ 100 m up to 1000 m (rarr atmospheric boundary layer Chapter 7)

Ffriction = 120588120588 ℱ 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-5)

ℱ frictional force per unit mass 120588120588 density

Equations of motion bull All three forces together in Eq 6-2 gives

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119854119854119863119863119905119905

= F119901119901119901119901119891119891119901119901119901119901119906119906119901119901119891119891 + F119892119892119901119901119901119901119907119907119891119891119905119905119910119910 + F119891119891119901119901119891119891119901119901119905119905119891119891119891119891119891119891

bull Re-arranging leads to equation of motion for fluid parcels

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = ℱ (Equation 6-6)

27

3 Equations of motion - nonrotating fluid

120588120588 density u velocity vector F Force vector ℱ frictional force per unit mass p pressure g gravity acceleration 119963119963 unit vector in z-direction

Equations of motion ndash component form

(Eq 6-6) in Cartesian coordinates

bull 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

bull 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

bull 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

28

3 Equations of motion - nonrotating fluid

119906119906 zonal velocity 119907119907meridional velocity w vertical velocity 120588120588 density ℱ frictional force per unit mass p pressure g gravity acceleration

Hydrostatic balance

If friction ℱ119911119911 and vertical acceleration 119863119863119908119908119863119863119905119905

are negligible we derive from the vertical eq of motion (6-7c) the hydrostatic balance (Ch3 Eq3-3)

120597120597119901119901120597120597119911119911

= - 120588120588g (Eq 6-8)

Note This approximation holds for large-scale atmospheric and oceanic circulation with weak vertical motions

29

3 Equations of motion - nonrotating fluid

Balance between vertical pressure gradient and gravitational force

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

30

GEF1100ndashAutumn 2014 18092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

31 Addition not in book

Conserved quantity A quantity of which the derivative equals zero

Conservation of mass for liquids is also called continuity equation

Conservation of mass ndash continuity equation

32

4 Conservation of mass

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 8: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Differentiation following the motion mathematically

8

2 Basics

For arbitrary small variations

120575120575119862119862 = 120597120597119862119862120597120597119905119905

120575120575119905119905 + 120597120597119862119862120597120597119909119909

120575120575119909119909 + 120597120597119862119862120597120597119910119910

120575120575119910119910 + 120597120597119862119862120597120597119911119911

120575120575119911119911

120575120575119862119862 119891119891119891119891119909119909119891119891119891119891 119901119901119901119901119901119901119905119905119891119891119901119901119901119901119891119891 =

120597120597119862119862120597120597119905119905

+ 119906119906120597120597119862119862120597120597119909119909

+ 119907119907 120597120597119862119862120597120597119910119910

+ w 120597120597119862119862120597120597119911119911

120575120575119905119905

In limit of small variations

120597120597119862119862120597120597119905119905 119891119891119891119891119909119909119891119891119891119891 119901119901119901119901119901119901119905119905119891119891119901119901119901119901119891119891 =

120597120597119862119862120597120597119905119905

+ 119906119906 120597120597119862119862120597120597119909119909

+ 119907119907 120597120597119862119862120597120597119910119910

+ w 120597120597119862119862120597120597119911119911

= 119863119863119862119862119863119863119905119905

119863119863

119863119863119905119905 119863119863

119863119863119905119905= 120597120597

120597120597119905119905+ 119906119906 120597120597

120597120597119909119909+ 119907119907 120597120597

120597120597119910119910 + w 120597120597

120597120597119911119911 equiv 120597120597

120597120597119905119905 + 119958119958 ∙ 120513120513

δ Greek small delta infinitesimal small size

Insert 120575120575119909119909 = u120575120575119905119905 120575120575119910119910 = v120575120575119905119905 120575120575119911119911 = w120575120575119905119905

Differentiation following the motion mathematically

9

2 Basics

Lagrangian or total derivative (after Lagrange 1736-1813)

119863119863119863119863119905119905 fixed particle equiv 120597120597

120597120597119905119905+ 119906119906 120597120597

120597120597119909119909+ 119907119907 120597120597

120597120597119910119910 + w 120597120597

120597120597119911119911

equiv 120597120597120597120597119905119905

+ 119958119958 ∙ 120513120513 (6-1)

ldquoTime rate of change of some characteristic of a particular element of fluid which in general is changing its positionrdquo Eulerian derivative (after Euler 1707-1783)

120597120597120597120597119905119905 fixed point

ldquoTime rate of change of some characteristic at a fixed point in space but with constantly changing fluid element because the fluid is movingrdquo

119958119958 = (uvw) velocity vector 120513120513 equiv 120597120597

120597120597119909119909 120597120597

120597120597119910119910 120597120597

120597120597119911119911 gradient operator

called ldquonablardquo

Nomenclature summary

bull δ Greek small delta infinitesimal small size eg δV= small air volume bull partial derivative of a quantity with respect to a coordinate eg x bull total differential derivative of a quantity with respect to all dependent coordinates bull Lagrangian (or total) derivative

10

xpartpart

dxd

2 Basics

Trajectories started 850 hPa - top between 2604-29041986 - bottom between 3004-05051986

Example nuclear reactor accident Chernobyl on 26041986 0130 am Trajectories (=flight path) are used for the prediction of air movement

11

2 Basics

Kraus (2004)

Differentiation following the motion - Lagrangian perspective

Think about examples in your everyday life for Eulerrsquos and Lagrangersquos differentiation Give three examples

Lagrange and Euler differentiation

12

2 Basics

22 Basics - Mathematical add on

- Vector operations - Nabla operator

13

22 Basics - Mathematical add on September 16 2014

Modified slides from Clemens Simmer University Bonn

Vector operations - Multiplication with a scalar a -

=

====

z

y

x

z

y

x

ii

avavav

vvv

aavavavva

bull With a scalar multiplication the vector stays a vector

bull Each element of a vector is multiplied individually with a scalar a

bull The vector extends (or shortens) itself by the factor a bull Convention With the multiplication scalar ndash vector we

donrsquot use a point (like with scalar ndash scalar)

22 Mathematical add on

14

Vector operations - Scalar product -

iii

iiiizzyyxx

z

y

x

z

y

x

vfvfvffvfvfvfff

vvv

vffv sum =equiv=++=

sdot

=sdot=sdot

bull The scalar product of two vectors is a scalar bull It is multiplied component-wise then added bull Convention The scalar product is marked by a multiplication sign (middot) bull It is at a maximum with parallel vectors and disappears when the

vectors are perpendicular to each other

f

α

v

αcosfvfv

=sdot

22 Mathematical add on

15

Vector operations ndash vector product

bcacbabac

babababababa

babakbabajbabaibbbaaakji

axbbac

xyyx

zxxz

yzzy

xyyxzxxzyzzy

zyx

zyx

perpandperp=times=

minusminusminus

=

minus+minusminusminus==minus=times=

sin

)()()(

α

a b

bull The vector product of two vectors is again a vector bull Convention The vector product or cross product is marked by an ldquoxrdquo bull If is turned to on the fastest route possible the vector (from the vector product) points in the direction in which a right-hand screw would move (right hand rule) bull With parallel vectors it disappears and it reaches its maximum when the

two vectors are at right angles to each other

16

22 Mathematical add on

Graphically - Pooling of the spatial gradients towards the spatial coordinate axes rarr vector

- Gradient points towards the largest increase of the quantity

- Amount is the magnitude of the derivative pointing towards the largest increase

Nabla operator ndash spatial gradient

with

Operator -Nabla

equivpart=nabla=nabla

nabla

partpartpartpartpartpart

z

y

x

i

17

bull Nabla is a (vector) operator that works to the right

bull It only results in a value if it stands left to an arithmetic expression bull If it stands to the right of an arithmetic expression it keeps its operator function (and ldquowaitsrdquo for application)

22 Mathematical add on

TTgradT

z

y

x

zTyTxT

=

=equivnabla

partpartpartpartpartpart

partpartpartpartpartpart

zw

yv

xu

wvu

udivu

z

y

x

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpart

minuspartpart

partpart

minuspartpart

partpart

minuspartpart

==

times

equivequivtimesnabla part

partpartpart

partpart

partpartpartpartpartpart

yu

xv

xw

zu

zv

yw

wvu

kji

wvu

urotu zyx

z

y

x

Vector product ldquoxrdquo vector

Scalar product ldquordquo scalar

Product with a Scalar vector

Nabla operator 22 Mathematical add on

18

Nabla operator ndash algorithms

=nablanenabla=

=

partpartpartpartpartpart

partpartpartpartpartpart

partpartpartpartpartpart

z

y

x

z

y

x

zTyTxT

TTT

TTT

zw

yv

xu

wvu

u

zw

yv

xu

wvu

udivu

z

y

x

z

y

x

partpart

+partpart

+partpart

=

sdot

=nablasdot

ne

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpartpartpartpartpart

22 Mathematical add on

Note Nabla is a (vector) operator ie the sequence must not be changed here

19

State variables for atmosphere and ocean

u Wind = (uvw) in ms T Temperature in degC or K p Pressure in Nm2 = 1 Pa (1 hPa = 102 Pa = 1 mbar) Specifically for the atmosphere q Specific humidity in kg water vapourkg moist air Specifically for the ocean S Salinity in kg saltkg seawater (often the salt content is expressed in practical salinity unit psu = kg salt1000 kg seawater) 20

2 Basics

I Laws of motion for a fluid parcel in x-y-z- directions (applying Newtons 1 and 2 law)

II Conservation of mass

III Law of thermodynamics (including motion) rarr5 equations for the evolution of the fluid (5 unknowns)

21

3 Equations of motion - nonrotating fluid 3 Equations of motion - nonrotating fluid

Momentum conservation The conservation of momentum is represented by

Newtonrsquos first law (ldquoLex primardquo) (momentum = mass middot velocity)

momentum = const at absence of forces

Momentum sentence (ldquoLex secundardquo) temporal change in momentum = Force (mass middot acceleration = Force)

22

Fu=

dtdM t time M mass u velocity vector F Force vector

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Forces on a fluid parcel

23

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119958119958119863119863119905119905

= F (Eq 6-2)

120588120588 density (120575120575119909119909 120575120575119910119910 120575120575119911119911) fluid parcel with infinitesimal dimensions 120575120575119872119872 mass of the parcel 120575120575119872119872 = 120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119958119958 parcel velocity F net force

119863119863119958119958119863119863119905119905

= 120597120597119958119958120597120597119905119905

+ u 120597120597119958119958120597120597119909119909

+v 120597120597119958119958120597120597119910119910

+w 120597120597119958119958120597120597119911119911

= 120597120597119958119958120597120597119905119905

+ (119958119958 ∙ 120571120571) 119958119958

Gravitational force

24

Fgravity= g 120575120575119872119872

Fgravity= minusg 120588120588119963119963 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-3)

Fgravity Gravitational force M mass g gravity acceleration g = const 120588120588 density 119963119963 unit vector in upward direction

Marshall and Plumb (2008)

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Pressure gradient force

25

Fpressure= 119865119865119909119909 119865119865119910119910 119865119865119911119911

=minus 120597120597119901119901120597120597119909119909

120597120597119901119901120597120597119910119910

120597120597119901119901120597120597119911119911

120575120575119909119909 120575120575119910119910 120575120575119911119911

=minus 120571120571119901119901 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-4)

F(A) = p ∙ 119860119860 = 119901119901 (x minus 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911

F(B) = p ∙ 119861119861 = minus119901119901 (x + 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911 Fx = F(A) + F(B)

Apply Taylor expansion (A21) at midpoint of parcel and neglect small terms (see book)

119901119901 pressure

Friction force

26

3 Equations of motion - nonrotating fluid

- Friction force operates on the earthrsquos surface

- the greater the surface roughness the higher the friction force

- the greater the wind velocity the higher the friction force

- friction force takes effect in vertical distances of ~ 100 m up to 1000 m (rarr atmospheric boundary layer Chapter 7)

Ffriction = 120588120588 ℱ 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-5)

ℱ frictional force per unit mass 120588120588 density

Equations of motion bull All three forces together in Eq 6-2 gives

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119854119854119863119863119905119905

= F119901119901119901119901119891119891119901119901119901119901119906119906119901119901119891119891 + F119892119892119901119901119901119901119907119907119891119891119905119905119910119910 + F119891119891119901119901119891119891119901119901119905119905119891119891119891119891119891119891

bull Re-arranging leads to equation of motion for fluid parcels

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = ℱ (Equation 6-6)

27

3 Equations of motion - nonrotating fluid

120588120588 density u velocity vector F Force vector ℱ frictional force per unit mass p pressure g gravity acceleration 119963119963 unit vector in z-direction

Equations of motion ndash component form

(Eq 6-6) in Cartesian coordinates

bull 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

bull 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

bull 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

28

3 Equations of motion - nonrotating fluid

119906119906 zonal velocity 119907119907meridional velocity w vertical velocity 120588120588 density ℱ frictional force per unit mass p pressure g gravity acceleration

Hydrostatic balance

If friction ℱ119911119911 and vertical acceleration 119863119863119908119908119863119863119905119905

are negligible we derive from the vertical eq of motion (6-7c) the hydrostatic balance (Ch3 Eq3-3)

120597120597119901119901120597120597119911119911

= - 120588120588g (Eq 6-8)

Note This approximation holds for large-scale atmospheric and oceanic circulation with weak vertical motions

29

3 Equations of motion - nonrotating fluid

Balance between vertical pressure gradient and gravitational force

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

30

GEF1100ndashAutumn 2014 18092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

31 Addition not in book

Conserved quantity A quantity of which the derivative equals zero

Conservation of mass for liquids is also called continuity equation

Conservation of mass ndash continuity equation

32

4 Conservation of mass

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 9: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Differentiation following the motion mathematically

9

2 Basics

Lagrangian or total derivative (after Lagrange 1736-1813)

119863119863119863119863119905119905 fixed particle equiv 120597120597

120597120597119905119905+ 119906119906 120597120597

120597120597119909119909+ 119907119907 120597120597

120597120597119910119910 + w 120597120597

120597120597119911119911

equiv 120597120597120597120597119905119905

+ 119958119958 ∙ 120513120513 (6-1)

ldquoTime rate of change of some characteristic of a particular element of fluid which in general is changing its positionrdquo Eulerian derivative (after Euler 1707-1783)

120597120597120597120597119905119905 fixed point

ldquoTime rate of change of some characteristic at a fixed point in space but with constantly changing fluid element because the fluid is movingrdquo

119958119958 = (uvw) velocity vector 120513120513 equiv 120597120597

120597120597119909119909 120597120597

120597120597119910119910 120597120597

120597120597119911119911 gradient operator

called ldquonablardquo

Nomenclature summary

bull δ Greek small delta infinitesimal small size eg δV= small air volume bull partial derivative of a quantity with respect to a coordinate eg x bull total differential derivative of a quantity with respect to all dependent coordinates bull Lagrangian (or total) derivative

10

xpartpart

dxd

2 Basics

Trajectories started 850 hPa - top between 2604-29041986 - bottom between 3004-05051986

Example nuclear reactor accident Chernobyl on 26041986 0130 am Trajectories (=flight path) are used for the prediction of air movement

11

2 Basics

Kraus (2004)

Differentiation following the motion - Lagrangian perspective

Think about examples in your everyday life for Eulerrsquos and Lagrangersquos differentiation Give three examples

Lagrange and Euler differentiation

12

2 Basics

22 Basics - Mathematical add on

- Vector operations - Nabla operator

13

22 Basics - Mathematical add on September 16 2014

Modified slides from Clemens Simmer University Bonn

Vector operations - Multiplication with a scalar a -

=

====

z

y

x

z

y

x

ii

avavav

vvv

aavavavva

bull With a scalar multiplication the vector stays a vector

bull Each element of a vector is multiplied individually with a scalar a

bull The vector extends (or shortens) itself by the factor a bull Convention With the multiplication scalar ndash vector we

donrsquot use a point (like with scalar ndash scalar)

22 Mathematical add on

14

Vector operations - Scalar product -

iii

iiiizzyyxx

z

y

x

z

y

x

vfvfvffvfvfvfff

vvv

vffv sum =equiv=++=

sdot

=sdot=sdot

bull The scalar product of two vectors is a scalar bull It is multiplied component-wise then added bull Convention The scalar product is marked by a multiplication sign (middot) bull It is at a maximum with parallel vectors and disappears when the

vectors are perpendicular to each other

f

α

v

αcosfvfv

=sdot

22 Mathematical add on

15

Vector operations ndash vector product

bcacbabac

babababababa

babakbabajbabaibbbaaakji

axbbac

xyyx

zxxz

yzzy

xyyxzxxzyzzy

zyx

zyx

perpandperp=times=

minusminusminus

=

minus+minusminusminus==minus=times=

sin

)()()(

α

a b

bull The vector product of two vectors is again a vector bull Convention The vector product or cross product is marked by an ldquoxrdquo bull If is turned to on the fastest route possible the vector (from the vector product) points in the direction in which a right-hand screw would move (right hand rule) bull With parallel vectors it disappears and it reaches its maximum when the

two vectors are at right angles to each other

16

22 Mathematical add on

Graphically - Pooling of the spatial gradients towards the spatial coordinate axes rarr vector

- Gradient points towards the largest increase of the quantity

- Amount is the magnitude of the derivative pointing towards the largest increase

Nabla operator ndash spatial gradient

with

Operator -Nabla

equivpart=nabla=nabla

nabla

partpartpartpartpartpart

z

y

x

i

17

bull Nabla is a (vector) operator that works to the right

bull It only results in a value if it stands left to an arithmetic expression bull If it stands to the right of an arithmetic expression it keeps its operator function (and ldquowaitsrdquo for application)

