39
1 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) Chapter 8 - Environmental Forces and Moments 8.1 Wind Forces and Moments 8.2 Wave Forces and Moments 8.3 Ocean Current Forces and Moments

Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

  • Upload
    others

  • View
    48

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

1 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Chapter 8 - Environmental Forces and Moments 8.1  Wind  Forces  and  Moments  8.2  Wave  Forces  and  Moments  8.3  Ocean  Current  Forces  and  Moments  

Page 2: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

2 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Superposi;on  of  Wind  and  Wave  Disturbances          For  control  systems  design  it  is  common  to  assume  the  principle  of  superposi;on  when  considering  wind  and  wave  forces:          Ocean  Currents  The  effect  due  to  ocean  currents  is  simulated  by  introducing  the  rela;ve  velocity  vector:  

Chapter 8 - Environmental Forces and Moments

M !! " C!!"! " D!!"! " g!"" " g0 # #wind " #wavew" # #

!r ! ! ! !c # !c !

ucvcwc000

MRB !! " CRB!!"!rigid-body terms

"MA !!r " CA!!r"!r " D!!r"!rhydrodynamic terms

" g!"" " gohydrostatic terms

# # " w #

Page 3: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

3 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Dynamic  pressure          ρa      =  air  density  AFw    =    frontal  projected  area  ALw    =    lateral  projected  area  HFw    =  centroid  of  AFw  above  the  water  line  HLw    =  centroid  of  ALw  above  the  water  line  Loa      =  length  over  all        

Generalized  force  using  area-­‐based  wind  coefficients:  

8.1.1 Wind Forces and Moments on Marine Craft at Rest

Xwind ! qCX!!w"AFwYwind ! qCY!!w"ALwZwind ! qCZ!!w"AFwKwind ! qCK!!w"ALwHLwMwind ! qCM!!w"AFwHFwNwind ! qCN!!w"ALwLoa

# # # # # #

q ! 12 !aVw2 #

!w ! " ! #w ! $ #

wind  angle  of  aMack  

Page 4: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

4 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

8.1.1 Wind Forces and Moments on Marine Craft at Rest

Beaufort number Description of wind Wind speed (knots)

0 Calm 0-1

1 Light air 2-3

2 Light breeze 4-7

3 Gentle breeze 8-11

4 Moderate breeze 12-16

5 Fresh breeze 17-21

6 Strong breeze 22-27

7 Moderate gale 28-33

8 Fresh gale 34-40

9 Strong gale 41-48

10 Whole gale 49-56

11 Storm 57-65

12 Hurricane More than 65

The  wind  speed  is  usually  specified  in  terms  of  Beaufort  numbers    (Price  and  Bishop,  1974)  

Page 5: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

5 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

8.1.1 Wind Forces and Moments on Marine Craft at Rest Wind  Coefficient  Approxima;on  for  Symmetrical  Ships    For  ships  that  are  symmetrical  with  respect  to  the  xz-­‐  and  yz-­‐planes,  the  wind  coefficients  for  horizontal-­‐plane  mo;ons  can  be  approximated  by:              which  are  convenient  formulae  for  computer  simula;ons.      Experiments  indicate  that:      

 cx ∈ {0.50, 0.90} cy ∈ {0.70, 0.95} cn  ∈ {0.05, 0.20}

 These  values  should  be  used  with  care.  

CX!!w" ! "cx cos!!w"CY!!w" ! cy sin!!w"CN!!w" ! cn sin!2!w"

# # #

Page 6: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

6 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

8.1.2 Wind Forces and Moments on Moving Marine Craft

!wind ! 12 !aVrw2

CX!"rw"AFwCY!"rw"ALwCZ!"rw"AFw

CK!"rw"ALwHLwCM!"rw"AFwHFwCN!"rw"ALwLoa

#

Vrw ! urw2 " vrw2

!rw ! !atan2!vrw,urw"

#

#

urw ! u ! uwvrw ! v ! vrw

# #

uw ! Vw cos!!w ! ""

vw ! Vw sin!!w ! ""

# #

The  wind  speed  Vw  and  its  direc;on  βw  can  be  measured  by  a  wind  sensor  (anemometer).    The  wind  coefficients  (look-­‐up  tables)  are  computed  numerically  or  by  experiments  in  wind  tunnels.      

