19
Introduction to vectors MC11 Qld-7 133 Exercise 7A — Vectors and scalars 1 a i r s + % % ii r s % % iii s r % % b i 2 2 r s + % % Same as 1 a i except scaled by a factor of 2. ii 2 2 r s % % Same as 1 a ii except scaled by a factor of 2. iii 3 4 s r % % 2 a A to D = s t + % % b A to B = s t u v + + + % % % % c D to A = s t % % d B to E = v u t % % % e C to A = u t s % % % 3 Displacement = (4 2) north = 2 km north The answer is C. 4 a u v + % % = A to C b u v % % = D to B c v u % % = B to D d 3 2 2 u v u v + % % % % = u v + % % = A to C 5 u % = 2v w + % % w % = v u % % u % = 2v v u + % % % = 3v u % % 2u % = 3v % u % = 3 2 v % The answer is D. 6 a CH u uur = CG GH + u uur uuur = r s + % % b CJ u ur = CG GJ + u uur uur = s t + % % c GD u uur = GH HD + u uur uuur = r s % % d FI u ur = FE EI + u uur uur = r s + % % e HE u uur = HI IE + u ur uur = t s % % f DJ u ur = DH HG GJ + + u uur uuur uur = s r t + % % % g CI u ur = CD DE EI + + u uur uuur uur = r t s + + % % % h JC u ur = JG GC + u ur uuur = t s −− % % 7 a and b c R % = 2 2 300 400 + = 250 000 = 500 km d tan θ = 400 300 θ = tan 1 ( ) 4 3 θ = 53.1° clockwise from north. 8 EF = TE = 300 cos 45° = 300 × 2 2 = 150 2 km Total distance east of the starting point is 300 + 150 2 = 512.1 km Chapter 7 — Introduction to vectors

Chapter 7 — Introduction to vectorsthefinneymathslab.weebly.com/uploads/8/1/0/4/81042930/ch...Chapter 7 — Introduction to vectors MC11 Qld-7 134 Introduction to vectors Resultant

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chapter 7 — Introduction to vectorsthefinneymathslab.weebly.com/uploads/8/1/0/4/81042930/ch...Chapter 7 — Introduction to vectors MC11 Qld-7 134 Introduction to vectors Resultant

I n t r o d u c t i o n t o v e c t o r s M C 1 1 Q l d - 7 133

Exercise 7A — Vectors and scalars 1 a i r s+

% %

ii r s−

% %

iii s r−

%%

b i 2 2r s+% %

Same as 1 a i except scaled by a factor of 2. ii 2 2r s−

% %

Same as 1 a ii except scaled by a factor of 2. iii 3 4s r−

%%

2 a A to D = s t+

% %

b A to B = s t u v+ + +

% % % %

c D to A = s t− −

% %

d B to E = v u t− − −

% % %

e C to A = u t s− − −

% % %

3

Displacement = (4 − 2) north = 2 km north The answer is C. 4 a u v+

% %

= A to C b u v−

% %

= D to B c v u−

% %

= B to D d 3 2 2u v u v+ − −

% % % %

= u v+% %

= A to C

5 u%

= 2v w+% %

w

% = v u−% %

⇒ u%

= 2v v u+ −% % %

= 3v u−

% %

2u%

= 3v%

u%

= 32 v%

The answer is D. 6 a CH

uuur = CG GH+

uuur uuur

= r s+% %

b CJuur

= CG GJ+uuur uur

= s t+

% %

c GDuuur

= GH HD+uuur uuur

= r s−

% %

d FIuur

= FE EI+uuur uur

= r s+

% %

e HEuuur

= HI IE+uur uur

= t s−

% %

f DJuur

= DH HG GJ+ +uuur uuur uur

= s r t− +

%% %

g CIuur

= CD DE EI+ +uuur uuur uur

= r t s+ +

% % %

h JCuur

= JG GC+uur uuur

= t s− −

% %

7 a and b

c R%

= 2 2300 400+

= 250 000 = 500 km d tan θ = 400

300

θ = tan−1 ( )43

θ = 53.1° clockwise from north. 8

EF = TE = 300 cos 45° = 300 × 2

2

= 150 2 km Total distance east of the starting point is 300 + 150 2 = 512.1 km

Chapter 7 — Introduction to vectors

Page 2: Chapter 7 — Introduction to vectorsthefinneymathslab.weebly.com/uploads/8/1/0/4/81042930/ch...Chapter 7 — Introduction to vectors MC11 Qld-7 134 Introduction to vectors Resultant

M C 1 1 Q l d - 7 134 I n t r o d u c t i o n t o v e c t o r s

Resultant bearing:

tan θ = 150 2(300 150 2)+

≈ 0.414 θ = 22.5° Resultant bearing is 90° − 22.5° = 67.5° clockwise from north 9

R

% = 2 2600 400+

= 520 000 = 721.1 km tan θ = 600

400

θ = tan−1 ( )32

θ = 56.3° Resultant bearing = 270° + 56.3° = 326.3° 10 a a b+

% %

8 east and 8 north b 3a b+

% %

18 east and 14 north c a b−

% %

2 west and 2 north d b a−

% %

2 east and 2 south e 3 4b a−

% %

3 east and 11 south f 0.5 2.5a b+

% %

14 east and 10 north g 2.5a b−

% %

9.5 west and 2.5 south h 4a

%

12 east and 20 north i 2.5 1.5a b−

% %

8 north j 2.5b a−

% %

2.5 west and 9.5 south

11

AB

uuur = 2 210 4+

= 116 = 10.77

θ = tan−1 410⎛ ⎞⎜ ⎟⎝ ⎠

= 21.8° Bearing is 90° − 21.8° = 068.2° True

12

AC

uuur = a b−

% %

BDuuur

= a b+% %

ACuuur

+ BDuuur

= b a ba + +−% % %%

= 2a

%

13

3( )u v+

% % = 3 3u v+

% %

14

( )a b c+ +

% % % = ( )a b c+ +

% % %

15

3r s−

% % = ( 3 )s r− −

%%

16

The horizontal component of w

%is 4

The vertical component of w%

is 5 The horizontal component of v

%is 2

The vertical component of v%

is 3 w v+

% % = (6, 8)

17

w v−

% % = (2, 2)

Page 3: Chapter 7 — Introduction to vectorsthefinneymathslab.weebly.com/uploads/8/1/0/4/81042930/ch...Chapter 7 — Introduction to vectors MC11 Qld-7 134 Introduction to vectors Resultant

I n t r o d u c t i o n t o v e c t o r s M C 1 1 Q l d - 7 135

18 a

4w

% = (16, 20)

b

2v−

% = (− 4, − 6)

19 One can deduce that x and y components can be added, subtracted and multiplied separately.

20 ODuuur

= 2 4a b× + ×% %

= 2 4a b+

% %

The answer is B. 21 EO

uuur = 3 4a b− × + − ×

% %

= 3 4a b− −% %

The answer is D.

22

Net displacement vector is O

%

23 Displacement, velocity, force 24 Speed, time, length 25 1 magnitude and 2 angles (N–S) and (E–W).

Exercise 7B — Position vectors in two and three dimensions 1 a 3 4 2i j k+ −

% %%

x = 3, y = 4, z = −2 b 6 3i k−

% %

x = 6, y = 0, z = −3 c 1

23.4 2i j k+ +% %%

x = 3.4, y = 2 z = 12

2 a i | |v%

= 2 26 6+

= 36 36+

= 72 = 6 2 ii θ = tan−1 ( )6

6

= tan−1 1 = 45°

b i | |w%

= 2 2( 4) 7− +

= 16 49+

= 65 ii tan−1 ( )7

4−

= tan−1 (−1.75) = −60.3° θ = 180° − 60.3° = 119.7° (second quadrant)

c i | |a%

= 2 2( 3.4) ( 3.5)− + −

= 11.56 12.25+

= 23.81 ≈ 4.88 ii tan−1 ( )3.5

3.4−−

= tan−1 (1.0294) = 45.8° θ = 180° + 45.8° = 225.8° (third quadrant)

d i | |b%

= 2 2320 ( 10)+ −

= 102 400 100+

= 102 500

= 50 41 (≈ 320.16) ii tan−1 ( )10

320−

= tan−1 (− 0.031 25) = -1.8° or θ = 360° − 1.8° = 358.2° (fourth quadrant)

3 a 045° T b 270° + 60.3° = 330.3° T c 270° − 45.8° = 224.2° T d 90° + 1.8° = 091.8° Τ

4

θ = 90° + (360 − 210)° = 240° x = | |w

%cos 240°

= 100 cos 240° = −50 y = | |w

%sin 240°

= 100 sin 240° = −100 sin 60° = −50 3 w

% = 50 50 3i i− −

% %

5

x = 10 cos 30, y = 10 sin 30° = 5 3 = 5 The answer is C.