22 Mathematical add on

TTgradT

z

y

x

zTyTxT

=

=equivnabla

partpartpartpartpartpart

partpartpartpartpartpart

zw

yv

xu

wvu

udivu

z

y

x

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpart

minuspartpart

partpart

minuspartpart

partpart

minuspartpart

==

times

equivequivtimesnabla part

partpartpart

partpart

partpartpartpartpartpart

yu

xv

xw

zu

zv

yw

wvu

kji

wvu

urotu zyx

z

y

x

Vector product ldquoxrdquo vector

Scalar product ldquordquo scalar

Product with a Scalar vector

Nabla operator 22 Mathematical add on

18

Nabla operator ndash algorithms

=nablanenabla=

=

partpartpartpartpartpart

partpartpartpartpartpart

partpartpartpartpartpart

z

y

x

z

y

x

zTyTxT

TTT

TTT

zw

yv

xu

wvu

u

zw

yv

xu

wvu

udivu

z

y

x

z

y

x

partpart

+partpart

+partpart

=

sdot

=nablasdot

ne

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpartpartpartpartpart

22 Mathematical add on

Note Nabla is a (vector) operator ie the sequence must not be changed here

19

State variables for atmosphere and ocean

u Wind = (uvw) in ms T Temperature in degC or K p Pressure in Nm2 = 1 Pa (1 hPa = 102 Pa = 1 mbar) Specifically for the atmosphere q Specific humidity in kg water vapourkg moist air Specifically for the ocean S Salinity in kg saltkg seawater (often the salt content is expressed in practical salinity unit psu = kg salt1000 kg seawater) 20

2 Basics

I Laws of motion for a fluid parcel in x-y-z- directions (applying Newtons 1 and 2 law)

II Conservation of mass

III Law of thermodynamics (including motion) rarr5 equations for the evolution of the fluid (5 unknowns)

21

3 Equations of motion - nonrotating fluid 3 Equations of motion - nonrotating fluid

Momentum conservation The conservation of momentum is represented by

Newtonrsquos first law (ldquoLex primardquo) (momentum = mass middot velocity)

momentum = const at absence of forces

Momentum sentence (ldquoLex secundardquo) temporal change in momentum = Force (mass middot acceleration = Force)

22

Fu=

dtdM t time M mass u velocity vector F Force vector

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Forces on a fluid parcel

23

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119958119958119863119863119905119905

= F (Eq 6-2)

120588120588 density (120575120575119909119909 120575120575119910119910 120575120575119911119911) fluid parcel with infinitesimal dimensions 120575120575119872119872 mass of the parcel 120575120575119872119872 = 120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119958119958 parcel velocity F net force

119863119863119958119958119863119863119905119905

= 120597120597119958119958120597120597119905119905

+ u 120597120597119958119958120597120597119909119909

+v 120597120597119958119958120597120597119910119910

+w 120597120597119958119958120597120597119911119911

= 120597120597119958119958120597120597119905119905

+ (119958119958 ∙ 120571120571) 119958119958

Gravitational force

24

Fgravity= g 120575120575119872119872

Fgravity= minusg 120588120588119963119963 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-3)

Fgravity Gravitational force M mass g gravity acceleration g = const 120588120588 density 119963119963 unit vector in upward direction

Marshall and Plumb (2008)

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Pressure gradient force

25

Fpressure= 119865119865119909119909 119865119865119910119910 119865119865119911119911

=minus 120597120597119901119901120597120597119909119909

120597120597119901119901120597120597119910119910

120597120597119901119901120597120597119911119911

120575120575119909119909 120575120575119910119910 120575120575119911119911

=minus 120571120571119901119901 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-4)

F(A) = p ∙ 119860119860 = 119901119901 (x minus 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911

F(B) = p ∙ 119861119861 = minus119901119901 (x + 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911 Fx = F(A) + F(B)

Apply Taylor expansion (A21) at midpoint of parcel and neglect small terms (see book)

119901119901 pressure

Friction force

26

3 Equations of motion - nonrotating fluid

- Friction force operates on the earthrsquos surface

- the greater the surface roughness the higher the friction force

- the greater the wind velocity the higher the friction force

- friction force takes effect in vertical distances of ~ 100 m up to 1000 m (rarr atmospheric boundary layer Chapter 7)

Ffriction = 120588120588 ℱ 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-5)

ℱ frictional force per unit mass 120588120588 density

Equations of motion bull All three forces together in Eq 6-2 gives

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119854119854119863119863119905119905

= F119901119901119901119901119891119891119901119901119901119901119906119906119901119901119891119891 + F119892119892119901119901119901119901119907119907119891119891119905119905119910119910 + F119891119891119901119901119891119891119901119901119905119905119891119891119891119891119891119891

bull Re-arranging leads to equation of motion for fluid parcels

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = ℱ (Equation 6-6)

27

3 Equations of motion - nonrotating fluid

120588120588 density u velocity vector F Force vector ℱ frictional force per unit mass p pressure g gravity acceleration 119963119963 unit vector in z-direction

Equations of motion ndash component form

(Eq 6-6) in Cartesian coordinates

bull 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

bull 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

bull 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

28

3 Equations of motion - nonrotating fluid

119906119906 zonal velocity 119907119907meridional velocity w vertical velocity 120588120588 density ℱ frictional force per unit mass p pressure g gravity acceleration

Hydrostatic balance

If friction ℱ119911119911 and vertical acceleration 119863119863119908119908119863119863119905119905

are negligible we derive from the vertical eq of motion (6-7c) the hydrostatic balance (Ch3 Eq3-3)

120597120597119901119901120597120597119911119911

= - 120588120588g (Eq 6-8)

Note This approximation holds for large-scale atmospheric and oceanic circulation with weak vertical motions

29

3 Equations of motion - nonrotating fluid

Balance between vertical pressure gradient and gravitational force

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

30

GEF1100ndashAutumn 2014 18092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

31 Addition not in book

Conserved quantity A quantity of which the derivative equals zero

Conservation of mass for liquids is also called continuity equation

Conservation of mass ndash continuity equation

32

4 Conservation of mass

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 10: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Nomenclature summary

bull δ Greek small delta infinitesimal small size eg δV= small air volume bull partial derivative of a quantity with respect to a coordinate eg x bull total differential derivative of a quantity with respect to all dependent coordinates bull Lagrangian (or total) derivative

10

xpartpart

dxd

2 Basics

Trajectories started 850 hPa - top between 2604-29041986 - bottom between 3004-05051986

Example nuclear reactor accident Chernobyl on 26041986 0130 am Trajectories (=flight path) are used for the prediction of air movement

11

2 Basics

Kraus (2004)

Differentiation following the motion - Lagrangian perspective

Think about examples in your everyday life for Eulerrsquos and Lagrangersquos differentiation Give three examples

Lagrange and Euler differentiation

12

2 Basics

22 Basics - Mathematical add on

- Vector operations - Nabla operator

13

22 Basics - Mathematical add on September 16 2014

Modified slides from Clemens Simmer University Bonn

Vector operations - Multiplication with a scalar a -

=

====

z

y

x

z

y

x

ii

avavav

vvv

aavavavva

bull With a scalar multiplication the vector stays a vector

bull Each element of a vector is multiplied individually with a scalar a

bull The vector extends (or shortens) itself by the factor a bull Convention With the multiplication scalar ndash vector we

donrsquot use a point (like with scalar ndash scalar)

22 Mathematical add on

14

Vector operations - Scalar product -

iii

iiiizzyyxx

z

y

x

z

y

x

vfvfvffvfvfvfff

vvv

vffv sum =equiv=++=

sdot

=sdot=sdot

bull The scalar product of two vectors is a scalar bull It is multiplied component-wise then added bull Convention The scalar product is marked by a multiplication sign (middot) bull It is at a maximum with parallel vectors and disappears when the

vectors are perpendicular to each other

f

α

v

αcosfvfv

=sdot

22 Mathematical add on

15

Vector operations ndash vector product

bcacbabac

babababababa

babakbabajbabaibbbaaakji

axbbac

xyyx

zxxz

yzzy

xyyxzxxzyzzy

zyx

zyx

perpandperp=times=

minusminusminus

=

minus+minusminusminus==minus=times=

sin

)()()(

α

a b

bull The vector product of two vectors is again a vector bull Convention The vector product or cross product is marked by an ldquoxrdquo bull If is turned to on the fastest route possible the vector (from the vector product) points in the direction in which a right-hand screw would move (right hand rule) bull With parallel vectors it disappears and it reaches its maximum when the

two vectors are at right angles to each other

16

22 Mathematical add on

Graphically - Pooling of the spatial gradients towards the spatial coordinate axes rarr vector

- Gradient points towards the largest increase of the quantity

- Amount is the magnitude of the derivative pointing towards the largest increase

Nabla operator ndash spatial gradient

with

Operator -Nabla

equivpart=nabla=nabla

nabla

partpartpartpartpartpart

z

y

x

i

17

bull Nabla is a (vector) operator that works to the right

bull It only results in a value if it stands left to an arithmetic expression bull If it stands to the right of an arithmetic expression it keeps its operator function (and ldquowaitsrdquo for application)

22 Mathematical add on

TTgradT

z

y

x

zTyTxT

=

=equivnabla

partpartpartpartpartpart

partpartpartpartpartpart

zw

yv

xu

wvu

udivu

z

y

x

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpart

minuspartpart

partpart

minuspartpart

partpart

minuspartpart

==

times

equivequivtimesnabla part

partpartpart

partpart

partpartpartpartpartpart

yu

xv

xw

zu

zv

yw

wvu

kji

wvu

urotu zyx

z

y

x

Vector product ldquoxrdquo vector

Scalar product ldquordquo scalar

Product with a Scalar vector

Nabla operator 22 Mathematical add on

18

Nabla operator ndash algorithms

=nablanenabla=

=

partpartpartpartpartpart

partpartpartpartpartpart

partpartpartpartpartpart

z

y

x

z

y

x

zTyTxT

TTT

TTT

zw

yv

xu

wvu

u

zw

yv

xu

wvu

udivu

z

y

x

z

y

x

partpart

+partpart

+partpart

=

sdot

=nablasdot

ne

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpartpartpartpartpart

22 Mathematical add on

Note Nabla is a (vector) operator ie the sequence must not be changed here

19

State variables for atmosphere and ocean

u Wind = (uvw) in ms T Temperature in degC or K p Pressure in Nm2 = 1 Pa (1 hPa = 102 Pa = 1 mbar) Specifically for the atmosphere q Specific humidity in kg water vapourkg moist air Specifically for the ocean S Salinity in kg saltkg seawater (often the salt content is expressed in practical salinity unit psu = kg salt1000 kg seawater) 20

2 Basics

I Laws of motion for a fluid parcel in x-y-z- directions (applying Newtons 1 and 2 law)

II Conservation of mass

III Law of thermodynamics (including motion) rarr5 equations for the evolution of the fluid (5 unknowns)

21

3 Equations of motion - nonrotating fluid 3 Equations of motion - nonrotating fluid

Momentum conservation The conservation of momentum is represented by

Newtonrsquos first law (ldquoLex primardquo) (momentum = mass middot velocity)

momentum = const at absence of forces

Momentum sentence (ldquoLex secundardquo) temporal change in momentum = Force (mass middot acceleration = Force)

22

Fu=

dtdM t time M mass u velocity vector F Force vector

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Forces on a fluid parcel

23

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119958119958119863119863119905119905

= F (Eq 6-2)

120588120588 density (120575120575119909119909 120575120575119910119910 120575120575119911119911) fluid parcel with infinitesimal dimensions 120575120575119872119872 mass of the parcel 120575120575119872119872 = 120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119958119958 parcel velocity F net force

119863119863119958119958119863119863119905119905

= 120597120597119958119958120597120597119905119905

+ u 120597120597119958119958120597120597119909119909

+v 120597120597119958119958120597120597119910119910

+w 120597120597119958119958120597120597119911119911

= 120597120597119958119958120597120597119905119905

+ (119958119958 ∙ 120571120571) 119958119958

Gravitational force

24

Fgravity= g 120575120575119872119872

Fgravity= minusg 120588120588119963119963 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-3)

Fgravity Gravitational force M mass g gravity acceleration g = const 120588120588 density 119963119963 unit vector in upward direction

Marshall and Plumb (2008)

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Pressure gradient force

25

Fpressure= 119865119865119909119909 119865119865119910119910 119865119865119911119911

=minus 120597120597119901119901120597120597119909119909

120597120597119901119901120597120597119910119910

120597120597119901119901120597120597119911119911

120575120575119909119909 120575120575119910119910 120575120575119911119911

=minus 120571120571119901119901 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-4)

F(A) = p ∙ 119860119860 = 119901119901 (x minus 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911

F(B) = p ∙ 119861119861 = minus119901119901 (x + 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911 Fx = F(A) + F(B)

Apply Taylor expansion (A21) at midpoint of parcel and neglect small terms (see book)

119901119901 pressure

Friction force

26

3 Equations of motion - nonrotating fluid

- Friction force operates on the earthrsquos surface

- the greater the surface roughness the higher the friction force

- the greater the wind velocity the higher the friction force

- friction force takes effect in vertical distances of ~ 100 m up to 1000 m (rarr atmospheric boundary layer Chapter 7)

Ffriction = 120588120588 ℱ 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-5)

ℱ frictional force per unit mass 120588120588 density

Equations of motion bull All three forces together in Eq 6-2 gives

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119854119854119863119863119905119905

= F119901119901119901119901119891119891119901119901119901119901119906119906119901119901119891119891 + F119892119892119901119901119901119901119907119907119891119891119905119905119910119910 + F119891119891119901119901119891119891119901119901119905119905119891119891119891119891119891119891

bull Re-arranging leads to equation of motion for fluid parcels

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = ℱ (Equation 6-6)

27

3 Equations of motion - nonrotating fluid

120588120588 density u velocity vector F Force vector ℱ frictional force per unit mass p pressure g gravity acceleration 119963119963 unit vector in z-direction

Equations of motion ndash component form

(Eq 6-6) in Cartesian coordinates

bull 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

bull 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

bull 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

28

3 Equations of motion - nonrotating fluid

119906119906 zonal velocity 119907119907meridional velocity w vertical velocity 120588120588 density ℱ frictional force per unit mass p pressure g gravity acceleration

Hydrostatic balance

If friction ℱ119911119911 and vertical acceleration 119863119863119908119908119863119863119905119905

are negligible we derive from the vertical eq of motion (6-7c) the hydrostatic balance (Ch3 Eq3-3)

120597120597119901119901120597120597119911119911

= - 120588120588g (Eq 6-8)

Note This approximation holds for large-scale atmospheric and oceanic circulation with weak vertical motions

29

3 Equations of motion - nonrotating fluid

Balance between vertical pressure gradient and gravitational force

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

30

GEF1100ndashAutumn 2014 18092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

31 Addition not in book

Conserved quantity A quantity of which the derivative equals zero

Conservation of mass for liquids is also called continuity equation

Conservation of mass ndash continuity equation

32

4 Conservation of mass

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 11: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Trajectories started 850 hPa - top between 2604-29041986 - bottom between 3004-05051986

Example nuclear reactor accident Chernobyl on 26041986 0130 am Trajectories (=flight path) are used for the prediction of air movement

11

2 Basics

Kraus (2004)

Differentiation following the motion - Lagrangian perspective

Think about examples in your everyday life for Eulerrsquos and Lagrangersquos differentiation Give three examples

Lagrange and Euler differentiation

12

2 Basics

22 Basics - Mathematical add on

- Vector operations - Nabla operator

13

22 Basics - Mathematical add on September 16 2014

Modified slides from Clemens Simmer University Bonn

Vector operations - Multiplication with a scalar a -

=

====

z

y

x

z

y

x

ii

avavav

vvv

aavavavva

bull With a scalar multiplication the vector stays a vector

bull Each element of a vector is multiplied individually with a scalar a

bull The vector extends (or shortens) itself by the factor a bull Convention With the multiplication scalar ndash vector we

donrsquot use a point (like with scalar ndash scalar)

22 Mathematical add on

14

Vector operations - Scalar product -

iii

iiiizzyyxx

z

y

x

z

y

x

vfvfvffvfvfvfff

vvv

vffv sum =equiv=++=

sdot

=sdot=sdot

bull The scalar product of two vectors is a scalar bull It is multiplied component-wise then added bull Convention The scalar product is marked by a multiplication sign (middot) bull It is at a maximum with parallel vectors and disappears when the

vectors are perpendicular to each other

f

α

v

αcosfvfv

=sdot

22 Mathematical add on

15

Vector operations ndash vector product

bcacbabac

babababababa

babakbabajbabaibbbaaakji

axbbac

xyyx

zxxz

yzzy

xyyxzxxzyzzy

zyx

zyx

perpandperp=times=

minusminusminus

=

minus+minusminusminus==minus=times=

sin

)()()(

α

a b

bull The vector product of two vectors is again a vector bull Convention The vector product or cross product is marked by an ldquoxrdquo bull If is turned to on the fastest route possible the vector (from the vector product) points in the direction in which a right-hand screw would move (right hand rule) bull With parallel vectors it disappears and it reaches its maximum when the

two vectors are at right angles to each other

16

22 Mathematical add on

Graphically - Pooling of the spatial gradients towards the spatial coordinate axes rarr vector

- Gradient points towards the largest increase of the quantity

- Amount is the magnitude of the derivative pointing towards the largest increase

Nabla operator ndash spatial gradient

with

Operator -Nabla

equivpart=nabla=nabla

nabla

partpartpartpartpartpart

z

y

x

i

17

bull Nabla is a (vector) operator that works to the right

bull It only results in a value if it stands left to an arithmetic expression bull If it stands to the right of an arithmetic expression it keeps its operator function (and ldquowaitsrdquo for application)