Generalized  force  in  terms  of  rela;ve  angle  of  aMack  γrw  and  rela;ve  wind  speed  Vrw:  

Page 7: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

7 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

8.1.3 Wind Coefficients Based on Flow over a Helmholtz-Kirchhoff Plate

Reference:  Blendermann  (1994)    The  load  func;ons  are  parameterized  in  terms  of  four  primary  wind  load  parameters:  

CX!!w" ! !CDlALwAFw

CDlAF

cos!!w"1 ! "

2 1 ! CDlCDt

sin2!2!w"

CY!!w" ! CDtsin!!w"

1 ! "2 1 ! CDl

CDtsin2!2!w"

CK!!w" ! #CY!!w"

CN!!w" ! sLLoa ! 0.18 !w ! $

2 CY!!w"

#

#

#

#

Type of vessel CDt CDlAF!0" CDlAF!!" " #

1. Car carrier 0.95 0.55 0.60 0.80 1.2

2. Cargo vessel, loaded 0.85 0.65 0.55 0.40 1.7

3. Cargo vessel, container on deck 0.85 0.55 0.50 0.40 1.4

4. Container ship, loaded 0.90 0.55 0.55 0.40 1.4

5. Destroyer 0.85 0.60 0.65 0.65 1.1

6. Diving support vessel 0.90 0.60 0.80 0.55 1.7

7. Drilling vessel 1.00 0.70–1.00 0.75–1.10 0.10 1.7

8. Ferry 0.90 0.45 0.50 0.80 1.1

9. Fishing vessel 0.95 0.70 0.70 0.40 1.1

10. Liquified natural gas tanker 0.70 0.60 0.65 0.50 1.1

11. Offshore supply vessel 0.90 0.55 0.80 0.55 1.2

12. Passenger liner 0.90 0.40 0.40 0.80 1.2

13. Research vessel 0.85 0.55 0.65 0.60 1.4

14. Speed boat 0.90 0.55 0.60 0.60 1.1

15. Tanker, loaded 0.70 0.90 0.55 0.40 3.1

16. Tanker, in ballast 0.70 0.75 0.55 0.40 2.2

17. Tender 0.85 0.55 0.55 0.65 1.1

CDl ! CDlAF !!w"AFwALw

#

Matlab MSS toolbox >> [w_wind,CX,CY,CK,CN] = blendermann94(gamma_r,V_r,AFw,ALw,sH,sL,Loa,vessel_no)

Page 8: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

8 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

0 30 60 90 120 150 180 -0.6 -0.4 -0.2

0 0.2 0.4 0.6 0.8

Angle of wind g w (deg) relative bow

Wind Coefficients

0 30 60 90 120 150 180 0

0.2 0.4 0.6 0.8

Angle of wind g w (deg) relative bow

0 30 60 90 120 150 180 0

0.2 0.4 0.6 0.8

Angle of wind g w (deg) relative bow

0 30 60 90 120 150 180 -0.1

-0.05 0

0.05 0.1

0.15

Angle of wind g w (deg) relative bow

CX

CY

CK CN

8.1.3 Wind Coefficients Based on Flow over a Helmholtz-Kirchhoff Plate

CX is generated using  CDl,AF(0) and CDl,AF(π)  corresponding to head and tail winds.

Research  vessel  with  Afw  =  160.7  m²,  Alw  =  434.8  m²,  sL  =  1.48  m,  sH  =  5.10  m,  Loa  =  55.0  m,    Lpp  =  48.0  m  and  B  =12.5  m  

Page 9: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

9 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

8.1.4 – 8.1.7 Wind Coefficients

8.1.4  Wind  Coefficients  for  Merchant  Ships  (Isherwood,  1972)  Isherwood  (1972)  has  derived  a  set  of  wind  coefficients  by  using  mul;ple  regression  techniques  to  fit  experimental  data  of  merchant  ships.  The  wind  coefficients  are  parameterized  in  terms  of  eight  parameters.    8.1.5  Wind  Resistance  of  Very  Large  Crude  Carriers  (OCIMF,  1977)  Wind  loads  on  very  large  crude  carriers  (VLCCs)  in  the  range  150  000  to  500  000  dwt  can  be  computed  by  applying  the  results  of  (OCIMF  1977).    8.1.6  Wind  Resistance  of  Large  Tankers  and  Medium  Sized  Ships  For  wind  resistance  on  large  tankers  in  the  100  000  to  500  000  dwt  class  the  reader  is  advised  to  consult  Van  Berlekom  et  al.  (1974).      Medium  sized  ships  of  the  order  600  to  50  000  dwt  is  discussed  by  Wagner  (1967).   8.1.7  Wind  Resistance  of  Moored  Ships  and  Floa;ng  Structures  Wind  loads  on  moored  ships  are  discussed  by  De  Kat  and  Wichers  (1991)  while  an  excellent  reference  for  huge  pontoon  type  floa;ng  structures  is  Kitamura  et  al.  (1997).      