Page 4: Chapter 7 — Introduction to vectorsthefinneymathslab.weebly.com/uploads/8/1/0/4/81042930/ch...Chapter 7 — Introduction to vectors MC11 Qld-7 134 Introduction to vectors Resultant

M C 1 1 Q l d - 7 136 I n t r o d u c t i o n t o v e c t o r s

6

θ = 90° − 147° = −57° x = 457 cos (−57°) = 248.9 y = 457 sin (−57°) = −383.3 ⇒ u

% = 248.9 i

% − 383.3 j

%

7

θ = 90° + (360 − 331°) = 119° x = 125 cos 119° = − 60.6 y = 125 sin 119° = 109.3 ⇒ b

% = −60.6 i

% + 109.3 j

%

8

420cos45 420sin 45

210 2 210 2

a i j

i j

= ° − °

= −% % %

% %

200cos60 200sin 60

100 100 3

b i j

i j

= −

= −

o o

% % %

% %

( ) ( )( ) ( )210 2 210 2 100 100 3

210 2 100 210 2 100 3

a b i j i j

i j

+ = − + −

= + − +% % % %% %

% %

( ) ( )2 2210 2 100 210 2 100 3

615.4

a b+ = + + +

=% %

1 210 2 100 3tan

210 2 10049.8

θ − ⎛ ⎞+= −⎜ ⎟⎜ ⎟+⎝ ⎠= −

The resultant displacement is 615 km at 49.8° south of east.

9

20cos45 20sin 45

10 2 10 2

a i j

i j

= ° + °

= +% % %

% %

30cos45 30sin 45

15 2 15 2

b i j

i j

= ° − °

= −% % %

% %

( ) ( )( ) ( )10 2 10 2 15 2 15 2

10 2 15 2 10 2 15 2

25 2 5 2

a b i j i j

i j

i j

+ = + + −

= + + −

= −

% % % %% %

% %

% %

( ) ( )2 225 2 5 2

1300

10 1336

a b+ = +

=

=≈

% %

1 5 2tan

25 211.3

θ − ⎛ ⎞−= ⎜ ⎟⎜ ⎟⎝ ⎠

= −

Take 36 steps in a direction 11.3° south of east.

10

15cos30 15sin30

15 3 152 2

a i j

i j

= ° + °

= +

% % %

% %

12sin 40 12cos40b i j= − ° + °% % %

( )15 3 15 12sin 40 12cos402 2

15 3 1512sin 40 12cos402 2

20.7038 1.6925

a b i j i j

i j

i j

⎛ ⎞− = + − − ° + °⎜ ⎟⎜ ⎟

⎝ ⎠⎛ ⎞ ⎛ ⎞= + ° + − °⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

= −

% % % %% %

% %

% %

2 220.7038 1.6925

20.8a b− = +

=% %

The scouts are 20.8 km apart. 11 a a

% = 3 4i j+

% %

| |a%

= 2 23 4+ = 5 a

% = 3

5 i%

+ 45 j%

b d%

= 3 4i j−% %

| |d%

= 2 23 ( 4)+ − = 5 d

% = 3

5 i%

− 45 j%

c b%

= 4 3i j+% %

| |b%

= 2 24 3+ = 5 b

% = 4

5 i%

+ 35 j%

d e%

= 4 3i j− +% %

| |e%

= 2 2( 4) 3− + = 5 e

% = 4

5 i−%

+ 35 j%

e c%

= i%

+ 2 j%

| |c%

2 21 ( 2)

3

= +

=

c%

= 213 3

i j+% %

Page 5: Chapter 7 — Introduction to vectorsthefinneymathslab.weebly.com/uploads/8/1/0/4/81042930/ch...Chapter 7 — Introduction to vectors MC11 Qld-7 134 Introduction to vectors Resultant

I n t r o d u c t i o n t o v e c t o r s M C 1 1 Q l d - 7 137

f f%

= 3.5 2.7i j− +% %

| |f%

2 2( 3.5) (2.7)4.42

= − +≈

f%

= 3.5 2.74.42 4.42

i j− +% %

= 0.792 0.611i j− +% %

12 v%

= 3 4i j−% %

| |v%

= 2 23 ( 4)+ − = 5 v

% = 3 4

5 5i j−% %

The answer is B. 13 v

% = 0.3 0.4i j+

% %

| |v%

= 2 20.3 0.4+ = 0.5

v%

= 0.3 0.40.5 0.5

i j+% %

= 0.6 0.8i j+% %

= 2(0.3 0.4 )i j+% %

= 2v%

14 w

% = 0.1 0.02i j− −

% %

| |w%

= 2 2( 0.1) ( 0.02)− + − = 0.102

w%

= 0.1 0.020.102 0.102

i j− −% %

= 0.98 0.20i j− −% %

15 w%

= 50 50 3i j− −% %

| |w%

= 2 2( 50) ( 50 3)− + −

= 2500 7500+

= 10 000 = 100

w%

= 50 50 3100 100

i j− −% %

= 1 32 2

i j− −% %

16 a ABuuur

= (4 0) (5 1)i j− + −% %

= 4 4i j+% %

b BAuuur

= (0 4) (1 5)i j− + −% %

= 4 4i j− −% %

17 a i ABuuur

= (4 0) ( 5 2)i j− + − −% %

= 4 7i j−% %

ii |AB|uuur

= 2 24 ( 7)+ −

= 65 b i AB

uuur = (5 2) (4 3)i j− + −

% %

= 3i j+% %

ii |AB|uuur

= 2 23 1+

= 10 c i AB

uuur = (0 4) (2 5)i j− + − −

% %

= 4 7i j− +% %

ii |AB|uuur

= 2 2( 4) 7− +

= 65 d i AB

uuur = (2 5) (3 4)i j− + −

% %

= 3i j− −% %

ii |AB|uuur

= 2 2( 3) ( 1)− + −

= 10 e i AB

uuur = (5 − 3) i

% + (7 − 7) j

%

= 2i%

ii |AB|uuur

= 22 = 2 f i AB

uuur = (3 7) ( 3 3)i j− + − − −

% %

= 4i−%

ii |AB|uuur

= 2( 4)− = 4

18 a BAuuur

= − ABuuur

= 4 7i j− +

% %

b BAuuur

= 3i j− −% %

c BAuuur

= 4 7i j−% %

d BAuuur

= 3i j+% %

e BAuuur

= 2i−%

f BAuuur

= 4i%

19 a ABuuur

= 4 7i j−% %

|AB|uuur

= 65

ˆ

ABuuur

= 1 (4 7 )65

i j−% %

= 4 765 65

i j−% %

b ABuuur

= 3i j+% %

|AB|uuur

= 10

ˆ

ABuuur

= 3 110 10

i j+% %

c ABuuur

= 4 7i j− +% %

|AB|uuur

= 65

ˆ

ABuuur

= 4 765 65

i j− +% %

d ABuuur

= 3i j− −% %

|AB|uuur

= 10

ˆ

ABuuur

= 3 110 10

i j− −% %

e ABuuur

= 2i%

|AB|uuur

= 2

ˆ

ABuuur

= 22

i%

= i%

f ABuuur

= 4i−%

|AB|uuur

= 4

Page 6: Chapter 7 — Introduction to vectorsthefinneymathslab.weebly.com/uploads/8/1/0/4/81042930/ch...Chapter 7 — Introduction to vectors MC11 Qld-7 134 Introduction to vectors Resultant

M C 1 1 Q l d - 7 138 I n t r o d u c t i o n t o v e c t o r s

ABuuur

= 44

i−%

= i−%

20 u

% = 5 2i j−

% % and e

% = 2 3i j− +

% %

a i | |u%

= 2 25 ( 2)+ −

= 29

ii | |e%

= 2 2( 2) 3− +

= 13

iii u%

= 5 229 29

i j−% %

iv e%

= 2 313 13

i j− +% %

v u e+% %

= 5 2 2 3i j i j− − +% %% %

= 3i j+% %

vi | |u e+% %

= 2 23 1+

= 10 b | | | |u e+

% % = 29 13 | |u e+ > +

% % = 10

Therefore, reject the statement as the magnitudes are different.