22 Mathematical add on

TTgradT

z

y

x

zTyTxT

=

=equivnabla

partpartpartpartpartpart

partpartpartpartpartpart

zw

yv

xu

wvu

udivu

z

y

x

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpart

minuspartpart

partpart

minuspartpart

partpart

minuspartpart

==

times

equivequivtimesnabla part

partpartpart

partpart

partpartpartpartpartpart

yu

xv

xw

zu

zv

yw

wvu

kji

wvu

urotu zyx

z

y

x

Vector product ldquoxrdquo vector

Scalar product ldquordquo scalar

Product with a Scalar vector

Nabla operator 22 Mathematical add on

18

Nabla operator ndash algorithms

=nablanenabla=

=

partpartpartpartpartpart

partpartpartpartpartpart

partpartpartpartpartpart

z

y

x

z

y

x

zTyTxT

TTT

TTT

zw

yv

xu

wvu

u

zw

yv

xu

wvu

udivu

z

y

x

z

y

x

partpart

+partpart

+partpart

=

sdot

=nablasdot

ne

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpartpartpartpartpart

22 Mathematical add on

Note Nabla is a (vector) operator ie the sequence must not be changed here

19

State variables for atmosphere and ocean

u Wind = (uvw) in ms T Temperature in degC or K p Pressure in Nm2 = 1 Pa (1 hPa = 102 Pa = 1 mbar) Specifically for the atmosphere q Specific humidity in kg water vapourkg moist air Specifically for the ocean S Salinity in kg saltkg seawater (often the salt content is expressed in practical salinity unit psu = kg salt1000 kg seawater) 20

2 Basics

I Laws of motion for a fluid parcel in x-y-z- directions (applying Newtons 1 and 2 law)

II Conservation of mass

III Law of thermodynamics (including motion) rarr5 equations for the evolution of the fluid (5 unknowns)

21

3 Equations of motion - nonrotating fluid 3 Equations of motion - nonrotating fluid

Momentum conservation The conservation of momentum is represented by

Newtonrsquos first law (ldquoLex primardquo) (momentum = mass middot velocity)

momentum = const at absence of forces

Momentum sentence (ldquoLex secundardquo) temporal change in momentum = Force (mass middot acceleration = Force)

22

Fu=

dtdM t time M mass u velocity vector F Force vector

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Forces on a fluid parcel

23

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119958119958119863119863119905119905

= F (Eq 6-2)

120588120588 density (120575120575119909119909 120575120575119910119910 120575120575119911119911) fluid parcel with infinitesimal dimensions 120575120575119872119872 mass of the parcel 120575120575119872119872 = 120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119958119958 parcel velocity F net force

119863119863119958119958119863119863119905119905

= 120597120597119958119958120597120597119905119905

+ u 120597120597119958119958120597120597119909119909

+v 120597120597119958119958120597120597119910119910

+w 120597120597119958119958120597120597119911119911

= 120597120597119958119958120597120597119905119905

+ (119958119958 ∙ 120571120571) 119958119958

Gravitational force

24

Fgravity= g 120575120575119872119872

Fgravity= minusg 120588120588119963119963 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-3)

Fgravity Gravitational force M mass g gravity acceleration g = const 120588120588 density 119963119963 unit vector in upward direction

Marshall and Plumb (2008)

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Pressure gradient force

25

Fpressure= 119865119865119909119909 119865119865119910119910 119865119865119911119911

=minus 120597120597119901119901120597120597119909119909

120597120597119901119901120597120597119910119910

120597120597119901119901120597120597119911119911

120575120575119909119909 120575120575119910119910 120575120575119911119911

=minus 120571120571119901119901 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-4)

F(A) = p ∙ 119860119860 = 119901119901 (x minus 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911

F(B) = p ∙ 119861119861 = minus119901119901 (x + 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911 Fx = F(A) + F(B)

Apply Taylor expansion (A21) at midpoint of parcel and neglect small terms (see book)

119901119901 pressure

Friction force

26

3 Equations of motion - nonrotating fluid

- Friction force operates on the earthrsquos surface

- the greater the surface roughness the higher the friction force

- the greater the wind velocity the higher the friction force

- friction force takes effect in vertical distances of ~ 100 m up to 1000 m (rarr atmospheric boundary layer Chapter 7)

Ffriction = 120588120588 ℱ 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-5)

ℱ frictional force per unit mass 120588120588 density

Equations of motion bull All three forces together in Eq 6-2 gives

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119854119854119863119863119905119905

= F119901119901119901119901119891119891119901119901119901119901119906119906119901119901119891119891 + F119892119892119901119901119901119901119907119907119891119891119905119905119910119910 + F119891119891119901119901119891119891119901119901119905119905119891119891119891119891119891119891

bull Re-arranging leads to equation of motion for fluid parcels

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = ℱ (Equation 6-6)

27

3 Equations of motion - nonrotating fluid

120588120588 density u velocity vector F Force vector ℱ frictional force per unit mass p pressure g gravity acceleration 119963119963 unit vector in z-direction

Equations of motion ndash component form

(Eq 6-6) in Cartesian coordinates

bull 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

bull 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

bull 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

28

3 Equations of motion - nonrotating fluid

119906119906 zonal velocity 119907119907meridional velocity w vertical velocity 120588120588 density ℱ frictional force per unit mass p pressure g gravity acceleration

Hydrostatic balance

If friction ℱ119911119911 and vertical acceleration 119863119863119908119908119863119863119905119905

are negligible we derive from the vertical eq of motion (6-7c) the hydrostatic balance (Ch3 Eq3-3)

120597120597119901119901120597120597119911119911

= - 120588120588g (Eq 6-8)

Note This approximation holds for large-scale atmospheric and oceanic circulation with weak vertical motions

29

3 Equations of motion - nonrotating fluid

Balance between vertical pressure gradient and gravitational force

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

30

GEF1100ndashAutumn 2014 18092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

31 Addition not in book

Conserved quantity A quantity of which the derivative equals zero

Conservation of mass for liquids is also called continuity equation

Conservation of mass ndash continuity equation

32

4 Conservation of mass

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 12: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Think about examples in your everyday life for Eulerrsquos and Lagrangersquos differentiation Give three examples

Lagrange and Euler differentiation

12

2 Basics

22 Basics - Mathematical add on

- Vector operations - Nabla operator

13

22 Basics - Mathematical add on September 16 2014

Modified slides from Clemens Simmer University Bonn

Vector operations - Multiplication with a scalar a -

=

====

z

y

x

z

y

x

ii

avavav

vvv

aavavavva

bull With a scalar multiplication the vector stays a vector

bull Each element of a vector is multiplied individually with a scalar a

bull The vector extends (or shortens) itself by the factor a bull Convention With the multiplication scalar ndash vector we

donrsquot use a point (like with scalar ndash scalar)

22 Mathematical add on

14

Vector operations - Scalar product -

iii

iiiizzyyxx

z

y

x

z

y

x

vfvfvffvfvfvfff

vvv

vffv sum =equiv=++=

sdot

=sdot=sdot

bull The scalar product of two vectors is a scalar bull It is multiplied component-wise then added bull Convention The scalar product is marked by a multiplication sign (middot) bull It is at a maximum with parallel vectors and disappears when the

vectors are perpendicular to each other

f

α

v

αcosfvfv

=sdot

22 Mathematical add on

15

Vector operations ndash vector product

bcacbabac

babababababa

babakbabajbabaibbbaaakji

axbbac

xyyx

zxxz

yzzy

xyyxzxxzyzzy

zyx

zyx

perpandperp=times=

minusminusminus

=

minus+minusminusminus==minus=times=

sin

)()()(

α

a b

bull The vector product of two vectors is again a vector bull Convention The vector product or cross product is marked by an ldquoxrdquo bull If is turned to on the fastest route possible the vector (from the vector product) points in the direction in which a right-hand screw would move (right hand rule) bull With parallel vectors it disappears and it reaches its maximum when the

two vectors are at right angles to each other

16

22 Mathematical add on

Graphically - Pooling of the spatial gradients towards the spatial coordinate axes rarr vector

- Gradient points towards the largest increase of the quantity

- Amount is the magnitude of the derivative pointing towards the largest increase

Nabla operator ndash spatial gradient

with

Operator -Nabla

equivpart=nabla=nabla

nabla

partpartpartpartpartpart

z

y

x

i

17

bull Nabla is a (vector) operator that works to the right

bull It only results in a value if it stands left to an arithmetic expression bull If it stands to the right of an arithmetic expression it keeps its operator function (and ldquowaitsrdquo for application)

22 Mathematical add on

TTgradT

z

y

x

zTyTxT

=

=equivnabla

partpartpartpartpartpart

partpartpartpartpartpart

zw

yv

xu

wvu

udivu

z

y

x

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpart

minuspartpart

partpart

minuspartpart

partpart

minuspartpart

==

times

equivequivtimesnabla part

partpartpart

partpart

partpartpartpartpartpart

yu

xv

xw

zu

zv

yw

wvu

kji

wvu

urotu zyx

z

y

x

Vector product ldquoxrdquo vector

Scalar product ldquordquo scalar

Product with a Scalar vector

Nabla operator 22 Mathematical add on

18

Nabla operator ndash algorithms

=nablanenabla=

=

partpartpartpartpartpart

partpartpartpartpartpart

partpartpartpartpartpart

z

y

x

z

y

x

zTyTxT

TTT

TTT

zw

yv

xu

wvu

u

zw

yv

xu

wvu

udivu

z

y

x

z

y

x

partpart

+partpart

+partpart

=

sdot

=nablasdot

ne

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpartpartpartpartpart

22 Mathematical add on

Note Nabla is a (vector) operator ie the sequence must not be changed here

19

State variables for atmosphere and ocean

u Wind = (uvw) in ms T Temperature in degC or K p Pressure in Nm2 = 1 Pa (1 hPa = 102 Pa = 1 mbar) Specifically for the atmosphere q Specific humidity in kg water vapourkg moist air Specifically for the ocean S Salinity in kg saltkg seawater (often the salt content is expressed in practical salinity unit psu = kg salt1000 kg seawater) 20

2 Basics

I Laws of motion for a fluid parcel in x-y-z- directions (applying Newtons 1 and 2 law)

II Conservation of mass

III Law of thermodynamics (including motion) rarr5 equations for the evolution of the fluid (5 unknowns)

21

3 Equations of motion - nonrotating fluid 3 Equations of motion - nonrotating fluid

Momentum conservation The conservation of momentum is represented by

Newtonrsquos first law (ldquoLex primardquo) (momentum = mass middot velocity)

momentum = const at absence of forces

Momentum sentence (ldquoLex secundardquo) temporal change in momentum = Force (mass middot acceleration = Force)

22

Fu=

dtdM t time M mass u velocity vector F Force vector

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Forces on a fluid parcel

23

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119958119958119863119863119905119905

= F (Eq 6-2)

120588120588 density (120575120575119909119909 120575120575119910119910 120575120575119911119911) fluid parcel with infinitesimal dimensions 120575120575119872119872 mass of the parcel 120575120575119872119872 = 120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119958119958 parcel velocity F net force

119863119863119958119958119863119863119905119905

= 120597120597119958119958120597120597119905119905

+ u 120597120597119958119958120597120597119909119909

+v 120597120597119958119958120597120597119910119910

+w 120597120597119958119958120597120597119911119911

= 120597120597119958119958120597120597119905119905

+ (119958119958 ∙ 120571120571) 119958119958

Gravitational force

24

Fgravity= g 120575120575119872119872

Fgravity= minusg 120588120588119963119963 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-3)

Fgravity Gravitational force M mass g gravity acceleration g = const 120588120588 density 119963119963 unit vector in upward direction

Marshall and Plumb (2008)

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Pressure gradient force

25

Fpressure= 119865119865119909119909 119865119865119910119910 119865119865119911119911

=minus 120597120597119901119901120597120597119909119909

120597120597119901119901120597120597119910119910

120597120597119901119901120597120597119911119911

120575120575119909119909 120575120575119910119910 120575120575119911119911

=minus 120571120571119901119901 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-4)

F(A) = p ∙ 119860119860 = 119901119901 (x minus 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911

F(B) = p ∙ 119861119861 = minus119901119901 (x + 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911 Fx = F(A) + F(B)

Apply Taylor expansion (A21) at midpoint of parcel and neglect small terms (see book)

119901119901 pressure

Friction force

26

3 Equations of motion - nonrotating fluid

- Friction force operates on the earthrsquos surface

- the greater the surface roughness the higher the friction force

- the greater the wind velocity the higher the friction force

- friction force takes effect in vertical distances of ~ 100 m up to 1000 m (rarr atmospheric boundary layer Chapter 7)

Ffriction = 120588120588 ℱ 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-5)

ℱ frictional force per unit mass 120588120588 density

Equations of motion bull All three forces together in Eq 6-2 gives

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119854119854119863119863119905119905

= F119901119901119901119901119891119891119901119901119901119901119906119906119901119901119891119891 + F119892119892119901119901119901119901119907119907119891119891119905119905119910119910 + F119891119891119901119901119891119891119901119901119905119905119891119891119891119891119891119891

bull Re-arranging leads to equation of motion for fluid parcels

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = ℱ (Equation 6-6)

27

3 Equations of motion - nonrotating fluid

120588120588 density u velocity vector F Force vector ℱ frictional force per unit mass p pressure g gravity acceleration 119963119963 unit vector in z-direction

Equations of motion ndash component form

(Eq 6-6) in Cartesian coordinates

bull 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

bull 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

bull 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

28

3 Equations of motion - nonrotating fluid

119906119906 zonal velocity 119907119907meridional velocity w vertical velocity 120588120588 density ℱ frictional force per unit mass p pressure g gravity acceleration

Hydrostatic balance

If friction ℱ119911119911 and vertical acceleration 119863119863119908119908119863119863119905119905

are negligible we derive from the vertical eq of motion (6-7c) the hydrostatic balance (Ch3 Eq3-3)

120597120597119901119901120597120597119911119911

= - 120588120588g (Eq 6-8)

Note This approximation holds for large-scale atmospheric and oceanic circulation with weak vertical motions

29

3 Equations of motion - nonrotating fluid

Balance between vertical pressure gradient and gravitational force

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

30

GEF1100ndashAutumn 2014 18092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

31 Addition not in book

Conserved quantity A quantity of which the derivative equals zero

Conservation of mass for liquids is also called continuity equation

Conservation of mass ndash continuity equation

32

4 Conservation of mass

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 13: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

22 Basics - Mathematical add on

- Vector operations - Nabla operator

13

22 Basics - Mathematical add on September 16 2014

Modified slides from Clemens Simmer University Bonn

Vector operations - Multiplication with a scalar a -

=

====

z

y

x

z

y

x

ii

avavav

vvv

aavavavva

bull With a scalar multiplication the vector stays a vector

bull Each element of a vector is multiplied individually with a scalar a

bull The vector extends (or shortens) itself by the factor a bull Convention With the multiplication scalar ndash vector we

donrsquot use a point (like with scalar ndash scalar)

22 Mathematical add on

14

Vector operations - Scalar product -

iii

iiiizzyyxx

z

y

x

z

y

x

vfvfvffvfvfvfff

vvv

vffv sum =equiv=++=

sdot

=sdot=sdot

bull The scalar product of two vectors is a scalar bull It is multiplied component-wise then added bull Convention The scalar product is marked by a multiplication sign (middot) bull It is at a maximum with parallel vectors and disappears when the

vectors are perpendicular to each other

f

α

v

αcosfvfv

=sdot

22 Mathematical add on

15

Vector operations ndash vector product

bcacbabac

babababababa

babakbabajbabaibbbaaakji

axbbac

xyyx

zxxz

yzzy

xyyxzxxzyzzy

zyx

zyx

perpandperp=times=

minusminusminus

=

minus+minusminusminus==minus=times=

sin

)()()(

α

a b

bull The vector product of two vectors is again a vector bull Convention The vector product or cross product is marked by an ldquoxrdquo bull If is turned to on the fastest route possible the vector (from the vector product) points in the direction in which a right-hand screw would move (right hand rule) bull With parallel vectors it disappears and it reaches its maximum when the

two vectors are at right angles to each other

16

22 Mathematical add on

Graphically - Pooling of the spatial gradients towards the spatial coordinate axes rarr vector

- Gradient points towards the largest increase of the quantity

- Amount is the magnitude of the derivative pointing towards the largest increase

Nabla operator ndash spatial gradient

with

Operator -Nabla

equivpart=nabla=nabla

nabla

partpartpartpartpartpart

z

y

x

i

17

bull Nabla is a (vector) operator that works to the right

bull It only results in a value if it stands left to an arithmetic expression bull If it stands to the right of an arithmetic expression it keeps its operator function (and ldquowaitsrdquo for application)

22 Mathematical add on

TTgradT

z

y

x

zTyTxT

=

=equivnabla

partpartpartpartpartpart

partpartpartpartpartpart

zw

yv

xu

wvu

udivu

z

y

x

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpart

minuspartpart

partpart

minuspartpart

partpart

minuspartpart

==

times

equivequivtimesnabla part

partpartpart

partpart

partpartpartpartpartpart

yu

xv

xw

zu

zv

yw

wvu

kji

wvu

urotu zyx

z

y

x

Vector product ldquoxrdquo vector

Scalar product ldquordquo scalar

Product with a Scalar vector

Nabla operator 22 Mathematical add on

18

Nabla operator ndash algorithms

=nablanenabla=

=

partpartpartpartpartpart

partpartpartpartpartpart

partpartpartpartpartpart

z

y

x

z

y

x

zTyTxT

TTT

TTT

zw

yv

xu

wvu

u

zw

yv

xu

wvu

udivu

z

y

x

z

y

x

partpart

+partpart

+partpart

=

sdot

=nablasdot

ne

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpartpartpartpartpart

22 Mathematical add on

Note Nabla is a (vector) operator ie the sequence must not be changed here

19

State variables for atmosphere and ocean

u Wind = (uvw) in ms T Temperature in degC or K p Pressure in Nm2 = 1 Pa (1 hPa = 102 Pa = 1 mbar) Specifically for the atmosphere q Specific humidity in kg water vapourkg moist air Specifically for the ocean S Salinity in kg saltkg seawater (often the salt content is expressed in practical salinity unit psu = kg salt1000 kg seawater) 20