Page 10: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

10 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

8.2 Wave Forces and Moments A  marine  control  system  can  be  simulated  under  influence  of  wave-­‐induced  forces  by  separa;ng  the  1st-­‐order  and  2nd-­‐order  effects:    

•   1st-­‐order  wave-­‐induced  forces  (wave-­‐frequency  mo6on)        Zero-­‐mean  oscillatory  mo;ons      •   2nd-­‐order  wave-­‐induced  forces  (wave  dri9  forces)        Nonzero  slowly  varying  component          

 Wave  forces  are  observed  as  a  mean  slowly  varying  component    referred  to  as  Low-­‐  Frequency    (LF)  mo;ons  and  an  oscillatory  component    called  Wave-­‐Frequency  (WF)  mo;ons  which  must  be  compensated  for  by  the  feedback  control  system:    •  The  mean  component  (LF)  can  be  removed  

by  using  integral  ac;on  

•  The  oscillatory  component  (WF)  is  usually  removed  by  using  a  cascaded  notch  and  low-­‐pass  filter  (wave  filtering)  

 

!wave ! !wave1 " !wave2 #

Page 11: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

11 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

8.2 Wave Forces and Moments Wave  Response  Models:    

1.  Force  RAOs  2.  Mo6on  RAOs  3.  Linear  state-­‐space  models  (WF  models)          

 The  first  two  methods  require  that  the  RAO  tables  are  computed  using  a  hydrodynamic  program  (depends  on  vessel  geometry)    The  last  method  is  frequently  used  due  to  simplicity  but  it  is  only  intended  for  tes;ng  of  robustness  and  performance  of  control  systems,  that  is  closed-­‐loop  analysis.                        RAO  =  Response  Amplitude  Operator    

Page 12: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

12 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

1.  Force  RAOs                        2.  Mo6on  RAOs                  

8.2 Wave Forces and Moments

Marine craft

Wave spectrum

sea state generalized force

generalized position

Marine craft

Wave spectrum

sea state

Generalized force generalized position

Force RAO

Motion RAO

Page 13: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

13 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

8.2 Wave Forces and Moments 3.  Linear  State-­‐Space  Models  (WF  models)          

Marine craft

Linear wave spectrum approximation

White noise

Generalized force generalized position

Tunable gain K

WF position

Page 14: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

14 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

8.2 Wave Forces and Moments 1.  Force  RAOs                      2.  Mo6on  RAOs            3.  Linear  state-­‐space  models  (WF  models)          

Wavespectrum Motion RAO

Seastate

Waveamplitude

1st-order wave-induced positions

S( )ω

ηwH ,Ts z Ak

Wavespectrum

1st-orderForce RAO

Seastate

Waveamplitude

1st-order wave-induced force

2nd-orderForce RAO

2nd-order wave drift force

S( )ω

τwave1H ,Ts z Ak

Generalized  force  

Generalized  posi;on  

Generalized  posi;on  

Page 15: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

15 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

8.2.1 Sea State Descriptions For  marine  crai  the  sea  can  be  characterized  by  the  following  wave  spectrum  parameters:      

•   The  significant  wave  height  Hs      (the  mean  wave  height  of  the  one  third  highest  waves,  also  denoted  as  H1/3)      •   One  of  the  following  wave  periods:  

-­‐   The  average  wave  period,  T₁        -­‐   Average  zero-­‐crossing  wave  period,  Tz  -­‐   Peak  period,  Tp  (this  is  equivalent  to  the  modal  period,  T₀)          

Page 16: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

16 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

8.2.2 Wave Spectra

The  process  of  wave  genera;on  due  to  wind  starts  with  small  wavelets  appearing  on  the  water  surface.  This  increases  the  drag  force,  which  in  turn  allows  short  waves  to  grow.  These  short  waves  con;nue  to  grow  un;l  they  finally  break  and  their  energy  is  dissipated.    A  developing  sea,  or  storm,  starts  with  high  frequencies  crea;ng  a  spectrum  with  a  peak  at  a  rela;ve  high  frequency.      A  storm  which  has  lasted  for  a  long  ;me  is  said  to  create  a  fully  developed  sea.      Aier  the  wind  has  stopped,  a  low  -­‐frequency  decaying  sea  or  swell  is  formed.  These  long  waves  form  a  wave  spectrum  with  a  low  peak  frequency.        