21 u%

= 3 4i j− +% %

and e%

= 5i j−% %

a i | |u%

= 2 2( 3) 4− +

= 25 = 5

ii | |e%

= 2 25 ( 1)+ −

= 26

iii u%

= 3 45 5

i j− +% %

iv e%

= 5 126 26

i j−% %

v u e+% %

= ( 3 5) (4 1)i j− + + −% %

= 2 3i j+% %

vi | |u e+% %

= 2 22 3+

= 13 b | | | |u e+

% % = 5 26 | |u e+ > +

% % = 13

Therefore, reject the statement as the magnitudes are different.

22 a a b−% %

= (3 2) (2 3)i j− + −% %

= i j−% %

| |a b−% %

= 2 21 1+

= 2 b a b−

% % = (5 2) ( 2 5)i j− + − −

% %

= 3 7i j−% %

| |a b−% %

= 2 23 7+

= 58 23

a r

% = 3i

%

b b%

= 5 j%

c v%

= 3 5i j+% %

d tanθ = 53

θ = tan−1 53

= 59.0° True bearing = 90° − 59.0° = 031.0°

e | |v%

= 2 25 3+

= 34 km/h

24

θ = tan−1 35

⎛ ⎞⎜ ⎟⎝ ⎠

= 31.0° True bearing = 360° − 31.0° = 329.0° The boat should travel on a bearing of 329.0° to arrive at

the opposite bank due north of the starting position.

25 a 2 2 23 4 ( 5)+ + −

= 50 = 5 2

b 2 2 2( 3) ( 4) 5− + − +

= 50 = 5 2

c 2 2 20.5 ( 2) 3+ − + = 3.64

d 2 2 2( 2) ( 2 2) 1+ − +

= 11

e 2 2 2( 7) (14) ( 21)− + + −

= 686 = 7 14 or 26.19

f 2 2 21 1 1+ +

= 3 26 a a

% = 5 2 (4 3 2 )i j k i j k− + − + −

% % % %% %

= 5 3i j k− +% %%

| |a%

= 2 2 21 ( 5) 3+ − +

= 35 b b

% = 5 (2 )i j k i j k+ + − + −

% % % %% %

= 3 2i k+% %

| |b%

= 2 23 2+

= 13 c c

% = 3 ( 2 3 )i k i j k+ − − + +

% % % %%

= 4 2 2i j k− −% %%

| |c%

= 2 2 24 ( 2) ( 2)+ − + −

= 24 = 2 6 d d

% = 8 5 2 ( 3 )i j k i j k+ + − + −

% % % %% %

= 7 2 3i j k+ +% %%

Page 7: Chapter 7 — Introduction to vectorsthefinneymathslab.weebly.com/uploads/8/1/0/4/81042930/ch...Chapter 7 — Introduction to vectors MC11 Qld-7 134 Introduction to vectors Resultant

I n t r o d u c t i o n t o v e c t o r s M C 1 1 Q l d - 7 139

| |d%

= 2 2 27 2 3+ +

= 62 27 C = (2, 6, 0), D = (3, −1, −2), E = (−4, 8, 10) and

F = (−2, −6, 6) CD

uuur = 3 2 (2 6 )i j k i j− − − +

% % %% %

= 7 2i j k− −%%

EFuur

= 2 6 6 ( 4 8 10 )i j k i j k− − + − − + +% % % %% %

= 2 14 4i j k− −% %%

= 2( 7 2 )i j k− −% %%

= 2 CDuuur

⇒ EF || CD

uur uuur

28 a

a

% = 20i

%, b%

= 15 j−%

a b−% %

= 20 15i j+% %

b | |a b−% %

= 2 220 15+ = 25 c tan θ = 15

20

θ = tan−1 ( )1520

= 36.9° True bearing = 90° − 36.9° = 053.1°

29 u%

= 3 4i j+% %

tan θ = 43

θ = tan−1 43

θ = 53.1° v

% = 4 3i j−

% %

tan θ = 34

θ = tan−1 ( )34−

θ = −36.9° Difference = 53.1 − −36.9 = 90° That is, the two vectors are perpendicular to each other. 3 × 4 + 4 × −3 = 12 − 12 = 0 To confirm that this is a pattern for all perpendicular

vectors, let 1 1u x i y j= +% % %

and let u%

make an angle of θ to

the positive direction of the x-axis. Let 2 2v x i y j= +% % %

be at

right angles to vector u%

. As the vectors are perpendicular, v%

will be at 90 – θ to the negative direction of the x axis,

1

1tan y

xθ = [1]

( )

( )( )

2

2

2

2

2

2

2

2

2

2

tan 90

sin 90cos 90

cossinsincos

tan [2]

yx

yx

yxx

yx

y

θ

θθθθθθ

θ

− =−

−=

− −

=−−=

−=

Equating [1] and [2]

1 2

1 2

1 2 1 2

1 2 1 20

y xx y

y y x xx x y y

−=

= −= +

30 a

v

% = − 4 12i j+

% %

b tan θ = 412

θ = 18.4° True bearing = 360° − 18.4° = 341.6°

c time = distancespeed

= 0.5 km12 km / h

= 0.041 667 hours Time taken is 2.5 minutes.

Exercise 7C — Multiplying two vectors — the dot product 1 If u

%= 3 3i j+

% % and v

% = 6 2i j+

% %

| |u%

= 2 23 3+ | |v%

= 2 26 2+

= 18 = 40 = 3 2 = 2 10

tan β = 2

6 tan α = 33

= 13 = 1

⇒ β = 18.4° ⇒ α = 45° θ = α β− = 45° − 18.4° = 26.6° cos θ = 0.8942 ∴ u v⋅

% % = | || |u v

% %cos θ

Page 8: Chapter 7 — Introduction to vectorsthefinneymathslab.weebly.com/uploads/8/1/0/4/81042930/ch...Chapter 7 — Introduction to vectors MC11 Qld-7 134 Introduction to vectors Resultant

M C 1 1 Q l d - 7 140 I n t r o d u c t i o n t o v e c t o r s

= 3 2 2 10 0.8942× × = 23.99 2 3 3u i j= +

% % % and 6 2v i j= +

% % %

u v⋅% %

= 3 × 6 + 3 × 2 = 18 + 6 = 24 This is more accurate as no angle is required. 3 a u v⋅