2 Basics

I Laws of motion for a fluid parcel in x-y-z- directions (applying Newtons 1 and 2 law)

II Conservation of mass

III Law of thermodynamics (including motion) rarr5 equations for the evolution of the fluid (5 unknowns)

21

3 Equations of motion - nonrotating fluid 3 Equations of motion - nonrotating fluid

Momentum conservation The conservation of momentum is represented by

Newtonrsquos first law (ldquoLex primardquo) (momentum = mass middot velocity)

momentum = const at absence of forces

Momentum sentence (ldquoLex secundardquo) temporal change in momentum = Force (mass middot acceleration = Force)

22

Fu=

dtdM t time M mass u velocity vector F Force vector

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Forces on a fluid parcel

23

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119958119958119863119863119905119905

= F (Eq 6-2)

120588120588 density (120575120575119909119909 120575120575119910119910 120575120575119911119911) fluid parcel with infinitesimal dimensions 120575120575119872119872 mass of the parcel 120575120575119872119872 = 120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119958119958 parcel velocity F net force

119863119863119958119958119863119863119905119905

= 120597120597119958119958120597120597119905119905

+ u 120597120597119958119958120597120597119909119909

+v 120597120597119958119958120597120597119910119910

+w 120597120597119958119958120597120597119911119911

= 120597120597119958119958120597120597119905119905

+ (119958119958 ∙ 120571120571) 119958119958

Gravitational force

24

Fgravity= g 120575120575119872119872

Fgravity= minusg 120588120588119963119963 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-3)

Fgravity Gravitational force M mass g gravity acceleration g = const 120588120588 density 119963119963 unit vector in upward direction

Marshall and Plumb (2008)

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Pressure gradient force

25

Fpressure= 119865119865119909119909 119865119865119910119910 119865119865119911119911

=minus 120597120597119901119901120597120597119909119909

120597120597119901119901120597120597119910119910

120597120597119901119901120597120597119911119911

120575120575119909119909 120575120575119910119910 120575120575119911119911

=minus 120571120571119901119901 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-4)

F(A) = p ∙ 119860119860 = 119901119901 (x minus 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911

F(B) = p ∙ 119861119861 = minus119901119901 (x + 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911 Fx = F(A) + F(B)

Apply Taylor expansion (A21) at midpoint of parcel and neglect small terms (see book)

119901119901 pressure

Friction force

26

3 Equations of motion - nonrotating fluid

- Friction force operates on the earthrsquos surface

- the greater the surface roughness the higher the friction force

- the greater the wind velocity the higher the friction force

- friction force takes effect in vertical distances of ~ 100 m up to 1000 m (rarr atmospheric boundary layer Chapter 7)

Ffriction = 120588120588 ℱ 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-5)

ℱ frictional force per unit mass 120588120588 density

Equations of motion bull All three forces together in Eq 6-2 gives

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119854119854119863119863119905119905

= F119901119901119901119901119891119891119901119901119901119901119906119906119901119901119891119891 + F119892119892119901119901119901119901119907119907119891119891119905119905119910119910 + F119891119891119901119901119891119891119901119901119905119905119891119891119891119891119891119891

bull Re-arranging leads to equation of motion for fluid parcels

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = ℱ (Equation 6-6)

27

3 Equations of motion - nonrotating fluid

120588120588 density u velocity vector F Force vector ℱ frictional force per unit mass p pressure g gravity acceleration 119963119963 unit vector in z-direction

Equations of motion ndash component form

(Eq 6-6) in Cartesian coordinates

bull 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

bull 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

bull 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

28

3 Equations of motion - nonrotating fluid

119906119906 zonal velocity 119907119907meridional velocity w vertical velocity 120588120588 density ℱ frictional force per unit mass p pressure g gravity acceleration

Hydrostatic balance

If friction ℱ119911119911 and vertical acceleration 119863119863119908119908119863119863119905119905

are negligible we derive from the vertical eq of motion (6-7c) the hydrostatic balance (Ch3 Eq3-3)

120597120597119901119901120597120597119911119911

= - 120588120588g (Eq 6-8)

Note This approximation holds for large-scale atmospheric and oceanic circulation with weak vertical motions

29

3 Equations of motion - nonrotating fluid

Balance between vertical pressure gradient and gravitational force

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

30

GEF1100ndashAutumn 2014 18092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

31 Addition not in book

Conserved quantity A quantity of which the derivative equals zero

Conservation of mass for liquids is also called continuity equation

Conservation of mass ndash continuity equation

32

4 Conservation of mass

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 14: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Vector operations - Multiplication with a scalar a -

=

====

z

y

x

z

y

x

ii

avavav

vvv

aavavavva

bull With a scalar multiplication the vector stays a vector

bull Each element of a vector is multiplied individually with a scalar a

bull The vector extends (or shortens) itself by the factor a bull Convention With the multiplication scalar ndash vector we

donrsquot use a point (like with scalar ndash scalar)

22 Mathematical add on

14

Vector operations - Scalar product -

iii

iiiizzyyxx

z

y

x

z

y

x

vfvfvffvfvfvfff

vvv

vffv sum =equiv=++=

sdot

=sdot=sdot

bull The scalar product of two vectors is a scalar bull It is multiplied component-wise then added bull Convention The scalar product is marked by a multiplication sign (middot) bull It is at a maximum with parallel vectors and disappears when the

vectors are perpendicular to each other

f

α

v

αcosfvfv

=sdot

22 Mathematical add on

15

Vector operations ndash vector product

bcacbabac

babababababa

babakbabajbabaibbbaaakji

axbbac

xyyx

zxxz

yzzy

xyyxzxxzyzzy

zyx

zyx

perpandperp=times=

minusminusminus

=

minus+minusminusminus==minus=times=

sin

)()()(

α

a b

bull The vector product of two vectors is again a vector bull Convention The vector product or cross product is marked by an ldquoxrdquo bull If is turned to on the fastest route possible the vector (from the vector product) points in the direction in which a right-hand screw would move (right hand rule) bull With parallel vectors it disappears and it reaches its maximum when the

two vectors are at right angles to each other

16

22 Mathematical add on

Graphically - Pooling of the spatial gradients towards the spatial coordinate axes rarr vector

- Gradient points towards the largest increase of the quantity

- Amount is the magnitude of the derivative pointing towards the largest increase

Nabla operator ndash spatial gradient

with

Operator -Nabla

equivpart=nabla=nabla

nabla

partpartpartpartpartpart

z

y

x

i

17

bull Nabla is a (vector) operator that works to the right

bull It only results in a value if it stands left to an arithmetic expression bull If it stands to the right of an arithmetic expression it keeps its operator function (and ldquowaitsrdquo for application)

22 Mathematical add on

TTgradT

z

y

x

zTyTxT

=

=equivnabla

partpartpartpartpartpart

partpartpartpartpartpart

zw

yv

xu

wvu

udivu

z

y

x

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpart

minuspartpart

partpart

minuspartpart

partpart

minuspartpart

==

times

equivequivtimesnabla part

partpartpart

partpart

partpartpartpartpartpart

yu

xv

xw

zu

zv

yw

wvu

kji

wvu

urotu zyx

z

y

x

Vector product ldquoxrdquo vector

Scalar product ldquordquo scalar

Product with a Scalar vector

Nabla operator 22 Mathematical add on

18

Nabla operator ndash algorithms

=nablanenabla=

=

partpartpartpartpartpart

partpartpartpartpartpart

partpartpartpartpartpart

z

y

x

z

y

x

zTyTxT

TTT

TTT

zw

yv

xu

wvu

u

zw

yv

xu

wvu

udivu

z

y

x

z

y

x

partpart

+partpart

+partpart

=

sdot

=nablasdot

ne

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpartpartpartpartpart

22 Mathematical add on

Note Nabla is a (vector) operator ie the sequence must not be changed here

19

State variables for atmosphere and ocean

u Wind = (uvw) in ms T Temperature in degC or K p Pressure in Nm2 = 1 Pa (1 hPa = 102 Pa = 1 mbar) Specifically for the atmosphere q Specific humidity in kg water vapourkg moist air Specifically for the ocean S Salinity in kg saltkg seawater (often the salt content is expressed in practical salinity unit psu = kg salt1000 kg seawater) 20

2 Basics

I Laws of motion for a fluid parcel in x-y-z- directions (applying Newtons 1 and 2 law)

II Conservation of mass

III Law of thermodynamics (including motion) rarr5 equations for the evolution of the fluid (5 unknowns)

21

3 Equations of motion - nonrotating fluid 3 Equations of motion - nonrotating fluid

Momentum conservation The conservation of momentum is represented by

Newtonrsquos first law (ldquoLex primardquo) (momentum = mass middot velocity)

momentum = const at absence of forces

Momentum sentence (ldquoLex secundardquo) temporal change in momentum = Force (mass middot acceleration = Force)

22

Fu=

dtdM t time M mass u velocity vector F Force vector

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Forces on a fluid parcel

23

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119958119958119863119863119905119905

= F (Eq 6-2)

120588120588 density (120575120575119909119909 120575120575119910119910 120575120575119911119911) fluid parcel with infinitesimal dimensions 120575120575119872119872 mass of the parcel 120575120575119872119872 = 120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119958119958 parcel velocity F net force

119863119863119958119958119863119863119905119905

= 120597120597119958119958120597120597119905119905

+ u 120597120597119958119958120597120597119909119909

+v 120597120597119958119958120597120597119910119910

+w 120597120597119958119958120597120597119911119911

= 120597120597119958119958120597120597119905119905

+ (119958119958 ∙ 120571120571) 119958119958

Gravitational force

24

Fgravity= g 120575120575119872119872

Fgravity= minusg 120588120588119963119963 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-3)

Fgravity Gravitational force M mass g gravity acceleration g = const 120588120588 density 119963119963 unit vector in upward direction

Marshall and Plumb (2008)

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Pressure gradient force

25

Fpressure= 119865119865119909119909 119865119865119910119910 119865119865119911119911

=minus 120597120597119901119901120597120597119909119909

120597120597119901119901120597120597119910119910

120597120597119901119901120597120597119911119911

120575120575119909119909 120575120575119910119910 120575120575119911119911

=minus 120571120571119901119901 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-4)

F(A) = p ∙ 119860119860 = 119901119901 (x minus 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911

F(B) = p ∙ 119861119861 = minus119901119901 (x + 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911 Fx = F(A) + F(B)

Apply Taylor expansion (A21) at midpoint of parcel and neglect small terms (see book)

119901119901 pressure

Friction force

26

3 Equations of motion - nonrotating fluid

- Friction force operates on the earthrsquos surface

- the greater the surface roughness the higher the friction force

- the greater the wind velocity the higher the friction force

- friction force takes effect in vertical distances of ~ 100 m up to 1000 m (rarr atmospheric boundary layer Chapter 7)

Ffriction = 120588120588 ℱ 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-5)

ℱ frictional force per unit mass 120588120588 density

Equations of motion bull All three forces together in Eq 6-2 gives

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119854119854119863119863119905119905

= F119901119901119901119901119891119891119901119901119901119901119906119906119901119901119891119891 + F119892119892119901119901119901119901119907119907119891119891119905119905119910119910 + F119891119891119901119901119891119891119901119901119905119905119891119891119891119891119891119891

bull Re-arranging leads to equation of motion for fluid parcels

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = ℱ (Equation 6-6)

27

3 Equations of motion - nonrotating fluid

120588120588 density u velocity vector F Force vector ℱ frictional force per unit mass p pressure g gravity acceleration 119963119963 unit vector in z-direction

Equations of motion ndash component form

(Eq 6-6) in Cartesian coordinates

bull 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

bull 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

bull 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

28

3 Equations of motion - nonrotating fluid

119906119906 zonal velocity 119907119907meridional velocity w vertical velocity 120588120588 density ℱ frictional force per unit mass p pressure g gravity acceleration

Hydrostatic balance

If friction ℱ119911119911 and vertical acceleration 119863119863119908119908119863119863119905119905

are negligible we derive from the vertical eq of motion (6-7c) the hydrostatic balance (Ch3 Eq3-3)

120597120597119901119901120597120597119911119911

= - 120588120588g (Eq 6-8)

Note This approximation holds for large-scale atmospheric and oceanic circulation with weak vertical motions

29

3 Equations of motion - nonrotating fluid

Balance between vertical pressure gradient and gravitational force

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

30

GEF1100ndashAutumn 2014 18092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

31 Addition not in book

Conserved quantity A quantity of which the derivative equals zero

Conservation of mass for liquids is also called continuity equation

Conservation of mass ndash continuity equation

32

4 Conservation of mass

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 15: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Vector operations - Scalar product -

iii

iiiizzyyxx

z

y

x

z

y

x

vfvfvffvfvfvfff

vvv

vffv sum =equiv=++=

sdot

=sdot=sdot

bull The scalar product of two vectors is a scalar bull It is multiplied component-wise then added bull Convention The scalar product is marked by a multiplication sign (middot) bull It is at a maximum with parallel vectors and disappears when the

vectors are perpendicular to each other

f

α

v

αcosfvfv

=sdot

22 Mathematical add on

15

Vector operations ndash vector product

bcacbabac

babababababa

babakbabajbabaibbbaaakji

axbbac

xyyx

zxxz

yzzy

xyyxzxxzyzzy

zyx

zyx

perpandperp=times=

minusminusminus

=

minus+minusminusminus==minus=times=

sin

)()()(

α

a b

bull The vector product of two vectors is again a vector bull Convention The vector product or cross product is marked by an ldquoxrdquo bull If is turned to on the fastest route possible the vector (from the vector product) points in the direction in which a right-hand screw would move (right hand rule) bull With parallel vectors it disappears and it reaches its maximum when the

two vectors are at right angles to each other

16

22 Mathematical add on

Graphically - Pooling of the spatial gradients towards the spatial coordinate axes rarr vector

- Gradient points towards the largest increase of the quantity

- Amount is the magnitude of the derivative pointing towards the largest increase

Nabla operator ndash spatial gradient

with

Operator -Nabla

equivpart=nabla=nabla

nabla

partpartpartpartpartpart

z

y

x

i

17

bull Nabla is a (vector) operator that works to the right

bull It only results in a value if it stands left to an arithmetic expression bull If it stands to the right of an arithmetic expression it keeps its operator function (and ldquowaitsrdquo for application)

22 Mathematical add on

TTgradT

z

y

x

zTyTxT

=

=equivnabla

partpartpartpartpartpart

partpartpartpartpartpart

zw

yv

xu

wvu

udivu

z

y

x

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpart

minuspartpart

partpart

minuspartpart

partpart

minuspartpart

==

times

equivequivtimesnabla part

partpartpart

partpart

partpartpartpartpartpart

yu

xv

xw

zu

zv

yw

wvu

kji

wvu

urotu zyx

z

y

x

Vector product ldquoxrdquo vector

Scalar product ldquordquo scalar

Product with a Scalar vector

Nabla operator 22 Mathematical add on

18

Nabla operator ndash algorithms

=nablanenabla=

=

partpartpartpartpartpart

partpartpartpartpartpart

partpartpartpartpartpart

z

y

x

z

y

x

zTyTxT

TTT

TTT

zw

yv

xu

wvu

u

zw

yv

xu

wvu

udivu

z

y

x

z

y

x

partpart

+partpart

+partpart

=

sdot

=nablasdot

ne

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpartpartpartpartpart

22 Mathematical add on

Note Nabla is a (vector) operator ie the sequence must not be changed here

19

State variables for atmosphere and ocean

u Wind = (uvw) in ms T Temperature in degC or K p Pressure in Nm2 = 1 Pa (1 hPa = 102 Pa = 1 mbar) Specifically for the atmosphere q Specific humidity in kg water vapourkg moist air Specifically for the ocean S Salinity in kg saltkg seawater (often the salt content is expressed in practical salinity unit psu = kg salt1000 kg seawater) 20

2 Basics

I Laws of motion for a fluid parcel in x-y-z- directions (applying Newtons 1 and 2 law)

II Conservation of mass

III Law of thermodynamics (including motion) rarr5 equations for the evolution of the fluid (5 unknowns)

21

3 Equations of motion - nonrotating fluid 3 Equations of motion - nonrotating fluid

Momentum conservation The conservation of momentum is represented by

Newtonrsquos first law (ldquoLex primardquo) (momentum = mass middot velocity)

momentum = const at absence of forces

Momentum sentence (ldquoLex secundardquo) temporal change in momentum = Force (mass middot acceleration = Force)

22

Fu=

dtdM t time M mass u velocity vector F Force vector

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Forces on a fluid parcel

23

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119958119958119863119863119905119905

= F (Eq 6-2)

120588120588 density (120575120575119909119909 120575120575119910119910 120575120575119911119911) fluid parcel with infinitesimal dimensions 120575120575119872119872 mass of the parcel 120575120575119872119872 = 120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119958119958 parcel velocity F net force

119863119863119958119958119863119863119905119905

= 120597120597119958119958120597120597119905119905

+ u 120597120597119958119958120597120597119909119909

+v 120597120597119958119958120597120597119910119910

+w 120597120597119958119958120597120597119911119911

= 120597120597119958119958120597120597119905119905

+ (119958119958 ∙ 120571120571) 119958119958

Gravitational force

24

Fgravity= g 120575120575119872119872

Fgravity= minusg 120588120588119963119963 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-3)

Fgravity Gravitational force M mass g gravity acceleration g = const 120588120588 density 119963119963 unit vector in upward direction

Marshall and Plumb (2008)

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Pressure gradient force

25

Fpressure= 119865119865119909119909 119865119865119910119910 119865119865119911119911

=minus 120597120597119901119901120597120597119909119909

120597120597119901119901120597120597119910119910

120597120597119901119901120597120597119911119911

120575120575119909119909 120575120575119910119910 120575120575119911119911

=minus 120571120571119901119901 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-4)