S( )ω

Swelland tidalwaves

Developingsea

ω

 If  the  swell  from  one  storm  interacts  with  the  waves  from  another  storm,  a  wave  spectrum  with  two-­‐peak  frequencies  may  be  observed.      In  addi;on,  ;dal  waves  will  generate  a  peak  at  a  low  frequency.  Hence,  the  resul;ng  wave  spectrum  might  be  quite  complicated  in  cases  where  the  weather  changes  rapidly  

Page 17: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

17 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

8.2.2 Wave Spectra Neumann  Spectrum  (1952)  One-­‐parameter  spectrum:    Bretschneider  Spectrum  (1959)  Two-­‐parameter  spectrum:      Pierson-­‐Moskowitz  Spectrum  (1963)  Two-­‐parameter  spectrum:            Modified  Pierson-­‐Moskowitz  (MPM)  Spectrum  (1964)  For  predic;on  of  responses  of  marine  crai  and  offshore  structures  in  open  sea,  the  Interna;onal  Ship  and  Offshore  Structures  Congress  and  the  Interna;onal  Towing  Tank  Conference  (ITTC),    have  recommended  the  use  of  a  modified  version  of  the  PM-­‐spectrum  where    

A ! 8.1 ! 10!3 g2 ! constant

B ! 0.74 gV19.4

4! 3.11

Hs2

#

# S!!" ! A!!5 exp!!B!!4" #

S!!" ! 1.25 !04Hs24 !!5 exp !1.25!!0/!"4 #

S!!" ! C!!6 exp!!2g2!!2V!2" # lim!!1S!!" ! " g2 !"5 #

Hs ! 2.06g2 V19.4

2 #

A ! 4!3Hs2Tz4

, B ! 16!3

Tz4 #

Tz ! 0.710T0 ! 0.921T1 #

Page 18: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

18 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

0 2 4 8 12 17 22 28 34 41 49 57 65

5

10

15

20

25

knots m/s

Sea state 9

Sea state 8

Sea state 7 Sea state 6 Sea state 5 Sea state 4 Sea state 3

Significant wave height H s (m)

30 20 10 0

Wind speed V

Beaufort number 1 2 3 4 5 6 7 8 9 10 12 11

H s = 2.06 V 2 /g 2

8.2.2 Wave Spectra

Hs ! 2.06g2 V19.4

2 #

Page 19: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

19 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

8.2.2 Wave Spectra

S!!" ! 155 Hs2T1

4 !!5 exp !944T1

4 !!4 "Y # ! !0.07 for " ! 5.24/T1

0.09 for " " 5.24/T1 #

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 20 40 60 80

100 JONSWAP spectrum

w (rad/s)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 20 40 60 80

100 Modified Pierson-Moskowitz (PM) spectrum

w (rad/s) w

o = 0.4

H s

H s

S( w ) (rad/s)

S( w ) (rad/s)

JONSWAP  Spectrum  In  1968  and  1969  an  extensive  measurement  program  was  carried  out  in  the  North  Sea,  between  the  island  Sylt  in  Germany  and  Iceland.  The  measurement  program  is  known  as  the  Joint  North  Sea  Wave  Project  (JONSWAP)  and  the  results  from  these  inves;ga;ons  have  been  adopted  as  an  ITTC  standard  in  1984.    

Y ! exp ! 0.191!T1 ! 12 "

2

#

Page 20: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

20 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

8.2.2 Wave Spectra

Torsethaugen  spectrum:  upper  plot  shows  only  one  peak  at  ω₀  =  0.63  rad/s  represen;ng  swell  and  developing  sea  while  the  lower  plot  shows  low-­‐frequency  swell  and  newly  developing  sea  with  peak  frequency  ω₀  =  1.57  rad/s.    