% % = (2 3 5 ) (3 3 6 )i j k i j k+ + ⋅ + +

% % % %% %

= 2 × 3 + 3 × 3 + 5 × 6 = 6 + 9 + 30 = 45

b u v⋅% %

= (4 2 3 ) (5 2 )i j k i j k− + ⋅ + −% % % %% %

= 4 × 5 + −2 × 1 + 3 × −2 = 20 − 2 − 6 = 12 c u v⋅

% % = ( 4 5 ) (3 7 )i j k i j k− + − ⋅ − +

% % % %% %

= −1 × 3 + 4 × −7 + −5 × 1 = −3 − 28 − 5 = −36 d u v⋅

% % = (5 9 ) (2 4 )i j i j+ ⋅ −

% %% %

= 5 × 2 + 9 × − 4 = 10 − 36 = −26 e u v⋅

% % = ( 3 ) ( 4 )i j j k− + ⋅ +

% %% %

= −3 × 0 + 1 × 1 + 0 × 4 = 1 f u v⋅

% % = (10 ) ( 2 )i i⋅ −

% %

= 10 × −2 = −20 g u v⋅

% % = (3 5 ) ( )j k i+ ⋅

% %%

= 0 × 1 + 3 × 0 + 5 × 0 = 0 h u v⋅

% % = (6 2 2 ) ( 4 )i j k i j k− + ⋅ − − −

% % % %% %

= 6 × −1 + −2 × −4 + 2 × −1 = −6 + 8 − 2 = 0

4 u v⋅% %

= (3 3 3 ) ( 2 6 )i j k i j k− + ⋅ − +% % % %% %

= 3 × 1 + −3 × −2 + 3 × 6 = 3 + 6 + 18 = 27 The answer is E. 5

u v⋅

% % = | | | | cosu v θ

% %

= 6 × 5 cos 135° = −21.2 The answer is C. 6 u v⋅

% % = | | | | cosu v θ

% %

| |u%

= 7, | |v%

= 8 and θ = 180° − 50° = 130° u v⋅

% % = 7 × 8 cos 130°

= −35.996 ≈ −36

7 u u⋅% %

= ( ) ( )xi yj xi yj+ ⋅ +% %% %

= x × x + y × y = x2 + y2

8 u v⋅% %

= (2 5 ) ( 2 4 )i j k i j k− + ⋅ − − +% % % %% %

= 2 × −1 + −5 × −2 + 1 × 4 = −2 + 10 + 4 = 12 9 ( )w u v⋅ −

% % % = (5 2 ) [3 2 ( 2 )]i j i j i j− ⋅ + − −

% % %% % %

= (5 2 ) (2 4 )i j i j− ⋅ +% %% %

= 5 × 2 + −2 × 4 = 10 − 8 = 2 w u w v⋅ − ⋅

% % % % = (5 2 ) (3 2 ) (5 2 ) ( 2 )i j i j i j i j− ⋅ + − − ⋅ −

% % % %% % % %

= 5 × 3 + −2 × 2 − (5 × 1 + −2 × −2) = 15 − 4 − (5 + 4) = 15 − 4 − 9 = 2 ⇒ ( )w u v⋅ −

% % % = w u w v⋅ − ⋅

% % % %

10 ( )w u v⋅ +% % %

= (5 2 ) (3 2 2 )i j i j i j− ⋅ + + −% % %% % %

= (5 2 ) (4 )i j i− ⋅% %%

= 5 × 4 + −2 × 0 = 20 w u w v⋅ + ⋅

% % % % = (5 2 ) (3 2 ) (5 2 ) ( 2 )i j i j i j i j− ⋅ + + − ⋅ −

% % % %% % % %

= 5 × 3 + −2 × 2 + 5 × 1 + −2 × −2 = 15 − 4 + 5 + 4 = 20 ⇒ ( )w u v⋅ +

% % % = w u w v⋅ + ⋅

% % % %

11 Two vectors are perpendicular if their dot product is 0. A: (5 4 3 ) ( 5 4 3 )i j k i j k+ + ⋅ − − −

% % % %% %

= 5 × −5 + 4 × − 4 + 3 × −3 = −50 B: (5 4 3 ) (3 4 5 )i j k i j k+ + ⋅ + +

% % % %% %

= 15 + 16 + 15 = 46 C: (5 4 3 ) ( 5 )i j k i+ + ⋅ −

% % %%

= −25 D: (5 4 3 ) ( 3 5 )i j k i k+ + ⋅ − +

% % % %%

= −15 + 15 = 0 The answer is D.

12 ( ) ( )u v u v− ⋅ +% % % %

= 0 ⇒ u u v v⋅ − ⋅

% % % % = 0

u2 − v2 = 0 u2 = v2

The answer is B. 13 ( ) ( )u v u v− ⋅ +

% % % % = 2| |v

%

⇒ 2 2| | | |u v−% %

= 2| |v%

2| |u%

= 22 | |v%

or u%

= 2 v%

The answer is D. 14 a (4 3 ) (7 4 )i k j k− ⋅ +

% % %%

= 4 × 0 + 0 × 7 + −3 × 4 = −12

b ( 2 3 ) ( 9 4 )i j k i j k+ − ⋅ − + −% % % %% %

= −9 + 8 + 3 = 2

Page 9: Chapter 7 — Introduction to vectorsthefinneymathslab.weebly.com/uploads/8/1/0/4/81042930/ch...Chapter 7 — Introduction to vectors MC11 Qld-7 134 Introduction to vectors Resultant

I n t r o d u c t i o n t o v e c t o r s M C 1 1 Q l d - 7 141

c (8 3 ) (2 3 4 )i j i j k+ ⋅ − +% % %% %

= 16 − 9 + 0 = 7 d (5 5 5 ) (5 5 5 )i j k i j k− + ⋅ + −

% % % %% %

= 25 − 25 − 25 = −25

15 a | |u%

= 2 24 ( 3)+ − , | |v%

= 2 27 4+

= 5 = 65

cos θ = u vuv⋅

% %

= 125 65

−×

≈ − 0.2977 θ = 107°

b | |u%

= 2 2 21 2 ( 3)+ + − ,

= 14

| |v%

= 2 2 2( 19) 4 ( 1)− + + −

= 98

cos θ = 214 98

= 0.053 99 θ = 87°

c | |u%

= 2 28 3+ , | |v%

= 2 2 22 ( 3) 4+ − +

= 73 = 29

cos θ = 773 29

= 0.152 14 θ = 81°

d | |u%

= 2 2 25 ( 5) 5+ − + , | |v%

= 2 2 25 5 ( 5)+ + −

= 75 = 75

cos θ = 2575 75−

= 13−

θ = 109° 16 u v⋅

% % = (2 3 ) (2 3 )i j i j+ ⋅ −

% %% %

= 4 − 9 = −5

| |u%

= 2 22 3+ , | |v%

= 2 22 ( 3)+ −

= 13 = 13

cos θ = 513 13

= 513−

= −0.384 62 θ = 112.6° ≈ 113° The answer is D. 17 u v⋅

% % = (2 3 ) ( 4 6 )i j i j− ⋅ − +

% %% %

= −8 − 18 = −26

| |u%

= 2 22 ( 3)+ − , | |v%

= 2 2( 4) 6− +

= 13 = 52

cos θ = 2613 52−

= 2626−

= −1 θ = 180° The answer is E. 18 v u⋅

% % = ( 3 ) (6 2 )ai j i j+ ⋅ −

% %% % = 0

6a − 6 = 0 6a = 6 a = 1 19 v u⋅

% % = ( 2 3 ) (4 3 2 )ai aj k i j k− + ⋅ − +

% % % %% % = 0

4a + 6a + 6 = 0 10a + 6 = 0 10a = − 6 a = 6

10−

a = 35−

20 2 4u i j= +% % %

Let v%

= (2 4 )k i j+% %

= 2 4ki kj+% %

u v⋅% %

= (2 4 ) (2 4 )i j ki kj+ ⋅ +% %% %

= 40

4 k + 16 k = 40 20 k = 40 k = 2 v

% = 4 8i j+

% %

21 4 3u i j= −% % %

Let v%

= (4 3 )k i j−% %

= 4 3ki kj−% %

u v⋅% %

= (4 3 ) (4 3 )i j ki kj− ⋅ −% %% %

= 80

16 k + 9 k = 80 25k = 80 k = 80

25

= 165

v%

= 64 485 5

i j−% %

Exercise 7D — Resolving vectors — scalar and vector resolutes 1 a u

% = 2 3i j+

% % and a

% = 4 5i j+

% %

i | |u%

= 2 22 3+

= 13

u%

= 1 (2 3 )13

i j+% %

u a⋅% %

= 1 (2 3 ) (4 5 )13

i j i j+ ⋅ +% %% %

= 8 1513 13

+

= 2313

= 23 1313

ii | |a%

= 2 24 5+

= 41

a%

= 1 (4 5 )41

i j+% %

a u⋅% %

= 1 (4 5 ) (2 3 )41

i j i j+ ⋅ +% %% %

Page 10: Chapter 7 — Introduction to vectorsthefinneymathslab.weebly.com/uploads/8/1/0/4/81042930/ch...Chapter 7 — Introduction to vectors MC11 Qld-7 134 Introduction to vectors Resultant