F(A) = p ∙ 119860119860 = 119901119901 (x minus 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911

F(B) = p ∙ 119861119861 = minus119901119901 (x + 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911 Fx = F(A) + F(B)

Apply Taylor expansion (A21) at midpoint of parcel and neglect small terms (see book)

119901119901 pressure

Friction force

26

3 Equations of motion - nonrotating fluid

- Friction force operates on the earthrsquos surface

- the greater the surface roughness the higher the friction force

- the greater the wind velocity the higher the friction force

- friction force takes effect in vertical distances of ~ 100 m up to 1000 m (rarr atmospheric boundary layer Chapter 7)

Ffriction = 120588120588 ℱ 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-5)

ℱ frictional force per unit mass 120588120588 density

Equations of motion bull All three forces together in Eq 6-2 gives

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119854119854119863119863119905119905

= F119901119901119901119901119891119891119901119901119901119901119906119906119901119901119891119891 + F119892119892119901119901119901119901119907119907119891119891119905119905119910119910 + F119891119891119901119901119891119891119901119901119905119905119891119891119891119891119891119891

bull Re-arranging leads to equation of motion for fluid parcels

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = ℱ (Equation 6-6)

27

3 Equations of motion - nonrotating fluid

120588120588 density u velocity vector F Force vector ℱ frictional force per unit mass p pressure g gravity acceleration 119963119963 unit vector in z-direction

Equations of motion ndash component form

(Eq 6-6) in Cartesian coordinates

bull 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

bull 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

bull 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

28

3 Equations of motion - nonrotating fluid

119906119906 zonal velocity 119907119907meridional velocity w vertical velocity 120588120588 density ℱ frictional force per unit mass p pressure g gravity acceleration

Hydrostatic balance

If friction ℱ119911119911 and vertical acceleration 119863119863119908119908119863119863119905119905

are negligible we derive from the vertical eq of motion (6-7c) the hydrostatic balance (Ch3 Eq3-3)

120597120597119901119901120597120597119911119911

= - 120588120588g (Eq 6-8)

Note This approximation holds for large-scale atmospheric and oceanic circulation with weak vertical motions

29

3 Equations of motion - nonrotating fluid

Balance between vertical pressure gradient and gravitational force

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

30

GEF1100ndashAutumn 2014 18092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

31 Addition not in book

Conserved quantity A quantity of which the derivative equals zero

Conservation of mass for liquids is also called continuity equation

Conservation of mass ndash continuity equation

32

4 Conservation of mass

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 16: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Vector operations ndash vector product

bcacbabac

babababababa

babakbabajbabaibbbaaakji

axbbac

xyyx

zxxz

yzzy

xyyxzxxzyzzy

zyx

zyx

perpandperp=times=

minusminusminus

=

minus+minusminusminus==minus=times=

sin

)()()(

α

a b

bull The vector product of two vectors is again a vector bull Convention The vector product or cross product is marked by an ldquoxrdquo bull If is turned to on the fastest route possible the vector (from the vector product) points in the direction in which a right-hand screw would move (right hand rule) bull With parallel vectors it disappears and it reaches its maximum when the

two vectors are at right angles to each other

16

22 Mathematical add on

Graphically - Pooling of the spatial gradients towards the spatial coordinate axes rarr vector

- Gradient points towards the largest increase of the quantity

- Amount is the magnitude of the derivative pointing towards the largest increase

Nabla operator ndash spatial gradient

with

Operator -Nabla

equivpart=nabla=nabla

nabla

partpartpartpartpartpart

z

y

x

i

17

bull Nabla is a (vector) operator that works to the right

bull It only results in a value if it stands left to an arithmetic expression bull If it stands to the right of an arithmetic expression it keeps its operator function (and ldquowaitsrdquo for application)

22 Mathematical add on

TTgradT

z

y

x

zTyTxT

=

=equivnabla

partpartpartpartpartpart

partpartpartpartpartpart

zw

yv

xu

wvu

udivu

z

y

x

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpart

minuspartpart

partpart

minuspartpart

partpart

minuspartpart

==

times

equivequivtimesnabla part

partpartpart

partpart

partpartpartpartpartpart

yu

xv

xw

zu

zv

yw

wvu

kji

wvu

urotu zyx

z

y

x

Vector product ldquoxrdquo vector

Scalar product ldquordquo scalar

Product with a Scalar vector

Nabla operator 22 Mathematical add on

18

Nabla operator ndash algorithms

=nablanenabla=

=

partpartpartpartpartpart

partpartpartpartpartpart

partpartpartpartpartpart

z

y

x

z

y

x

zTyTxT

TTT

TTT

zw

yv

xu

wvu

u

zw

yv

xu

wvu

udivu

z

y

x

z

y

x

partpart

+partpart

+partpart

=

sdot

=nablasdot

ne

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpartpartpartpartpart

22 Mathematical add on

Note Nabla is a (vector) operator ie the sequence must not be changed here

19

State variables for atmosphere and ocean

u Wind = (uvw) in ms T Temperature in degC or K p Pressure in Nm2 = 1 Pa (1 hPa = 102 Pa = 1 mbar) Specifically for the atmosphere q Specific humidity in kg water vapourkg moist air Specifically for the ocean S Salinity in kg saltkg seawater (often the salt content is expressed in practical salinity unit psu = kg salt1000 kg seawater) 20

2 Basics

I Laws of motion for a fluid parcel in x-y-z- directions (applying Newtons 1 and 2 law)

II Conservation of mass

III Law of thermodynamics (including motion) rarr5 equations for the evolution of the fluid (5 unknowns)

21

3 Equations of motion - nonrotating fluid 3 Equations of motion - nonrotating fluid

Momentum conservation The conservation of momentum is represented by

Newtonrsquos first law (ldquoLex primardquo) (momentum = mass middot velocity)

momentum = const at absence of forces

Momentum sentence (ldquoLex secundardquo) temporal change in momentum = Force (mass middot acceleration = Force)

22

Fu=

dtdM t time M mass u velocity vector F Force vector

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Forces on a fluid parcel

23

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119958119958119863119863119905119905

= F (Eq 6-2)

120588120588 density (120575120575119909119909 120575120575119910119910 120575120575119911119911) fluid parcel with infinitesimal dimensions 120575120575119872119872 mass of the parcel 120575120575119872119872 = 120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119958119958 parcel velocity F net force

119863119863119958119958119863119863119905119905

= 120597120597119958119958120597120597119905119905

+ u 120597120597119958119958120597120597119909119909

+v 120597120597119958119958120597120597119910119910

+w 120597120597119958119958120597120597119911119911

= 120597120597119958119958120597120597119905119905

+ (119958119958 ∙ 120571120571) 119958119958

Gravitational force

24

Fgravity= g 120575120575119872119872

Fgravity= minusg 120588120588119963119963 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-3)

Fgravity Gravitational force M mass g gravity acceleration g = const 120588120588 density 119963119963 unit vector in upward direction

Marshall and Plumb (2008)

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Pressure gradient force

25

Fpressure= 119865119865119909119909 119865119865119910119910 119865119865119911119911

=minus 120597120597119901119901120597120597119909119909

120597120597119901119901120597120597119910119910

120597120597119901119901120597120597119911119911

120575120575119909119909 120575120575119910119910 120575120575119911119911

=minus 120571120571119901119901 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-4)

F(A) = p ∙ 119860119860 = 119901119901 (x minus 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911

F(B) = p ∙ 119861119861 = minus119901119901 (x + 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911 Fx = F(A) + F(B)

Apply Taylor expansion (A21) at midpoint of parcel and neglect small terms (see book)

119901119901 pressure

Friction force

26

3 Equations of motion - nonrotating fluid

- Friction force operates on the earthrsquos surface

- the greater the surface roughness the higher the friction force

- the greater the wind velocity the higher the friction force

- friction force takes effect in vertical distances of ~ 100 m up to 1000 m (rarr atmospheric boundary layer Chapter 7)

Ffriction = 120588120588 ℱ 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-5)

ℱ frictional force per unit mass 120588120588 density

Equations of motion bull All three forces together in Eq 6-2 gives

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119854119854119863119863119905119905

= F119901119901119901119901119891119891119901119901119901119901119906119906119901119901119891119891 + F119892119892119901119901119901119901119907119907119891119891119905119905119910119910 + F119891119891119901119901119891119891119901119901119905119905119891119891119891119891119891119891

bull Re-arranging leads to equation of motion for fluid parcels

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = ℱ (Equation 6-6)

27

3 Equations of motion - nonrotating fluid

120588120588 density u velocity vector F Force vector ℱ frictional force per unit mass p pressure g gravity acceleration 119963119963 unit vector in z-direction

Equations of motion ndash component form

(Eq 6-6) in Cartesian coordinates

bull 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

bull 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

bull 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

28

3 Equations of motion - nonrotating fluid

119906119906 zonal velocity 119907119907meridional velocity w vertical velocity 120588120588 density ℱ frictional force per unit mass p pressure g gravity acceleration

Hydrostatic balance

If friction ℱ119911119911 and vertical acceleration 119863119863119908119908119863119863119905119905

are negligible we derive from the vertical eq of motion (6-7c) the hydrostatic balance (Ch3 Eq3-3)

120597120597119901119901120597120597119911119911

= - 120588120588g (Eq 6-8)

Note This approximation holds for large-scale atmospheric and oceanic circulation with weak vertical motions

29

3 Equations of motion - nonrotating fluid

Balance between vertical pressure gradient and gravitational force

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

30

GEF1100ndashAutumn 2014 18092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

31 Addition not in book

Conserved quantity A quantity of which the derivative equals zero

Conservation of mass for liquids is also called continuity equation

Conservation of mass ndash continuity equation

32

4 Conservation of mass

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 17: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Graphically - Pooling of the spatial gradients towards the spatial coordinate axes rarr vector

- Gradient points towards the largest increase of the quantity

- Amount is the magnitude of the derivative pointing towards the largest increase

Nabla operator ndash spatial gradient

with

Operator -Nabla

equivpart=nabla=nabla

nabla

partpartpartpartpartpart

z

y

x

i

17

bull Nabla is a (vector) operator that works to the right

bull It only results in a value if it stands left to an arithmetic expression bull If it stands to the right of an arithmetic expression it keeps its operator function (and ldquowaitsrdquo for application)

22 Mathematical add on

TTgradT

z

y

x

zTyTxT

=

=equivnabla

partpartpartpartpartpart

partpartpartpartpartpart

zw

yv

xu

wvu

udivu

z

y

x

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpart

minuspartpart

partpart

minuspartpart

partpart

minuspartpart

==

times

equivequivtimesnabla part

partpartpart

partpart

partpartpartpartpartpart

yu

xv

xw

zu

zv

yw

wvu

kji

wvu

urotu zyx

z

y

x

Vector product ldquoxrdquo vector

Scalar product ldquordquo scalar

Product with a Scalar vector

Nabla operator 22 Mathematical add on

18

Nabla operator ndash algorithms

=nablanenabla=

=

partpartpartpartpartpart

partpartpartpartpartpart

partpartpartpartpartpart

z

y

x

z

y

x

zTyTxT

TTT

TTT

zw

yv

xu

wvu

u

zw

yv

xu

wvu

udivu

z

y

x

z

y

x

partpart

+partpart

+partpart

=

sdot

=nablasdot

ne

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpartpartpartpartpart

22 Mathematical add on

Note Nabla is a (vector) operator ie the sequence must not be changed here

19

State variables for atmosphere and ocean

u Wind = (uvw) in ms T Temperature in degC or K p Pressure in Nm2 = 1 Pa (1 hPa = 102 Pa = 1 mbar) Specifically for the atmosphere q Specific humidity in kg water vapourkg moist air Specifically for the ocean S Salinity in kg saltkg seawater (often the salt content is expressed in practical salinity unit psu = kg salt1000 kg seawater) 20

2 Basics

I Laws of motion for a fluid parcel in x-y-z- directions (applying Newtons 1 and 2 law)

II Conservation of mass

III Law of thermodynamics (including motion) rarr5 equations for the evolution of the fluid (5 unknowns)

21

3 Equations of motion - nonrotating fluid 3 Equations of motion - nonrotating fluid

Momentum conservation The conservation of momentum is represented by

Newtonrsquos first law (ldquoLex primardquo) (momentum = mass middot velocity)

momentum = const at absence of forces

Momentum sentence (ldquoLex secundardquo) temporal change in momentum = Force (mass middot acceleration = Force)

22

Fu=

dtdM t time M mass u velocity vector F Force vector

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Forces on a fluid parcel

23

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119958119958119863119863119905119905

= F (Eq 6-2)

120588120588 density (120575120575119909119909 120575120575119910119910 120575120575119911119911) fluid parcel with infinitesimal dimensions 120575120575119872119872 mass of the parcel 120575120575119872119872 = 120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119958119958 parcel velocity F net force

119863119863119958119958119863119863119905119905

= 120597120597119958119958120597120597119905119905

+ u 120597120597119958119958120597120597119909119909

+v 120597120597119958119958120597120597119910119910

+w 120597120597119958119958120597120597119911119911

= 120597120597119958119958120597120597119905119905

+ (119958119958 ∙ 120571120571) 119958119958

Gravitational force

24

Fgravity= g 120575120575119872119872

Fgravity= minusg 120588120588119963119963 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-3)

Fgravity Gravitational force M mass g gravity acceleration g = const 120588120588 density 119963119963 unit vector in upward direction

Marshall and Plumb (2008)

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Pressure gradient force

25

Fpressure= 119865119865119909119909 119865119865119910119910 119865119865119911119911

=minus 120597120597119901119901120597120597119909119909

120597120597119901119901120597120597119910119910

120597120597119901119901120597120597119911119911

120575120575119909119909 120575120575119910119910 120575120575119911119911

=minus 120571120571119901119901 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-4)

F(A) = p ∙ 119860119860 = 119901119901 (x minus 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911

F(B) = p ∙ 119861119861 = minus119901119901 (x + 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911 Fx = F(A) + F(B)

Apply Taylor expansion (A21) at midpoint of parcel and neglect small terms (see book)

119901119901 pressure

Friction force

26

3 Equations of motion - nonrotating fluid

- Friction force operates on the earthrsquos surface

- the greater the surface roughness the higher the friction force

- the greater the wind velocity the higher the friction force

- friction force takes effect in vertical distances of ~ 100 m up to 1000 m (rarr atmospheric boundary layer Chapter 7)

Ffriction = 120588120588 ℱ 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-5)

ℱ frictional force per unit mass 120588120588 density

Equations of motion bull All three forces together in Eq 6-2 gives

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119854119854119863119863119905119905

= F119901119901119901119901119891119891119901119901119901119901119906119906119901119901119891119891 + F119892119892119901119901119901119901119907119907119891119891119905119905119910119910 + F119891119891119901119901119891119891119901119901119905119905119891119891119891119891119891119891

bull Re-arranging leads to equation of motion for fluid parcels

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = ℱ (Equation 6-6)

27

3 Equations of motion - nonrotating fluid

120588120588 density u velocity vector F Force vector ℱ frictional force per unit mass p pressure g gravity acceleration 119963119963 unit vector in z-direction

Equations of motion ndash component form

(Eq 6-6) in Cartesian coordinates

bull 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

bull 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

bull 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

28

3 Equations of motion - nonrotating fluid

119906119906 zonal velocity 119907119907meridional velocity w vertical velocity 120588120588 density ℱ frictional force per unit mass p pressure g gravity acceleration

Hydrostatic balance

If friction ℱ119911119911 and vertical acceleration 119863119863119908119908119863119863119905119905

are negligible we derive from the vertical eq of motion (6-7c) the hydrostatic balance (Ch3 Eq3-3)

120597120597119901119901120597120597119911119911

= - 120588120588g (Eq 6-8)

Note This approximation holds for large-scale atmospheric and oceanic circulation with weak vertical motions

29

3 Equations of motion - nonrotating fluid

Balance between vertical pressure gradient and gravitational force

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

30

GEF1100ndashAutumn 2014 18092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

31 Addition not in book

Conserved quantity A quantity of which the derivative equals zero

Conservation of mass for liquids is also called continuity equation

Conservation of mass ndash continuity equation

32

4 Conservation of mass

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 18: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

TTgradT

z

y

x

zTyTxT

=

=equivnabla

partpartpartpartpartpart

partpartpartpartpartpart

zw

yv

xu

wvu

udivu

z

y

x

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpart

minuspartpart

partpart

minuspartpart

partpart

minuspartpart

==

times

equivequivtimesnabla part

partpartpart

partpart

partpartpartpartpartpart

yu

xv

xw

zu

zv

yw

wvu

kji

wvu

urotu zyx

z

y

x

Vector product ldquoxrdquo vector

Scalar product ldquordquo scalar

Product with a Scalar vector

Nabla operator 22 Mathematical add on

18

Nabla operator ndash algorithms

=nablanenabla=

=

partpartpartpartpartpart

partpartpartpartpartpart

partpartpartpartpartpart

z

y

x

z

y

x

zTyTxT

TTT

TTT

zw

yv

xu

wvu

u

zw

yv

xu

wvu

udivu

z

y

x

z

y

x

partpart

+partpart

+partpart

=

sdot

=nablasdot

ne

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpartpartpartpartpart

22 Mathematical add on

Note Nabla is a (vector) operator ie the sequence must not be changed here

19

State variables for atmosphere and ocean

u Wind = (uvw) in ms T Temperature in degC or K p Pressure in Nm2 = 1 Pa (1 hPa = 102 Pa = 1 mbar) Specifically for the atmosphere q Specific humidity in kg water vapourkg moist air Specifically for the ocean S Salinity in kg saltkg seawater (often the salt content is expressed in practical salinity unit psu = kg salt1000 kg seawater) 20

2 Basics

I Laws of motion for a fluid parcel in x-y-z- directions (applying Newtons 1 and 2 law)