0 0.5 1 1.5 2 2.5 3 0 0.02 0.04 0.06 0.08

0.1 0.12 0.14

w (rad/s)

0 0.5 1 1.5 2 2.5 3 0 0.05

0.1 0.15

0.2

w (rad/s)

H s = 3-10 m T o = 10 s

H s = 3-10 m T o = 4 s

S( w )/(H s 2 T o )

H s

H s

w 0 = 0.63 rad/s

w o = 1.57 rad/s

Torsethaugen  Spectrum  The  Torsethaugen  spectrum  (1996)  is  an  empirical,  two-­‐peaked  spectrum  developed  by  Norsk  Hydro.    Includes  the  effect  of  swell  (low-­‐frequency  peak)  and  newly  developed  waves  (high-­‐frequency  peak).      The  spectrum  is  developed  using  curve  fimng  of  experimental  data  from  the  North  Sea.                

Page 21: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

21 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

8.2.2 Wave Spectra

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

w (rad/s)

S( w )/(H s 2 T 0 )

Modified Pierson-Moskowitz JONSWAP for g = 3.3 JONSWAP for g = 2.0 Torsethaugen

Wave  spectra  ploMed  for  same  wave  height  and  peak  frequency.        Wave  demo  op;on  in  the  MSS  toolbox  script:   >> gncdemo Computa;on  and  plomng  of  wave  spectra:   >> S = wavespec(…)

Page 22: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

22 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

8.2.3 Wave Amplitude Response Model The  rela;onship  between  the  wave  spectrum  S(ωk)  and  the  wave  amplitude  Ak  for  a  wave  component  k  is  (Fal;nsen  1990)        where  Δω  is  a  constant  difference  between  the  frequencies.  This  rela;onship  can  be  used  to  compute  wave-­‐induced  responses  in  the  ;me  domain.    Long-­‐Crested  Irregular  Sea  The  wave  eleva;on  of  a  long-­‐crested  irregular  sea  in  the  origin  of  {s}  under  the  assump;on  of  zero  speed  can  be  wriMen  as  the  sum  of  N  harmonic  components          where  εk  is  the  random  phase  angle  of  wave  component  number  k.  Since  this  expression  repeats  itself  aier  a  ;me  2π/Δω  a  large  number  of  wave  components  N  are  needed.  However,  a  prac;cal  way  to  avoid  this  is  to  choose  ωk randomly  in  the  interval  

12 Ak

2 ! S!!k""! #

! ! !k!1

N

Ak cos!"k " #k" ! !k!1

N

2S!"k"#" cos!"k " #k" #

!k ! !!2 ,!k " !!

2 #

Page 23: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

23 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

8.2.3 Wave Amplitude Response Model Short-­‐Crested  Irregular  Sea  The  most  likely  situa;on  encountered  at  sea  is  short  crested  or  confused  waves.  This  is  observed  as  irregulari;es  along  the  wave  crest  at  right  angles  to  the  direc;on  of  the  wind.      Short-­‐crested  irregular  sea  can  be  modeled  by  a  2-­‐D  wave  spectrum        where  β = 0 corresponds  to  the  main  wave  propaga;on  direc;on  while  a  nonzero  β-­‐value  will  spread  the  energy  at  different  direc;ons.    

S!!,"" ! S!!"f!"" #

f!!" !2" cos2!!", ! "/2 " ! " "/2

0; elsewhere #

! ! !k!1

N

!i!1

M

2S!"k ,#i""""# cos!"k # $k" #

Spreading  func;on    

Wave  eleva;on    

Page 24: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

24 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

8.2.3 Wave Amplitude Response Model Extension  to  Forward  Speed  using  the  Frequency  of  Encounter  For  a  ship  moving  with  forward  speed  U,  the  peak  frequency  of  the  spectrum  ω₀  will  be  modified  according  to:  

!e!U,!0,"" ! !0 !!0

2

g Ucos!"" #

! ! !k!1

N

!i!1

N

2S!"k ,#i""""# cos!"k ""k

2

g Ucos!#i""e!U,"k ,#i"

# $k" #

Wave  Eleva;on  using    Frequency  of  Encounter  

ωe is the frequency of encounter β is the angle between heading and wave direction

Page 25: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

25 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Normalized  Force  RAOs      The  1st-­‐  and  2nd-­‐order  wave  forces  for  varying  wave  direc;ons  βi    and  wave  frequencies  ωk                Processing  Re-­‐Im  parts  of  the  RAOs  (ASCII  file  generated  by  hydrodynamic  code)  

8.2.4 Wave Force Response Amplitude Operators

Fwave1!dof" #!k ,"i$ !