M C 1 1 Q l d - 7 142 I n t r o d u c t i o n t o v e c t o r s

= 8 1541 41

+

= 2341

= 23 4141

b u%

= 5 2i j−% %

and a%

= 3i j−% %

i | |u%

= 2 25 ( 2)+ −

= 29

u%

= 1 (5 2 )29

i j−% %

u a⋅% %

= 1 (5 2 ) (3 )29

i j i j− ⋅ −% %% %

= 15 229 29

+

= 1729

= 17 2929

ii | |a%

= 2 23 ( 1)+ −

= 10

a%

= 1 (3 )10

i j−% %

ˆ .a u% %

= 1 (3 ) (5 2 )10

i j i j− ⋅ −% %% %

= 15 210 10

+

= 1710

= 17 1010

c u%

= 2 6i j− +% %

and 4a i j= −% % %

i | |u%

= 2 2( 2) 6− +

= 40 = 2 10

u%

= 1 ( 2 6 )2 10

i j− +% %

u a⋅% %

= 1 ( 2 6 ) ( 4 )2 10

i j i j− + ⋅ −% %% %

= 2 242 10 2 10

− −

= 262 10

= 13 1010

ii | |a%

= 2 21 ( 4)+ −

= 17

a%

= 1 ( 4 )17

i j−% %

a u⋅% %

= 1 ( 4 ) ( 2 6 )17

i j i j− ⋅ − +% %% %

= 2 2417 17

− −

= 2617

= 26 1717

d u%

= 3 2i j−% %

and a%

= − 4 3i j−% %

i | |u%

= 2 23 ( 2)+ −

= 13

u%

= 1 (3 2 )13

i j−% %

u a⋅% %

= 1 (3 2 ) ( 4 3 )13

i j i j− ⋅ − −% %% %

= 12 613 13

− +

= 613

= 6 1313

ii | |a%

= 2 2( 4) ( 3)− + − = 5

a%

= 1 ( 4 3 )5

i j− −% %

a u⋅% %

= 1 ( 4 3 ) (3 2 )5

i j i j− − ⋅ −% %% %

= 12 65 5

− +

= − 65

e u%

= 8 6i j−% %

and a%

= 5i j− +% %

i | |u%

= 2 28 ( 6)+ − = 10

u%

= 1 (8 6 )10

i j−% %

u a⋅% %

= 1 (8 6 ) ( 5 )10

i j i j− ⋅ − +% %% %

= 40 610 10

− −

= 4610

= 235

ii | |a%

= 2 2( 5) 1− +

= 26

a%

= 1 ( 5 )26

i j− +% %

a u⋅% %

= 1 ( 5 ) (8 6 )26

i j i j− + ⋅ −% %% %

= 40 626 26

− −

= 4626

= 46 2626

= 23 2613

Page 11: Chapter 7 — Introduction to vectorsthefinneymathslab.weebly.com/uploads/8/1/0/4/81042930/ch...Chapter 7 — Introduction to vectors MC11 Qld-7 134 Introduction to vectors Resultant

I n t r o d u c t i o n t o v e c t o r s M C 1 1 Q l d - 7 143

2 a u%

= 3i j−% %

and v%

= 2 5i j+% %

i | |u%

= 2 23 ( 1)+ −

= 10

u%

= 1 (3 )10

i j−% %

u v⋅% %

= 1 (3 ) (2 5 )10

i j i j− ⋅ +% %% %

= 6 510 10

= 1 101010

⎛ ⎞⎜ ⎟⎜ ⎟⎝ ⎠

ii ||v%

= ˆ ˆ( )u v u⋅% % %

= 1 1 (3 )10 10

i j× −% %

= 1 (3 )10

i j−% %

= 3 110 10

i j−% %

iii v⊥%

= ||v v−% %

= 3 12 510 10

i j i j⎛ ⎞+ − −⎜ ⎟⎝ ⎠% %% %

= 17 5110 10

i j+% %

b u%

= 4 5i j+% %

and v%

= 8 10i j+% %

i | |u%

= 2 24 5+

= 41

u%

= 1 (4 5 )41

i j+% %

u v⋅% %

= 1 (4 5 ) (8 10 )41

i j i j+ ⋅ +% %% %

= 32 5041 41

+

= 82 4141

= 2 41 ii ||v

% = ˆ ˆ( )u v u⋅

% % %

= 12 41 (4 5 )41

i j× +% %

= 8 10i j+% %

iii v⊥%

= ||v v−% %

= 8 10 (8 10 )i j i j+ − +% %% %

= 0%

c u

%= 4 3i j+

% % and v

% = − 3 4i j+

% %

i | |u%

= 2 24 3+ = 5

u%

= 1 (4 3 )5

i j+% %

u v⋅% %

= 1 (4 3 ) ( 3 4 )5

i j i j+ ⋅ − +% %% %

= 12 125 5

− +

= 0

ii ||v%

= ˆ ˆ( )u v u⋅% % %

= 10 (4 3 )5

i j× +% %

= 0%

iii v⊥

% = ||v v−

% %

= − 3 4 0i j+ −% %%

= − 3 4i j+% %

d u%

= i j k+ +% %%

and v%

= 2i j k+ −% %%

i | |u%

= 2 2 21 1 1+ +

= 3

u%

= 1 ( )3

i j k+ +% %%

u v⋅% %

= 1 ( )(2 )3

i j k i j k+ + + −% % % %% %

= 2 1 13 3 3

+ −

= 23

ii ||v%

= ˆ ˆ( )u v u⋅% % %

= 2 1 ( )3 3

i j k× + +% %%

= 2 2 23 3 3

i j k+ +% %%

iii v⊥%

= ||v v−% %

= 2 223 3 3

i j k i j k2⎛ ⎞+ − − + +⎜ ⎟⎝ ⎠% % % %% %

= 4 1 53 3 3

i j k+ +% %%

e u%

= 2 3 4i j k+ +% %%

and 2 3 4v i j k= − −% % %%

i | |u%

= 2 2 22 3 4+ +

= 29

u%

= 1 (2 3 4 )29

i j k+ +% %%

u v⋅% %

= 1 (2 3 4 ) (2 3 4 )29

i j k i j k+ + ⋅ − −% % % %% %

= 4 9 1629 29 29

− −

= − 2129

ii ||v%

= ˆ ˆ( )u v u⋅% % %

= 21 1 (2 3 4 )29 29

i j k− × + +% %%

= − 42 63 8429 29 29

i j k− −% %%

iii v⊥%

= ||v v−% %

= 42 63 842 3 429 29 29

i j k i j k− − + + +% % % %% %

= 100 24 3229 29 29

i j k− −% %%

= 4 (25 6 8 )29

i j k− −% %%

Page 12: Chapter 7 — Introduction to vectorsthefinneymathslab.weebly.com/uploads/8/1/0/4/81042930/ch...Chapter 7 — Introduction to vectors MC11 Qld-7 134 Introduction to vectors Resultant

M C 1 1 Q l d - 7 144 I n t r o d u c t i o n t o v e c t o r s

f u%

= 3i j k+ −% %%

and v%

= 2 3j k−%%

i | |u%

= 2 2 23 1 ( 1)+ + −

= 11

u%

= 1 (3 )11

i j k+ −% %%

u v⋅% %

= 1 (3 ) (2 3 )11

i j k j k+ − ⋅ −% % %% %

= 2 311 11

+

= 511

ii ||v%

= ˆ ˆ( )u v u⋅% % %

= 5 1 (3 )11 11

i j k× + −% %%

= 15 5 511 11 11

i j k+ −% %%

iii v⊥%

= ||v v−% %

= 15 5 52 311 11 11

j k i j k⎛ ⎞− − + −⎜ ⎟⎝ ⎠% % %% %

= − 15 17 2811 11 11

i j k+ −% %%

3

a Let the injured bushwalker’s position be denoted by v

%.

Let the path of the searcher be denoted by u%

. v

% = 2 3i j+

% %

u%

= (3 4 )k i j+% %

| |u%

= 2 23 4k + = 5k

u%

= 1 (3 4 )5

k i jk

× +% %

= 3 45 5

i j+% %

u v⋅%

= 3 4 (2 3 )5 5

i j i j⎛ ⎞+ ⋅ +⎜ ⎟⎝ ⎠% %% %

= 6 125 5

+

= 185

||v%

= ˆ ˆ( )u v u⋅% % %

= 18 3 45 5 5

i j⎛ ⎞+⎜ ⎟⎝ ⎠% %

= 54 7225 25

i j+% %

||| |v%

= 2 254 72

25 25⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

= 3.6 The searcher is 3.6 km from the camp when closest to the

bushwalker. b | |v⊥

% represents the minimum distance between the

searcher and the bushwalker.

v⊥%

= ||v v−% %

= 54 722 325 25

i j i j⎛ ⎞+ − +⎜ ⎟⎝ ⎠% %% %

= 4 325 25

i j− +% %

= 1 ( 4 3 )25

i j− +% %

| |v⊥%

= 2 21 ( 4) 325

− +

= 1 525

×

= 0.2 km

4

Let the yacht’s position be denoted by v

%.