II Conservation of mass

III Law of thermodynamics (including motion) rarr5 equations for the evolution of the fluid (5 unknowns)

21

3 Equations of motion - nonrotating fluid 3 Equations of motion - nonrotating fluid

Momentum conservation The conservation of momentum is represented by

Newtonrsquos first law (ldquoLex primardquo) (momentum = mass middot velocity)

momentum = const at absence of forces

Momentum sentence (ldquoLex secundardquo) temporal change in momentum = Force (mass middot acceleration = Force)

22

Fu=

dtdM t time M mass u velocity vector F Force vector

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Forces on a fluid parcel

23

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119958119958119863119863119905119905

= F (Eq 6-2)

120588120588 density (120575120575119909119909 120575120575119910119910 120575120575119911119911) fluid parcel with infinitesimal dimensions 120575120575119872119872 mass of the parcel 120575120575119872119872 = 120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119958119958 parcel velocity F net force

119863119863119958119958119863119863119905119905

= 120597120597119958119958120597120597119905119905

+ u 120597120597119958119958120597120597119909119909

+v 120597120597119958119958120597120597119910119910

+w 120597120597119958119958120597120597119911119911

= 120597120597119958119958120597120597119905119905

+ (119958119958 ∙ 120571120571) 119958119958

Gravitational force

24

Fgravity= g 120575120575119872119872

Fgravity= minusg 120588120588119963119963 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-3)

Fgravity Gravitational force M mass g gravity acceleration g = const 120588120588 density 119963119963 unit vector in upward direction

Marshall and Plumb (2008)

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Pressure gradient force

25

Fpressure= 119865119865119909119909 119865119865119910119910 119865119865119911119911

=minus 120597120597119901119901120597120597119909119909

120597120597119901119901120597120597119910119910

120597120597119901119901120597120597119911119911

120575120575119909119909 120575120575119910119910 120575120575119911119911

=minus 120571120571119901119901 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-4)

F(A) = p ∙ 119860119860 = 119901119901 (x minus 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911

F(B) = p ∙ 119861119861 = minus119901119901 (x + 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911 Fx = F(A) + F(B)

Apply Taylor expansion (A21) at midpoint of parcel and neglect small terms (see book)

119901119901 pressure

Friction force

26

3 Equations of motion - nonrotating fluid

- Friction force operates on the earthrsquos surface

- the greater the surface roughness the higher the friction force

- the greater the wind velocity the higher the friction force

- friction force takes effect in vertical distances of ~ 100 m up to 1000 m (rarr atmospheric boundary layer Chapter 7)

Ffriction = 120588120588 ℱ 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-5)

ℱ frictional force per unit mass 120588120588 density

Equations of motion bull All three forces together in Eq 6-2 gives

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119854119854119863119863119905119905

= F119901119901119901119901119891119891119901119901119901119901119906119906119901119901119891119891 + F119892119892119901119901119901119901119907119907119891119891119905119905119910119910 + F119891119891119901119901119891119891119901119901119905119905119891119891119891119891119891119891

bull Re-arranging leads to equation of motion for fluid parcels

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = ℱ (Equation 6-6)

27

3 Equations of motion - nonrotating fluid

120588120588 density u velocity vector F Force vector ℱ frictional force per unit mass p pressure g gravity acceleration 119963119963 unit vector in z-direction

Equations of motion ndash component form

(Eq 6-6) in Cartesian coordinates

bull 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

bull 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

bull 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

28

3 Equations of motion - nonrotating fluid

119906119906 zonal velocity 119907119907meridional velocity w vertical velocity 120588120588 density ℱ frictional force per unit mass p pressure g gravity acceleration

Hydrostatic balance

If friction ℱ119911119911 and vertical acceleration 119863119863119908119908119863119863119905119905

are negligible we derive from the vertical eq of motion (6-7c) the hydrostatic balance (Ch3 Eq3-3)

120597120597119901119901120597120597119911119911

= - 120588120588g (Eq 6-8)

Note This approximation holds for large-scale atmospheric and oceanic circulation with weak vertical motions

29

3 Equations of motion - nonrotating fluid

Balance between vertical pressure gradient and gravitational force

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

30

GEF1100ndashAutumn 2014 18092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

31 Addition not in book

Conserved quantity A quantity of which the derivative equals zero

Conservation of mass for liquids is also called continuity equation

Conservation of mass ndash continuity equation

32

4 Conservation of mass

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 19: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Nabla operator ndash algorithms

=nablanenabla=

=

partpartpartpartpartpart

partpartpartpartpartpart

partpartpartpartpartpart

z

y

x

z

y

x

zTyTxT

TTT

TTT

zw

yv

xu

wvu

u

zw

yv

xu

wvu

udivu

z

y

x

z

y

x

partpart

+partpart

+partpart

=

sdot

=nablasdot

ne

partpart

+partpart

+partpart

=

sdot

equivequivsdotnabla

partpartpartpartpartpart

partpartpartpartpartpart

22 Mathematical add on

Note Nabla is a (vector) operator ie the sequence must not be changed here

19

State variables for atmosphere and ocean

u Wind = (uvw) in ms T Temperature in degC or K p Pressure in Nm2 = 1 Pa (1 hPa = 102 Pa = 1 mbar) Specifically for the atmosphere q Specific humidity in kg water vapourkg moist air Specifically for the ocean S Salinity in kg saltkg seawater (often the salt content is expressed in practical salinity unit psu = kg salt1000 kg seawater) 20

2 Basics

I Laws of motion for a fluid parcel in x-y-z- directions (applying Newtons 1 and 2 law)

II Conservation of mass

III Law of thermodynamics (including motion) rarr5 equations for the evolution of the fluid (5 unknowns)

21

3 Equations of motion - nonrotating fluid 3 Equations of motion - nonrotating fluid

Momentum conservation The conservation of momentum is represented by

Newtonrsquos first law (ldquoLex primardquo) (momentum = mass middot velocity)

momentum = const at absence of forces

Momentum sentence (ldquoLex secundardquo) temporal change in momentum = Force (mass middot acceleration = Force)

22

Fu=

dtdM t time M mass u velocity vector F Force vector

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Forces on a fluid parcel

23

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119958119958119863119863119905119905

= F (Eq 6-2)

120588120588 density (120575120575119909119909 120575120575119910119910 120575120575119911119911) fluid parcel with infinitesimal dimensions 120575120575119872119872 mass of the parcel 120575120575119872119872 = 120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119958119958 parcel velocity F net force

119863119863119958119958119863119863119905119905

= 120597120597119958119958120597120597119905119905

+ u 120597120597119958119958120597120597119909119909

+v 120597120597119958119958120597120597119910119910

+w 120597120597119958119958120597120597119911119911

= 120597120597119958119958120597120597119905119905

+ (119958119958 ∙ 120571120571) 119958119958

Gravitational force

24

Fgravity= g 120575120575119872119872

Fgravity= minusg 120588120588119963119963 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-3)

Fgravity Gravitational force M mass g gravity acceleration g = const 120588120588 density 119963119963 unit vector in upward direction

Marshall and Plumb (2008)

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Pressure gradient force

25

Fpressure= 119865119865119909119909 119865119865119910119910 119865119865119911119911

=minus 120597120597119901119901120597120597119909119909

120597120597119901119901120597120597119910119910

120597120597119901119901120597120597119911119911

120575120575119909119909 120575120575119910119910 120575120575119911119911

=minus 120571120571119901119901 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-4)

F(A) = p ∙ 119860119860 = 119901119901 (x minus 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911

F(B) = p ∙ 119861119861 = minus119901119901 (x + 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911 Fx = F(A) + F(B)

Apply Taylor expansion (A21) at midpoint of parcel and neglect small terms (see book)

119901119901 pressure

Friction force

26

3 Equations of motion - nonrotating fluid

- Friction force operates on the earthrsquos surface

- the greater the surface roughness the higher the friction force

- the greater the wind velocity the higher the friction force

- friction force takes effect in vertical distances of ~ 100 m up to 1000 m (rarr atmospheric boundary layer Chapter 7)

Ffriction = 120588120588 ℱ 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-5)

ℱ frictional force per unit mass 120588120588 density

Equations of motion bull All three forces together in Eq 6-2 gives

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119854119854119863119863119905119905

= F119901119901119901119901119891119891119901119901119901119901119906119906119901119901119891119891 + F119892119892119901119901119901119901119907119907119891119891119905119905119910119910 + F119891119891119901119901119891119891119901119901119905119905119891119891119891119891119891119891

bull Re-arranging leads to equation of motion for fluid parcels

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = ℱ (Equation 6-6)

27

3 Equations of motion - nonrotating fluid

120588120588 density u velocity vector F Force vector ℱ frictional force per unit mass p pressure g gravity acceleration 119963119963 unit vector in z-direction

Equations of motion ndash component form

(Eq 6-6) in Cartesian coordinates

bull 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

bull 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

bull 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

28

3 Equations of motion - nonrotating fluid

119906119906 zonal velocity 119907119907meridional velocity w vertical velocity 120588120588 density ℱ frictional force per unit mass p pressure g gravity acceleration

Hydrostatic balance

If friction ℱ119911119911 and vertical acceleration 119863119863119908119908119863119863119905119905

are negligible we derive from the vertical eq of motion (6-7c) the hydrostatic balance (Ch3 Eq3-3)

120597120597119901119901120597120597119911119911

= - 120588120588g (Eq 6-8)

Note This approximation holds for large-scale atmospheric and oceanic circulation with weak vertical motions

29

3 Equations of motion - nonrotating fluid

Balance between vertical pressure gradient and gravitational force

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

30

GEF1100ndashAutumn 2014 18092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

31 Addition not in book

Conserved quantity A quantity of which the derivative equals zero

Conservation of mass for liquids is also called continuity equation

Conservation of mass ndash continuity equation

32

4 Conservation of mass

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 20: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

State variables for atmosphere and ocean

u Wind = (uvw) in ms T Temperature in degC or K p Pressure in Nm2 = 1 Pa (1 hPa = 102 Pa = 1 mbar) Specifically for the atmosphere q Specific humidity in kg water vapourkg moist air Specifically for the ocean S Salinity in kg saltkg seawater (often the salt content is expressed in practical salinity unit psu = kg salt1000 kg seawater) 20

2 Basics

I Laws of motion for a fluid parcel in x-y-z- directions (applying Newtons 1 and 2 law)

II Conservation of mass

III Law of thermodynamics (including motion) rarr5 equations for the evolution of the fluid (5 unknowns)

21

3 Equations of motion - nonrotating fluid 3 Equations of motion - nonrotating fluid

Momentum conservation The conservation of momentum is represented by

Newtonrsquos first law (ldquoLex primardquo) (momentum = mass middot velocity)

momentum = const at absence of forces

Momentum sentence (ldquoLex secundardquo) temporal change in momentum = Force (mass middot acceleration = Force)

22

Fu=

dtdM t time M mass u velocity vector F Force vector

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Forces on a fluid parcel

23

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119958119958119863119863119905119905

= F (Eq 6-2)

120588120588 density (120575120575119909119909 120575120575119910119910 120575120575119911119911) fluid parcel with infinitesimal dimensions 120575120575119872119872 mass of the parcel 120575120575119872119872 = 120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119958119958 parcel velocity F net force

119863119863119958119958119863119863119905119905

= 120597120597119958119958120597120597119905119905

+ u 120597120597119958119958120597120597119909119909

+v 120597120597119958119958120597120597119910119910

+w 120597120597119958119958120597120597119911119911

= 120597120597119958119958120597120597119905119905

+ (119958119958 ∙ 120571120571) 119958119958

Gravitational force

24

Fgravity= g 120575120575119872119872

Fgravity= minusg 120588120588119963119963 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-3)

Fgravity Gravitational force M mass g gravity acceleration g = const 120588120588 density 119963119963 unit vector in upward direction

Marshall and Plumb (2008)

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Pressure gradient force

25

Fpressure= 119865119865119909119909 119865119865119910119910 119865119865119911119911

=minus 120597120597119901119901120597120597119909119909

120597120597119901119901120597120597119910119910

120597120597119901119901120597120597119911119911

120575120575119909119909 120575120575119910119910 120575120575119911119911

=minus 120571120571119901119901 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-4)

F(A) = p ∙ 119860119860 = 119901119901 (x minus 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911

F(B) = p ∙ 119861119861 = minus119901119901 (x + 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911 Fx = F(A) + F(B)

Apply Taylor expansion (A21) at midpoint of parcel and neglect small terms (see book)

119901119901 pressure

Friction force

26

3 Equations of motion - nonrotating fluid

- Friction force operates on the earthrsquos surface

- the greater the surface roughness the higher the friction force

- the greater the wind velocity the higher the friction force

- friction force takes effect in vertical distances of ~ 100 m up to 1000 m (rarr atmospheric boundary layer Chapter 7)

Ffriction = 120588120588 ℱ 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-5)

ℱ frictional force per unit mass 120588120588 density

Equations of motion bull All three forces together in Eq 6-2 gives

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119854119854119863119863119905119905

= F119901119901119901119901119891119891119901119901119901119901119906119906119901119901119891119891 + F119892119892119901119901119901119901119907119907119891119891119905119905119910119910 + F119891119891119901119901119891119891119901119901119905119905119891119891119891119891119891119891

bull Re-arranging leads to equation of motion for fluid parcels

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = ℱ (Equation 6-6)

27

3 Equations of motion - nonrotating fluid

120588120588 density u velocity vector F Force vector ℱ frictional force per unit mass p pressure g gravity acceleration 119963119963 unit vector in z-direction

Equations of motion ndash component form

(Eq 6-6) in Cartesian coordinates

bull 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

bull 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

bull 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

28

3 Equations of motion - nonrotating fluid

119906119906 zonal velocity 119907119907meridional velocity w vertical velocity 120588120588 density ℱ frictional force per unit mass p pressure g gravity acceleration

Hydrostatic balance

If friction ℱ119911119911 and vertical acceleration 119863119863119908119908119863119863119905119905

are negligible we derive from the vertical eq of motion (6-7c) the hydrostatic balance (Ch3 Eq3-3)

120597120597119901119901120597120597119911119911

= - 120588120588g (Eq 6-8)

Note This approximation holds for large-scale atmospheric and oceanic circulation with weak vertical motions

29

3 Equations of motion - nonrotating fluid

Balance between vertical pressure gradient and gravitational force

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

30

GEF1100ndashAutumn 2014 18092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

31 Addition not in book

Conserved quantity A quantity of which the derivative equals zero

Conservation of mass for liquids is also called continuity equation

Conservation of mass ndash continuity equation

32

4 Conservation of mass

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 21: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

I Laws of motion for a fluid parcel in x-y-z- directions (applying Newtons 1 and 2 law)

II Conservation of mass

III Law of thermodynamics (including motion) rarr5 equations for the evolution of the fluid (5 unknowns)

21

3 Equations of motion - nonrotating fluid 3 Equations of motion - nonrotating fluid

Momentum conservation The conservation of momentum is represented by

Newtonrsquos first law (ldquoLex primardquo) (momentum = mass middot velocity)

momentum = const at absence of forces

Momentum sentence (ldquoLex secundardquo) temporal change in momentum = Force (mass middot acceleration = Force)

22

Fu=

dtdM t time M mass u velocity vector F Force vector

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Forces on a fluid parcel

23

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119958119958119863119863119905119905

= F (Eq 6-2)

120588120588 density (120575120575119909119909 120575120575119910119910 120575120575119911119911) fluid parcel with infinitesimal dimensions 120575120575119872119872 mass of the parcel 120575120575119872119872 = 120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119958119958 parcel velocity F net force

119863119863119958119958119863119863119905119905

= 120597120597119958119958120597120597119905119905

+ u 120597120597119958119958120597120597119909119909

+v 120597120597119958119958120597120597119910119910

+w 120597120597119958119958120597120597119911119911

= 120597120597119958119958120597120597119905119905

+ (119958119958 ∙ 120571120571) 119958119958

Gravitational force

24

Fgravity= g 120575120575119872119872

Fgravity= minusg 120588120588119963119963 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-3)

Fgravity Gravitational force M mass g gravity acceleration g = const 120588120588 density 119963119963 unit vector in upward direction

Marshall and Plumb (2008)

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Pressure gradient force

25

Fpressure= 119865119865119909119909 119865119865119910119910 119865119865119911119911

=minus 120597120597119901119901120597120597119909119909

120597120597119901119901120597120597119910119910

120597120597119901119901120597120597119911119911

120575120575119909119909 120575120575119910119910 120575120575119911119911

=minus 120571120571119901119901 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-4)

F(A) = p ∙ 119860119860 = 119901119901 (x minus 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911

F(B) = p ∙ 119861119861 = minus119901119901 (x + 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911 Fx = F(A) + F(B)

Apply Taylor expansion (A21) at midpoint of parcel and neglect small terms (see book)

119901119901 pressure

Friction force

26

3 Equations of motion - nonrotating fluid

- Friction force operates on the earthrsquos surface

- the greater the surface roughness the higher the friction force

- the greater the wind velocity the higher the friction force

- friction force takes effect in vertical distances of ~ 100 m up to 1000 m (rarr atmospheric boundary layer Chapter 7)

Ffriction = 120588120588 ℱ 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-5)

ℱ frictional force per unit mass 120588120588 density

Equations of motion bull All three forces together in Eq 6-2 gives

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119854119854119863119863119905119905

= F119901119901119901119901119891119891119901119901119901119901119906119906119901119901119891119891 + F119892119892119901119901119901119901119907119907119891119891119905119905119910119910 + F119891119891119901119901119891119891119901119901119905119905119891119891119891119891119891119891

bull Re-arranging leads to equation of motion for fluid parcels

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = ℱ (Equation 6-6)

27

3 Equations of motion - nonrotating fluid

120588120588 density u velocity vector F Force vector ℱ frictional force per unit mass p pressure g gravity acceleration 119963119963 unit vector in z-direction