#"wave1!dof" #!k ,"i$

$gAkej!#"wave1

!dof" #!k ,"i$

Fwave2!dof" #!k ,"i$ !

#"wave2!dof" #!k ,"i$

$gAk2ej!#"wave2

!dof" #!k ,"i$

#

#

Fwave1!dof" #!k ,"i$ ! Imwave1!dof"#k, i$2 " Rewave1!dof"#k, i$2

!Fwave1!dof" #!k ,"i$ ! atan#Imwave1!dof"#k, i$,Rewave1!dof"#k, i$$

#

#

Fwave2!dof" #!k ,"i$ ! Rewave2!dof"#k, i$

!Fwave2!dof" #!k ,"i$ ! 0

#

#

complex  variables  

(wave  drii)  

Page 26: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

26 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

No  Spreading  Func;on              With  Spreading  Func;on      

8.2.4 Wave Force Response Amplitude Operators

!wave1!dof" ! !

k!1

N

"g Fwave1!dof" ##k ,$$ Ak cos #e#U,#k ,$$t " "Fwave1

!dof" ##k ,$$ " %k

!wave2!dof" ! !

k!1

N

"g Fwave2!dof" ##k ,$$ Ak2 cos##e#U,#k ,$$t " %k $

#

# (wave  drii)  

Wavespectrum

1st-orderForce RAO

Seastate

Waveamplitude

1st-order wave-induced force

2nd-orderForce RAO

2nd-order wave drift force

S( )ω

τwave1H ,Ts z Ak 1

2 Ak2 ! S!!k""! #

!wave1!dof" ! !

k!1

N

!i!1

M

"g Fwave1!dof" ##k ,$i$ Ak cos #e#U,#k ,$i$t " "Fwave1

!dof" ##k ,$i$ " %k

!wave2!dof" ! !

k!1

N

!i!1

M

"g Fwave2!dof" ##k ,$i$ Ak2 cos##e#U,#k ,$i$t " %k $

#

# (wave  drii)  

Page 27: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

27 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

8.2.4 Wave Force Response Amplitude Operators The  mo;on  RAOs  are  processed  in  the  MSS  Hydro  toolbox  by  using:      wamit2vessel % read and process WAMIT data veres2vessel % read and process ShipX (Veres) data  The  data  is  represented  in  the  workspace  as  Matlab  structures      vessel.forceRAO.w(k) % frequencies vessel.forceRAO.amp{dof}(k,i,speed_no) % amplitudes vessel.forceRAO.phase{dof}(k,i,speed_no) % phases  where  speed_no  =  1  represents  U  =  0.  For  the  mean  drii  forces  only  surge,  sway  and  yaw  are  considered  (dof    ∈ {1,2,3}  where  the  3rd  component  corresponds  to  yaw)      vessel.driifrc.w(k)      %  frequencies  vessel.driifrc.amp{dof}(k,i,speed_no)  %  amplitudes                It  is  possible  to  plot  the  force  RAOs  using:      plotTF  plotWD    

Page 28: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

28 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Wave-­‐Frequency  Mo;on  (1st-­‐order  Mo;ons)                                                                                                                                                        are  the  mo;on  RAO  amplitude  and  phase  for  frequency  ωk  and  wave  direc;on  βi    Total  Mo;on        

8.2.5 Motion Response Amplitude Operators

(wave  drii  must  be  added  manually  in  the  equa;ons  of  mo;on)  

12 Ak

2 ! S!!k""! #

!w!dof" ! !k!1

N

!i!1

M

!w!dof"#"k ,#i$ Ak cos "e#U,"k ,#i$t " "!w!dof"#"k ,#i$ " $k #

Wavespectrum Motion RAO

Seastate

Waveamplitude

1st-order wave-induced positions

S( )ω

ηwH ,Ts z Ak

y ! ! " !w #

where |!w1!dof"#"k ,#i$| and!!w1

!dof"#"k ,#i$

Page 29: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

29 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

8.2.5 Motion Response Amplitude Operators Wave-­‐Frequency  Mo;ons    The  1st-­‐order  wave-­‐induced  forces,  τwave1,  are  zero-­‐mean  oscillatory  wave  forces.  In  a  linear  system  we  have:                The  1st-­‐order  wave  response  can  be  evaluated  as:          where  the  transfer  func;on  is  a  LP  filter  represen;ng  the  vessel  dynamics.      Moreover,  the  1st-­‐order  wave  response  can  be  computed  by  LP  filtering  the  generalized  forces  τwave1.    The  linear  responses  are  usually  represented  by  RAOs.      No;ce  that  the  mo;on  RAOs  depend  on  the  vessel  matrices  MRB,A(ω),B(ω)  and  C  while  force  RAOs  are  only  dependent  on  the  wave  excita;ons.                                                                                                                                              