The path of the rescue boat be denoted by u%

. v

% = 5 2i j−

% %

u%

= (3 )k i j−% %

| |v⊥%

represents the closest distance the rescue boat gets to the yacht.

| |u%

= 2 23 ( 1)k + −

= 10k

u%

= 1 (3 )10

k i jk

−% %

= 1 (3 )10

i j−% %

u v⋅% %

= 1 (3 ) (5 2 )10

i j i j− ⋅ −% %% %

= 15 210 10

+

= 1710

||v%

= ˆ ˆ( )u v u⋅% % %

= 17 1 (3 )10 10

i j× −% %

= 17 (3 )10

i j−% %

= 51 1710 10

i j−% %

v⊥%

= ||v v−% %

= 51 175 210 10

i j i j⎛ ⎞− − −⎜ ⎟⎝ ⎠% %% %

= − 1 310 10

i j−% %

= 1 ( 3 )10

i j− −% %

| |v⊥%

= 2 21 ( 1) ( 3)10

− + −

= 1 1010

= 1010

km

or ≈ 0.316 km

Page 13: Chapter 7 — Introduction to vectorsthefinneymathslab.weebly.com/uploads/8/1/0/4/81042930/ch...Chapter 7 — Introduction to vectors MC11 Qld-7 134 Introduction to vectors Resultant

I n t r o d u c t i o n t o v e c t o r s M C 1 1 Q l d - 7 145

Exercise 7E — Time-varying vectors 1 a u

% = 2ti tj−

% %

x = 2t

or t = 2x

y = − t

⇒ y = 2x−

b u%

= ( 1) 3t i t j− −% %

x = t − 1 t = x + 1 y = −3t = − 3(x + 1) = − 3x − 3 c u

% = 2( 3) 4t i t j+ +

% %

x = t + 3 t = x − 3 y = 4t 2

y = 4(x − 3)2

d u%

= 32ti t j+% %

x = 2t

t = 2x

y = t 3

y = 3

2x⎛ ⎞

⎜ ⎟⎝ ⎠

y = 3

8x

2 u%

= 2( 3) 4t i t j+ +% %

when t = 0,

u%

= 3i + 0 j The answer is B.

3 a v%

= 2( ) ,2t i t t j+ +%

t ≥ 0

x = ,2t x ≥ 0

or t = 2x y = t 2 + t = (2x)2 + 2x y = 4x2 + 2x

b When x = 0, y = 0 x = 1, y = 4 + 2 = 6

4 a v

% = 2( 1) ( 2 ) ,t i t t j+ + −

% % t ≥ 0

x = t + 1, x ≥ 1 (since t ≥ 0) or t = x − 1 y = t 2 − 2t = (x − 1)2 − 2(x − 1) = x2 − 2x + 1 − 2x + 2 y = x2 − 4x + 3

b y = x2 − 4x + 3, x ≥ 1 = (x − 2)2 + 3 − 4 = (x − 2)2 − 1 Turning point is (2, −1)

x-intercepts: x2 − 4x + 3 = 0 (x − 3)(x − 1) = 0 x = 1 or x = 3

5 a u

% = cos (2t) i

% + sin (2t) ,j

% t ≥ 0

x = cos 2t or x2 = cos2 2t y = sin 2t or y2 = sin2 2t ⇒ x2 + y2 = cos2 2t + sin2 2t x2 + y2 = 1

b Circle with centre (0, 0) and radius 1. When t = 0, u

% = .i

%

When t = 4π , u

% = .j

%

So the particle is moving from (1, 0) in an anticlockwise direction.

c Period = 22π

= π 6 a u

% = 3 cos (2t) i

% + 3 sin (2t) ,j

% t ≥ 0

x = 3 cos 2t or x2 = 9 cos2 2t y = 3 sin 2t or y2 = 9 sin2 2t ⇒ x2 + y2 = 9 cos2 2t + 9 sin2 2t x2 + y2 = 9

b Circle with centre (0, 0) and radius 3. When t = 0, u

% = 3 .i

%

When t = 4π , u

% = 3 .j

%

The particle is moving from (3, 0) in an anticlockwise direction.

c Period = 22π

= π 7 a u

% = (1 + cos t) i

% + (−2 + sin t) ,j

% t ≥ 0

x = 1 + cos t or cos t = x − 1 cos2 t = (x − 1)2

y = − 2 + sin t or sin t = y + 2 sin2 t = (y + 2)2

⇒ (x − 1)2 + (y + 2)2 = cos2 t + sin2 t (x − 1)2 + (y + 2)2 = 1

Page 14: Chapter 7 — Introduction to vectorsthefinneymathslab.weebly.com/uploads/8/1/0/4/81042930/ch...Chapter 7 — Introduction to vectors MC11 Qld-7 134 Introduction to vectors Resultant

M C 1 1 Q l d - 7 146 I n t r o d u c t i o n t o v e c t o r s

b Circle with centre (1, −2) and radius 1. When t = 0, u

% = 2 2 .i j−

% %

When t = 2π , u

% = .i j−

% %

So the particle is moving from (2, −2) in an anticlockwise direction.

c Period = 21π

= 2π 8 u

% = 3 cos 2t i

% + sin 2t ,j

% t ≥ 0

x = 3 cos 2t

or cos 2t = 3x

cos2 2t = 2

9x

y = sin 2t or sin2 2t = y2

⇒ 2

9x + y2 = cos2 2t + sin2 2t

2

9x + y2 = 1

Graph is an ellipse with centre (0, 0) with a = 3 and b = 1. When t = 0, u

% = 3i

%

When t = 4π , u

% = j

%

The particle is moving in an anticlockwise direction from (3, 0).

9 u

% = 2 cos t i

% − 4 sin t ,j

% t ≥ 0

x = 2 cos t

or cos t = 2x

cos2 t = 2

4x

y = − 4 sin t

or sin t = 4y

sin2 t = 2

16y

⇒ 2

4x +

2

16y = cos2 t + sin2 t

2

4x +

2

16y = 1

Graph is an ellipse with centre (0, 0) with a = 2 and b = 4. When t = 0, u

% = 2 .i

%

When t = 2π , u

% = 4 .j−

%

The particle is moving in a clockwise direction from (2, 0).

10 a u%

= 2

2 24 4

( 2) ( 2)t ti jt t

+ ++ +% %

x = 2

24

( 2)tt

++

y = 24

( 2)t

t +

x + y = 2

24 4

( 2)t t

t+ +

+

= 2

2( 2)( 2)tt

++

x + y = 1 or y = 1 − x

When t = 0, ( )0u%

= 4 04 4

i j+% %

= i%

x = y

When 2

24

( 2)tt

++

= 24

( 2)t

t +

or t2 + 4 = 4t t2 − 4t + 4 = 0 (t − 2)2 = 0 t = 2 So x = y when t = 2.

and (2)u%

= 4 4 816 16

i j+ +% %

= 12 2

i j1+% %

or = 12 ( )i j+% %

b u%

= 2( 2) ( 1)t i t j+ + +% %

x = t + 2, x ≥ 2 or t = x − 2 y = (t + 1)2

y = (x − 2 + 1)2

y = (x − 1)2, x ≥ 2 c u

% = (2 cos t + 3) i

% + (3 sin t − 1) j

%

x = 2 cos t + 3 x − 3 = 2 cos t

or cos t = 32

x −

y = 3 sin t − 1 y + 1 = 3 sin t

or sin t = 13

y +

⇒ 23

2x −⎛ ⎞

⎜ ⎟⎝ ⎠

+ 21

3y +⎛ ⎞

⎜ ⎟⎝ ⎠

= cos2 t + sin2 t

2 2( 3) ( 1)

4 9x y− ++ = 1

11 Ship A’s position vector is u%

= (3 1) (4 2)t i t j+ + −% %

Ship B’s position vector is v%

= (2 3) (5 1)t i t j+ + +% %

Page 15: Chapter 7 — Introduction to vectorsthefinneymathslab.weebly.com/uploads/8/1/0/4/81042930/ch...Chapter 7 — Introduction to vectors MC11 Qld-7 134 Introduction to vectors Resultant

I n t r o d u c t i o n t o v e c t o r s M C 1 1 Q l d - 7 147

Ship A: x = 3t + 1 x − 1 = 3t

or t = 13

x −

y = 4t − 2

= 4 13

x −⎛ ⎞⎜ ⎟⎝ ⎠

− 2

y = 4 4 23 3x − −

y = 4 103 3x − [1]

Ship B: x = 2t + 3 x − 3 = 2t

t = 32

x −

y = 5t + 1

= 5 32

x −⎛ ⎞⎜ ⎟⎝ ⎠

+ 1

= 5 15 12 2x − +

= 5 132 2x − [2]

Equate [1] and [2] to determine where the ships’ path cross.