Equations of motion ndash component form

(Eq 6-6) in Cartesian coordinates

bull 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

bull 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

bull 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

28

3 Equations of motion - nonrotating fluid

119906119906 zonal velocity 119907119907meridional velocity w vertical velocity 120588120588 density ℱ frictional force per unit mass p pressure g gravity acceleration

Hydrostatic balance

If friction ℱ119911119911 and vertical acceleration 119863119863119908119908119863119863119905119905

are negligible we derive from the vertical eq of motion (6-7c) the hydrostatic balance (Ch3 Eq3-3)

120597120597119901119901120597120597119911119911

= - 120588120588g (Eq 6-8)

Note This approximation holds for large-scale atmospheric and oceanic circulation with weak vertical motions

29

3 Equations of motion - nonrotating fluid

Balance between vertical pressure gradient and gravitational force

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

30

GEF1100ndashAutumn 2014 18092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

31 Addition not in book

Conserved quantity A quantity of which the derivative equals zero

Conservation of mass for liquids is also called continuity equation

Conservation of mass ndash continuity equation

32

4 Conservation of mass

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 22: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Momentum conservation The conservation of momentum is represented by

Newtonrsquos first law (ldquoLex primardquo) (momentum = mass middot velocity)

momentum = const at absence of forces

Momentum sentence (ldquoLex secundardquo) temporal change in momentum = Force (mass middot acceleration = Force)

22

Fu=

dtdM t time M mass u velocity vector F Force vector

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Forces on a fluid parcel

23

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119958119958119863119863119905119905

= F (Eq 6-2)

120588120588 density (120575120575119909119909 120575120575119910119910 120575120575119911119911) fluid parcel with infinitesimal dimensions 120575120575119872119872 mass of the parcel 120575120575119872119872 = 120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119958119958 parcel velocity F net force

119863119863119958119958119863119863119905119905

= 120597120597119958119958120597120597119905119905

+ u 120597120597119958119958120597120597119909119909

+v 120597120597119958119958120597120597119910119910

+w 120597120597119958119958120597120597119911119911

= 120597120597119958119958120597120597119905119905

+ (119958119958 ∙ 120571120571) 119958119958

Gravitational force

24

Fgravity= g 120575120575119872119872

Fgravity= minusg 120588120588119963119963 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-3)

Fgravity Gravitational force M mass g gravity acceleration g = const 120588120588 density 119963119963 unit vector in upward direction

Marshall and Plumb (2008)

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Pressure gradient force

25

Fpressure= 119865119865119909119909 119865119865119910119910 119865119865119911119911

=minus 120597120597119901119901120597120597119909119909

120597120597119901119901120597120597119910119910

120597120597119901119901120597120597119911119911

120575120575119909119909 120575120575119910119910 120575120575119911119911

=minus 120571120571119901119901 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-4)

F(A) = p ∙ 119860119860 = 119901119901 (x minus 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911

F(B) = p ∙ 119861119861 = minus119901119901 (x + 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911 Fx = F(A) + F(B)

Apply Taylor expansion (A21) at midpoint of parcel and neglect small terms (see book)

119901119901 pressure

Friction force

26

3 Equations of motion - nonrotating fluid

- Friction force operates on the earthrsquos surface

- the greater the surface roughness the higher the friction force

- the greater the wind velocity the higher the friction force

- friction force takes effect in vertical distances of ~ 100 m up to 1000 m (rarr atmospheric boundary layer Chapter 7)

Ffriction = 120588120588 ℱ 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-5)

ℱ frictional force per unit mass 120588120588 density

Equations of motion bull All three forces together in Eq 6-2 gives

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119854119854119863119863119905119905

= F119901119901119901119901119891119891119901119901119901119901119906119906119901119901119891119891 + F119892119892119901119901119901119901119907119907119891119891119905119905119910119910 + F119891119891119901119901119891119891119901119901119905119905119891119891119891119891119891119891

bull Re-arranging leads to equation of motion for fluid parcels

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = ℱ (Equation 6-6)

27

3 Equations of motion - nonrotating fluid

120588120588 density u velocity vector F Force vector ℱ frictional force per unit mass p pressure g gravity acceleration 119963119963 unit vector in z-direction

Equations of motion ndash component form

(Eq 6-6) in Cartesian coordinates

bull 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

bull 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

bull 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

28

3 Equations of motion - nonrotating fluid

119906119906 zonal velocity 119907119907meridional velocity w vertical velocity 120588120588 density ℱ frictional force per unit mass p pressure g gravity acceleration

Hydrostatic balance

If friction ℱ119911119911 and vertical acceleration 119863119863119908119908119863119863119905119905

are negligible we derive from the vertical eq of motion (6-7c) the hydrostatic balance (Ch3 Eq3-3)

120597120597119901119901120597120597119911119911

= - 120588120588g (Eq 6-8)

Note This approximation holds for large-scale atmospheric and oceanic circulation with weak vertical motions

29

3 Equations of motion - nonrotating fluid

Balance between vertical pressure gradient and gravitational force

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

30

GEF1100ndashAutumn 2014 18092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

31 Addition not in book

Conserved quantity A quantity of which the derivative equals zero

Conservation of mass for liquids is also called continuity equation

Conservation of mass ndash continuity equation

32

4 Conservation of mass

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 23: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Forces on a fluid parcel

23

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119958119958119863119863119905119905

= F (Eq 6-2)

120588120588 density (120575120575119909119909 120575120575119910119910 120575120575119911119911) fluid parcel with infinitesimal dimensions 120575120575119872119872 mass of the parcel 120575120575119872119872 = 120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119958119958 parcel velocity F net force

119863119863119958119958119863119863119905119905

= 120597120597119958119958120597120597119905119905

+ u 120597120597119958119958120597120597119909119909

+v 120597120597119958119958120597120597119910119910

+w 120597120597119958119958120597120597119911119911

= 120597120597119958119958120597120597119905119905

+ (119958119958 ∙ 120571120571) 119958119958

Gravitational force

24

Fgravity= g 120575120575119872119872

Fgravity= minusg 120588120588119963119963 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-3)

Fgravity Gravitational force M mass g gravity acceleration g = const 120588120588 density 119963119963 unit vector in upward direction

Marshall and Plumb (2008)

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Pressure gradient force

25

Fpressure= 119865119865119909119909 119865119865119910119910 119865119865119911119911

=minus 120597120597119901119901120597120597119909119909

120597120597119901119901120597120597119910119910

120597120597119901119901120597120597119911119911

120575120575119909119909 120575120575119910119910 120575120575119911119911

=minus 120571120571119901119901 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-4)

F(A) = p ∙ 119860119860 = 119901119901 (x minus 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911

F(B) = p ∙ 119861119861 = minus119901119901 (x + 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911 Fx = F(A) + F(B)

Apply Taylor expansion (A21) at midpoint of parcel and neglect small terms (see book)

119901119901 pressure

Friction force

26

3 Equations of motion - nonrotating fluid

- Friction force operates on the earthrsquos surface

- the greater the surface roughness the higher the friction force

- the greater the wind velocity the higher the friction force

- friction force takes effect in vertical distances of ~ 100 m up to 1000 m (rarr atmospheric boundary layer Chapter 7)

Ffriction = 120588120588 ℱ 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-5)

ℱ frictional force per unit mass 120588120588 density

Equations of motion bull All three forces together in Eq 6-2 gives

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119854119854119863119863119905119905

= F119901119901119901119901119891119891119901119901119901119901119906119906119901119901119891119891 + F119892119892119901119901119901119901119907119907119891119891119905119905119910119910 + F119891119891119901119901119891119891119901119901119905119905119891119891119891119891119891119891

bull Re-arranging leads to equation of motion for fluid parcels

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = ℱ (Equation 6-6)

27

3 Equations of motion - nonrotating fluid

120588120588 density u velocity vector F Force vector ℱ frictional force per unit mass p pressure g gravity acceleration 119963119963 unit vector in z-direction

Equations of motion ndash component form

(Eq 6-6) in Cartesian coordinates

bull 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

bull 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

bull 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

28

3 Equations of motion - nonrotating fluid

119906119906 zonal velocity 119907119907meridional velocity w vertical velocity 120588120588 density ℱ frictional force per unit mass p pressure g gravity acceleration

Hydrostatic balance

If friction ℱ119911119911 and vertical acceleration 119863119863119908119908119863119863119905119905

are negligible we derive from the vertical eq of motion (6-7c) the hydrostatic balance (Ch3 Eq3-3)

120597120597119901119901120597120597119911119911

= - 120588120588g (Eq 6-8)

Note This approximation holds for large-scale atmospheric and oceanic circulation with weak vertical motions

29

3 Equations of motion - nonrotating fluid

Balance between vertical pressure gradient and gravitational force

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

30

GEF1100ndashAutumn 2014 18092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

31 Addition not in book

Conserved quantity A quantity of which the derivative equals zero

Conservation of mass for liquids is also called continuity equation

Conservation of mass ndash continuity equation

32

4 Conservation of mass

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 24: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Gravitational force

24

Fgravity= g 120575120575119872119872

Fgravity= minusg 120588120588119963119963 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-3)

Fgravity Gravitational force M mass g gravity acceleration g = const 120588120588 density 119963119963 unit vector in upward direction

Marshall and Plumb (2008)

3 Equations of motion - nonrotating fluid

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Pressure gradient force

25

Fpressure= 119865119865119909119909 119865119865119910119910 119865119865119911119911

=minus 120597120597119901119901120597120597119909119909

120597120597119901119901120597120597119910119910

120597120597119901119901120597120597119911119911

120575120575119909119909 120575120575119910119910 120575120575119911119911

=minus 120571120571119901119901 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-4)

F(A) = p ∙ 119860119860 = 119901119901 (x minus 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911

F(B) = p ∙ 119861119861 = minus119901119901 (x + 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911 Fx = F(A) + F(B)

Apply Taylor expansion (A21) at midpoint of parcel and neglect small terms (see book)

119901119901 pressure

Friction force

26

3 Equations of motion - nonrotating fluid

- Friction force operates on the earthrsquos surface

- the greater the surface roughness the higher the friction force

- the greater the wind velocity the higher the friction force

- friction force takes effect in vertical distances of ~ 100 m up to 1000 m (rarr atmospheric boundary layer Chapter 7)

Ffriction = 120588120588 ℱ 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-5)

ℱ frictional force per unit mass 120588120588 density

Equations of motion bull All three forces together in Eq 6-2 gives

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119854119854119863119863119905119905

= F119901119901119901119901119891119891119901119901119901119901119906119906119901119901119891119891 + F119892119892119901119901119901119901119907119907119891119891119905119905119910119910 + F119891119891119901119901119891119891119901119901119905119905119891119891119891119891119891119891

bull Re-arranging leads to equation of motion for fluid parcels

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = ℱ (Equation 6-6)

27

3 Equations of motion - nonrotating fluid

120588120588 density u velocity vector F Force vector ℱ frictional force per unit mass p pressure g gravity acceleration 119963119963 unit vector in z-direction

Equations of motion ndash component form

(Eq 6-6) in Cartesian coordinates

bull 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

bull 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

bull 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

28

3 Equations of motion - nonrotating fluid

119906119906 zonal velocity 119907119907meridional velocity w vertical velocity 120588120588 density ℱ frictional force per unit mass p pressure g gravity acceleration

Hydrostatic balance

If friction ℱ119911119911 and vertical acceleration 119863119863119908119908119863119863119905119905

are negligible we derive from the vertical eq of motion (6-7c) the hydrostatic balance (Ch3 Eq3-3)

120597120597119901119901120597120597119911119911

= - 120588120588g (Eq 6-8)

Note This approximation holds for large-scale atmospheric and oceanic circulation with weak vertical motions

29

3 Equations of motion - nonrotating fluid

Balance between vertical pressure gradient and gravitational force

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

30

GEF1100ndashAutumn 2014 18092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

31 Addition not in book

Conserved quantity A quantity of which the derivative equals zero

Conservation of mass for liquids is also called continuity equation

Conservation of mass ndash continuity equation

32

4 Conservation of mass

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 25: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

3 Equations of motion - nonrotating fluid

Marshall and Plumb (2008)

Pressure gradient force

25

Fpressure= 119865119865119909119909 119865119865119910119910 119865119865119911119911

=minus 120597120597119901119901120597120597119909119909

120597120597119901119901120597120597119910119910

120597120597119901119901120597120597119911119911

120575120575119909119909 120575120575119910119910 120575120575119911119911

=minus 120571120571119901119901 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-4)

F(A) = p ∙ 119860119860 = 119901119901 (x minus 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911

F(B) = p ∙ 119861119861 = minus119901119901 (x + 1205751205751199091199092

y z) 120575120575119910119910 120575120575119911119911 Fx = F(A) + F(B)

Apply Taylor expansion (A21) at midpoint of parcel and neglect small terms (see book)

119901119901 pressure

Friction force

26

3 Equations of motion - nonrotating fluid

- Friction force operates on the earthrsquos surface

- the greater the surface roughness the higher the friction force

- the greater the wind velocity the higher the friction force

- friction force takes effect in vertical distances of ~ 100 m up to 1000 m (rarr atmospheric boundary layer Chapter 7)

Ffriction = 120588120588 ℱ 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-5)

ℱ frictional force per unit mass 120588120588 density

Equations of motion bull All three forces together in Eq 6-2 gives

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119854119854119863119863119905119905

= F119901119901119901119901119891119891119901119901119901119901119906119906119901119901119891119891 + F119892119892119901119901119901119901119907119907119891119891119905119905119910119910 + F119891119891119901119901119891119891119901119901119905119905119891119891119891119891119891119891

bull Re-arranging leads to equation of motion for fluid parcels

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = ℱ (Equation 6-6)

27

3 Equations of motion - nonrotating fluid

120588120588 density u velocity vector F Force vector ℱ frictional force per unit mass p pressure g gravity acceleration 119963119963 unit vector in z-direction

Equations of motion ndash component form

(Eq 6-6) in Cartesian coordinates

bull 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

bull 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

bull 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

28

3 Equations of motion - nonrotating fluid

119906119906 zonal velocity 119907119907meridional velocity w vertical velocity 120588120588 density ℱ frictional force per unit mass p pressure g gravity acceleration

Hydrostatic balance

If friction ℱ119911119911 and vertical acceleration 119863119863119908119908119863119863119905119905

are negligible we derive from the vertical eq of motion (6-7c) the hydrostatic balance (Ch3 Eq3-3)

120597120597119901119901120597120597119911119911

= - 120588120588g (Eq 6-8)

Note This approximation holds for large-scale atmospheric and oceanic circulation with weak vertical motions

29

3 Equations of motion - nonrotating fluid

Balance between vertical pressure gradient and gravitational force

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

30

GEF1100ndashAutumn 2014 18092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

31 Addition not in book

Conserved quantity A quantity of which the derivative equals zero

Conservation of mass for liquids is also called continuity equation

Conservation of mass ndash continuity equation

32

4 Conservation of mass

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 26: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Friction force

26

3 Equations of motion - nonrotating fluid

- Friction force operates on the earthrsquos surface

- the greater the surface roughness the higher the friction force

- the greater the wind velocity the higher the friction force

- friction force takes effect in vertical distances of ~ 100 m up to 1000 m (rarr atmospheric boundary layer Chapter 7)

Ffriction = 120588120588 ℱ 120575120575119909119909 120575120575119910119910 120575120575119911119911 (Eq 6-5)

ℱ frictional force per unit mass 120588120588 density

Equations of motion bull All three forces together in Eq 6-2 gives

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119854119854119863119863119905119905

= F119901119901119901119901119891119891119901119901119901119901119906119906119901119901119891119891 + F119892119892119901119901119901119901119907119907119891119891119905119905119910119910 + F119891119891119901119901119891119891119901119901119905119905119891119891119891119891119891119891

bull Re-arranging leads to equation of motion for fluid parcels

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = ℱ (Equation 6-6)

27

3 Equations of motion - nonrotating fluid

120588120588 density u velocity vector F Force vector ℱ frictional force per unit mass p pressure g gravity acceleration 119963119963 unit vector in z-direction

Equations of motion ndash component form

(Eq 6-6) in Cartesian coordinates

bull 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

bull 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

bull 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

28

3 Equations of motion - nonrotating fluid

119906119906 zonal velocity 119907119907meridional velocity w vertical velocity 120588120588 density ℱ frictional force per unit mass p pressure g gravity acceleration

Hydrostatic balance

If friction ℱ119911119911 and vertical acceleration 119863119863119908119908119863119863119905119905

are negligible we derive from the vertical eq of motion (6-7c) the hydrostatic balance (Ch3 Eq3-3)

120597120597119901119901120597120597119911119911

= - 120588120588g (Eq 6-8)

Note This approximation holds for large-scale atmospheric and oceanic circulation with weak vertical motions

29

3 Equations of motion - nonrotating fluid

Balance between vertical pressure gradient and gravitational force

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

30

GEF1100ndashAutumn 2014 18092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

31 Addition not in book

Conserved quantity A quantity of which the derivative equals zero

Conservation of mass for liquids is also called continuity equation

Conservation of mass ndash continuity equation

32

4 Conservation of mass

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 27: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Equations of motion bull All three forces together in Eq 6-2 gives

120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911 119863119863119854119854119863119863119905119905

= F119901119901119901119901119891119891119901119901119901119901119906119906119901119901119891119891 + F119892119892119901119901119901119901119907119907119891119891119905119905119910119910 + F119891119891119901119901119891119891119901119901119905119905119891119891119891119891119891119891

bull Re-arranging leads to equation of motion for fluid parcels

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = ℱ (Equation 6-6)

27

3 Equations of motion - nonrotating fluid

120588120588 density u velocity vector F Force vector ℱ frictional force per unit mass p pressure g gravity acceleration 119963119963 unit vector in z-direction