!MRB ! A"!#$!" ! B"!#!# ! C! " $wave1 # ! ! !" cos!!t" ! !"Re#ej!t" #

! !2!MRB ! A"!#$!" ! j!B"!#!" ! C!" " #wave1 #

!" ! Hv!j!"#wave1 # Hv!j!" ! #!!2#MRB " A!!"$ " j!B!!" " C$!1 #

harmonic  mo;ons

Page 30: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

30 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

8.2.6 State-Space Models for Wave Responses

!" ! J!!"#M "# # C!#"# # D!#"# # g!!" # g0 ! $wind # $wave2 # $

y ! ! # !w

# # # !w ! KHs!s"w!s" #

Approxima;on  2  (Wave  Spectrum)  A  linear  wave  response  approxima;on  for  Hs(s)  is  usually  preferred  by  ship  control  systems  engineers.  Easy  to  use  and  easy  to  test  control  systems.    No  hydrodynamic  SW  is  needed  for  the  price  of  a  tunable  gain  K  which  must  be  tuned  manually  to  match  the  response  ηw  

Approxima;on  1  (WF  Posi;on)  

“tunable  gain”  

Page 31: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

31 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

8.2.6 State-Space Models for Wave Responses

x! w1

x! w2"

0 1!!0

2 !2"!0

xw1

xw2#

0Kw

w #

yw ! 0 1xw1

xw2 #

h!s" ! Kwss2 " 2!"0s " "0

2 #

x! w ! Awxw " ewwyw!cw!xw

# #

Linear  Wave  Spectrum  Approxima;on  (Balchen  1976)                                                                                                                                                                                                                                                                                                                                                        PM-­‐spectrum          State-­‐Space  Model  

S!!" ! A!!5 exp!!B!!4" #

Page 32: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

32 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

8.2.6 State-Space Models for Wave Responses

Page 33: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

33 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

8.2.6 State-Space Models for Wave Responses Example  8.2  (Linear  Models  for  1st-­‐  and  2nd-­‐order  Wave-­‐Induced  Forces)  A  marine  control  system  can  be  tested  under  influence  of  wave-­‐induced    forces  by  separa;ng  the  1st-­‐  and  2nd-­‐order  wave-­‐induced  forces.  For  a  surface  vessel  in  3  DOF  (dof ∈ {1,2,6})  the  wave  forces  and  moments  are:                      The  wave  drii  forces  di  (i=1,2,3)  are  modeled  as  slowly  varying  bias  terms  (Wiener  processes):  

!wave ! !Xwave,Ywave,Nwave"! # Xwave ! Kw!1"ss2 " 2!!1""e!1"s " "e!1"

2 w1 " d1

Ywave ! Kw!2"ss2 " 2!!2""e!2"s " "e!2"

2 w2 " d2

Nwave ! Kw!6"ss2 " 2!!6""e!6"s " "e!6"

2 w3 " d3

#

#

#

d! 1 " w4d! 2 " w5d! 3 " w6

# # #

Here  wi  (i=1,2,...,6)  are  Gaussian  white  noise  processes.  

Page 34: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

34 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

8.3 Ocean Current Forces and Moments Current  Speed  and  Direc;on  The  current  speed    is  denoted  by  Vc  while  its  direc;on  rela;ve  to  the  moving  crai  is  conveniently  expressed  in  terms  of  two  angles:  angle  of  aMack  αc,  and  sideslip  angle  βc      For  computer  simula;ons  the  current  velocity  can  be  generated  by  using  a  1st-­‐order  Gauss-­‐Markov  Process                