4 103 3x − = 5 13

2 2x −

8x − 20 = 15x − 39 7x = 19 x = 19

7

Substitute x = 197 into [1]

y = 1974 10

3 3×

= 76 1021 3−

= 76 7021 21−

= 621

= 27

The ships paths cross at x = 197 and y = 2

7 .

12 u%

= 2ti t j+% %

x = t y = t 2

or y = x 2

v%

= 2t te i e j+% %

x = e t

y = e 2t

= 2( )te or y = x 2

To coincide: (x-components) t = e t and (y-components) t 2 = 2te or t = e t

Paths coincide if t = e t. But e t > t for all t ≥ 0. Therefore the paths can never coincide. Furthermore, v

% is always ahead of u

% (Since e t > t).

Chapter review 1 u

% = 4 i

% − 3 j

% + 0.2 k

% and v

% = 2 i

% + 4 j

% − k

%

4 u%

− 2.5 v%

= 4(4 i%

− 3 j%

+ 0.2 k%

) − 2.5(2 i%

+ 4 j%

− k%

)

= 16 i%

− 12 j%

+ 0.8 k%

− 5 i%

− 10 j%

+ 2.5 k%

= 11 i%

− 22 j%

+ 3.3 k%

The answer is A. 2 v

% = x i

% + y j

% + z k

%

Where x = 400 sin 60°

= 34002

×

= 200 3 y = 400 cos 60°

= 14002

×

= 200 z = 40 v

% = 200 3 i

% + 200 j

% + 40 k

%

3 A: 2 2 23 1 1+ + = 11 5≠

B: 2 2 22 ( 5) 4+ + = 25 = 5

C: 2 2 25 5 5 5 3 5+ + = ≠

D: 2 2 26 3 4 61 5+ + = ≠

E: 225 25 5= ≠ The answer is B. 4 PQ

uuur = i−

% + 3 j

% − 4 k

% − (3 i

% + 4 j

% − 5 k

%)

= −4 i%

− j%

+ k%

|PQ|uuur

= 2 2 2( 4) ( 1) 1− + − +

= 18 = 3 2 The answer is A.

5

a HX

uuur = 5 i

% + 10 cos 45° i

% + 10 sin 45° j

% + 5 j

%

= 5 i%

+ 5 2 i%

+ 5 2 j%

+ 5 j%

= (5 + 5 2 ) i%

+ (5 + 5 2 ) j%

b |HX|uuur

= (5 + 5 2 ) 2 = 17.07 km

6 u%

= 3 i%

+ 2 j%

− 4 k%

and v%

= −4 i%

+ 5 j%

+ k%

u v⋅% %

= (3 2 4 ) ( 4 5 )i j k i j k+ − ⋅ − + +% % % %% %

= −12 + 10 − 4 = −6 The answer is D. 7 u

% = 3 i

% − 2 j

% and v

% = 16 i

% + 24 j

%

cos θ = | | | |u vu v

⋅% %

% %

= 48 4813 832

= 0 θ = cos−1(0) = 90° The answer is E.

Page 16: Chapter 7 — Introduction to vectorsthefinneymathslab.weebly.com/uploads/8/1/0/4/81042930/ch...Chapter 7 — Introduction to vectors MC11 Qld-7 134 Introduction to vectors Resultant

M C 1 1 Q l d - 7 148 I n t r o d u c t i o n t o v e c t o r s

8 A: Magnitude = 2 24 3+

= 25 = 5 Not a unit vector.

B: Magnitude = 0 = 0 Not a unit vector.

C: Magnitude = 2 20.8 0.6+

= 1 = 1 A unit vector. and (3 4 ) (0.8 0.6 )i j i j− ⋅ +

% %% %

= 2.4 − 2.4 = 0

So the vectors are perpendicular. The answer is C. 9 u

% = 3 i

% + a j

% and v

% = 2a i

% − a j

%

(3 ) (2 )i aj ai aj+ ⋅ −% %% %

= 0

⇒ 6a − a2 = 0 a (6 − a) = 0 a = 0 or a = 6 Reject a = 0 as v

% = 0 in this case.

The answer is D.

10 cos θ = 2 2 2 2 2

(4 2 3 ) (2 2 )

4 ( 2) 3 2 ( 2)

i j k i j− + ⋅ −

+ − + + −% % %% %

= 8 429 8

+

= 122 29 2

= 658

⇒ θ = cos−1 ( )658

The answer is E. 11 u

% = 4 i

% +3 j

% and v

% = − i

% + 2 j

%

cos θ = | | | |u vu v

⋅% %

% %

= 2 2 2 2

(4 3 ) ( 2 )

4 3 ( 1) 2

i j i j+ ⋅ − +

+ − +% %% %

= 4 625 5

− +

= 25 5

= 2 525

θ = cos−12 525

⎛ ⎞⎜ ⎟⎜ ⎟⎝ ⎠

= 1.3909 12 u

% = 3 5i j−

% % and v

% = 4i j− +

% %

a u v+% %

= 3 5i j−% %

+ 4i j− +% %

= 4i j− −% %

b u v−% %

= 3 5i j−% %

− ( 4 )i j− +% %

= 7 6i j−% %

c u v⋅% %

= (3 5 ) ( 4 )i j i j− ⋅ − +% %% %

= −12 − 5 = −17

d u%

= | |uu%%

= 2 2

3 5

3 ( 5)

i j−

+ −% %

= 1 (3 5 )34

i j−% %

= 3 534 34

i j−% %

e cos θ = | | | |u vu v

⋅% %

% %

= 2 2 2 2

17

3 ( 5) ( 4) 1

+ − − +

= 1734 17−

= 1717 2−

= 12

⇒ θ = 135° 13 v

% = 3 2 4i j k− +

% %%

| |v%

= 2 2 23 ( 2) 4+ − +

= 29

x-axis: cos θ = 329

θ = 56.1°

y-axis: cos θ = 229

θ = 111.8°

z-axis: cos θ = 429

θ = 42.0° 14 [ 2(1 3 ) ] (2 3 )pi p j pi j+ − ⋅ +

% %% % = 0

2p2 + 6(1 − 3p) = 0 2p2 + 6 − 18p = 0 p2 − 9p + 3 = 0

p = 29 ( 9) 4(1)(3)2

± − −

= 9 692

±

15 a%

= i%

− 2 j%

and b%

= 2 i%

+ 3 j%

| |b%

= 3 22 3+

= 13 b

% = 1

13(2 i%

+ 3 j%

)

b a⋅% %

= 113

(2 3 ) ( 2 )i j i j+ ⋅ −% %% %

= 113

(2 − 6)

= 413

The answer is B.

16 | |a%

= 2 21 ( 2)+ −

= 5 a

% = 1

5( i%

− 2 j%

)

Page 17: Chapter 7 — Introduction to vectorsthefinneymathslab.weebly.com/uploads/8/1/0/4/81042930/ch...Chapter 7 — Introduction to vectors MC11 Qld-7 134 Introduction to vectors Resultant

I n t r o d u c t i o n t o v e c t o r s M C 1 1 Q l d - 7 149

ˆ ˆ( )a b a⋅% % %

= 1 1( 2 ) (2 3 ) ( 2 )5 5

i j i j i j− ⋅ + × −% % %% % %

= 15

(2 − 6) ( i%

− 2 j%

)

= 45− ( i

% − 2 j

%)

The answer is B. 17 a u

% = 2 i

% + 3 j

% − k

% and

v%

= i%

+ j%

− 2 k%

u%

= 1 ( )| |

uu %%

= 2 2 2

1 (2 3 )2 3 ( 1)

i j k+ −+ + − % %%

= 114

(2 i%

+ 3 j%

− k%

)

= 214

i%

+ 314

j%

− 114

k%

b ||v%

= ( ˆv u⋅% %

) u%

= 1( 2 ) (2 3 )14

i j k i j k⎡ ⎤+ − ⋅ + −⎢ ⎥⎣ ⎦% % % %% %

1 (2 3 )14

i j k+ −% %%

= 114 (2 + 3 + 2)(2 i

% + 3 j

% − k

%)

= 12 (2 i

% + 3 j

% − k

%)

v ⊥%

= v%

− ||v%

= i%

+ j%

− 2 k%

− 12 (2 i

% + 3 j

% − k

%)

= 1 32 2

j k− −%%

= 12

− ( j%

+ 3 k%

)

18 u%

= 3 sin t i%

+ 2 cos t j%

x = 3 sin t

sin t = 3x

sin2t = 2

9x

y = 2 cos t

cos t = 2y

cos2t = 2

4y

⇒ 2

9x +

2

4y = sin2t + cos2t = 1

The path is an ellipse. The answer is D.