Equations of motion ndash component form

(Eq 6-6) in Cartesian coordinates

bull 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

bull 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

bull 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

28

3 Equations of motion - nonrotating fluid

119906119906 zonal velocity 119907119907meridional velocity w vertical velocity 120588120588 density ℱ frictional force per unit mass p pressure g gravity acceleration

Hydrostatic balance

If friction ℱ119911119911 and vertical acceleration 119863119863119908119908119863119863119905119905

are negligible we derive from the vertical eq of motion (6-7c) the hydrostatic balance (Ch3 Eq3-3)

120597120597119901119901120597120597119911119911

= - 120588120588g (Eq 6-8)

Note This approximation holds for large-scale atmospheric and oceanic circulation with weak vertical motions

29

3 Equations of motion - nonrotating fluid

Balance between vertical pressure gradient and gravitational force

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

30

GEF1100ndashAutumn 2014 18092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

31 Addition not in book

Conserved quantity A quantity of which the derivative equals zero

Conservation of mass for liquids is also called continuity equation

Conservation of mass ndash continuity equation

32

4 Conservation of mass

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 28: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Equations of motion ndash component form

(Eq 6-6) in Cartesian coordinates

bull 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

bull 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

bull 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

28

3 Equations of motion - nonrotating fluid

119906119906 zonal velocity 119907119907meridional velocity w vertical velocity 120588120588 density ℱ frictional force per unit mass p pressure g gravity acceleration

Hydrostatic balance

If friction ℱ119911119911 and vertical acceleration 119863119863119908119908119863119863119905119905

are negligible we derive from the vertical eq of motion (6-7c) the hydrostatic balance (Ch3 Eq3-3)

120597120597119901119901120597120597119911119911

= - 120588120588g (Eq 6-8)

Note This approximation holds for large-scale atmospheric and oceanic circulation with weak vertical motions

29

3 Equations of motion - nonrotating fluid

Balance between vertical pressure gradient and gravitational force

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

30

GEF1100ndashAutumn 2014 18092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

31 Addition not in book

Conserved quantity A quantity of which the derivative equals zero

Conservation of mass for liquids is also called continuity equation

Conservation of mass ndash continuity equation

32

4 Conservation of mass

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 29: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Hydrostatic balance

If friction ℱ119911119911 and vertical acceleration 119863119863119908119908119863119863119905119905

are negligible we derive from the vertical eq of motion (6-7c) the hydrostatic balance (Ch3 Eq3-3)

120597120597119901119901120597120597119911119911

= - 120588120588g (Eq 6-8)

Note This approximation holds for large-scale atmospheric and oceanic circulation with weak vertical motions

29

3 Equations of motion - nonrotating fluid

Balance between vertical pressure gradient and gravitational force

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

30

GEF1100ndashAutumn 2014 18092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

31 Addition not in book

Conserved quantity A quantity of which the derivative equals zero

Conservation of mass for liquids is also called continuity equation

Conservation of mass ndash continuity equation

32

4 Conservation of mass

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 30: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

30

GEF1100ndashAutumn 2014 18092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

31 Addition not in book

Conserved quantity A quantity of which the derivative equals zero

Conservation of mass for liquids is also called continuity equation

Conservation of mass ndash continuity equation

32

4 Conservation of mass

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 31: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

31 Addition not in book

Conserved quantity A quantity of which the derivative equals zero

Conservation of mass for liquids is also called continuity equation

Conservation of mass ndash continuity equation

32

4 Conservation of mass

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 32: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Conserved quantity A quantity of which the derivative equals zero

Conservation of mass for liquids is also called continuity equation

Conservation of mass ndash continuity equation

32

4 Conservation of mass

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 33: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Conservation of mass

33

4 Conservation of mass

Marshall and Plumb (2008)

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 34: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

4 Conservation of mass

34

Conservation of mass -1 Mass continuity requires

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = 120597120597120588120588120597120597119905119905

120575120575119909119909 120575120575119910119910 120575120575119911119911 = (net mass flux into the volume)

bull mass flux in x-direction per unit time into volume

120588120588119906119906 119909119909 minus12 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

bull mass flux in x-direction per unit time out of volume 120588120588119906119906 119909119909 + 1

2 120575120575119909119909 119910119910 119911119911 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 35: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

4 Conservation of mass

35

Conservation of mass -2

bull net mass flux in x-direction into the volume is then (employing Taylor expansion A22) minus 120597120597

120597120597119909119909120588120588119906119906 120575120575119909119909 120575120575119910119910 120575120575119911119911

bull net mass flux in y- and z- direction accordingly (see book)

bull Net mass flux into the volume

minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911 bull substituting into mass continuity

120597120597120597120597119905119905

(120588120588 120575120575119909119909 120575120575119910119910 120575120575119911119911) = minus 120571120571 ∙ 120588120588119958119958 120575120575119909119909 120575120575119910119910 120575120575119911119911

Marshall and Plumb (2008)

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 36: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

4 Conservation of mass

36

Conservation of mass -3 bull leads to equation of continuity

120597120597120588120588

120597120597119905119905+ 120571120571 ∙ 120588120588119958119958 = 0 (Eq 6-9)

which has the form of conservation law 120597120597 119862119862119862119862119862119862119862119862119862119862119862119862119905119905119862119862119862119862119905119905119862119862119862119862119862119862

120597120597119905119905+ 120571120571 ∙ 119891119891119901119901119906119906119909119909 = 0

bull Using DDt (Eq 6-1) and 120571120571 ∙ 120588120588119958119958 =120588120588120571120571 ∙ 119958119958 + 119958119958 ∙ 120571120571120588120588 (see A22)

we can rewrite 119863119863120588120588

119863119863119905119905+ 120588120588120571120571 ∙ 119958119958 = 0 (Eq 6-10)

Marshall and Plumb (2008)

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 37: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Approximation for continuity equation incompressible - compressible flows

bull Incompressible flow (eg ocean)

120571120571 ∙ 119958119958 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119911119911

= 0 (Eq6-11)

bull Compressible flow (eg air) expressed in pressure coordinate p

120571120571119901119901 ∙ 119958119958119901119901 = 120597120597119906119906120597120597119909119909

+ 120597120597119907119907120597120597119910119910

+ 120597120597119908119908120597120597119901119901

= 0 (Eq6-12)

37

4 Conservation of mass

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 38: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Thermodynamic equation bull Temperature evolution can be derived from first law of

thermodynamics (Ch4 4-2)

119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (Eq 6-13)

bull If the heating rate is zero (119863119863119863119863119863119863119905119905

= 0 Ch 431) then

119863119863119863119863119863119863119905119905

= 1120588120588119862119862119901119901

119863119863119901119901119863119863119905119905

38

5 Thermodynamic equation

The temperature of a parcel will decrease increase in ascent descent with decreasingincreasing pressure

rarr Introduction of potential temperature 120579120579 (Eq 4-17)

120579120579 = 119879119879 1199011199010

119901119901

119876119876 heat 119863119863119863119863119863119863119905119905

diabatic heating rate per unit mass 119901119901119901119901 specific heat at constant pressure T temperature

120588120588 density p pressure p0 = 1000 hPa κ=Rcp R gas constant for dry air

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 39: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Thermodynamic equation - potential temperature

bull Eq 6-13 for potential temperature 120579120579 (see book for details)

119863119863120579120579119863119863119905119905

= 1199011199011199011199010

minusκ

119863119863119863119863119863119863119863119863119862119862119901119901

(Eq 6-14)

Note For adiabatic motions 120575120575119876119876 = 0 120579120579 is conserved

39

5 Thermodynamic equation

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 40: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

40

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 41: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Coordinate systems in meteorology

bull Cartesian coordinates (xyzt) bull Spherical coordinates (λϕzt) bull Height coordinates geometrical altitude (z) pressure (p) and potential temperature (θ)

3 Equations of motion - nonrotating fluid

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 42: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Ia) 120597120597119906119906120597120597119905119905

+ 119906119906 120597120597119906119906120597120597119909119909

+ 119907119907 120597120597119906119906120597120597119910119910

+ w 120597120597119906119906120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119909119909

= ℱx (6-7a)

Ib) 120597120597119907119907120597120597119905119905

+ 119906119906 120597120597119907119907120597120597119909119909

+ 119907119907 120597120597119907119907120597120597119910119910

+ w 120597120597119907119907120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119910119910

= ℱ119910119910 (6minus7b)

Ic) 120597120597119908119908120597120597119905119905

+ 119906119906 120597120597119908119908120597120597119909119909

+ 119907119907 120597120597119908119908120597120597119910119910

+ w 120597120597119908119908120597120597119911119911

+ 1120588120588

120597120597119901119901120597120597119911119911

+ g = ℱz (6-7c)

II) 120597120597120588120588120597120597119905119905

+ 120571120571 ∙ 120588120588119958119958 = 0 (6-9 or 6-116-12)

III) 119863119863119863119863119863119863119905119905

= 119901119901119901119901119863119863119863119863119863119863119905119905

minus 1120588120588 119863119863119901119901

119863119863119905119905 (6-13 or 6-14)

42

Summary Summary 3-5)

rarr5 equations for the evolution of the fluid (5 unknowns)

Restrictions - application to average motion is often incorrect ie turbulence - fixed coordinate system

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 43: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Forces on rotating sphere Fictitious forces

- occur in revolvingaccelerating system (eg car in curve) - occur on the earthrsquos surface (Fixed system on earthrsquos surface forms an accelerated system

because a circular motion is performed once a day Movement of earth around the sun compared to earthrsquos rotation is insignificant)

rarr Coriolis force

rarr Centrifugal force 43

5 Equations of motion - rotating fluid

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 44: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 44

Inertial - rotating frames

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 45: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

45

5 Equations of motion - rotating fluid

Transformation into rotating coordinates Consider figure 69

bull 119958119958119862119862119862119862 = 119958119958119901119901119891119891119905119905 + Ω times 119955119955 (Eq 6-24)

bull 119863119863119912119912119863119863119905119905 119862119862119862119862

= 119863119863119912119912119863119863119905119905 119862119862119862119862119905119905

+ Ω times A (Eq 6-26)

Setting A =r and A rarr 119958119958119862119862119862119862 in Eq 6-24 and 6-26 we can derive

119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862= 119863119863

119863119863119905119905 119862119862119862119862119905119905+ Ω times 119958119958119901119901119891119891119905119905 + Ω times 119955119955

= 119863119863119958119958119862119862119862119862119905119905

119863119863119905119905 119862119862119862119862119905119905+ 2Ω times 119958119958119901119901119891119891119905119905 + Ω times Ω times 119955119955 (Eq 6-27)

119863119863119955119955119863119863119905119905 119862119862119862119862119905119905

= 119958119958119901119901119891119891119905119905 119955119955 position vector A any vector Ω rotation vector

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 46: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Rotating equations of motion

Substituting 119863119863119958119958119862119862119862119862

119863119863119905119905 119862119862119862119862 from Eq 6-27 into Eq 6-6 (inertial frame

equation of motion ) we derive in rotating frame dropping subscript ldquorotldquo

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + g119963119963 = minus 2Ω times 119958119958 + minusΩ times Ω times 119955119955 + ℱ (Eq 6-28)

46

5 Equations of motion - rotating fluid

Coriolis acceleration

Centrifugal acceleration

Friction acceleration

Pressure gradient accel

Gravi- tational accel

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 47: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

bull bull

Centripetal force FCp Centrifugal force FC

Angular velocity Ω

Body (mass M) Centre

FCp = - FC

Centrifugal force ndash Centripetal force

r

47

FC = minusM Ω x (Ω x r)

bull Directed radially outward

bull If no other forces are present the particle would accelerate outwards bull Fictitious force balanced by Centripetal force

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 48: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Centrifugal accel ndash modified gravitational potential

Combine the gradient of Centrifugal potential minusΩ times Ω times 119955119955 = 120571120571 Ω2r2

2 and

Gravitational potential g119963119963 = 120571120571(gz) in Eq 6-28

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 = minus 2Ω times 119958119958 + ℱ Eq 6minus29

bull 120567120567 = g119911119911 minus Ω2r2

2 Eq 6minus30

120567120567(Greek ldquoPhildquo) is modified gravitational potential on Earth

48

Coriolis acceleration

Friction acceleration

Pressure gradient accel

Gravitational +Centrifugal accelerations

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 49: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Marshall and Plumb (2008) 49

5 Equations of motion - rotating fluid

On the sphere Shallow atmosphere approx a+z ≃ a r=(a+z)cos120593120593 ≃ a cos120593120593 Eq 6-30 becomes

120567120567 = g119911119911 minusΩ21199011199012cos2120593120593

2

Definition of geopotential surfaces

119911119911lowast = 119911119911 + Ω21198621198622cos21205931205932g (Eq 6-40)

Ω= 727 x 10-5 s-1 a = 637 x 106 m

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 50: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

GEF 1100 ndash Klimasystemet

Chapter 6 The equations of fluid motion

50

GEF1100ndashAutumn 2014 30092014

Prof Dr Kirstin Kruumlger (MetOs UiO)

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 51: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

1 Motivation

2 Basics 21 Lagrange - Euler 22 Mathematical add on

3 Equation of motion for a nonrotating fluid 31 Forces 32 Equations of motion 33 Hydrostatic balance

4 Conversation of mass

5 Thermodynamic equation

6 Equation of motion for a rotating fluid 61 Forces 62 Equations of motion

7 Take home messages

Lect

ure

Out

line

ndash Ch

6 Ch 6 - The equations of fluid motions

51 Addition not in book

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 52: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

5 Equations of motion - rotating fluid

Marshall and Plumb (2008)

52

Coriolis acceleration

119863119863119854119854119863119863119905119905

= minus 2120512120512 times 119958119958 Eq 6-31

NH (viewed from above the NP) Ω gt 0 rotation anticlockwise SH (viewed from above the SP) Ω lt 0 rotation clockwise Absence of other forces

120512120512 =0 ΩyΩz

=0

Ω 119901119901119891119891119901119901φΩ sin φ

Angular velocity

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 53: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

5 Equations of motion - rotating fluid

Marshall and Plumb (2008) 53

Assuming that 1) Ωz is negligible as Ωultltg 2) wltltuh leads to

minus2120512120512 times 119958119958 ≃(minus2Ω sin φ 119907119907 2Ω sin φ 1199061199060) (Eq 6-41) = 119891119891119963119963 times 119958119958 Coriolis parameter 119943119943

119891119891 = 2Ω sin 120593120593 (Eq 6-42)

Note Vertical component of the Earths rotation rate which matters

Coriolis force on the sphere ndash Coriolis parameter

Ω= 727 x 10-5 s-1 a= 637 x 106 m

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 54: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Coriolis force In direction of movement in NH deflection of air particles to the right

SH Deflection of air particles to the left takes place

Directional movement

54

Schematic picture for Coriolis force

5 Equations of motion - rotating fluid

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 55: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

Equations of motion ndash Coriolis parameter

119863119863119854119854119863119863119905119905

+ 1 120588120588

120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ (Eq 6minus43)

bull Fluid in a thin spherical shell on a rotating sphere applying hydrostatic balance for vertical component and neglecting ℱ119911119911

compared with gravity

119863119863u119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119909119909

minus 119891119891119907119907 = ℱ119909119909 (Eq 6minus44)

119863119863119907119907119863119863119905119905

+ 1 120588120588

120597120597119901119901120597120597119910119910

+ 119891119891119906119906 = ℱ119910119910

1 120588120588

120597120597119901119901120597120597119911119911

+ g = 0

55

5 Equations of motion - rotating fluid

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56
Page 56: Chapter 6: The equations of fluid motion · 2. Basics 2.1 Lagrange - Euler 2.2*Mathematical add on 3. Equation of motion for a nonrotating fluid 3.1 Forces 3.2 Equations of motion

bull 5 equations for the evolution of the fluid with 5 unknowns (uvwpT) equations of motion (3) conservation of mass (1) thermodynamic equation (1)

bull Equations of motion on a non-rotating fluid Pressure gradient force gravitational force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + g119963119963 = ℱ

bull Equations of motion on a rotating fluid Pressure gradient force modified gravitational potential (gravitational and centrifugal force) Coriolis force and friction force act 119863119863119854119854

119863119863119905119905 + 1

120588120588120571120571119901119901 + 120571120571120567120567 +f 119963119963 times 119958119958 = ℱ

Take home message

56

  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Who am I
  • Slide Number 3
  • Motivation
  • Equations of fluid motions
  • Differentiation following the motion -Lagrange and Euler perspectives
  • Differentiation following the motion -Lagrange ndash Euler derivatives
  • Differentiation following the motionmathematically
  • Differentiation following the motionmathematically
  • Nomenclature summary
  • Slide Number 11
  • Slide Number 12
  • 22 Basics - Mathematical add on
  • Vector operations - Multiplication with a scalar a -
  • Vector operations- Scalar product -
  • Vector operations ndash vector product
  • Slide Number 17
  • Nabla operator
  • Nabla operator ndash algorithms
  • Slide Number 20
  • 3 Equations of motion - nonrotating fluid
  • Momentum conservation
  • Forces on a fluid parcel
  • Gravitational force
  • Pressure gradient force
  • Friction force
  • Equations of motion
  • Equations of motion ndash component form
  • Hydrostatic balance
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Approximation for continuity equation incompressible - compressible flows
  • Thermodynamic equation
  • Thermodynamic equation - potential temperature
  • Slide Number 40
  • Coordinate systems in meteorology
  • Summary
  • Forces on rotating sphere
  • Slide Number 44
  • Slide Number 45
  • Rotating equations of motion
  • Slide Number 47
  • Centrifugal accel ndash modified gravitational potential
  • Slide Number 49
  • GEF 1100 ndash Klimasystemet Chapter 6 The equations of fluid motion
  • Slide Number 51
  • Slide Number 52
  • Slide Number 53
  • Coriolis force
  • Equations of motion ndash Coriolis parameter
  • Slide Number 56