V! c " !Vc # w # Vmin ! Vc!t" ! Vmax #

xb α-β

xstabzb

yb

Uxflow

Page 35: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

35 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

8.3 Ocean Current Forces and Moments Equa;ons  of  Mo;on  including  Ocean  Currents    

rigid-­‐body  and  hydrosta;c  terms                        hydrodynamic  terms    

MRB !! " CRB!!"! " g!"" " g0 "MA !!r " CA!!r"!r " D!!r"!r # #wind " #wave " # #

!r ! ! ! !c rela;ve  velocity !c ! !uc,vc,wcvcb

,0,0,0"! #

The  generalized  ocean  current  velocity  of  an  irrota;onal  fluid  is:  

Page 36: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

36 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Property 8.1 (Irrotational Constant Ocean Currents) If  the  Coriolis  and  centripetal  matrix  CRB(νr)  is  parameterized  independent  of  linear  velocity  ν1=  [u,  v,  w]T,  for  instance  by  using  (3.57):            and  the  ocean  current  is  irrota;onal  and  constant,  the  rigid-­‐body  kine;cs  sa;sfies  (Hegrenæs,  2010):          Equa;ons  of  Rela;ve  Velocity        Property  8.1  can  be  used  to  simply  the  representa;on  of  the  equa;ons  of  mo;on.  Moreover,              

8.3 Ocean Current Forces and Moments

MRB !! " CRB!!"! # MRB !!r " CRB!!r"!r # !r !

vb!vcb

"b/nb #

CRB!!" !mS!!2" !mS!!2"S!rgb"

mS!rgb"S!!2" !S!Ib!2" #

ν2  =  [p,  q,  r]T  

M !!r " C!!r"!r " D!!r"!r " g!"" " g0 # #wind " #wave " # #

M ! MRB "MA

C!!r" ! CRB!!r" " CA!!r" # #

Page 37: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

37 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

8.3.1 3-D Irrotational Ocean Current Model

3-­‐D  Irrota;onal  Ocean  Current  Model          A  3-­‐D  current  model  is  obtained  by  transforming  the  current  speed  Vc  from  FLOW  axes  to  NED  veloci;es:              Transforma;on  from  NED  to  BODY  

!c ! !uc,vc,wc,0,0,0"! #

vcn ! Ry,!c! Rz,!"c!

Vc00

# vcn !Vc cos!!c"cos!"c"Vc sin!"c"Vc sin!!c"cos!"c"

#

ucvcwc

! Rbn!!nb"!vcn #

xb α-β

xstabzb

yb

Uxflow

Page 38: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

38 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

8.3.2 2-D Irrotational Ocean Current Model

2-­‐D  Ocean  Current  Model          For  the  2-­‐D  case,  the  3-­‐D  equa;ons  with  αc  = 0  reduces  to:                      These  expressions  are  used  to  compute  current  forces  for  ships  using:    

•   Current  coefficients  •   Cross-­‐flow  drag    

For  underwater  vehicles  the  3-­‐D  representa;on  should  be  used.  

uc ! Vc cos!!c ! ""

vc ! Vc sin!!c ! ""

# #

vcn !Vc cos!!c"Vc sin!!c"

0 #

Vc ! uc2 " vc2 #

Page 39: Chapter 8 - Environmental Forces and Moments · 8! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 0 30 60 90 120 150 180

39 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

m11 m12 0 0m21 m22 0 00 0 1 00 0 0 1

v!r!!!

V! c

"

m11"Vc sin!# c ! !" # m11Vcr cos!# c ! !" # d11Vc sin!# c ! !" ! d11v ! d12rm21"Vc sin!# c ! !" # m21Vcr cos!# c ! !" # d21Vc sin!# c ! !" ! d21v ! d22r

r!"Vc

#

b1b200

$ #

YwindNwind00

#

YwaveNwave00

#

!m11 sin!# c ! !"

!m21 sin!# c ! !"

01

w #

Example  8.3  (Maneuvering  Model)  Consider  a  linearized  maneuvering  model  in  state-­‐space  form:                  Augmen;ng  the  current  speed  to  this  equa;on  gives:                        No;ce  that  the  state-­‐space  model  is  nonlinear.  

8.3.2 2-D Irrotational Ocean Current Model

m11 m12 0m21 m22 00 0 1

v!r!!!

"

d11 d12 0d21 d22 00 !1 0

v ! vc

r!

#b1b20

" "

YwindNwind

0

"

YwaveNwave

0

#

vc ! Vc sin!!c ! "" # v! c " V! c sin!!c ! "" ! Vcrcos!!c ! ""

" !#Vc sin!!c ! "" # wsin!!c ! "" ! Vcrcos!!c ! ""

# #