19 u%

= 21 2( 1)i t jt

+ −% %

x = 1t

, t > 0 ⇒ x > 0

or t = 1x

y = 2( 2 1t − )

= 221 1

x

⎡ ⎤⎛ ⎞ −⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

= 2 21 1x

⎛ ⎞−⎜ ⎟⎝ ⎠

y = 22 2x

The path is hyperbolic. Asymptotes: x = 0, y = −2

Modelling and problem solving 1 a 1v

% = 8 i

% − 4 j

% + 13 k

% − (2 i

% + 8 j

% + k

%)

= 6 i%

− 12 j%

+ 12 k%

b 1v%

= 2 2 2

6 12 12

6 ( 12) 12

i j k− +

+ − +% %%

= 6 12 12

324

i j k− +% %%

= 118 (6 i

% − 12 j

% + 12 k

%)

= 13 ( i%

− 2 j%

+ 2 k%

)

c The fighter starts at 2 8i j k+ +% %%

and then continues along

the path m v%

. The equation of motion is therefore

( )ˆ2 8 2 8 2 23mi j k mv i j k i j k+ + + = + + + − +

% % % % % % %% % %

d

v%

= 1v%

= 13 ( i%

− 2 j%

+ 2 k%

)

||u%

= ˆ ˆ( )v u v⋅% % %

= 1 ( 2 2 ) ( 2 8 )3

i j k i j k⎡ ⎤− + ⋅ − − −⎢ ⎥⎣ ⎦% % % %% %

1 ( 2 2 )3

i j k− +% %%

= 19 (−2 + 16 − 2) ( i

% − 2 j

% + 2 k

%)

= 129 ( i

% − 2 j

% + 2 k

%)

= 43 ( i

% − 2 j

% + 2 k

%) from fighter’s starting position.

u⊥%

= u−%

+ ||u%

= 2 i%

+ 8 j%

+ k%

+ 43 ( i

% − 2 j

% + 2 k

%)

= 103 i%

+ 163 j%

+ 113 k%

u⊥%

= 13 (10 i

% + 16 j

% + 11 k

%) from station.

e | |u⊥%

= 2 2 21 10 16 113

+ +

= 1 4773

≈ 7.28 The distance is 7.28 km.

f Speed = 1160

| |v% km

h⎛ ⎞⎜ ⎟⎝ ⎠

= 60 1| |v%

= 60 2 2 26 ( 12) 12+ − +

Page 18: Chapter 7 — Introduction to vectorsthefinneymathslab.weebly.com/uploads/8/1/0/4/81042930/ch...Chapter 7 — Introduction to vectors MC11 Qld-7 134 Introduction to vectors Resultant

M C 1 1 Q l d - 7 150 I n t r o d u c t i o n t o v e c t o r s

= 60 324 = 60 18× = 1080 The speed of the fighter is 1080 km/h.

g Vertical speed of the fighter = 160

12

= 720 km/h. 2 a C will have the same x coordinate as D, the same y

coordinate as E and the z coordinate will be 0. C is (3, 5.5, 0) b CE

uuur = OE OC−

uuur uuur

= 5.5 j%

+ 4 k%

− (3 i%

+ 5.5 j%

)

= −3 i%

+ 4 k%

c Other diagonal = 3 i

% + 5.5 j

% + 4 k

% − 5.5 j

%

= 3 i%

+ 4 k%

cos θ = 2 2 2 2

( 3 4 ) (3 4 )

( 3) 4 3 4

i k i k− + ⋅ +

− + +% % % %

= 9 165 5

− +×

= 725

θ = 73.7° d V = 3 5.5 4× × = 66 cm3

in litres V = 66 1000÷ = 0.066 litres. e d

% = 3 i

% + 5.5 j

% + 4 k

%

f | |d%

= 2 2 23 5.5 4+ +

= 55.25 = 7.43 cm g Other longest diagonal (connecting D to the y axis) is

given by: b

% = 3 5.5 4i j k− + −

% %%

| |b%

= 55.25 = 7.43

cos θ = | | | |d bd b

⋅% %

% %

= 29 30.25 16

(7.43)− + −

= 5.2555.25

= 0.095 02 θ = 84.5°

3 a

b ZYuuur

= 7 7 5i j i+ −% %%

= 2 7i j+% %

YXuuur

= 2 7 (7 7 )i j i j+ − +% %% %

= 5i−%

c OYuuur

= 7 7 0 0i j i j+ − +% %% %

= 7 7i j+% %

ZXuuur

= 2 7 5i j i+ −% %%

= 3 7i j− +% %

d cos θ = 2 2 2 2

( 3 7 ) (7 7 )

( 3) 7 7 7

i j i j− + ⋅ +

− + +% %% %

= 21 4958 98

− +

= 285684

= 2281421

= 282 7 29× ×

= 229

= 2 2929

e tan θ = 72

= 3.5 θ = 74.05 ≈ 74.1° f The vector resolute of OX on the x-axis is the

x-component of X. = 2 i

%

g Let P be the point such that OP

uuur = 7xi j+

% % (P lies on XY)

⇒ PZuuur

= 5 ( 7 )i xi j− +% % %

= (5 − x) 7i j−% %

OYuuur

= 7 7i j+% %

PZ OY⋅uuur uuur

= [(5 ) 7 ] (7 7 )x i j i j− − ⋅ +% %% %

= 0

⇒ 7(5 − x) − 49 = 0 35 − 7x − 49 = 0 7x = −14 x = −2 ⇒ OP

uuur = 2 7i j− +

% %

Coordinates of P are (−2, 7). h Area = bh where b = 5, h = 7 Area = 5 7× = 35 square units.

4 a

b Speed = 2 23 5+

= 34 = 5.83 m/s c tan θ = 5

3

= 1.6667 ⇒ θ = 59.0 The bearing is 059° Τ. d Distance = speed × time where speed = 3 m/s

Page 19: Chapter 7 — Introduction to vectorsthefinneymathslab.weebly.com/uploads/8/1/0/4/81042930/ch...Chapter 7 — Introduction to vectors MC11 Qld-7 134 Introduction to vectors Resultant

I n t r o d u c t i o n t o v e c t o r s M C 1 1 Q l d - 7 151

time = 2 minutes or 120 seconds. Distance = 3 × 120 = 360 The width of the river is 360 metres. e Distance = 5 × 120 = 600 The swimmer is carried 600 metres downstream. f If the swimmer started on the north bank: Speed = 5.83 m/s (same as before) River width = 360 m Distance downstream = 600 m (same as before) Bearing:

tan θ = 53

θ = 59.0° Bearing is 180 − 59 = 121° T The results are the same, except the bearing is now 121° T. 5 a Assuming that Sally is at the origin, the vector would be: 25 sin 35° i

% + 25 cos 35° j

% + 8 k

%

= 14.34 i%

+ 20.48 j%

+ 8 k%

b Distance = 2 2 214.34 20.48 8+ +

= 689.066 = 26.25 m

c Total height is 8 + 1.75 = 9.75 m

θ = tan−1 9.7525

⎛ ⎞⎜ ⎟⎝ ⎠

= 21.3° The angle of elevation is 21.3°. 6 a Let v

% represent the skydiver’s path.

v%

= 3 5 4 (6 4 12 )i j k i j k− + − + +% % % %% %

= − 3 9 8i j k− −% %%

b | |v%

= 2 2 2( 3) ( 9) ( 8)− + − + −

= 154

v%

= 1 ( 3 9 8 )154

i j k− − −% %%

c 3 5 4i j k− +% %%

Distance = 2 2 23 ( 5) 4+ − +

= 50 = 5 2 km d Speed = | | 60v ×

% (km/h)

= 154 60× ≈ 744.6 km/h